ProofPower

TUTORIAL

PPTex-2.9.1w2.rda.110727

Copyright © : Lemma 1 Ltd. 2006

Information on the current status of ProofPower is available on
the World-Wide Web, at URL:

http://www.lemma-one.demon.co.uk/ProofPower/index.html

This document is published by:

Lemma 1 Ltd.
2nd Floor

31A Chain Street
Reading
Berkshire

UK

RG1 2HX

e-mail: pp@lemma-one.com

PPTex-2.9.1w2.rda.110727 13:54:16 27/07/2011

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

CONTENTS

0 ABOUT THIS PUBLICATION 3
0.1 Purpose o e e 3
0.2 Readership e 3
0.3 Related Publications 3
0.4 Area Covered e 3
0.5 Assumptions e 4
0.6 Acknowledgements 4

1 GETTING STARTED 5
1.1 Imteraction with ProofPower 5
1.2 Setting Up. o o o e 6
1.3 Entering ProofPower 6
1.4 Using the Editor o 7
1.5 Executing ProofPower Commands 7
1.6 ProofPower-ML Prompts and Interrupts 7
1.7 Ending The Session 8
1.8 Imput froma File 8
1.9 Working In ASCIT e 8

2 CONVENTIONS 11
2.1 SesSIONS . . .o e 11
2.2 Input and Output 11

3 A FIRST EXAMPLE 13

4 INTRODUCTION TO THE METALANGUAGE 15
4.1 EXPressions o e e e e e e e e e e e e 15
4.2 Lists and Strings 16
4.3 Declarations e e 16
4.4 Function Applications L 16
4.5 Pairsand Tuples e 17
4.6 Polymorphic Types o 18
4.7 Declarations of Functions 18

5 INTRODUCTION TO THE ProofPower LOGIC 23
5.1 Overview of higher order logic L 23
5.2 Terms e e e 25
5.3 Boolean Terms, Theorems and Sequents 29
5.4 The Development of Theories o 31

5.4.1 Theories L e 31
5.4.2 Theory Databases 31
5.4.3 The Current Theory and Current Database 32
5.4.4 Naming of Object e 32
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

5.4.5 Example of Developing a New Theory 33

5.5 Constant Specification 38

6 INTRODUCTION TO PROOF WITH ProofPower 43
6.1 Forward proof 45
6.2 Derived rules e e 47
6.3 Rewriting e 50

7 GOAL ORIENTED PROOF 53
7.1 Goals and Tactics e 53
7.1.1 Example of Defining a Tactic 55

7.1.2 Effects of Tactics 55

7.1.3 Notation for Specifying Tactics L. 56

7.2 Using Tactics to Prove Theorems 57
7.2.1 The Subgoal Package. 58

7.2.2 Multiple Main Goals L 63

7.2.3 Working With Assumptions L oL 64

7.3 Tacticals oL e 65
7.3.1 The Tactical THEN e e s 65

7.3.2 The Tactical REPEAT e e e e e 65

8 FURTHER TACTICS 67
8.1 Simplifying the Goal 67
8.2 Specializing the Assumptions 70
8.3 [Existentially Quantified Goals Lo 72
8.4 Contradiction and Resolution 72
8.5 Proof Contexts 74

9 SPECIFICATION WITHOUT AXIOMS 75
9.1 Specifying Constants 75
9.2 Specifying Types e e e 7

10 MOVING ON 81
10.1 Tactics o o e e e 82
10.2 Rules. o e 82
10.3 Conversions Lo e 82
10.4 ConversionalS e e e 82
10.5 Tacticals o L oL 82
REFERENCES 83
INDEX 85

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 0 3

ABOUT THIS PUBLICATION

0.1 Purpose

This document, one of several making up the user documentation for the ProofPower system, contains
a tutorial introduction to the system.

0.2 Readership

This document is intended to be the first to be read by new users of ProofPower. It is a tutorial for
learning the basic use of the system. The reader is assumed to be familiar with predicate logic.

0.3 Related Publications

A bibliography is given at the end of this document. Publications relating specifically to ProofPower
are:

1. ProofPower HOL Tutorial Notes [10], tutorial notes for the ProofPower-HOL course.

2. ProofPower Z Tutorial [9], a tutorial covering the ProofPower Z support option.

3. ProofPower Description Manual [7};

4. ProofPower Reference Manual [12];

5. ProofPower Installation and Operation [8];

6. ProofPower Document Preparation [6].

0.4 Area Covered

This tutorial is an introductory ProofPower course which gives an idea of the way ProofPower is
used, but which does not systematically explain the underlying principles. After working through
this tutorial, the reader should be capable of using ProofPower for simple tasks, and should also be
in a position to approach the ProofPower Reference Manual [12].

Once the ProofPower system is installed on the user’s workstation, by following the procedure
described in the Installation Guide, this tutorial should enable the potential ProofPower user to
become familiar with the following subjects:

1. The metalanguage ProofPower-ML, and how to interact with the metalanguage compiler. The
description of ProofPower-ML given here is very brief, only intended to be sufficient to support

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

4 Chapter 0. ABOUT THIS PUBLICATION

the exposition of ProofPower. ProofPower-ML is an extension of the programming language
Standard ML. For a more complete introduction to Standard ML the reader is referred to [3],
[5], or [11].

2. The formal logic supported by the ProofPower system (higher order logic) and its manipulation
via the metalanguage.

3. Forward proof and derived rules of inference.

4. Goal directed proof, and tactics and tacticals.

The sections that follow cover these topics in the sequence shown above.

0.5 Assumptions

Though this tutorial can be read independently, it is most beneficially read while running ProofPower
so that the features described can be observed at first hand. The instructions for running ProofPower
assume that the reader has available an installed ProofPower system, and that the reader is following
the tutorial at a workstation and trying out the examples interactively. Basic familiarity with using
the X Windows System is assumed.

Other tutorial manuals are available with ProofPower, which are best attempted after reading this
tutorial, which is the tutorial most suitable for absolute beginners. After reading this tutorial, a more
thorough knowledge of ProofPower may be obtained by working through ProofPower HOL Tutorial
Notes [10], which contains exercises and solutions, and covers a wider range of facilities than those
described here. Those interested in the Z support facilities of ProofPower may then work through
ProofPower Z Tutorial [9] which describes how to use ProofPower for specification and proof in
ProofPower-z.

0.6 Acknowledgements

ICL gratefully acknowledges its debt to the many researchers (both academic and industrial) who
have provided the intellectual capital on which ICL has drawn in the development of ProofPower.

We are particularly indebted to Mike Gordon of Cambridge, both for his leading role in the research on
which ProofPower is based, and for the text, [13], which formed the starting point for the development
of this tutorial.

The ProofPower system is a proof tool for Higher Order Logic which builds upon ideas arising from
research carried out at the Universities of Cambridge and Edinburgh, and elsewhere.

In particular the logic supported by the system is (at an abstract level) identical to that implemented
in the Cambridge HOL system [1], and the paradigm adopted for implementation of proof support for
the language follows that adopted by Cambridge HOL, originating with the LCF system developed
at Edinburgh [2]. The functional language “standard ML” used both for the implementation and as
a interactive metalanguage for proof development, originates in work at Edinburgh, and has been
developed to its present state by an international group of academics and industrial researchers. The
implementation of Standard ML on which ProofPower is based was itself implemented by David
Matthews at the University of Cambridge, and is now commercially marketed by Abstract Hardware
Limited.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 1 5

GETTING STARTED

This manual is intended to serve as a tutorial introduction to the use of ProofPower for simple
specification and proof using the ProofPower-HOL language. It contains numerous examples of
interaction with ProofPower. Many readers will wish to try out the examples interactively as they
read. The remainder of this chapter explains how to do this.

The instructions which follow assume that you are working in a user name which has been set up to
run ProofPower as described in the installation instructions supplied with the software. If you have
problems with the instructions, this may well be because your user name has not been set up to run
ProofPower or because there has been some problem with the installation of ProofPower. If you
have difficulty, you are advised first to consult the installation instructions or the person responsible
for installing the ProofPower software on your system.

1.1 Interaction with ProofPower

The most convenient way to use ProofPower for developing both specifications and proofs involves
two parallel activities:

e Using an editor to develop a IXTEX source document called a ‘literate script’ (see ProofPower
Document Preparation [6]) in which ProofPower commands are recorded.

e Executing ProofPower-ML commands, typically extracted from the script. The various object
languages, ProofPower-HOL, ProofPower-Z, etc., supported by the tool are all embedded in
ProofPower-ML, and execution of ProofPower-ML commands is how fragments of specification
are checked and how proof steps are conducted.

Under the X Windows System, the recommended way of carrying out these two activities is to use
the program xpp which integrates a general purpose editor with the ProofPower-ML compiler and
gives easy ways of carrying out many of the common tasks (e.g., entering mathematical symbols).
Sections 1.2 to 1.7 below describe how to use xpp to work through the examples in this tutorial. The
instructions in these sections assume that you have started up X in the way appropriate for your
system and that you have an ‘xterm’; ‘command tool’ or other UNIX terminal emulator on the work
station screen.

An advantage of xpp is that it supports the use of mathematical symbols on the screen. It is possible
to run ProofPower without using xpp, but this advantage is then lost: mathematical symbols have
to be handled as ASCII keywords. Users who are obliged to work the tutorial examples in ASCII
are referred to section 1.9 below.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

6 Chapter 1. GETTING STARTED

1.2 Setting Up

The results of work with the ProofPower system are stored in what is called a database. A database
stores objects of different kinds: definitions, axioms, theorems and theories. Work with ProofPower
will commonly result in updating a database.

The ProofPower system is issued with a relatively large database of predefined objects, and it is
desirable both to avoid casual modification to this issued database and to avoid making unnecessary
copies of it. Consequently the user is recommended to create a new empty database, having the
issued database as its ‘parent’, and to use this ‘child’ database thereafter while working through the
examples. The objects stored in the parent are available through use of the child.

The file-name for a database is derived from the name you use to name the database on the command
line. The conventions for the file-names depend on the operating system and hardware you are using
and on the Standard ML compiler used to build ProofPower. For example, with the Standard ML
of New Jersey compiler running with the Linux operating system on Intel x86 hardware, a database
named ‘demo’ would be held in a file named ‘demo-x86-linux’.

The following UNIX commands create a new database named ‘demo’ (which is a child of the issued
database and is held in a file in the current directory):

pp_make_database -p hol demo

The instructions in the rest of this chapter assume you have changed to a directory in which you
wish to store your work on this tutorial and that you have successfully executed the above command.

1.3 Entering ProofPower

The ProofPower system is entered by a command at the UNIX prompt, invoking the xpp program
and giving it arguments identifying, amongst other things, the name of a file you wish to edit and
the name of a database.

Following the instructions in the previous section, you will have a new database called ‘demo’. The
source text of the tutorial is in the file ‘$SPPHOME/doc/usr004.doc’. The following UNIX command
will start up xpp to edit that file and to run ProofPower on the new database.

xpp -f $PPHOME/doc/usr004.doc -d demo

See the entry on xpp in ProofPower Reference Manual [12] for more information.)

When xpp starts up, you will see that the its display has four main features as follows, (working
from top to bottom).

Menu Bar This contains menus which you use to select the main functions of xpp. The menu at
the right-hand end is used to give on-line help with xpp.
File Name Bar This contains the name of the file you are editing.

Script Window This is the text area in which you carry out your editing work. It will come up
containing the tutorial script.

Journal Window This displays a journal of your transactions with ProofPower. It will come up
displaying start-up messages from the ProofPower-ML compiler followed by a prompt: ‘) .

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

1.4. Using the Editor 7

1.4 Using the Editor

The Script Window in xpp together with the Menu Bar comprise a general purpose text editor
providing several features which are convenient for editing ProofPower literate scripts; The File and
Edit Menu provide standard editing features, and the Tools Menu is used to pop up tools to perform
various functions, e.g., the Palette Tool which gives an easy way to enter mathematical symbols
(both into the Script Window and into other parts of xpp — see the Help Menu entry about the
Tools Menu for more information).

1.5 Executing ProofPower Commands

The basic way of executing ProofPower commands using xpp is with the ‘Execute Selection’ item in
the Command Menu in response to the ProofPower-ML prompt: ‘:)’.

In this manual, lines of input for ProofPower will be shown in the following style:

SML

"This is a line of Standard ML Input";

To execute a line of ProofPower-ML, select it in the xpp Script Window (e.g., by double clicking with
the left mouse button) and then chose ‘Execute Selection’ from the Command Menu. The line will
be copied to the Journal Window for processing by the ProofPower-ML compiler.

The output which subsequently appears in the Journal Window is shown in this manual thus:

val it = "This is a line of Standard ML Input" : string

There are several shortcuts to make interaction easier; for example, you can type ‘Control-X’ instead
of selecting ‘Execute Selection’. A more powerful shortcut is the Command Line Tool, which you can
invoke from the Tools menu; this helps you type in and execute commands which you do not want
to keep in the script, and can be used to remember and recall commands which you use frequently.
Consult the Help Menu for further information.

1.6 ProofPower-ML Prompts and Interrupts

The ProofPower-ML compiler uses the prompt ‘:)’ to invite you to input a command. If you have
typed in a syntactically incomplete line of input, the compiler will expect you to complete the
command on subsequent ‘continuation lines’. For example, the following command is spread over
three input lines.

SML

If you suspect that the compiler is waiting for you to complete a command, but you wish to abort the
command instead, you can use the ‘Interrupt’ item in the Command Menu to do so. The ‘Abandon’
item that you will also see in the Command Menu is for backwards compatibility with earlier versions
of ProofPower only.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

8 Chapter 1. GETTING STARTED

1.7 Ending The Session

To leave xpp, use the ‘Quit’ item in its File Menu. You will be prompted if you have not saved all
your changes to the file you are editing or if the ProofPower-ML compiler is still running.

It is recommended that you always quit the ProofPower-ML compiler before quitting xpp. (Quitting
xpp without quitting the ProofPower-ML compiler generally works, but may bypass some tidying up
such as removal of temporary files.)

If you wish the work you have carried out to be saved in the database before your quit, you should
execute the following ProofPower-ML command before quitting xpp:
SML

save_and _ quit();

This command will cause the database to be updated by storing in it the results of the work done
during the session.

To quit from the ProofPower system without updating the database, execute the ProofPower-ML
command before quitting xpp:

SML

quit();

This will ask you for confirmation (which you can conveniently send using the Command Line Tool).

1.8 Input from a File

Within a ProofPower session, the ProofPower system may be directed to take input from a file,
rather than interactively, by executing, for example, the command

SML

use_file "myfile";

After reading and executing the last line in the file, the ProofPower system returns to taking inter-
active input.

There is an option on the UNIX command-line to read and execute such a ‘script’ file immediately
on entry to the ProofPower system:

xpp —command pp —-d demo —-i myfile

1.9 Working In ASCII

To work through this tutorial in ASCII, first copy the source document into a local directory and
then convert it to ASCII as follows:

cp installdir/docs/usr004.doc .
conv_ascii usr004
textedit usr004.doc

Create a database as described in section 1.2 and then begin an interactive ProofPower session
directly rather than via xpp by executing the UNIX command:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

1.9. Working In ASCII 9

pp —d demo

ProofPower will then come up and prompt for input from your terminal. You should immediately
set ProofPower into ASCII mode by entering the following command:

SML
‘ set_flag ("use_extended_chars", false);
When a flag is set the previous value of the flag is returned, so the above command will respond:

‘ val it = true : bool

Now type directly in response to the ProofPower prompt, or use cut-and-paste from the text editor
of your choice.

The ASCII keywords used to represent mathematical symbols in ASCII mode are documented in
ProofPower Document Preparation [6].

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

10 Chapter 1. GETTING STARTED

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 2 11

CONVENTIONS

This chapter describes some conventions followed in this manual.

2.1 Sessions

Throughout this tutorial, the sequences of user’s interactions with the system and the system’s re-
sponses are called ‘sessions’. All sessions in this documentation are displayed in numbered boxes.
This number indicates whether the session is a new one (when the number will be 1) or the contin-
uation of a session started in an earlier box. Consecutively numbered boxes are assumed to be part
of a single continuous session. In particular, variable bindings made in earlier boxes are assumed to
persist to later ones in the same sequence.

2.2 Input and Output

As already mentioned, input to ProofPower-ML will be marked by a vertical line on the left, with
‘SML‘ in small letters, thus:

SML

"This is a line of ProofPower Input";

This is, in fact, the usual appearance of ProofPower commands in a printed literate script.

The output resulting from the above input is shown in this manual marked by a vertical line alone,
thus:

val it = "This is a line of Standard ML Input" : string

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

12 Chapter 2. CONVENTIONS

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 3 13

A FIRST EXAMPLE

In this section a very small example is presented and briefly explained in order to give the reader
some idea of what to expect in the following sections. The purpose of the ProofPower system is to
support proof. A style of proof which is favoured by ProofPower (but not the only one possible) is
called goal-oriented proof. In this style of proof:

e firstly, a conjecture is stated. The conjecture is called the goal of the proof process.

e then a proof is conducted in one or more steps, each step being specified by the user. The steps
are progressive transformations of the goal, aimed at transforming the goal to the logical value
‘true’. When this has been achieved the conjecture is proved, yielding a theorem.

To illustrate the actual mechanics of the process, here is an example which shows three lines of user
input to state a conjecture p V — p, perform a one-step proof, and then record the proved conjecture
as a theorem. Each line of user input is followed by a system response, (which is not reproduced in
full here). Inputs and responses are annotated with comments between the symbols (* and *).

o (1]
‘ set_goal([], "p V —p); (x 1: state the conjecture x)

‘ o TpVv = (x response echoes goal *)

SML

‘ apply_tactic (REPEAT strip_tac); (x 2: perform one—step proof *)

‘ ... goal achieved ... (* response %)

SML

‘ val example_theorem = top_thm(); (x 3: save resulting theorem x)

‘ val example_theorem =+ p V — p : THM (* response x)

The following points may be noted:

e Each line of user input is in the metalanguage, which is called ProofPower-ML. The conjecture
p V = pis a term in the object language, which is called ProofPower-HOL. The object
language term occurs, surrounded by the special quotation symbols " and 7, embedded in the
metalanguage command.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

14

Chapter 3. A FIRST EXAMPLE

Stating the conjecture is accomplished by initialising a stack of goals. The proved theorem is
extracted from the top of the stack at the end of the process.

A proof step is accomplished by applying what is called a tactic to the goal at the top of the
stack. At each step the user must choose an appropriate tactic.

A tactic is a procedure which attempts to find a sequence of inferences in the ProofPower-HOL
logic such that the goal can be inferred to be true. A tactic may be

— wholly successful, as in this example, or

— partly successful, in which case the goal is reduced to a simpler goal, so that a further
tactic must be chosen and applied, or

— wholly unsuccesful, leaving the goal unchanged, in which case a different tactic must be
chosen.

The proof system makes available a set of predefined tactics. Different tactics are available to
exploit different features of the goal. Users can construct new tactics as programmed applica-
tion of existing tactics.

In this example the predefined tactic denoted by REPEAT strip_tac was chosen, on the ground
that this tactic is a standard opening gambit, capable of achieving many useful simplifications
of the goal, and indeed achieving simple goals by itself.

The system, not the user, is responsible for the soundness of the process of logical inference
performed by any tactic, whether the tactic is predefined or user-defined. Thus to choose an
inappropriate tactic at any step does not risk an unsound inference, but merely failure to make
progress.

Finally, note that what achieves the proof of the conjecture "p V — p7' is a metalanguage
expression apply_tactic (REPEAT strip_tac), and the latter does not have the conventional
appearance of a proof. It should be regarded, not as a proof itself, but rather as a program
which, when executed, will perform a formal proof of "p V = p' and many other such propo-
sitions.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 4 15

INTRODUCTION TO THE METALANGUAGE

This chapter is a brief introduction to the metalanguage ProofPower-ML. ProofPower-ML is an
extension of the programming language Standard ML. The extensions are:

e An extended character set to include symbols of logic and mathematics.

e An additional form of quotation, analogous to the quotation of ASCII strings, for the quotation
of object language expressions.

e A collection of predefined functions.

The aim of this chapter is to explain only enough of ProofPower-ML to make the following chapters
comprehensible. The rest of this chapter applies equally to Standard ML and to ProofPower-ML.
For a more complete introduction to Standard ML the reader is referred to [3], [5], or [11].

Throughout the rest of this document, ProofPower-ML will be referred to simply as ML. ML is an
interactive programming language. When interacting directly with the system, (which is called ‘at
the top level’) one can evaluate expressions and perform declarations.

4.1 Expressions

SML IL

\ 1+1;

‘ val it = 2 : int

This box shows an example of entering an ML expression through the keyboard (that is, ‘at the top

]

level’), which is then evaluated and the result displayed. The semicolon ‘;’ is used to terminate a
top-level phrase. The display of the result can be seen to consist of:

e The letters val, indicating that a value is to follow.

e A name for the value. In this case the user has not supplied any name, having merely typed
in the anonymous expression 7+1, and so the system supplies the name it. The value of the
most-recently-entered anonymous expression at the top level can always be referred to as it.

e The symbol =.
e The value, in this case 2.

e A colon followed by an indication of the type of the value. In this case, the value 2 is of type
integer, abbreviated to int. The ML type checker infers the type of expressions using methods
invented by Robin Milner, [4].

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

16 Chapter 4. INTRODUCTION TO THE METALANGUAGE

4.2 Lists and Strings

. The ML expression [2,3,4,5] is a list of four integers.

SML |i
| [2,8.4,5;

\ val it = [2, 3, 4, 5] : int list

The type int list is the type of ‘lists of integers’; list is a unary type operator. The type system of
ML is very similar to the type system of the ProofPower logic which is explained in Chapter 5.

Expressions such as "a", "b", "foo" are strings and have type string. Any sequence of ASCII char-
acters can be written between the quotes. The infix function = concatenates two strings to form a
single string.

SML Ii

= "ether",

‘ "tog"

‘ val it = "together" : string

4.3 Declarations

A declaration may have the form wval n = e, which results in the value of the expression e being
bound to the name n.

SML Ii

‘ val © = 42;

‘ val x = 42 : int

‘ z + 1;

‘ val it = 43 : int

4.4 Function Applications

The application of a function f to an argument = can be written as f x. The more conventional
f (x) is also allowed. The expression f z; z2 --- z, abbreviates the less intelligible expression
G+ ((f z1)x2)) xy. That is, function application is left associative.

Functions may be infix, as in the case of +. Another infix function is :: which constructs a list
which is the left argument followed by the right argument. Other list processing functions include

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

4.5. Pairs and Tuples 17

hd, which yields the head — the first element — of a list), ¢/, which yields the tail — all but the first
element — of a list) and null, which tests for an empty list.

SML IL
‘ val L = 1:[2, 8];

‘ val L =1, 2, 3] : int list

SML

\ hd L:

‘ val it = 1 : int

SML

‘ val it = [2, 3] : int list

SML

| ()

‘ val it =[] : int list

4.5 Pairs and Tuples

An expression of the form (e, eg) evaluates to a pair, with first component and second component
having respectively the values of e; and ep. If e; has type o; and ey has type o then (e;, eg) has
type o7 * 02. A tuple (ey, ..., e,) is NOT equivalent to (e;, (eg, ..., €y)), unless n = 2. The first
and second components of a pair (but not a tuple of length greater than two) can be extracted with
the ML functions fst and snd respectively. The i-th component of a tuple can be extracted with the
function #i.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

18 Chapter 4. INTRODUCTION TO THE METALANGUAGE

SML IL

‘ (1, 2, (true, "abe"));

‘ val it = (1, 2, (true, "abc")) : int * int * (bool * string)

SML

‘ #3 it;
‘ val it = (true, "abe") : bool * string

SML

‘ snd it;

‘ val it = "abc" : string

The ML expressions true and false denote the two truth values, being of type bool.

4.6 Polymorphic Types

ML types can contain the type variables 'a, 'b, etc. Such types are called polymorphic. A function
with a polymorphic type should be thought of as possessing all the types obtainable by replacing
type variables by types. An example of a function with polymorphic type is hd (head of a list),
which is applicable to lists of any type:

L 7

\ hd;

‘ val it = fn :'a list —>'a

This example also shows that, in the system’s response, the value of a function is not displayed in
full, but only symbolized by the letters fn. This is true of all function-values.

4.7 Declarations of Functions

The function which, for example, computes z + 1 from z can be defined and given a name, say, step,
as follows:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

4.7. Declarations of Functions 19

SML Ii

‘ fun step © =z + 1;

‘ val step = fn @ int —> int

SML

‘ step 6;

‘ val it = 7 : int

The declaration fun step x = z + 1 is a convenient abbreviation for val step = fn x => x« + 1.

SML IL

‘ val step = fnx => 2z + 1;

‘ val step = fn : int —> int

SML

‘ step 6;

‘ val it = 7 : int

Here fn x => x + 1 is an expression the value of which is a function. In what follows, it will
be common for the arguments or results of functions themselves to be functions. In the following
example twice is a function which takes a function as argument and returns another as a result, such
that applying the result-function is equivalent to applying the argument-function twice.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

20 Chapter 4. INTRODUCTION TO THE METALANGUAGE

SML &
‘ fun twice f = fnx => f (f z);

‘ val twice = fn: (la —>"a) —>"a —>"a

SML

‘ val hop = twice step;

‘ val hop = fn : int —> int

SML

‘ hop 6;

‘ val it = 8 : int

SML

\ (twice tl) [1, 8, 5, 7);

‘ val it =[5, 7] : int list

Again the syntactic abbreviation may be employed to give a neater definition of twice:

SML IL
‘ fun twice f v = f (f z);

‘ val twice = fn: ('a —>"a) —>"a —>"'a

SML

‘ twice step 6

‘ val it = 8 : int

Note particularly that the expression twice step 6 is equivalent to (twice step) 6. The declaration
above, fun twice f © = f (f z), is an example of a more general form of declaration of a function,
fun f vy ... v, = e where each v; is an argument and e is an expression.

As a final example, a useful built-in function is map which applies its function-argument to each
member of a list to produce a list:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

4.7. Declarations of Functions 21

SML Iﬁ

‘ map step [1, 3, 5];

\ val it = [2, 4, 6] : int list

The sessions above are enough to give an idea of ML. In the next sections, the logic supported by
the ProofPower system (higher order logic) will be introduced, together with the tools in ML for
manipulating it.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

22 Chapter 4. INTRODUCTION TO THE METALANGUAGE

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 5 23

INTRODUCTION TO THE ProofPower LOGIC

The ProofPower system supports higher order logic. This is a version of predicate calculus with
three main extensions:

e Variables can range over functions and predicates (hence ‘higher order’).
e The logic is typed.

e There is no separate syntactic category of formulae. Instead, there are terms of a boolean type.

5.1 Overview of higher order logic

It is assumed that the reader is familiar with predicate logic. The table below summarizes the
notation used. In what follows the logic supported by ProofPower will be called the HOL logic, or
simply HOL.

Terms of the HOL Logic
Kind of term HOL notation Description
Truth T true
Falsity F false
Negation -t not t
Disjunction t;Vio t; orts
Conjunction ti At t; and ty
Implication ti=ts t; implies to
Equality t; = to t; equals tg
V-quantification | Vzet for all z,t
J-quantification | Jzret for some x,t
e-term € ret an x such that t
Conditional if t then t; else tp | if t then t; else tp

Terms of the HOL logic are represented in ML by an abstract type! called TERM. They are
represented as character strings which are input, not between the usual quotation symbols but
rather between the symbols ™ and 7. For example, the expression ™ x A y = 2z evaluates in ML to
a term representing r A y = z. Terms can be manipulated by various built-in ML functions. For
example, the ML function dest_= with ML type TERM —> TERM x TERM splits an implication
into a pair of terms consisting of its antecedent and consequent, and the ML function dest_A of type
TERM —> TERM x TERM splits a conjunction into its two conjuncts.

T Abstract types appear to the user as primitive types with a collection of operations

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

24 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

SML IL

‘ TxAy=2zT

‘ val it ="x ANy = 2z': TERM

SML

‘ dest_=> it;

| val it = ("z Ay, "27) : TERM x TERM

SML
‘ dest_A (fst it);

| val it = ("z7, "y7) : TERM « TERM

Terms of the HOL logic are quite similar in appearance to ML expressions, but the distinction must
be carefully observed. Indeed, terms of the logic have types in a way which is similar to the way
in which ML expressions have types. For example, " 1 " is an ML expression with ML type TERM.
The HOL type of this term is :N, the type of the natural numbers.

The types of HOL terms form an ML type called TYPE. Expressions having the form ": 7 evaluate
to logical (that is, HOL) types. The built-in function type_of has ML type TERM —> TYPE and
returns the logical type of a term.

SML IL

e

\ val it = "(1, 2)7 : TERM

SML

‘ type_of it;

\ val it = :N x N7 : TYPE

SML
‘ (l‘]‘l’ :—2—\);

\ val it = (T17,727) : TERM %« TERM

SML

| type_of (fst it);

\ val it = ":N7: TYPE

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

5.2. Terms 25

To emphasise the distinction between between the ML types of ML expressions and the logical types
of HOL terms , the former will be referred to as metalanguage types and the latter as object language
types.

HOL terms can be input using explicit quotation, as above, using " and " for quotation marks, or
they can be constructed using ML constructor functions. The function mk_var constructs a variable
from a string and a type. In the example below, three terms are constructed, each representing a
single object-language variable of type BOOL, and metalanguage names are chosen for the terms to
coincide with the names of the object-language variables. These are used later.

SML Ii
val © = mk_var("z",":BOOL™);
val y = mk_var("y",” :BOOL");
val z = mk_var("z",":BOOL");

val t ="z ' : TERM
val y ="y ': TERM

r

val z ="2"': TERM

The constructors mk_A and mk_= construct conjunctions and implications respectively.

SML |i

‘ val t = mk_=(mk_N(z,y),2);

‘ val t ="x ANy = z': TERM

5.2 Terms

There are only four different kinds of terms:

1. Variables.
2. Constants.
3. Function applications: "t; s

4. M-abstractions: "\ z e ¢t .

Both variables and constants have a name and a type; the difference is that constants cannot be
bound by quantifiers, and their type is fixed when they are declared (see below). The type checking
algorithm uses the types of constants to infer the types of variables in the same quotation. If there is
not enough type information to constrain the assignment of a type, then an assignment of the most
general type, that is, involving type-variables, will result:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

26 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

SML IL

\ val it = "= 27 : TERM

SML

‘ dest_— it;

‘ val it = "2 : TERM

SML

‘ type_of it;

\ val it = ":BOOL™ : TYPE

SML

\ val it = "2 : TERM

SML

‘ type_of it;

\ val it = "'a : TYPE

In the first case, the HOL type checker used the known type BOOL — BOOL of = to deduce that
the variable z must have type BOOL. In the second case, it assigns the most general type to . The
‘scope’ of type information for type checking is a single quotation, so a type in one quotation cannot
affect the type checking of another. If there is not enough contextually-determined type information
to resolve the types of all variables in a quotation, then it may be necessary to explicitly indicate
the required types by using " term:type ' as illustrated below.

SML IL
‘ TN

\ val it = "z : TERM

SML

‘ type_of it;

‘ val it = ":N': TYPE

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

5.2. Terms 27

Functions have types of the form o;—o02, where o; and o are the types of elements of the domain
and range of the function, respectively.

Before considering an example of the types of functions, an aside is appropriate on a purely syntactic
matter. Functions may be defined with a special lexical status, such as being an infix operator, in
the case of + or A. In such cases, putting $ in front of the name of the function causes the parser to
ignore any special syntactic status it may have. This means that the naked symbol A is not in itself a
syntactically well-formed expression, because it denotes the application of the function to arguments
which are missing. However the expression $A is well-formed in itself, denoting a function, and it
can be applied to arguments.

SML IL

‘ rAﬂ;

‘ Syntazx error in: T <?> A

‘ A is not expected after T

‘ Ezception— Fail x Syntax error [HOL— Parser.19000] * raised

SML

‘ F$A7;

\ val it = "$AT . TERM

SML

‘ type_of it;

\ val it = ":BOOL — BOOL — BOOL™ : TYPE
SML

\ C$A t1 127,

\ val it = "t1 A t27: TERM

After that aside, we return now to the subject of the types of functions. Functions can be denoted
by Lambda-terms (or A-terms). For example, "Aze z+17is a term that denotes the function which
maps a number z to a number z + 1, and is thus of type N — N.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

28 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

SML |i
‘ "z o z+1"
| val it ="\ ze x + 17 : TERM
SML
‘ type_of it;
‘ val it = ":N — N7: TYPE
The next box provides further examples of metalanguage and object-language types.
SML IL
| T(z+1), (t1=12)7,
\ val it = "(z + 1, t1 = t2)7 : TERM
SML
‘ type_of it;
| val it = ":N x BOOL" : TYPE
SML
\ (Tz=17, Tt1=127);
| val it = ("o = 17, "t1 = t27) : TERM * TERM
SML
‘ (type_of (fst it), type_of (snd it));
| val it = (T:BOOL™, ":BOOL™) : TYPE * TYPE
The types of constants are declared in theories; this is described in Section 5.4.
An application t; ty is badly typed if ¢; is not a function:
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

5.3. Boolean Terms, Theorems and Sequents 29

SML IA

I’] 27.

Type error in "1 27
The operator must have type 0 — T
Cannot apply " 1:N"
to "2:N"
FEzception— Fail * Type error [HOL— Parser.16000] x raised

or if it is a function, but ¢, is not in its domain:

s (11

I’ﬁ]‘l;

Type error in "= 17
The operator and the operand have incompatible types
Cannot apply "—:(BOOL—BOOL)"
to " 1:N™
Exception— Fail * Type error [HOL—Parser.16000] x raised

5.3 Boolean Terms, Theorems and Sequents

So far, in the language of HOL terms, we have seen terms of different object-language types, including
those of object-language type ":BOOL™. The ProofPower system supports a process of inference
which results in the production of theorems. Theorems are objects of metalanguage type THM.
Terms are not theorems, that is, the metalanguage types TERM and THM are distinct. The form
taken by a theorem in this system of inference is not simply a boolean-valued term but rather a
composite of:

e 3 list of assumptions, each of which is a boolean-valued term
e a conclusion, which is a single boolean-valued term.
The following session produces an example of a theorem to illustrate this structure of assumptions

and conclusion. The example is produced by means which are yet to be described, but will be covered
in following sections.

swr [z

‘ tac_proof (([x=y", "y=z"], "a=2"), (asm_rewrite_tac|]));

‘ val it =x =y, y=z2Fax=2:THM

It can be seen that the turnstile symbol, -, separates assumptions from conclusion. This theorem
can be understood as meaning: on the assumption that x=y and the further assumption that y=z,
it may be concluded that x=z. The theorem is about the relationship between assumptions and

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

30 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

conclusion (that the latter follows from the former). The “truth” of the theorem is the truth of an
assertion about what follows from what.

Strictly speaking, all theorems in this system are about the relationship between assumptions and
conclusions, but in practice many theorems have no assumptions. Here is another example of a
theorem produced by means yet to be described:

SML [[13]

‘ refl_conv "z

‘ val it = F x =z : THM

This theorem can be understood as meaning “without making any assumptions, it may be concluded
that x=x". Here the list of assumptions mentioned above is present, but is empty and so nothing is
displayed for it.

Terms can be constructed at will, (subject only to the constraint of being well-typed.) On the other
hand, theorems can be constructed only by a proof which appeals to the rules of inference supported
by the system. The soundness of the system of inference and the correctness of the implementation
guarantee the “truth” of any theorems produced, and ensure that theorems can only be produced
by the prescribed system of inference.

Objects structured according to the pattern described above as a list of assumptions followed by
a conclusion are called “sequents”. In this sense, theorems may be called sequents, so that the
ProofPower system of inference is described as a sequent calculus; see e.g. [1].

The system supports “sequents” by providing, as an abbreviation for TERM list + TERM, the
name SE(Q. Sequents in this other sense are NOT theorems, just data-structures. Their usefulness
is (as shown in the example of producing the first theorem above) in convenience in stating goals for
a proof process, so much so that the system also supports the abbreviation GOAL for the same type.
This is illustrated in the next session, where the same object is ascribed a type which is reported in
three different ways.

SML &

—IL r

‘ val s =(["z=y ", "y=2 z=z");

‘ val s =(fz =y, "y=2","2z =2"): TERM list x« TERM

SML

‘ val it = (e =y, "y=2","2=2"): SEQ

SML

\ s:GOAL;

‘ val it = (e =y, "y=27,"2=2"): GOAL

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

5.4. The Development of Theories 31

5.4 The Development of Theories

5.4.1 Theories

The objects generated by work with ProofPower — definitions, types, constants, axioms and theorems
— are organised into larger units called theories. A theory in ProofPower is similar to what a logician
would call a theory, but there are some differences arising from the needs of mechanical proof. A HOL
theory, like a logician’s theory, contains sets of types, constants, definitions and axioms. In addition,
however, a HOL theory may contain an explicit list of theorems that have been proved from the
axioms and definitions. Logicians normally do not need to distinguish theorems that have actually
been proved from those that could be proved, hence they do not normally consider sets of proven
theorems as part of a theory; rather, they take the theorems of a theory to be the (often infinite) set
of all consequences of the axioms and definitions. Another difference between logicians’ theories and
HOL theories is that, for logicians, theories are relatively static objects, but in ProofPower they can
be developed over a period of time. For example, further theorems can be proved to produce a new
version of a theory which replaces the previous version.

The purpose of the ProofPower system may be described as to provide tools to enable well-formed
theories to be constructed. All the theorems of such theories are logical consequences of the definitions
and axioms of the theory. The ProofPower system ensures that only well-formed theories can be
constructed by allowing theorems to be created by formal proof only.

In general, a new theory is not constructed in a vacuum, but rather in a context of prior theories,
which makes available the contents of the prior theories for use in the new theory. Thus theories
are related one to another as parent to child, so that the parent is logically (but not physically)
incorporated into the child.

Any new theory must be a child of an existing theory, and in fact may be a child of several different
parent theories simultaneously. A collection of theories organised in a parent-child relationship is
called a theory-hierarchy. The ProofPower system as issued contains a theory-hierarchy of approx-
imately 20 theories. Of these, the theory called ‘min’ (for ‘minimal’) is the ultimate ancestor of all
other theories, whether issued or user-defined. Each theory is devoted to a particular subject, so
that there is, for example a theory of numbers in the issued database.

5.4.2 Theory Databases

A given theory is stored in what is called a theory database, which is a file in the filing system of
the computer. Thus a theory database is what is stored between sessions of interaction with the
ProofPower system.

In principle a whole hierarchy of theories can be stored in a single theory database. In practice
however it may be more convenient to distribute a theory-hierarchy over several databases. For this
purpose, databases may be organised in a parent-child relationship. Here each child database has
exactly one parent.

Such an arrangement would allow a collection of theories in a common database to be read-only,
and other theories under development to be in updatable child databases. Similar arrangements are
possible within a single database: an individual theory may have a status of “locked” to prevent
casual changes. Thus facilities for the management of theories are available both at the level of the
individual theory and at the level of the database.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

32 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

5.4.3 The Current Theory and Current Database
Any single ProofPower session works with a single database, the “current” database, which is that
nominated in the UNIX command line which caused entry to the ProofPower system.

There is always a current theory: definitions and theorems are stored in the theory which is current
at the time the definitions or theorems are generated. Each database has a theory which by default
becomes the current theory immediately on entry to a session with that database.

Facilities for working with theories include the following:

print_status(): Fhsplays ‘the name of the current theory and other
information
displays the contents of the theory named X. As a
print_theory” X”; convenience, the current theory may be referred to
by the name “-”.
will create a new, empty theory, named X, which be-
new_theory” X7; comes current, being a child of the hitherto-current
theory
open_theory” X”; will cause the existing theory X to become current.
b o will cause the current theory to acquire an additional
new_parent” X”;
parent, namely theory X.

5.4.4 Naming of Object

It has been explained that the state of a ProofPower session can be saved, and then retrieved on a
later occasion. Within the state of the ProofPower session, there will be theorems and other objects:
axioms, definitions, constants and so on. Now a theorem, for example, can be associated with a
name, in the state of the ProofPower session, in either or both of two ways, which are distinct.

Firstly, a theorem is an ML value like any other, in that it can be associated with an ML name by
the familiar process, seen many times above, of making a declaration:

SML [15]

val thm99 = refl_conv "z,

‘ val thm99 =+ z = x : THM

The value, and the association with the name, will survive the saving and retrieving of the state of
the ProofPower session.

Secondly, the current theory is represented by a data structure within the state of the current session.
This data structure has no ML name, but is instead provided with a number of access functions by
which its contents may be inspected, extracted, and updated.

For example, the function print_theory enables the content of the theory to be inspected. There is
a function save_thm which takes two arguments, a string and a theorem, and causes the theorem
to be saved in the data structure which is the current theory under the name given by the string.
A name given by such a string is called a key. The theorem can be recovered by another access
function, get_thm, which takes as arguments a theory name (the current theory can be referred
to by the name "—") and the key under which the theorem was stored. Note that there is no
necessary connection between this string and the name of any ML variable used to hold a theorem.
To emphasize the point, note that the key need not be a well-formed name.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

5.4. The Development of Theories 33

SML Ii

‘ save_thm ("theorem of 5 September 91", thm99);

\ val it =+ z = z : THM

SML

‘ get_thm "—" "theorem of 5 September 91",

‘ val it =+ x =z : THM

5.4.5 Example of Developing a New Theory

In this section an example is given of developing a new theory, which is chosen to be a treatment
of Peano’s postulates as axioms for the natural numbers. It is to be noted that there is already
a theory built into ProofPower, called N, which covers natural numbers and arithmetic, (in which
Peano’s postulates are in fact derived theorems rather than postulated as axioms). To emphasize
that this example theory is just an example, and has no relation to N except superficial resemblance,
the example theory will be called Peanissimo.

Executing new_theory "thy" creates a new theory called thy; it fails if there already exists a theory
so named in the current theory hierarchy.

SML 17]

‘ new_theory " Peanissimo";

‘ val it = () : unit

This starts a theory called Peanissimo, which is to be made into a theory containing Peano’s postu-
lates as axioms for the natural numbers. These postulates, stated informally, are:
P1 There is a number which we will call zero.

P2 There is a function which we will call successor such that if n is a number then the successor of
n is a number.

P3 zero is not the successor of any number.
P4 If two numbers have the same successor then the numbers are equal.

P5 If a property holds of zero, and if whenever it holds of a number then it also holds of the successor
of that number, then the property holds of all numbers. This postulate is called Mathematical
Induction.

To formalize this in HOL a new type is introduced called nat (for natural number)

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

34 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

SML Ii

‘ new_type ("nat", 0);

\ val it = T:nat? . TYPE

In general new_type ("op" n) makes op a new n-ary type operator in the current theory. Constant
types (such as BOOL or N) are regarded as degenerate type operators with no arguments, thus the
new type nat is declared to be a 0-ary type operator. An example of a I-ary type operator is LIST,
occurring in for example "[a;b;c] : N LIST™; and an example of a 2-ary type operator is X occurring
in for example "(z,y) : BOOL x NT,.

The axioms P1 and P2 can now be formalized by declaring two new constants to represent zero and
successor.

Evaluating new_const("c", o) makes ¢ a new constant of type o in the current theory. This fails if
there already exists a constant named c in the current theory (or a parent of the current theory).

SML Ii

‘ new_const ("zero", ":nat");

‘ val it = "zero' : TERM

SML

‘ new_const ("successor", ":nat—nat’);

‘ val it = " successor' : TERM

The HOL type checker ensures that P1 and P2 hold. P3 is now asserted as an axiom:

SML ﬂ

‘ new_aziom(["P3"], "Vne —(zero = successor n)");

‘ val it = F V ne = zero = successor n : THM

This creates an axiom in the current theory (that is, in Peanissimo) called P3. Axiom P4 can be
declared similarly:

SML &

‘ new_aziom(["P4"], "Vm n e(successor m = successor n) = (m = n));

‘ val it = F V m ne successor m = successor n = m = n : THM

The final Peano axiom is Mathematical Induction:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

5.4. The Development of Theories 35

SML Iﬁ

‘ new_aziom(["P5"],'V Pe P zero A (VY n e P n = P(successor n)) = (VYne P n));

‘ val it =+ Y Pe P zero A (¥ ne P n = P (successor n)) = (¥ ne P n) : THM

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

36 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

To inspect the theory, the function print_theory can be used:

SML Iﬁ
print_theory "—";
=== The theory Peanissimo ===
——— Parents ———
demo
——— Constants ———
ZEro nat
successor nat — nat
——— Types ———
nat
——— Azioms ———
P3 F V ne — zero = successor n
P FVYmn
® SUCCESSOT T = SUCCESSOT M => M = N
P5 FVY P
e P zero
A (Y ne P n = P (successor n))
= (V ne P n)
=== FEnd of listing of theory Peanissimo ===

To end the session and make an update to the database in use, recording all the work of the session
including the new theory, the current state of the session is saved to the database, by executing
save_and_quit();.

SML &

‘ save_and_quit();

‘/parZO/users/rda/tmp/sun4 demo.db:131072 bytes
‘ Closing [par20/users/rda/tmp/sunddemo.db now
‘ Opening /par20/users/rda/tmp/sunjdemo.db

The preceding session set up a first version of a theory, Peanissimo. It is usual to include in ‘Peano
arithmetic’ axioms defining addition and multiplication. To do this a new session can be started and
the theory further developed.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

5.4. The Development of Theories 37

If you are using xpp and it is still running, you can start the new session by selecting the ‘Restart’
item from the Command Menu in xpp. Otherwise start a new session from UNIX as explained in
section 1.3 (or 1.9, if you are not using xpp). You should now be in a position to continue developing
the theory by issuing the ProofPower-ML command.

SML Iﬂ

open_theory " Peanissimo";

The two new axioms can now be added, but first constants must be declared to represent addition
and multiplication. Let us choose the names pplus and ptimes respectively for these. Since we wish to
use these syntactically in the same way as + and *, that is, as infix operators with appropriate values
for syntactic precedence, they are declared as such with fizity declarations declare_infix followed
by new_const. Constants declared with declare_infix must have a type of the form o;—0os—0c3.

SML IA

declare_infiz (300, "pplus");
declare_infix (310, "ptimes");

val it = () : unit

val it = () : unit

SML

new_const ("pplus", ":nat—nat—nat™);

new_const ("ptimes", ":nat—nat—nat);

val it = "$pplus : TERM
val it = "$ptimes? : TERM

Axioms defining pplus and ptimes can now be given.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

38 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

SML Ii

new_aziom([" pplus_def"],
T(Vne (zero pplus n) = n) A

(Vm ne((successor m) pplus n) = successor (m pplus n))7);

val it =+ (V ne (zero pplus n) = n) A

(V m ne (successor m pplus n) = successor (m pplus n)) : THM

SML
new_aziom([" ptimes_def "],
T(Vne (zero ptimes n) = zero) A

(Vm ne((successor m) ptimes n) = ((m ptimes n) pplus n))7);

val it = F (VY ne (zero ptimes n) = zero) A

(¥ m ne (successor m ptimes n) = (m ptimes n pplus n)) : THM

The theory Peanissimo has now been extended to contain the new definitions.

This example shows how a theory is set up. How to prove consequences of axioms and definitions
is described later. The ProofPower system contains a built-in theory of numbers called N which
contains Peano’s postulates and the definitions of addition (+) and multiplication (*) amongst others.
In fact, Peano’s postulates are theorems not axioms in the theory N. The constants 0 and Suc
(corresponding to zero and successor in Peanissimo) are defined in terms of purely logical notions.
In HOL, definitions are a special kind of axiom that are guaranteed to be consistent. The commonest
(but not only) form of a definition is:

ij cee Tp =1

where f is declared to be a new constant satisfying this equation (and ¢ is a term whose free variables
are included in the set {z;,...,z,}). Such definitions cannot be recursive because, for example:

fz=((2)+1

would imply 0 = 1 (subtract f z from both sides) and is therefore inconsistent. An example of a
definition is:

SML &

‘ simple_new_defn (["Double_def "], "Double", "Aze (z pplus x)");

‘ val it =+ Double = (\ ze z pplus z) : THM

This definition both declares Double as a new constant of the appropriate type and asserts the
defining equation as a definitional axiom.

5.5 Constant Specification

There is an alternative form of introduction of constants, called specification, which involves pred-
icates not restricted to the definitional form name = wvalue, and therefore raising the question of

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

5.5. Constant Specification 39

possible inconsistency. Thus, in general, a specification will incur a proof obligation: a proof must
be provided that there exists something which satisfies the predicate. A complete discussion of this
topic is given in section 9, deferred until after the discussion of proof techniques.

However, in certain cases, the system is able to perform the existence-proof automatically. These
cases include the definitional name = value form, and also simple predicates such as T'. This means
that the mechanism for the specification of constants can be used uniformly for both specification
and definition.

Associated with the constant-specification mechanism is a facility for a graphic display. In the source-
file of a document typeset with Latex, the characters which cause a display such as the following:
HOL Constant

‘Square : nat — nat

‘Square = A\ze (z ptimes)

can be pasted directly into the ProofPower window. The source-file characters are typed as:

®HOLCONST
Square : nat — nat

%

Square = A\ze (x ptimes)
|

Entering these characters is equivalent making use of the function const_spec by entering:

‘ const_spec (
‘ ["Square"],
‘ ["Square : nat — nat™|,

T Square = Aze (x ptimes x)7);

In this tutorial, an occurrence of a display of this kind puts a strain on the convention we have
followed, of showing system input and output in session-boxes, character by character. Such a
display is meant to be understood as being in a small session-box of its own, which represents some
input.

If the theory is now examined, the treatment of Double and Square can be compared:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

40 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC
SML Iﬁ

print_ th@O’r‘y n_n

=== The theory Peanissimo ===

——— Parents ———
demo
——— Constants ———
zero nat
successor nat — nat
$pplus nat — nat — nat
$ptimes nat — nat — nat
Double nat — nat
Square nat — nat
——— Types ———
nat
——— Fixity ———
Infiz 300: pplus
Infix 310: ptimes
——— Azioms ———
P3 FV ne = zero = successor n
Py FVYmn
® SUCCESSOT T, = SUCCESSOT M => M = N
P5 FY P
e P zero
A (VY ne P n = P (successor n))
= (V ne P n)
pplus_def F (V ne zero pplus n = n)
ANV mn
e successor m pplus n
= successor (m pplus n))
ptimes_def F (V ne zero ptimes n = zero)
ANV mn
e successor m ptimes n
= m ptimes n pplus n)
——— Definitions ———
Double_def F Double = (A ze = pplus)
Square F Square = (A xe x ptimes x)

=== FEnd of listing of theory Peanissimo ===

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL

USRO004

5.5. Constant Specification 41

To repeat the point made earlier, the theory Peanissimo is presented here solely as a small example
of the development of a theory. In one important respect it is atypical, and that is in the introduction
of axioms. The use of axioms, as illustrated here, carries considerable danger in general because it
is very easy to assert inconsistent axioms. It is thus safer to use only definitions.

A theory containing only definitions is called a definitional theory. A number of useful definitional
theories are built-in to the ProofPower system, and are shown in the ProofPower Reference Manual
[12]. Examples include theories of numbers, sets, pairs and lists. Indeed it is particularly important
to note that, with a single exception, all the built-in theories are purely definitional. The exception is
the built-in theory init which contains the five primitive axioms of HOL. By inspecting the theories
listed in the ProofPower Reference Manual [12], it may be seen that init is the only theory containing
axioms, and all else is built up by a process of definition.

This topic is covered in section 9 below. It is noteworthy that if consistency is to be achieved by
avoiding the use of axioms then a price must be paid which amounts to doing proofs. Further
coverage of specification is thus deferred until after the coverage of proof.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

42 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 6 43

INTRODUCTION TO PROOF WITH ProofPower

For a logician, a formal proof is a sequence, each of whose elements is either an aziom or follows from
earlier members of the sequence by a rule of inference. A theorem is the last element of a proof.

Theorems are represented in HOL by values of an abstract type called THM . The only way to create
theorems is by proof. In ProofPower (following LCF, [2]), this consists in applying ML functions
representing rules of inference to axioms or previously generated theorems. The sequence of such
applications directly corresponds to a logician’s proof.

There are five axioms of the HOL logic and eight primitive inference rules. The axioms can be
retrieved from the theory init with the function get_axiom. For example, the Law of Excluded
Middle can be retrieved with the key "bool_cases_axiom™":

SML ﬂ

‘ get_axiom "init" "bool_cases_axiom";

| val it =+ Y be (b= T)V (b < F): THM

Theorems are printed with a turnstile - as illustrated above. Rules of inference are ML functions that
return values of type THM. An example of a rule of inference is specialization (or V — elimination).
In standard notation this might be:

I' - Vz.t
I + t[t']x]

This means that a theorem of the form below the line may be inferred from a theorem of the form
above the line. Here I" represents the assumptions, which must be the same in the inferred theorem
as in the premise, and ¢[t'/z] represents the result of substituting ¢’ for free occurrences of z in t,
with the restriction that no free variables in ¢’ become bound after substitution.

A rule very similar to this is represented in ML by a function V_elim! which, when given as arguments
a term a7 and a theorem FVzet[z], returns the theorem Ft[a], the result of substituting a for z in
t[z].

IThis function is not a primitive rule of inference in the HOL logic, but is a derived rule. Derived rules are described
in Section 6.1.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

44 Chapter 6. INTRODUCTION TO PROOF WITH ProofPower

SML IL

‘ val Thl = get_axiom "init" "bool_cases_axiom";

| wal Thi =FV be (b T)V (b & F): THM

SML

\ val Th2 =V_elim "1 = 27 Thi;

| val Th2 =+ (1 =2 T)V (1 =2 F): THM

This session consists of a proof of two steps: using an axiom and applying the rule V_elim; it
interactively performs the following proof:

1. FVt.t=T Vv t=F [Axiom bool_cases_aziom]

2. F (I1=2)=T v (1=2)=F [Specializing line 1 to ‘1=2"]

If the argument to an ML function representing a rule of inference is of the wrong kind, or violates
a condition of the rule, then the application fails.

A proof in the ProofPower system is constructed by repeatedly applying inference rules to axioms or
to previously proved theorems. Since proofs may consist of millions of steps, it is necessary to provide
tools to make proof construction easier for the user. The proof generating tools in the ProofPower
system are described later.

The general form of a theorem is t;,...,t, + t, where t;, ... , t, are boolean terms called the
assumptions and t is a boolean term called the conclusion. Such a theorem asserts that if its
assumptions are true then so is its conclusion. Its truth conditions are thus the same as those for the
single term (¢; A ... A t,) = t. Theorems with no assumptions are displayed in the form F ¢.

Every value of type THM in the ProofPower system can be obtained by repeatedly applying infer-
ence rules to axioms.

Every inference rule is either a derived rule or else a constructor of the abstract data type
THM.

Every derived rule is a procedure which invokes other rules each time the derived rule is invoked.
Some derived rules are supplied as part of ProofPower and others may be user-defined.

Every rule which is a constructor is either a primitive rule or else a built-in rule or else a
definition schema. The collection of constructor rules is fixed.

Every built-in rule can in principle be defined as a derived rule in terms of the primitive rules, but
for efficiency reasons is not implemented in this way.

Every definition schema is justified, not in terms of the primitive rules, but rather in terms of a
principle of definitional extension.

In the rest of this section, the process of forward proof, which has been sketched above, is decribed
in more detail. In section 7 below, goal directed proof is described. Goal directed proof provides
additional facilities for interactive proof development which makes it suitable as the most common
mode of working with ProofPower.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

6.1. Forward proof 45

6.1 Forward proof

Three of the primitive inference rules of the HOL logic are

e asm_rule (assumption introduction),
e = _intro (discharging, that is, eliminating, an assumption by introducing an implication) and
e =_elim (eliminating an implication, that is, Modus Ponens).
These rules will be used to illustrate forward proof and the writing of derived rules. The inference
rule asm_rule generates theorems of the form ¢ + ¢. The function dest_thm decomposes a theorem

into a pair consisting of list of assumptions and the conclusion. The ML type SEQ, or GOAL,
abbreviates TERM list + TERM this is motivated in Section 7.

s (2]

‘ val ThS = asm_rule "t1=1t2"

\ val ThS = t1 = t2 + t1 = t2 : THM

SML

‘ dest_thm Th3;

| val it = ([Tt1 = t27], "t1 = t27) : SEQ

The primitive inference rule = _intro (discharging, assumption elimination) infers from a theorem of
the form - --¢; - - - {2 the new theorem --- - -- F t;=1ts. =_intro takes as arguments the term to be
discharged (i.e. t;) and the theorem from whose assumptions it is to be discharged and returns the
result of the discharging. The following session illustrates this:

SML Ii

‘ val Thy = =_intro "t1=1t2" ThS;

| val Thy =+ (t1 = t2) = t1 = t2 : THM

In HOL, the rule of Modus Ponens is specified in conventional notation by:

F]l—t1=>t2 F2|_t1
I'yuly B iy

Corresponding to Modus Ponens, the ML function =-_elim takes argument theorems of the form

F ¢t = tsand--- F t; andreturns--- F t». The next session illustrates the use of =_elim
and illustrates also a common error, namely not supplying the HOL logic type checker with enough
information.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

46 Chapter 6. INTRODUCTION TO PROOF WITH ProofPower

SML Ii

‘ val Thd = asm_rule "t17;

‘ FEzception— Fail x "t17 is not of type ":BOOL" [asm_rule.3031] * raised

SML

‘ val Thd = asm_rule "t1:BOOL™;

\ val Ths = t1 + t1 : THM

SML

\ val Th6 = =_elim Th3 Thb;

\ val Th6 = t1 = t2, t1 - t2 : THM

The assumptions of Th6 can be extracted with the ML function asms, which returns the list of
assumptions of a theorem. The conclusion of a theorem is returned by the function concl.

SML IL

‘ asms Tho;

| val it = ["t1 = t27, "t17) : TERM list

SML

‘ concl Tho;

\ val it = "t27 : TERM

Discharging Th6 twice establishes the theorem - t1 = (t1=12)=-12.

SML Ii

‘ val Th7 = =_intro "t1=t2" Th6;

| val Th7 = t1 + (t1 = t2) = t2 : THM

SML

‘ val Th8 = =_intro "t1:BOOL™ Th7;

| val Th8 = t1 = (t1 = 12) = t2 : THM

The sequence: Th3, Th5, Th6, Th7, Th8 constitutes a proof in HOL of the theorem
Ft1=(t1=12)=12

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

6.2. Derived rules 47

This proof could be written:

l.t; =t F t; =t [Assumption introduction]
2. t; F ty [Assumption introduction]
3.ty =ta, t1 F t [Modus Ponens applied to lines 1 and 2]
4. t; F (t; = t2) =t [Discharging the first assumption of line 3]
5. F t1 = (t1 = t2) =t [Discharging the only assumption of line 4]

6.2 Derived rules

A proof from hypothesis thy,...,th, is a sequence each of whose elements is either an axiom, or one
of the hypotheses th;, or follows from earlier elements by a rule of inference.

For example, a proof of I', ' F t from the hypothesis I' + ¢ is:

L.t B ¢ [Assumption introduction]
2.I' -t [Hypothesis]
3. ' F /=t [‘Discharge’ ' from line 2]
4. ', t' + ¢t [Modus Ponens applied to lines 3 and 1]

Note that line 3 above mentions ‘discharging’ the assumption ¢’, but ¢’ is not actually amongst the
assumptions. The rule =_intro does not in fact require its term argument (¢') to be present in the
assumptions of its theorem argument (line 2).

This proof works for any hypothesis of the form I' + ¢ and any boolean term ' and shows that
the result of adding an arbitrary hypothesis to a theorem is another theorem (because the four lines
above can be added to any proof of I' F ¢ to get a proof of I, ¢’ F t).? For example, the next
session uses this proof to add the hypothesis 3 to Thé.

?This property of the logic is called monotonicity.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

48 Chapter 6. INTRODUCTION TO PROOF WITH ProofPower

SML IL

‘ val Th9 = asm_rule "t3:BOOL;

\ val Th9 = t3 + t3 : THM

SML

\ val Th10 = =_intro "t3:BOOL" Th6;

\ val Th10 = t1 = t2, t1 F t8 = t2 : THM

SML

\ val Th1l = =_elim Th10 ThY;

\ val Th1l = t1 = t2, t1, t3 F t2 : THM

A derived rule is an ML procedure that generates a proof from given hypotheses each time it is
invoked. The hypotheses are the arguments of the rule. An example of definition of a derived rule
will now be given. A rule, called, say, ADD_ASSUM , will be defined as an ML procedure that carries
out the proof above. In standard notation this would be described by:

I+t
I, t Ft
The ML definition is:
SML IL
fun ADD_ASSUM t th =

let val th9 = asm_rule t
val th10 = =_intro t th

mn
=_elim th10 th9

end;

‘ val ADD_ASSUM = fn : TERM —> THM —> THM

SML

\ ADD_ASSUM Tt3:BOOL™ Thé:

\ val it = t1 = t2, t1, t3 + t2 : THM

The body of ADD_ASSUM has been coded to mirror the proof done in session 9 above, so as to show
how an interactive proof can be generalized into a procedure. But ADD_ASSUM can be written
much more concisely as:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

6.2. Derived rules 49

SML IL

‘ fun ADD_ASSUM t th = =_elim (=_intro t th) (asm_rule t);

‘ val ADD_ASSUM = fn : TERM —> THM —> THM

SML

\ ADD_ASSUM Tt3:BOOL Thé;

\ val it = t1 = t2, t1, t3 F t2 : THM

As another example of a derived inference rule, one which moves the antecedent of an implication to
the assumptions, is shown below as UNDISCH.

I' + t; = to
I, t; F ty

An ML derived rule that implements this is:

SML Ii

‘ fun UNDISCH th = =_elim th (asm_rule(fst(dest-=(concl th))));

\ val UNDISCH = fn : THM —> THM

SML

\ Th10;

\ val it = t1 = t2, t1 - t3 = t2 : THM

SML

\ UNDISCH Th10;

\ val it = t1 = t2, t1, t3 + t2 : THM

Each time UNDISCH I' + t; = tp is executed, the following proof is performed:

1.t F ty [Assumption introduction]
2. F ty =t [Hypothesis]
3. I, t1 F t [Modus Ponens applied to lines 2 and 1]

Rules equivalent to ADD_ASSUM and UNDISCH (named respectively asm_intro and undisch_rule)
are derived rules defined when the ProofPower system is built.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

50 Chapter 6. INTRODUCTION TO PROOF WITH ProofPower

6.3 Rewriting

An important derived rule is rewrite_rule. This takes as arguments

e a collection of equations represented by a list of theorems, such that each theorem is an equation
or a conjunction of equations, and

e a theorem A F ¢

and repeatedly replaces in ¢ instances of the lefthand side of an equation by the corresponding
instance of the righthand side until no further change occurs. The result is a theorem I'U A + ¢
where t’ is the result of rewriting ¢ in this way, and I" is the union of the assumptions in the equations.

The session below illustrates the use of rewrite_rule. In it the list of equations is a list rewrite_list
containing the theorems of the theory N defining addition and multiplication.

SML |L

val rewrite_list = map (get_defn "N") ["4" "x"];

val rewrite_list = |
FYmmne O+ n=nA
(m+1)+n=(m+mn)+ 1A
Sucm= m+ 1,
FVmmnexn=20A
(m+1)xn=m=x*xn+ n]: THM list

In the following example, the conclusion of a theorem (an arbitrary theorem just for this example)
is rewritten using these definitions to produce a simpler theorem.

SML [12]

‘ val th = asm_rule (0 + m) = ((0x n) +1)%

‘ valth =0+ m=0*xn+1F0+m=0=x%xn+1:THM

SML

‘ rewrite_rule rewrite_list th;

val it =0 +m=0+«n+1+Fm=1:THM

rewrite_rule is not a primitive in HOL, but is a derived rule. In addition to the equations given
explicitly as an argument, rewrite_rule makes use of equations in the supplied theories, as shown in
the following example of rewriting with an empty list as argument:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

6.3. Rewriting

51

SML

SML

(asm_rule " (T AN z) V F = F);

val it =TNaVF=FFTANzVF=F:THM

rewrite_rule [] it;

val it = T NxVF = FF—-z: THM

(13

There are powerful facilities in ProofPower for producing customized rewriting tools which scan
through terms in user programmed orders; rewrite_rule is the tip of an iceberg.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL

USRO004

52 Chapter 6. INTRODUCTION TO PROOF WITH ProofPower

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 7 53

GOAL ORIENTED PROOF

The style of forward proof described in the previous chapter is unnatural and too laborious for many
applications. This chapter covers the topic of an alternative style, called ‘goal-oriented proof’, also
known as ‘backward proof’ or ‘tactical proof’. In this style, interactive facilities are available to
support the proof development process. These facilities are called ‘the subgoal package’. Before
describing the subgoal package, the underlying concepts of goals and tactics are described.

7.1 Goals and Tactics

An important advance in proof generating methodology was made by Robin Milner in the early 1970s
when he invented the notion of factics. A conjecture, stated as a sequent, is called a ‘goal’ when it
becomes a candidate for proving it to be a theorem. A tactic is a function which does two things:

e It decomposes a goal into one or more simpler goals, called subgoals.

o It keeps track of the reason why achieving the subgoal(s) will achieve the goal.

Consider, for example, the rule of A-introduction! shown below:

Iy - t Iy = 1
ryuly Bty A ts

In HOL, A-introduction is represented by the ML function A_intro, such that
A_ntro (FI = tl) (Fg F tg) 18 (F] Uly F ¢t A tg)

This is illustrated in the following new session (note that the session number has been reset to 1):

SML IL

‘ val Thl = asm_rule "A:BOOL" and Th2 = asm_rule " B:BOOL;

\ val Thi = A+ A: THM wal Th2 = B+ B : THM

SML

\ val Th3 = A_intro Thl Th2:

val Th3 = A, BF A A B : THM

Suppose the goal is to prove A A B, then this rule says that it is sufficient to prove the two subgoals
A and B, because from + A and + B the theorem - A A B can be deduced. Thus:

n higher order logic this is a derived rule; in first order logic it is usually primitive. In HOL the rule is called
A_intro

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

54 Chapter 7. GOAL ORIENTED PROOF

(i) To prove = A A B it is sufficient to prove - A and + B.

(ii) The justification for the reduction of the goal - A A B to the two subgoals - A and + B
is the rule of A-introduction.

A goal in HOL is a pair ([ty,...,t,],t) of ML type TERM list + TERM. An achievement of such a
goal is a theorem t;,...,t, = t. A tactic is an ML function that when applied to a goal generates
subgoals together with a justification function or validation, which will be an ML derived inference
rule, that can be used to infer an achievement of the original goal from achievements of the subgoals.

ML has a type abbreviating mechanism which is used to give mnemonic names to the various types
associated with goal oriented proof. Some type abbreviations are as follows:

’ Abbreviation ‘ Type

CONV TERM —> THM

GOAL (TERM list) x TERM

PROOF THM list —> THM

SEQ (TERM list) * TERM

TACTIC GOAL —> (GOAL list x PROOF)
THM_TACTIC THM —> TACTIC
THM_TACTICAL | THM_TACTIC —> THM_TACTIC

The left hand side of these abbreviations can be used anywhere that the right hand side can.

If T is a tactic (i.e. an ML function of type TACTIC) and g is a goal (i.e. an ML value of type
GOAL), then applying T to g (i.e. evaluating the ML expression T' ¢) will result in an object of ML
type GOAL list *+ PROOF, that is, a pair whose first component is a list of goals and whose second
component is a justification function, i.e. has ML type PROOF'.

An example tactic is A_tac. For example, consider the trivial goal of showing T A T, where T is a
constant that stands for true:

SML IL

‘ val goal : GOAL =([]," T AN T);

‘ val goal = ([, "T A T7) : GOAL

‘ A_tac goal;

| walit = (["), ([], "T7)], fn) : GOAL list x PROOF

‘ val (goal_list,just_fn) = it;

‘ val goal_list = [([,"T™), ([],"T")] : GOAL list
‘ val just_fn = fn : PROOF

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

7.1. Goals and Tactics 55

Applying A_tac has produced a goal list consisting of two identical subgoals, each of which is to show
([],/ T7). Now, there is a preproved theorem in HOL, which is recorded in theory misc under the
name of ¢t_thm. It can be produced and bound to an ML name, say TRUTH, as follows:

SML Ii

‘ val TRUTH = get_thm "“misc" "t_thm";

val TRUTH =+ T : THM

Applying the justification function just_fn to a list of theorems achieving the goals in goal_list results
in a theorem achieving the original goal:

SML Ii

\ just_fn, [TRUTH, TRUTH];

\ val it =+ T A T : THM

Although this example is trivial, it does illustrate the essential idea of tactics.

7.1.1 Example of Defining a Tactic

Tactics are not special theorem-proving primitives. They are just ML functions. New tactics may
be defined in terms of inference rules or (by means to be described below) by combining existing
tactics. An example of the definition of a tactic equivalent to the built-in A_tac would be:

fun A_tac_equivalent (asmlist, conjunct) =
let val (left, right) = dest_A conjunct
m
([(asmlist,left), (asmlist,right)],
fn [th1, th2] => A_intro thl th2)

end;

In this definition, the ML function dest_A splits a conjunctive term conjunct into its two conjuncts,
left and right. If (asmlist, "left A right?) is a goal, then A_tac_equivalent splits it into the list of
two subgoals (asmlist,” left™) and (asmlist,” right™).

The justification function, fn [thl, th2] => A_intro thl th2, takes a list [th1, th2] of theorems and
applies the rule A_intro to thi and th2.

It should be noted that there are facilities, described below, for defining new tactics by combining
existing tactics

7.1.2 Effects of Tactics

To summarize: if T is a tactic and ¢ is a goal, then applying T to ¢ will result in an object of
ML type GOAL list x PROOF | i.e. a pair whose first component is a list of goals and whose second
component is a justification function.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

56 Chapter 7. GOAL ORIENTED PROOF

Suppose T g = ([g1,---,9n], p). The idea is that g;,..., g, are subgoals and p is a ‘justification’
of the reduction of goal g to subgoals g7, ..., g,. Suppose further that the subgoals ¢y, ..., g, have
been solved. This would mean that theorems th; , ..., th, had been proved such that each th;
(1 < i < n) ‘achieves’ the goal g;. The justification p (produced by applying T to g) is an ML
function which when applied to the list [thy, ..., th,] returns a theorem, th, which ‘achieves’ the
original goal ¢g. Thus p is a function for converting a solution of the subgoals to a solution of the
original goal. If p does this successfully, then the tactic T is called valid.

Invalid tactics cannot result in the proof of invalid theorems; the worst they can do is result in
insolvable goals or unintended theorems being proved. If tactic T were invalid and were used to

reduce goal g to subgoals g; , ..., g,, then effort might be spent proving theorems th; , ..., thy, to
achieve the subgoals g; , ..., gn, only to find out after the work is done that this is a blind alley
because p [thy, ..., th,] doesn’t achieve g (i.e. it fails, or else it achieves some other goal).

A theorem achieves a goal if the assumptions of the theorem are included in the assumptions of the
goal and if the conclusion of the theorem is equal (up to the renaming of bound variables) to the
conclusion of the goal. More precisely, a theorem t;,..., ¢, b t achieves a goal ([uz, ..., u,], u)

if and only if {¢s,..., t;} is a subset of {uy,...,u,} and ¢ is equal to u (up to renaming of bound
variables). For example, the goal

([Mx=y", Ty=z7, Tz=w1, Tx=z

is achieved by the theorem
x=y, y=z F x=z

the assumption z=w being not needed.

A tactic solves a goal if it reduces the goal to the empty list of subgoals. Thus T solves g if
T g = ([1,p). If this is the case and if T is valid, then p[] will evaluate to a theorem achieving
g. Thus if T solves g then the ML expression snd(T g)[] evaluates to a theorem achieving g.

Tactics generally fail (in the ML sense) if they are applied to inappropriate goals. For example,
A_tac will fail if it is applied to a goal whose conclusion is not a conjunction.

7.1.3 Notation for Specifying Tactics

Tactics are specified using the following notation:

goal

goal; goals --- goal,

For example, a tactic called A_tac is described by

t; N ta
t1 t2

Thus A_tac reduces a goal of the form I', "¢;Ats ! to subgoals I', "t; 'and I', "tz ' . The fact that
the assumptions of the top-level goal are propagated unchanged to the two subgoals is indicated by
the absence of assumptions in the notation.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

7.2. Using Tactics to Prove Theorems 57

Another example is induction_tac, the tactic for doing mathematical induction on the natural num-
bers.

t[n]
t[o] {t[n]} t[suc n]

Given the name of a variable, n say, which is to be the induction variable, induction_tac "n:N™
reduces a goal (I', t[n]) to

e a basis subgoal , (I", t[0]) and

e an induction step subgoal (I" U {t[n]}, t[n + 1]). Here the set of assumptions are the original
set I' together with the extra assumption, written in the tactic-notation as a singleton set,

{t[n]}
SML |L

‘ (induction_tac "m:N7) ([], "(m + n) = (n + m)");

‘ val it = (] M, "0 +n=mn+ 07",
| 0, "(m+ 1) +n=n+m+17),
| fn) : GOAL list ¥ PROOF

The first subgoal is the basis case and the second subgoal is the step case.

7.2 Using Tactics to Prove Theorems

Suppose goal g is to be solved. If g is simple it might be possible to immediately think up a tactic, T’
say, which reduces it to the empty list of subgoals. If this is the case then executing val (gl,p) = T g¢;
will

e bind g/ to the empty list of goals, and

e bind p to a function which when applied to the empty list of theorems yields a theorem th
achieving g.

Thus a theorem achieving g can be computed by executing val th = p [];. This will be illustrated
using rewrite_tac which takes a list of equations (empty in the example that follows) and tries to
prove a goal by rewriting with these equations together with built-in rewrites:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

58 Chapter 7. GOAL ORIENTED PROOF

SML IL

‘ val g =(],"TAz=2V (yANF)"): GOAL

‘ val g=([],"TAz=2VyANF"): GOAL

SML

‘ val T = rewrite_tac | |;

| val T = fn : TACTIC

SML

| val (g, p) = T g;

\ val gl = []: GOAL list val p = fn : PROOF
SML

‘ val th = p[|;

\ val th=F T ANz =2 VyAF:THM

There is a useful built-in function tac_proof of ML type GOAL x* TACTIC —> THM such that
tac_proof (G, T) proves the goal G using tactic T and returns the resulting theorem.

7.2.1 The Subgoal Package

When conducting a proof that involves many subgoals and tactics, it is necessary to keep track of
all the justification functions and compose them in the correct order. While this is feasible even
in large proofs, it is tedious. ProofPower provides a package for building and traversing the tree
of subgoals, stacking the justification functions and applying them properly; such a package was
originally implemented for LCF by Larry Paulson.

The subgoal package implements a simple framework for interactive proof. A proof tree is created
and traversed top-down. The current goal can be expanded into subgoals using a tactic; the subgoals
are pushed onto the goal stack. Subgoals can be considered in any order. If the tactic solves a
subgoal (i.e. returns an empty subgoal list), then the package proceeds to the next subgoal in the
tree.

The function set_goal of type GOAL —> unit initializes the subgoal package with a new main
goal goal. It takes two arguments: a list of terms which are to be the assumptions and a term which
is to be the conclusion. Usually main goals have no assumptions; the function g is useful in this case
where g is defined by:

SML

‘ fun g t = set_goal([],t);

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

7.2. Using Tactics to Prove Theorems 59

To illustrate the facilities provided by the subgoal package the trivial theorem m + 0 = m will be
proved.

SML |L

| g (m+0) = mT;

Now 1 goal on the main goal stack
(x sk Goal "" sk *)
(x7%) "m+4+ 0=m"

val it = (): unit

This sets up the goal. The system response consists of

a display of the number of main goals now on the stack.

(150

A label for the goal. In this case the label is the empty string appearing between the “” marks.

A display of the goal itself. The display consists of a list of assumptions, (there being none in
this case), followed by the conclusion. The conclusion is marked by the symbols (% 7)

A display of the value returned by the set_goal (or g) function, which is always () : unit. Thus
the preceding lines of the display produced are a side-effect of the function, not a returned value.

The next step is to choose a tactic and apply it to the goal. One of several possible approaches
is to use induction to split the goal into a basis and step case. A suitable tactic is provided by
induction_tac. Here we will induct on m so the tactic to be applied is induction_tac "m:N™.

To apply any tactic, use is made of the function apply_tactic. This frequently-used function
is available under the alias a. It applies a tactic to the top goal on the stack, then pushes the
resulting subgoals onto the goal stack, then prints the resulting subgoals. If there are no subgoals,
the justification function is applied to the theorems solving the subgoals that have been proved and
the resulting theorems are printed.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

60 Chapter 7. GOAL ORIENTED PROOF

SML IL

‘ a (induction_tac "m:N1) ;

Tactic produced 2 subgoals:
(x sxx Goal "2" sxx)

(«x?7%) "(m+1)+0=m+ 1"

(¢ sk Goal "1" xxx %)

(x?7F%) T04+0=0"

val it = () : unit

The top of the goal stack is printed last. The basis case is an instance of the definition of addition, so
is solved by rewriting with the equations for addition in the theory N. These equations are amongst
those used in rewriting by default, and so no explicit list of equations need be supplied:

SML Ii

‘ a (rewrite_tac []);

Tactic produced 0 subgoals:

Current goal achieved, next goal is:

(x sxx Goal "2" sxx)

(x7%) "(m+ 1)+ 0=m+ 1"

The basis is solved and the goal stack popped so that its top is now the step case. This goal can be
solved in the same way as the previous:

SML Ii

a (rewrite_tac []);

Tactic produced 0 subgoals:

Current and main goal achieved

The top goal (the step case) is solved , and since the basis is already solved, the main goal is solved.
The theorem achieving the goal can be extracted from the subgoal package with top_thm, or with
pop-thm: the former leaves the goal stack unchanged while the latter removes the goal from the
stack.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

7.2. Using Tactics to Prove Theorems 61

SML IL

‘ top_thm();

\ val it =F m + 0 = m : THM

The order in which goals are worked on can be adjusted. Firstly the goal stack is backed up. The
function undotakes an argument which is the number of steps by which to back up the goal-stack to
a previous state: to go back to the point at which there were two subgoals will require undoing two
steps:

SML IL

undo 2;

Current goal is:
(¢ sk Goal "1" sx%)

(x7%) T0+0=0"

The system offers the basis case as the current subgoal. In order to survey all the possible subgoals,
the command print_goal_state (top_goal_state()) is used:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

62

Chapter 7. GOAL ORIENTED PROOF

SML

print_goal_state (top_goal_state());

Main goal is:
(%) "m+ 0=m"

Goals to be proven are:
(x sokx Goal "1" #x% *)

(x 7 %) T0+0=0"

(x s5x Goal "2" %% %)

(x7%) "(m+ 1)+ 0=m+ 1"

Current goal is:
(skx Goal "1" #x% *)

(#7%%) T0+0=0"

L7]

It can be seen that the current goal is labelled “1” and the other goal is labelled “2”. To choose goal
“2” to work on, it is made current with the command set_labelled_goal, providing an argument
value of, in this case, ”2”.

SML Ii
set_labelled_goal "2";
Current goal is:
(x skx Goal "2" xxx)
(x?7%) "(m+1)+0=m+ 1
The top goal is now the step case not the basis case, so the tactic can be applied:
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

7.2. Using Tactics to Prove Theorems 63

SML IL

a (rewrite_tac []);

Tactic produced 0 subgoals:

Current goal achieved, next goal is:
(¢ #xx Goal "1" skk *)

(x 7 %) T04+0=0"

These example have illustrated the working of the subgoal package, with multiple subgoals, using
just two tactics, induction and rewriting. It may be noted that in fact rewriting alone is sufficient
for this simple goal, to give a one-step proof:

SML [10]

g (m+ 0) = m

Now 1 goal on the main goal stack

(skk Goal "" sk %)

(%) "m+0=m"

SML

‘ a (rewrite_tac []);

‘ Tactic produced 0 subgoals:

‘ Current and main goal achieved

7.2.2 Multiple Main Goals

The subgoal package allows work on one main goal to be suspended(i.e. stacked) to work on another.
The second goal can be quite independent of the first, although most use of this facility would be to
prove a subsidiary theorem in the course of proving another.

To begin work on a second goal while suspending work on the first, the function push_goal is used
rather than set_goal for stating the second goal.

It has already been mentioned that pop_thm can be used to retrieve a proved theorem from the
topmost goal, and then discard that goal from the stack. Whatever the state of the proof , the
topmost goal on the stack can be discarded by executing drop_main_goal ();

It may be noted that set_goal is equivalent to drop_main_goal followed by push_goal.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

64 Chapter 7. GOAL ORIENTED PROOF

7.2.3 Working With Assumptions

The following example introduces two new tactics. The first of these is a general simplifying tactic
called strip_tac. One of the effects of this tactic is to simplify the conclusion of the goal by replacing
implications with assumptions. Other effects of strip_tac are described below, in section 8.1.

The second of the two new tactics is called asm_rewrite_tac which does everything that rewrite_tac
does, but in addition uses the assumptions of the current goal as a source of rewriting equations,
as well as any explicitly given as an argument, and the default equations of the built-in theories.
Although asm_rewrite_tac does everything that rewrite_tac does, there is a purpose in retaining
the two as separately available tactics, in that a greater degree of control is provided over which
equations are used for rewriting on any occasion.

To illustrate:

sw (11

g"P=Q=Pz=Qz}

Now 1 goal on the main goal stack

(x s#x Goal "" %% x)

(M%) "TP=Q=Pz=Qz'

SML

‘ a strip_tac;

Tactic produced 1 subgoal:
(skk Goal "" sk %)

(x 1) TP=Q"

(%) "TPz=q@Q 2"

Note that the goal is now displayed as a list of numbered assumptions followed by the conclusion.
Here there is only one assumption, number 1. To continue:

SML Ii

‘ a (asm_rewrite_tac [));

‘ Tactic produced 0 subgoals:

‘ Current and main goal achieved

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

7.3. Tacticals 65

7.3 Tacticals

It is possible to do in one step the above proof by induction, by using a compound tactic built with
the tactical® called THEN.

Tacticals are higher order operations for combining tactics. Thus a tactical is an ML function that
returns a tactic (or tactics) as result. Tacticals may take various parameters; this is reflected in
the various ML types that the built-in tacticals have. Some important tacticals in the ProofPower
system are listed below.

7.3.1 The Tactical THEN

In the example above the tactic induction_tac was applied first. Then the tactic, rewrite_tac [| was
applied to all (that is, both) the resulting subgoals.

If T; and T» are tactics, then the ML expression T; THEN T, evaluates to a tactic which first
applies T; and then applies T to all the subgoals produced by T;. The type of THEN is TACTIC x
TACTIC —> TACTIC.

To illustrate, the previous example will be done again with a one-step proof. (From now on the
proof-sessions will be shown just in essentials, that is, omitting some of the annotations provided by
the system.)

SML IL

| g (m+0)=m%

‘ (7% "m+4+0=m"

SML

‘ a ((induction_tac "m:N7") THEN (rewrite_tac []));

‘ Current and main goal achieved

This is typical: it is common to use a single tactic for several goals. A tactical similar to THEN
is THEN_LIST. Whereas THEN applies the same tactic to all resulting subgoals, THEN_LIST
applies the members of a list of tactics, taken in order, to corresponding subgoals.

7.3.2 The Tactical REPFEAT

If T is a tactic then REPEAT T is a tactic which repeatedly applies T until it fails. The type
of REPEAT is TACTIC —> TACTIC. This can be illustrated in conjunction with V_tac, which is
specified by:

?This usage was introduced by Robin Milner: ‘tactical’ is to ‘tactic' as ‘functional’ is to ‘function’.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

66 Chapter 7. GOAL ORIENTED PROOF

where 7z’ is a variant of z not free in the goal or the assumptions.
V_tac strips off one universal quantifier; REPEAT V_tac strips off all universal quantifiers:

SML IL

gt Veyze(z+(y+2)=(z+y)+2)7%

(M%) "Veyzer+y+z=(x+y) + 2"

SML

a V_tac;

‘ (M%) "Vyzex+y+2=(z+y)+2z'

a (REPEAT Y_tac);

‘ M%) "z2+y+z=(+y) + 2"

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 8 67

FURTHER TACTICS

This section describes some of the tactics built-in to the ProofPower system in addition to those
described above. This section is not meant to provide complete coverage of the available tactics, but
rather to acquaint the reader with more of the effects to be achieved in transforming goals,and some
tactics to achieve those effects. There are many more available tactics, and variations of tactics, than
are covered here. .

8.1 Simplifying the Goal

An important tactic is that which ‘strips’ or simplifies a goal. The tactic strip_tac which has already
been mentioned, performs a variety of simplifications, and is often usefully applied at the outset of
embarking on a proof. The simplifications achieved by strip_tac include the following:

e moving the antecedent of an implication from the conclusion to the assumptions of the goal:
e proving tautologies
e removing leading universal quantifiers

e using, where possible relevant, assumptions in the assumption-list

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

68 Chapter 8. FURTHER TACTICS

SML Ii

‘ g " (P3)=Vie z=3= Pz

| (7% %) "P3=Vzez=23= Pz

‘ a strip_tac;

‘ (x 1 %) "P 3"

‘ (* 7 %) "Vryer=3= Pg’

‘ a strip_tac;

‘ (x 1 %) "P 3

‘ (x7%) Tz =8= Pz

‘ a strip_tac;

(x 2x) TP 3
(x 1 %) "z =3"

(x 7= %) TP g

‘ a strip_tac;

FException—
Fail
x There is no stripping technique for "P z in the current proof

context [strip_tac.28003] % raised

SML

‘ a (asm_rewrite_tac |]);

‘ Current and main goal achieved

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

8.1. Simplifying the Goal 69

The foregoing session showed 4 successive applications of strip_tac of which the first three each had
an effect and the fourth failed, leaving a goal amenable to asm_rewrite_tac. With the knowledge
provided by hindsight, we can see that a single compound tactic to achieve this goal would be to
repeat strip_tac until failure, and then apply asm_rewrite_tac, thus:

SML Ii

‘ g (P 3)=Vre z=3= Pz

‘ (x%) "P3=(NVzez=38=Puzx)

‘ a ((REPEAT strip_tac) THEN (asm_rewrite_tac []));

‘ Current and main goal achieved

Although this particular example is specific to the goal, nevertheless (REPEAT strip_tac) is often
useful as an opening gambit.

The tactic strip_tac reduces the complexity in the conclusion of the goal, but does nothing to simplify
the assumptions. In order to give strip_tac as much as possible to work on, it may be useful in the
early stage of a proof to move complexity from the assumptions into the conclusion. A tactic,
all_asm_ante_tac, is available to achieve this effect. In the following example, strip_tac is ineffective
on a goal with such a simple conclusion(U = V'), but moving the assumptions into the conclusion
with all_asm_ante_tac will make the conclusion amenable to (REPEAT strip_tac).

SML IL
| set_goal(TP=Q", "= P = Q7, TU = V)

(x 2%x) "= P=Q"
(x 1x) "P=Q"

(+ 7 %) TU =V

SML

‘ a all_asm_ante_tac;

‘ (x?7%%) "W P=Q=P=Q=U=V"

‘ a (REPEAT strip_tac);

Current and main goal achieved

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

70 Chapter 8. FURTHER TACTICS

In this example, the conclusion of the final goal is in fact a tautology, so it would be amenable to
other tactics, notably taut_tac.

L (5]
| set_goal(TP=Q", "= P = Q7, TU = V)

(+ 2%) TP =Q
(+ 1% TP=Q"

(x M%) TU=V"T

SML

‘ a (all_asm_ante_tac THEN taut_tac);

‘ Current and main goal achieved

8.2 Specializing the Assumptions

Consider the following:

SML [7
| g (VeeP z) = Py

‘ (x %) "(Vze Pz)= Py’

‘ a (REPEAT strip_tac);

‘ (* 1 %) "VzeP g

‘ (x 7= %) TPy’

Here there is a universally-quantified assumption of which the conclusion is an instance. There is an
applicable tactic, called spec_nth_asm_tac which takes two arguments:

e the assumption-number of the relevant universal assumption (in this case, 1)

e a term in which to instantiate the universal, so as to yield the conclusion. In this case the
appropriate term would be "y .

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

8.2. Specializing the Assumptions 71

SML Ii

‘ a (spec_nth_asm_tac 1 "y7);

‘ Current and main goal achieved.

If specializing the universal is not sufficient to achieve the goal, the result is simply to strip the
new specialized assumption into the list of assumptions. This in itself may be a useful step towards
achieving the goal, as the following example is contrived to show.

SML [9]
‘ g"(R=QAN (Pyy AVze Pz = Quz)= Ry

‘ (M%) "R=QAPyAN(NVzePz=Quz)=Ry'

SML

‘ a (REPEAT strip_tac);

(x 3% "R=Q"
(x 2x) "Py’!
(x 1 %) "VzePz=Quz'

(+ 7 %) "Ry

SML

*

*

Vze Pz = Q 2z’

~ o~~~
*

~ D W R
*

- - L
al
o
<
_|

SML

‘ a (asm_rewrite_tac |]);

‘ Current and main goal achieved

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

72 Chapter 8. FURTHER TACTICS

8.3 Existentially Quantified Goals

Consider the case when the conclusion of the goal is of the form Jze P z. It will commonly be the
case that propositions of this form are achievable by producing a witness w which has property P, so
the goal becomes one of showing that P w is true. The tactic d_tac has the purpose of transforming
the goal in this way, from Jdze P z to P w. The following example takes the goal of proving that
there is a number less than 1, and the required witness will be the number 0.

SML [10|

g "Jzer < 17

‘ (* 7 %) "Izez < 1

‘ a (3-tac "07");

(x 7 %) T0 < 17

This tactic has had the expected effect. By inspecting the listing of the theory N we see that a
relevant fact, that is, 0 < 1, is obtainable from the theorem less_clauses. For the purpose of
rewriting, the ‘fact’ 0 < 1 can be understood as the equation 0 < I = T. Thus it will be sufficient
to rewrite with : less_clauses. (Rewriting with an empty list of equations would also work, picking
up =INLINEFT 0 | 1 by default.)

SML IL

‘ a (rewrite_tac [less- clauses));

‘ Current and main goal achieved.

8.4 Contradiction and Resolution

In this section some further tactics are introduced by showing some different approaches to the proof
of drex < 1

Firstly, we could try a proof by contradiction: if the conclusion is true then its negation should lead
to a falsehood. A tactic to apply is contr_tac.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

8.4. Contradiction and Resolution 73

SML Iﬁ

‘ g "dzex < 1

‘ (x7F %) "Jzex < 17

‘ a contr_tac;

‘ (x 1 %) "Vze-z< 1]

(* 7= %) TFT

Assumption 1 contradicts the fact that 0 < 1, which we have seen already can be established from
less_clauses, and this contradiction can be resolved to prove the goal with conclusion F' by using a
tactic called Resolution.basic_res_tacl. Since the resolution process may, in some circumstances
continue indefinitely, the tactic takes an argument which is a number limiting the amount of pro-
cessing. For this purpose a value of, say, 5, ought to be ample. The second argument of the tactic is
a list of theorems to be resolved with the assumptions of the goal.

We use less_clauses as a suitable list.

SML [[13]

‘ a (Resolution.basic_res_tacl 5 [less_clauses));

‘ Current and main goal achieved

We saw above that Resolution.basic_res_tacl was appropriate with a goal of F' and a contradiction
exploitable. A variation of this tactic will in effect first apply contr_tac, so that the proof above can
be performed in one step:

s [

‘ g "dzer < 17

| (x 7 %) "3zex < 1

‘ a (Resolution.basic_res_tac 5 [less_clauses));

‘ Current and main goal achieved

Here is another example which illustrates the principle of resolution. It uses another resolution tactic
called asm_prove_tac

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

74 Chapter 8. FURTHER TACTICS

SML Ii

‘ set_goal (PV Q',"RV-Q","PV R

(+ 24 TRV - Q"
(x 1 %) "Pv Q"

(*x 7= %) TPV R

‘ a (asm_prove_tac |]);

‘ Current and main goal achieved

8.5 Proof Contexts

It has been mentioned that rewriting automatically uses equations in the supplied theories as well as
those equations supplied explicitly by the user. The choice of which equations are automatically used
is in fact not fixed, but is an aspect of what is called the current proof context. Other features of
the system are also influenced by the proof context, notably the stripping tactics, automatic existence
proving in constant-specification and the behaviour of tactics such as asm_prove_tac.

All the examples of this tutorial have been presented in the proof-context which is provided by
default.

In this default proof-context, context-sensitive features of the system have to some degree been
optimized around the issued theories. There are facilities for users developing new theories to define
proof-contexts specially tailored to those new theories. These facilities are covered in ProofPower
Reference Manual [12] but a further description is beyond the scope of this tutorial.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 9 75

SPECIFICATION WITHOUT AXIOMS

The section covers the topic of developing theories without the introduction of axioms. Firstly,
note that the function simple_new_defn has already been mentioned (5.4.5 above) as providing one
means of defining constants without axioms. However, the effects achievable by this function are
limited to assigning names to terms, that is, to definitions of the form name = value. Means are
now considered of specifying constants with predicates which are arbitrary, so long as consistency is
maintained.

9.1 Specifying Constants

This section covers specifying new constants of existing types. The next section will cover specifying
new types and constants of new types.

The following example shows specification of a function with a predicate consisting of two equations.
(Recall that the means of entering specifications in this way was described in section 5.5 above.)

HOL Constant
‘ Factorial:N—N

‘Factom'al 0=1A
‘V z:N o Factorial (z+1) = (z+1) * Factorial x

Executing print_theory "—"; at this point will show a new definition theorem for Factorial. This
theorem can be retrieved by executing

e get_spec " Factorial™

e get_defn "—" "Factorial"

Clearly, since there are two equations, it is conceivable that there is no function which satisfies them
both. In the course of entering the definition of Factorial, the system was able to automatically prove
a theorem to the effect that the definition of Factorial is consistent, that is, there exists a function
with the same definition as Factorial. The automatic proving facilities are oriented towards defining
functions with multiple equations, such as this, and may not necessarily be able to prove existence
automatically for an arbitrary predicate. Here is an example session: a constant N is specified, very
loosely, as any non-zero number:

HOL Constant |1_6
‘N:N

\

\

IN >0

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

76 Chapter 9. SPECIFICATION WITHOUT AXIOMS

and the system response is:

‘ val it =+ ConstSpec (A N'e N' > 0) N : THM

Observe that the form of the resulting theorem is different from that of the previous example: the
presence of ConstSpec is a signal that more remains to be done. Examining the specification of N
we see that it is qualified with an assumption about the consistency of the predicate:

SML |1_7

‘ get_spec "N

| val it = Consistent (\ N'e N' > 0) - N > 0 : THM

Sooner or later this consistency-assumption should be discharged. This is achieved with the functions
push_consistency_goal and save_consistency_thm as follows:

SML Ii

push_consistency_goal " N T,

(# 2% %) T3 N'e N > 07
SML

‘ a (3-tac "17);
a

(rewrite_tac] |);

‘ Current and main goal achieved

SML

‘ save_consistency_thm "N (pop_thm ());

Now the specification of N can be re-examined to see the change achieved by performing the proof:
the consistency assumption has been discharged:

SML Ii

‘ get_spec "N

\ val it =+ N > 0 : THM

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

9.2. Specifying Types 77

9.2 Specifying Types

This section covers the specification of new types. A new type, as considered here, is defined in terms
of a subset of an existing type with membership characterised by a predicate. A simple example is
the ordinal numbers: the subset of the natural numbers which are non-zero.

The first step is to prove a theorem that such a subset is non-empty. The theorem must have the
form Jze P z so the goal is taken as J32:N o (Aze = z = () z rather than Jz:N ¢ = z = 0.

SML [20]
‘ new_theory "ordinals";

‘ set_goal ([], "3z:Ne (Aze =z = 0) z");

‘ a ((3-tac "1y THEN (rewrite_tac [])) ;

‘ Current and main goal achieved

The new type is now introduced. The function new_type_defn takes three arguments:

e one or more names (keys) under which a defining-theorem will be stored.
e a name for the type itself. In this example the name is ‘Ordinal’.

e The existence theorem just proved, which is currently available on the top of goal-stack and so
can be retrieved by top_thm or pop_thm.

s [21]

new_type_defn (["ordinal_def"], " Ordinal", [|, pop_thm());

‘ val it =+ 3 fe TypeDefn (A xze =z = 0) f : THM

We have a new type, ‘Ordinal’, and can construct terms with variables of that type, but so far we
have only very limited means of specifying constants.

HOL Constant

‘ VII:Ordinal

\
\
\ T

Even though Ordinals were specified by a predicate which characterised a subset of the numbers, we
cannot simply equate an Ordinal variable with a number because the equality will be ill-typed — left
and right hand sides will be of different types.

HOL Const
\ VIII: Ordinal

\
\
\VIH =8

The system response is:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

78 Chapter 9. SPECIFICATION WITHOUT AXIOMS

Type error in " VIII = 87

The operands of "$="" must have the same type

The types inferred were:

" VII:Ordinal™

r§:NT

FEzception— Fail x Type error [HOL— Parser.16000] * raised

Thus it is not the case that the new type is a subset of the parent type, but rather that there is
an isomorphism between the new type and the subset of the parent type. If we wish to specify the
values of constants of the new type with predicates which include terms of existing types, we will
need functions for, in this case, :

e mapping numbers to ordinals. This mapping is called ‘abstraction’ and a suitable function A
will be developed in the example. With this function terms can be written such as VII = A 7.

e mapping ordinals to numbers. This mapping is called ‘representation’ and a suitable function R
will be developed in the example. With this function terms can be written such as 7 = R VII.

Defining the mappings A and R is the next task. A theorem must be proved which asserts that the
intended isomorphism can exist, that is, that there are two mappings with suitable properties. Here
we take a ‘cookbook’ approach, so that the following ‘recipe’ will serve, with slight adaptations, in
most cases. The goal is in a ‘standard ’ form; note the occurrence in the goal of the characteristic
predicate as = n = 0.

The reader is asked to accept without explanation that the four tactics shown below are generally
effective for proving a goal such as this.

SML Iﬁ
set_goal([]"3 AR e

(V a: Ordinal « A (R a) = a)

N

Vn:Ne(=-n=20)< (R (An)=n))");

a (strip_asm_tac (rewrite_rule] |
(simple_=_match_mp_rule type_lemmas_thm
(get_defn "—" "ordinal_def"))));

a (3-tac "abs);

a (3-tac "rep™);

a

(asm_rewrite_tac] |);

Current and main goal achieved

We now specify the constructor functions A and R as constants, by use of the function new_spec.
This takes three arguments:

e A list of keys for the defining theorem which will be produced.

e a count of the number of constants — 2 in this case, (A and R)

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

9.2. Specifying Types 79

e An existence theorem for A and R, which is the one just proved and available on the top of
the goal-stack.

SML |A

val ordinal_consts_def =

new_spec(["R"," A"," ordinal_ consts_def"],2,pop_thm());

val ordinal_consts_def =

F(Vaoe A(Ra)=a)ANVne-n=0<«<R(An)=mn): THM

We are finally in a position to specify constants of the new type. Note that more than one constant
can be specifiedat a time.

HOL Constant
[IX X :Ordinal

\
\
‘IX:AQ/\X:AJO

The system response is:

\ val it =FIX = A9 ANX=A10: THM

What has been achieved is summarised in the current theory:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

80 Chapter 9. SPECIFICATION WITHOUT AXIOMS

SML |2_4
print_theory "—";
=== The theory ordinals ===
——— Parents ———
demo
——— Constants ———
viII Ordinal
R Ordinal — N
A N — Ordinal
X Ordinal
IX Ordinal
——— Types ———
Ordinal
——— Definitions ———
ordinal _def F 3 fe TypeDefn (A ze — 2z = 0) f
VII ET
R
A
ordinal_consts_def
F (v ae A (R a) = a)
AV n
e—-n=0%<R(An)=n)
X
X FIX =A9ANX=A410
=== Fnd of listing of theory ordinals ===
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

Chapter 10 81

MOVING ON

We hope that this tutorial provides a helpful introduction to ProofPower. Depending on your
interests, we would recommend ProofPower HOL Tutorial Notes [10] or ProofPower Z Tutorial [9]
as a next step.

A comprehensive reference manual to the facilities provided by ProofPower is supplied as the Proof-
Power Reference Manual [12]. Many of these facilities are intended for use by a programmer extending
the system rather than by a user developing specifications or proofs. However, despite its length,
many users find it useful to have the ProofPower Reference Manual [12] on the screen for interactive
reference via its keyword-in-context index.

In response to popular demand, we conclude this document with a list of the names of some of
the more commonly used tactics, rules, conversions, tacticals and conversionals. These have been
extracted from some of the proof scripts provided with the system.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

82

Chapter 10. MOVING ON

10.1 Tactics

V_left_tac
V_right_tac

=_tac

V_tac

d_tac

accept_tac
all_asm_ante_tac
ante_tac
asm_ante_tac
asm_fc_tac
asm_prove_tac
asm_rewrite_tac
asm_rewrite_thm_tac
asm_tac

be_tac

bc_thm_tac

cases_tac

contr_tac

conv_tac

fe_tac
gen_induction_tac
id_tac

induction_tac
ntro_V_tac
lemma_tac
list_induction_tac
list_spec_asm_tac
list _spec_nth_asm_tac
once_rewrite_tac
once_rewrite_thm_tac
prove_d_tac
prove_tac
pure_asm_rewrite_tac
pure_rewrite_tac
rename_tac
rewrite_tac
rewrite_thm_tac
spec_nth_asm_tac
step_strip_tac
strip_asm_tac
strip_tac
swap_asm_concl_tac
swap_nth_asm_concl_tac

10.2 Rules

=_elim
V_elim

© Lemma 1 Ltd. 2006

all_V_elim
all_¥_intro
asm_rule
conv_rule
eq_sym_rule
list_A_intro
list_N¥_elim
list_¥_intro
pe_rule
prove_rule
rewrite_rule
strip-A_rule
taut_rule

10.3 Conversions

eq_sym_conv
prove_3_conv
rewrite_ conuv

10.4 Conversionals

ONCE_MAP_C
ORELSE_C
THEN_C
TOP_MAP_C

10.5 Tacticals

=_T

CASES_T

DROP_ASM_T
DROP_NTH_ASM_T
FC_T

GET_ASM_T
GET_NTH_ASM_T
INDUCTION_T
LEMMA_-T
LIST_DROP_NTH_ASM_T
LIST_GET_NTH_ASM_T
LIST_SPEC_NTH_ASM_T
ORELSE

PC.T

POP_ASM_T

THEN

TOP_ASM_T

TRY_T

PPTex-2.9.1w2.rda.110727 - TUTORIAL

USRO004

REFERENCES

[1] Michael J.C. Gordon and Tom F. Melham, editors. Introduction to HOL. Cambridge University
Press, 1993.

[2] Michael J.C. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF. Lecture
Notes in Computer Science. Vol. 78. Springer-Verlag, 1979.

[3] L.Paulson. ML for the Working Programmer. Cambridge University Press, 1991.

[4] R.Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System
Sciences, 17:348-375, 1978.

[5] A. Wikstrom. Functional Programming Using Standard ML. Prentice-Hall, 1987.
[6] DS/FMU/IED/USRO01. ProofPower Document Preparation. Lemma 1 Ltd.

[7] DS/FMU/IED/USR005. ProofPower — Description Manual. Lemma 1 Ltd.,
http://www.lemma-one. com.

[8] DS/FMU/IED/USRO007. ProofPower Installation and Operation. Lemma 1 Ltd.,
http://www.lemma-one. com.

[9] DS/FMU/IED/USRO11. ProofPower Z Tutorial. Lemma 1 Ltd., http://www.lemma-one. com.

[10] DS/FMU/IED/USRO013. ProofPower HOL Tutorial Notes. Lemma 1 Ltd.,
http://www.lemma-one.com.

[11] Functional Programming in Standard ML. R.Harper et al., LFCS, University of Edinburgh,
1988.

[12] LEMMA1/HOL/USR029. ProofPower HOL Reference Manual. Lemma 1 Ltd.,

rda@lemma-one.com.

[13] The HOL System: Tutorial. SRI International, 4 December 1989.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

84 Chapter 10. MOVING ON

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USRO004

INDEX

apply_tactic
ASM_PTOVE_TAC. . o oo oo e i
ASM_TEWTIEE_LAC . . v v oottt

CONSE_SPEC '« o v vttt e
CONET_TAC . oo vt e
declare_infix
drop_main_goal
JEL_QTIOM . ..o
get_defn ...
GEL_SPEC v v i
get_thm
MAUCLIoN_tac.
less_clauses
MEW_CONSL . ..ot i
NEW_PATENT . .ottt
TEW_SPEC v v e et et e e e e e e et
NEW_TREOTY ..ot
new_type_defn
OPEN_TREOTY v o v ot
POD_thm ...
print_goal_state
PrInt_STatus
print_theory
Proof contert
push_consistency_goal
push_goal
REPEAT e
Resolution.basic_res_tacl
save_consistency_thm
SAVE_TRM .« o
SEE_Goal ...
set_labelled_goal
spec_nth_asm_tac
SITP_TacC ..o
tac_proof
taut_tac

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL

USRO004

