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Chapter 0 3

ABOUT THIS PUBLICATION

0.1 Purpose

This document, one of several making up the user documentation for the ProofPower system, contains
a tutorial introduction to the system.

0.2 Readership

This document is intended to be the first to be read by new users of ProofPower. It is a tutorial for
learning the basic use of the system. The reader is assumed to be familiar with predicate logic.

0.3 Related Publications

A bibliography is given at the end of this document. Publications relating specifically to ProofPower
are:

1. ProofPower HOL Tutorial Notes [10], tutorial notes for the ProofPower-HOL course.

2. ProofPower Z Tutorial [9], a tutorial covering the ProofPower Z support option.

3. ProofPower Description Manual [7];

4. ProofPower Reference Manual [12];

5. ProofPower Installation and Operation [8];

6. ProofPower Document Preparation [6].

0.4 Area Covered

This tutorial is an introductory ProofPower course which gives an idea of the way ProofPower is
used, but which does not systematically explain the underlying principles. After working through
this tutorial, the reader should be capable of using ProofPower for simple tasks, and should also be
in a position to approach the ProofPower Reference Manual [12].

Once the ProofPower system is installed on the user’s workstation, by following the procedure
described in the Installation Guide, this tutorial should enable the potential ProofPower user to
become familiar with the following subjects:

1. The metalanguage ProofPower-ML, and how to interact with the metalanguage compiler. The
description of ProofPower-ML given here is very brief, only intended to be sufficient to support
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4 Chapter 0. ABOUT THIS PUBLICATION

the exposition of ProofPower. ProofPower-ML is an extension of the programming language
Standard ML. For a more complete introduction to Standard ML the reader is referred to [3],
[5], or [11].

2. The formal logic supported by the ProofPower system (higher order logic) and its manipulation
via the metalanguage.

3. Forward proof and derived rules of inference.

4. Goal directed proof, and tactics and tacticals.

The sections that follow cover these topics in the sequence shown above.

0.5 Assumptions

Though this tutorial can be read independently, it is most beneficially read while running ProofPower
so that the features described can be observed at first hand. The instructions for running ProofPower
assume that the reader has available an installed ProofPower system, and that the reader is following
the tutorial at a workstation and trying out the examples interactively. Basic familiarity with using
the X Windows System is assumed.

Other tutorial manuals are available with ProofPower, which are best attempted after reading this
tutorial, which is the tutorial most suitable for absolute beginners. After reading this tutorial, a more
thorough knowledge of ProofPower may be obtained by working through ProofPower HOL Tutorial
Notes [10], which contains exercises and solutions, and covers a wider range of facilities than those
described here. Those interested in the Z support facilities of ProofPower may then work through
ProofPower Z Tutorial [9] which describes how to use ProofPower for specification and proof in
ProofPower-Z.

0.6 Acknowledgements

ICL gratefully acknowledges its debt to the many researchers (both academic and industrial) who
have provided the intellectual capital on which ICL has drawn in the development of ProofPower.

We are particularly indebted to Mike Gordon of Cambridge, both for his leading role in the research on
which ProofPower is based, and for the text, [13], which formed the starting point for the development
of this tutorial.

The ProofPower system is a proof tool for Higher Order Logic which builds upon ideas arising from
research carried out at the Universities of Cambridge and Edinburgh, and elsewhere.

In particular the logic supported by the system is (at an abstract level) identical to that implemented
in the Cambridge HOL system [1], and the paradigm adopted for implementation of proof support for
the language follows that adopted by Cambridge HOL, originating with the LCF system developed
at Edinburgh [2]. The functional language “standard ML” used both for the implementation and as
a interactive metalanguage for proof development, originates in work at Edinburgh, and has been
developed to its present state by an international group of academics and industrial researchers. The
implementation of Standard ML on which ProofPower is based was itself implemented by David
Matthews at the University of Cambridge, and is now commercially marketed by Abstract Hardware
Limited.
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Chapter 1 5

GETTING STARTED

This manual is intended to serve as a tutorial introduction to the use of ProofPower for simple
specification and proof using the ProofPower-HOL language. It contains numerous examples of
interaction with ProofPower. Many readers will wish to try out the examples interactively as they
read. The remainder of this chapter explains how to do this.

The instructions which follow assume that you are working in a user name which has been set up to
run ProofPower as described in the installation instructions supplied with the software. If you have
problems with the instructions, this may well be because your user name has not been set up to run
ProofPower or because there has been some problem with the installation of ProofPower. If you
have difficulty, you are advised first to consult the installation instructions or the person responsible
for installing the ProofPower software on your system.

1.1 Interaction with ProofPower

The most convenient way to use ProofPower for developing both specifications and proofs involves
two parallel activities:

• Using an editor to develop a LATEX source document called a ‘literate script’ (see ProofPower
Document Preparation [6]) in which ProofPower commands are recorded.

• Executing ProofPower-ML commands, typically extracted from the script. The various object
languages, ProofPower-HOL, ProofPower-Z, etc., supported by the tool are all embedded in
ProofPower-ML, and execution of ProofPower-ML commands is how fragments of specification
are checked and how proof steps are conducted.

Under the X Windows System, the recommended way of carrying out these two activities is to use
the program xpp which integrates a general purpose editor with the ProofPower-ML compiler and
gives easy ways of carrying out many of the common tasks (e.g., entering mathematical symbols).
Sections 1.2 to 1.7 below describe how to use xpp to work through the examples in this tutorial. The
instructions in these sections assume that you have started up X in the way appropriate for your
system and that you have an ‘xterm’, ‘command tool’ or other UNIX terminal emulator on the work
station screen.

An advantage of xpp is that it supports the use of mathematical symbols on the screen. It is possible
to run ProofPower without using xpp, but this advantage is then lost: mathematical symbols have
to be handled as ASCII keywords. Users who are obliged to work the tutorial examples in ASCII
are referred to section 1.9 below.
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6 Chapter 1. GETTING STARTED

1.2 Setting Up

The results of work with the ProofPower system are stored in what is called a database. A database
stores objects of different kinds: definitions, axioms, theorems and theories. Work with ProofPower
will commonly result in updating a database.

The ProofPower system is issued with a relatively large database of predefined objects, and it is
desirable both to avoid casual modification to this issued database and to avoid making unnecessary
copies of it. Consequently the user is recommended to create a new empty database, having the
issued database as its ‘parent’, and to use this ‘child’ database thereafter while working through the
examples. The objects stored in the parent are available through use of the child.

The file-name for a database is derived from the name you use to name the database on the command
line. The conventions for the file-names depend on the operating system and hardware you are using
and on the Standard ML compiler used to build ProofPower. For example, with the Standard ML
of New Jersey compiler running with the Linux operating system on Intel x86 hardware, a database
named ‘demo’ would be held in a file named ‘demo-x86-linux’.

The following UNIX commands create a new database named ‘demo’ (which is a child of the issued
database and is held in a file in the current directory):

pp_make_database -p hol demo

The instructions in the rest of this chapter assume you have changed to a directory in which you
wish to store your work on this tutorial and that you have successfully executed the above command.

1.3 Entering ProofPower

The ProofPower system is entered by a command at the UNIX prompt, invoking the xpp program
and giving it arguments identifying, amongst other things, the name of a file you wish to edit and
the name of a database.

Following the instructions in the previous section, you will have a new database called ‘demo’. The
source text of the tutorial is in the file ‘$PPHOME/doc/usr004.doc’. The following UNIX command
will start up xpp to edit that file and to run ProofPower on the new database.

xpp -f $PPHOME/doc/usr004.doc -d demo

See the entry on xpp in ProofPower Reference Manual [12] for more information.)

When xpp starts up, you will see that the its display has four main features as follows, (working
from top to bottom).

Menu Bar This contains menus which you use to select the main functions of xpp. The menu at
the right-hand end is used to give on-line help with xpp.

File Name Bar This contains the name of the file you are editing.

Script Window This is the text area in which you carry out your editing work. It will come up
containing the tutorial script.

Journal Window This displays a journal of your transactions with ProofPower. It will come up
displaying start-up messages from the ProofPower-ML compiler followed by a prompt: ‘:)’.
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1.4. Using the Editor 7

1.4 Using the Editor

The Script Window in xpp together with the Menu Bar comprise a general purpose text editor
providing several features which are convenient for editing ProofPower literate scripts; The File and
Edit Menu provide standard editing features, and the Tools Menu is used to pop up tools to perform
various functions, e.g., the Palette Tool which gives an easy way to enter mathematical symbols
(both into the Script Window and into other parts of xpp — see the Help Menu entry about the
Tools Menu for more information).

1.5 Executing ProofPower Commands

The basic way of executing ProofPower commands using xpp is with the ‘Execute Selection’ item in
the Command Menu in response to the ProofPower-ML prompt: ‘:)’.

In this manual, lines of input for ProofPower will be shown in the following style:

SML

"This is a line of Standard ML Input";

To execute a line of ProofPower-ML, select it in the xpp Script Window (e.g., by double clicking with
the left mouse button) and then chose ‘Execute Selection’ from the Command Menu. The line will
be copied to the Journal Window for processing by the ProofPower-ML compiler.

The output which subsequently appears in the Journal Window is shown in this manual thus:

val it = "This is a line of Standard ML Input" : string

There are several shortcuts to make interaction easier; for example, you can type ‘Control-X’ instead
of selecting ‘Execute Selection’. A more powerful shortcut is the Command Line Tool, which you can
invoke from the Tools menu; this helps you type in and execute commands which you do not want
to keep in the script, and can be used to remember and recall commands which you use frequently.
Consult the Help Menu for further information.

1.6 ProofPower-ML Prompts and Interrupts

The ProofPower-ML compiler uses the prompt ‘:)’ to invite you to input a command. If you have
typed in a syntactically incomplete line of input, the compiler will expect you to complete the
command on subsequent ‘continuation lines’. For example, the following command is spread over
three input lines.

SML

1
+
2 ;

If you suspect that the compiler is waiting for you to complete a command, but you wish to abort the
command instead, you can use the ‘Interrupt’ item in the Command Menu to do so. The ‘Abandon’
item that you will also see in the Command Menu is for backwards compatibility with earlier versions
of ProofPower only.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USR004



8 Chapter 1. GETTING STARTED

1.7 Ending The Session

To leave xpp, use the ‘Quit’ item in its File Menu. You will be prompted if you have not saved all
your changes to the file you are editing or if the ProofPower-ML compiler is still running.

It is recommended that you always quit the ProofPower-ML compiler before quitting xpp. (Quitting
xpp without quitting the ProofPower-ML compiler generally works, but may bypass some tidying up
such as removal of temporary files.)

If you wish the work you have carried out to be saved in the database before your quit, you should
execute the following ProofPower-ML command before quitting xpp:
SML

save and quit();

This command will cause the database to be updated by storing in it the results of the work done
during the session.

To quit from the ProofPower system without updating the database, execute the ProofPower-ML

command before quitting xpp:
SML

quit();

This will ask you for confirmation (which you can conveniently send using the Command Line Tool).

1.8 Input from a File

Within a ProofPower session, the ProofPower system may be directed to take input from a file,
rather than interactively, by executing, for example, the command
SML

use file "myfile";

After reading and executing the last line in the file, the ProofPower system returns to taking inter-
active input.

There is an option on the UNIX command-line to read and execute such a ‘script’ file immediately
on entry to the ProofPower system:

xpp -command pp -d demo -i myfile

1.9 Working In ASCII

To work through this tutorial in ASCII, first copy the source document into a local directory and
then convert it to ASCII as follows:

cp installdir/docs/usr004.doc .
conv_ascii usr004
textedit usr004.doc

Create a database as described in section 1.2 and then begin an interactive ProofPower session
directly rather than via xpp by executing the UNIX command:
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pp -d demo

ProofPower will then come up and prompt for input from your terminal. You should immediately
set ProofPower into ASCII mode by entering the following command:

SML

set flag ("use extended chars", false);

When a flag is set the previous value of the flag is returned, so the above command will respond:

val it = true : bool

Now type directly in response to the ProofPower prompt, or use cut-and-paste from the text editor
of your choice.

The ASCII keywords used to represent mathematical symbols in ASCII mode are documented in
ProofPower Document Preparation [6].
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CONVENTIONS

This chapter describes some conventions followed in this manual.

2.1 Sessions

Throughout this tutorial, the sequences of user’s interactions with the system and the system’s re-
sponses are called ‘sessions’. All sessions in this documentation are displayed in numbered boxes.
This number indicates whether the session is a new one (when the number will be 1) or the contin-
uation of a session started in an earlier box. Consecutively numbered boxes are assumed to be part
of a single continuous session. In particular, variable bindings made in earlier boxes are assumed to
persist to later ones in the same sequence.

2.2 Input and Output

As already mentioned, input to ProofPower-ML will be marked by a vertical line on the left, with
‘SML‘ in small letters, thus:

SML

"This is a line of ProofPower Input";

This is, in fact, the usual appearance of ProofPower commands in a printed literate script.

The output resulting from the above input is shown in this manual marked by a vertical line alone,
thus:

val it = "This is a line of Standard ML Input" : string
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A FIRST EXAMPLE

In this section a very small example is presented and briefly explained in order to give the reader
some idea of what to expect in the following sections. The purpose of the ProofPower system is to
support proof. A style of proof which is favoured by ProofPower (but not the only one possible) is
called goal-oriented proof. In this style of proof:

• firstly, a conjecture is stated. The conjecture is called the goal of the proof process.

• then a proof is conducted in one or more steps, each step being specified by the user. The steps
are progressive transformations of the goal, aimed at transforming the goal to the logical value
‘true’. When this has been achieved the conjecture is proved, yielding a theorem.

To illustrate the actual mechanics of the process, here is an example which shows three lines of user
input to state a conjecture p ∨ ¬ p, perform a one-step proof, and then record the proved conjecture
as a theorem. Each line of user input is followed by a system response, (which is not reproduced in
full here). Inputs and responses are annotated with comments between the symbols (* and *).

1SML

set goal([ ], pp ∨ ¬pq ); (∗ 1 : state the conjecture ∗)

... pp ∨ ¬ pq ... (∗ response echoes goal ∗)

SML

apply tactic (REPEAT strip tac); (∗ 2 : perform one−step proof ∗)

... goal achieved ... (∗ response ∗)

SML

val example theorem = top thm(); (∗ 3 : save resulting theorem ∗)

val example theorem = ` p ∨ ¬ p : THM (∗ response ∗)

The following points may be noted:

• Each line of user input is in the metalanguage, which is called ProofPower-ML. The conjecture
p ∨ ¬ p is a term in the object language, which is called ProofPower-HOL. The object
language term occurs, surrounded by the special quotation symbols p and q, embedded in the
metalanguage command.
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14 Chapter 3. A FIRST EXAMPLE

• Stating the conjecture is accomplished by initialising a stack of goals. The proved theorem is
extracted from the top of the stack at the end of the process.

• A proof step is accomplished by applying what is called a tactic to the goal at the top of the
stack. At each step the user must choose an appropriate tactic.

• A tactic is a procedure which attempts to find a sequence of inferences in the ProofPower-HOL

logic such that the goal can be inferred to be true. A tactic may be

– wholly successful, as in this example, or

– partly successful, in which case the goal is reduced to a simpler goal, so that a further
tactic must be chosen and applied, or

– wholly unsuccesful, leaving the goal unchanged, in which case a different tactic must be
chosen.

• The proof system makes available a set of predefined tactics. Different tactics are available to
exploit different features of the goal. Users can construct new tactics as programmed applica-
tion of existing tactics.

• In this example the predefined tactic denoted by REPEAT strip tac was chosen, on the ground
that this tactic is a standard opening gambit, capable of achieving many useful simplifications
of the goal, and indeed achieving simple goals by itself.

• The system, not the user, is responsible for the soundness of the process of logical inference
performed by any tactic, whether the tactic is predefined or user-defined. Thus to choose an
inappropriate tactic at any step does not risk an unsound inference, but merely failure to make
progress.

• Finally, note that what achieves the proof of the conjecture pp ∨ ¬ pq is a metalanguage
expression apply tactic (REPEAT strip tac), and the latter does not have the conventional
appearance of a proof. It should be regarded, not as a proof itself, but rather as a program
which, when executed, will perform a formal proof of pp ∨ ¬ pq and many other such propo-
sitions.
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INTRODUCTION TO THE METALANGUAGE

This chapter is a brief introduction to the metalanguage ProofPower-ML. ProofPower-ML is an
extension of the programming language Standard ML. The extensions are:

• An extended character set to include symbols of logic and mathematics.

• An additional form of quotation, analogous to the quotation of ASCII strings, for the quotation
of object language expressions.

• A collection of predefined functions.

The aim of this chapter is to explain only enough of ProofPower-ML to make the following chapters
comprehensible. The rest of this chapter applies equally to Standard ML and to ProofPower-ML.
For a more complete introduction to Standard ML the reader is referred to [3], [5], or [11].

Throughout the rest of this document, ProofPower-ML will be referred to simply as ML. ML is an
interactive programming language. When interacting directly with the system, (which is called ‘at
the top level’) one can evaluate expressions and perform declarations.

4.1 Expressions

1SML

1+1 ;

val it = 2 : int

This box shows an example of entering an ML expression through the keyboard (that is, ‘at the top
level’), which is then evaluated and the result displayed. The semicolon ‘;’ is used to terminate a
top-level phrase. The display of the result can be seen to consist of:

• The letters val , indicating that a value is to follow.

• A name for the value. In this case the user has not supplied any name, having merely typed
in the anonymous expression 1+1 , and so the system supplies the name it . The value of the
most-recently-entered anonymous expression at the top level can always be referred to as it .

• The symbol =.

• The value, in this case 2 .

• A colon followed by an indication of the type of the value. In this case, the value 2 is of type
integer, abbreviated to int . The ML type checker infers the type of expressions using methods
invented by Robin Milner, [4].
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4.2 Lists and Strings

. The ML expression [2 ,3 ,4 ,5 ] is a list of four integers.

2SML

[2 ,3 ,4 ,5 ];

val it = [2 , 3 , 4 , 5 ] : int list

The type int list is the type of ‘lists of integers’; list is a unary type operator. The type system of
ML is very similar to the type system of the ProofPower logic which is explained in Chapter 5.

Expressions such as "a", "b", "foo" are strings and have type string . Any sequence of ASCII char-
acters can be written between the quotes. The infix function ̂ concatenates two strings to form a
single string.

3SML

"tog" ̂ "ether";

val it = "together" : string

4.3 Declarations

A declaration may have the form val n = e, which results in the value of the expression e being
bound to the name n.

4SML

val x = 42 ;

val x = 42 : int

SML

x + 1 ;

val it = 43 : int

4.4 Function Applications

The application of a function f to an argument x can be written as f x . The more conventional
f (x) is also allowed. The expression f x1 x2 · · · xn abbreviates the less intelligible expression
(· · ·((f x1)x2)· · ·)xn . That is, function application is left associative.

Functions may be infix, as in the case of +. Another infix function is :: which constructs a list
which is the left argument followed by the right argument. Other list processing functions include
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hd , which yields the head – the first element – of a list), tl , which yields the tail – all but the first
element – of a list) and null , which tests for an empty list.

5SML

val L = 1 :: [2 , 3 ];

val L = [1 , 2 , 3 ] : int list

SML

hd L;

val it = 1 : int

SML

tl L;

val it = [2 , 3 ] : int list

SML

tl (tl it);

val it = [ ] : int list

4.5 Pairs and Tuples

An expression of the form (e1 , e2 ) evaluates to a pair, with first component and second component
having respectively the values of e1 and e2 . If e1 has type σ1 and e2 has type σ2 then (e1 , e2 ) has
type σ1 ∗ σ2 . A tuple (e1 , ..., en) is NOT equivalent to (e1 , (e2 , ..., en)), unless n = 2. The first
and second components of a pair (but not a tuple of length greater than two) can be extracted with
the ML functions fst and snd respectively. The i-th component of a tuple can be extracted with the
function #i .
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6SML

(1 , 2 , (true, "abc"));

val it = (1 , 2 , (true, "abc")) : int ∗ int ∗ (bool ∗ string)

SML

#3 it ;

val it = (true, "abc") : bool ∗ string

SML

snd it ;

val it = "abc" : string

The ML expressions true and false denote the two truth values, being of type bool .

4.6 Polymorphic Types

ML types can contain the type variables ′a, ′b, etc. Such types are called polymorphic. A function
with a polymorphic type should be thought of as possessing all the types obtainable by replacing
type variables by types. An example of a function with polymorphic type is hd (head of a list),
which is applicable to lists of any type:

7SML

hd ;

val it = fn : ′a list −> ′a

This example also shows that, in the system’s response, the value of a function is not displayed in
full, but only symbolized by the letters fn. This is true of all function-values.

4.7 Declarations of Functions

The function which, for example, computes x +1 from x can be defined and given a name, say, step,
as follows:
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8SML

fun step x = x + 1 ;

val step = fn : int −> int

SML

step 6 ;

val it = 7 : int

The declaration fun step x = x + 1 is a convenient abbreviation for val step = fn x => x + 1 .

9SML

val step = fn x => x + 1 ;

val step = fn : int −> int

SML

step 6 ;

val it = 7 : int

Here fn x => x + 1 is an expression the value of which is a function. In what follows, it will
be common for the arguments or results of functions themselves to be functions. In the following
example twice is a function which takes a function as argument and returns another as a result, such
that applying the result-function is equivalent to applying the argument-function twice.
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10SML

fun twice f = fn x => f (f x );

val twice = fn : (′a −> ′a) −> ′a −> ′a

SML

val hop = twice step;

val hop = fn : int −> int

SML

hop 6 ;

val it = 8 : int

SML

(twice tl) [1 , 3 , 5 , 7 ];

val it = [5 , 7 ] : int list

Again the syntactic abbreviation may be employed to give a neater definition of twice:

11SML

fun twice f x = f (f x );

val twice = fn : (′a −> ′a) −> ′a −> ′a

SML

twice step 6 ;

val it = 8 : int

Note particularly that the expression twice step 6 is equivalent to (twice step) 6 . The declaration
above, fun twice f x = f (f x ), is an example of a more general form of declaration of a function,
fun f v1 ... vn = e where each v i is an argument and e is an expression.

As a final example, a useful built-in function is map which applies its function-argument to each
member of a list to produce a list:
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12SML

map step [1 , 3 , 5 ];

val it = [2 , 4 , 6 ] : int list

The sessions above are enough to give an idea of ML. In the next sections, the logic supported by
the ProofPower system (higher order logic) will be introduced, together with the tools in ML for
manipulating it.
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INTRODUCTION TO THE ProofPower LOGIC

The ProofPower system supports higher order logic. This is a version of predicate calculus with
three main extensions:

• Variables can range over functions and predicates (hence ‘higher order’).

• The logic is typed.

• There is no separate syntactic category of formulae. Instead, there are terms of a boolean type.

5.1 Overview of higher order logic

It is assumed that the reader is familiar with predicate logic. The table below summarizes the
notation used. In what follows the logic supported by ProofPower will be called the HOL logic, or
simply HOL.

Terms of the HOL Logic

Kind of term HOL notation Description

Truth T true
Falsity F false
Negation ¬t not t
Disjunction t1∨t2 t1 or t2
Conjunction t1∧t2 t1 and t2
Implication t1⇒t2 t1 implies t2
Equality t1 = t2 t1 equals t2
∀-quantification ∀x•t for all x , t
∃-quantification ∃x•t for some x , t
ε-term ε x•t an x such that t
Conditional if t then t1 else t2 if t then t1 else t2

Terms of the HOL logic are represented in ML by an abstract type1 called TERM . They are
represented as character strings which are input, not between the usual quotation symbols but
rather between the symbols p and q. For example, the expression p x ∧ y ⇒ zq evaluates in ML to
a term representing x ∧ y ⇒ z . Terms can be manipulated by various built-in ML functions. For
example, the ML function dest ⇒ with ML type TERM −> TERM ∗ TERM splits an implication
into a pair of terms consisting of its antecedent and consequent, and the ML function dest ∧ of type
TERM −> TERM ∗ TERM splits a conjunction into its two conjuncts.

1Abstract types appear to the user as primitive types with a collection of operations
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1SML

px∧y⇒zq;

val it = px ∧ y ⇒ zq : TERM

SML

dest ⇒ it ;

val it = (px ∧ yq, pzq) : TERM ∗ TERM

SML

dest ∧ (fst it);

val it = (pxq, pyq) : TERM ∗ TERM

Terms of the HOL logic are quite similar in appearance to ML expressions, but the distinction must
be carefully observed. Indeed, terms of the logic have types in a way which is similar to the way
in which ML expressions have types. For example, p1q is an ML expression with ML type TERM .
The HOL type of this term is :N, the type of the natural numbers.

The types of HOL terms form an ML type called TYPE . Expressions having the form p: ....q evaluate
to logical (that is, HOL ) types. The built-in function type of has ML type TERM −> TYPE and
returns the logical type of a term.

2SML

p(1 ,2 )q;

val it = p(1 , 2 )q : TERM

SML

type of it ;

val it = p:N × Nq : TYPE

SML

(p1q, p2q);

val it = (p1q, p2q) : TERM ∗ TERM

SML

type of (fst it);

val it = p:Nq : TYPE
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To emphasise the distinction between between the ML types of ML expressions and the logical types
of HOL terms , the former will be referred to as metalanguage types and the latter as object language
types.

HOL terms can be input using explicit quotation, as above, using p and q for quotation marks, or
they can be constructed using ML constructor functions. The function mk var constructs a variable
from a string and a type. In the example below, three terms are constructed, each representing a
single object-language variable of type BOOL, and metalanguage names are chosen for the terms to
coincide with the names of the object-language variables. These are used later.

3SML

val x = mk var("x",p:BOOLq);
val y = mk var("y",p:BOOLq);
val z = mk var("z",p:BOOLq);

val x = pxq : TERM
val y = pyq : TERM
val z = pzq : TERM

The constructors mk ∧ and mk ⇒ construct conjunctions and implications respectively.

4SML

val t = mk ⇒(mk ∧(x ,y),z );

val t = px ∧ y ⇒ zq : TERM

5.2 Terms

There are only four different kinds of terms:

1. Variables.

2. Constants.

3. Function applications: pt1 t2q

4. λ-abstractions: pλ x • t q.

Both variables and constants have a name and a type; the difference is that constants cannot be
bound by quantifiers, and their type is fixed when they are declared (see below). The type checking
algorithm uses the types of constants to infer the types of variables in the same quotation. If there is
not enough type information to constrain the assignment of a type, then an assignment of the most
general type, that is, involving type-variables, will result:
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5SML

p¬xq;

val it = p¬ xq : TERM

SML

dest ¬ it ;

val it = pxq : TERM

SML

type of it ;

val it = p:BOOLq : TYPE

SML

pxq;

val it = pxq : TERM

SML

type of it ;

val it = p:′aq : TYPE

In the first case, the HOL type checker used the known type BOOL → BOOL of ¬ to deduce that
the variable x must have type BOOL. In the second case, it assigns the most general type to x . The
‘scope’ of type information for type checking is a single quotation, so a type in one quotation cannot
affect the type checking of another. If there is not enough contextually-determined type information
to resolve the types of all variables in a quotation, then it may be necessary to explicitly indicate
the required types by using pterm:typeq as illustrated below.

6SML

px :Nq;

val it = pxq : TERM

SML

type of it ;

val it = p:Nq : TYPE
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Functions have types of the form σ1→σ2 , where σ1 and σ2 are the types of elements of the domain
and range of the function, respectively.

Before considering an example of the types of functions, an aside is appropriate on a purely syntactic
matter. Functions may be defined with a special lexical status, such as being an infix operator, in
the case of + or ∧. In such cases, putting $ in front of the name of the function causes the parser to
ignore any special syntactic status it may have. This means that the naked symbol ∧ is not in itself a
syntactically well-formed expression, because it denotes the application of the function to arguments
which are missing. However the expression $∧ is well-formed in itself, denoting a function, and it
can be applied to arguments.

7SML

p∧q;

Syntax error in: p <?> ∧
∧ is not expected after p
Exception− Fail ∗ Syntax error [HOL−Parser .19000 ] ∗ raised

SML

p$∧q;

val it = p$∧q : TERM

SML

type of it ;

val it = p:BOOL → BOOL → BOOLq : TYPE

SML

p$∧ t1 t2q;

val it = pt1 ∧ t2q : TERM

After that aside, we return now to the subject of the types of functions. Functions can be denoted
by Lambda-terms (or λ-terms). For example, pλx• x+1q is a term that denotes the function which
maps a number x to a number x + 1 , and is thus of type N → N.
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8SML

pλx • x+1q;

val it = pλ x• x + 1q : TERM

SML

type of it ;

val it = p:N → Nq : TYPE

The next box provides further examples of metalanguage and object-language types.

9SML

p(x+1 ), (t1⇒t2 )q;

val it = p(x + 1 , t1 ⇒ t2 )q : TERM

SML

type of it ;

val it = p:N × BOOLq : TYPE

SML

(px=1q, pt1⇒t2q);

val it = (px = 1q, pt1 ⇒ t2q) : TERM ∗ TERM

SML

(type of (fst it), type of (snd it));

val it = (p:BOOLq, p:BOOLq) : TYPE ∗ TYPE

The types of constants are declared in theories; this is described in Section 5.4.

An application t1 t2 is badly typed if t1 is not a function:
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10SML

p1 2q;

Type error in p1 2q
The operator must have type σ → τ

Cannot apply p1 :Nq
to p2 :Nq

Exception− Fail ∗ Type error [HOL−Parser .16000 ] ∗ raised

or if it is a function, but t2 is not in its domain:

11SML

p¬1q;

Type error in p¬ 1q
The operator and the operand have incompatible types
Cannot apply p¬:(BOOL→BOOL)q

to p1 :Nq
Exception− Fail ∗ Type error [HOL−Parser .16000 ] ∗ raised

5.3 Boolean Terms, Theorems and Sequents

So far, in the language of HOL terms, we have seen terms of different object-language types, including
those of object-language type p:BOOLq. The ProofPower system supports a process of inference
which results in the production of theorems. Theorems are objects of metalanguage type THM .
Terms are not theorems, that is, the metalanguage types TERM and THM are distinct. The form
taken by a theorem in this system of inference is not simply a boolean-valued term but rather a
composite of:

• a list of assumptions, each of which is a boolean-valued term

• a conclusion, which is a single boolean-valued term.

The following session produces an example of a theorem to illustrate this structure of assumptions
and conclusion. The example is produced by means which are yet to be described, but will be covered
in following sections.

12SML

tac proof (([px=yq, py=zq], px=zq), (asm rewrite tac[ ]));

val it = x = y , y = z ` x = z : THM

It can be seen that the turnstile symbol, `, separates assumptions from conclusion. This theorem
can be understood as meaning: on the assumption that x=y and the further assumption that y=z,
it may be concluded that x=z. The theorem is about the relationship between assumptions and
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conclusion (that the latter follows from the former). The “truth” of the theorem is the truth of an
assertion about what follows from what.

Strictly speaking, all theorems in this system are about the relationship between assumptions and
conclusions, but in practice many theorems have no assumptions. Here is another example of a
theorem produced by means yet to be described:

13SML

refl conv pxq;

val it = ` x = x : THM

This theorem can be understood as meaning “without making any assumptions, it may be concluded
that x=x”. Here the list of assumptions mentioned above is present, but is empty and so nothing is
displayed for it.

Terms can be constructed at will, (subject only to the constraint of being well-typed.) On the other
hand, theorems can be constructed only by a proof which appeals to the rules of inference supported
by the system. The soundness of the system of inference and the correctness of the implementation
guarantee the “truth” of any theorems produced, and ensure that theorems can only be produced
by the prescribed system of inference.

Objects structured according to the pattern described above as a list of assumptions followed by
a conclusion are called “sequents”. In this sense, theorems may be called sequents, so that the
ProofPower system of inference is described as a sequent calculus; see e.g. [1].

The system supports “sequents” by providing, as an abbreviation for TERM list ∗ TERM , the
name SEQ . Sequents in this other sense are NOT theorems, just data-structures. Their usefulness
is (as shown in the example of producing the first theorem above) in convenience in stating goals for
a proof process, so much so that the system also supports the abbreviation GOAL for the same type.
This is illustrated in the next session, where the same object is ascribed a type which is reported in
three different ways.

14SML

val s =([px=yq, py=zq], px=zq);

val s = ([px = yq, py = zq], px = zq) : TERM list ∗ TERM

SML

s:SEQ ;

val it = ([px = yq, py = zq], px = zq) : SEQ

SML

s:GOAL;

val it = ([px = yq, py = zq], px = zq) : GOAL
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5.4 The Development of Theories

5.4.1 Theories

The objects generated by work with ProofPower – definitions, types, constants, axioms and theorems
– are organised into larger units called theories. A theory in ProofPower is similar to what a logician
would call a theory, but there are some differences arising from the needs of mechanical proof. A HOL
theory, like a logician’s theory, contains sets of types, constants, definitions and axioms. In addition,
however, a HOL theory may contain an explicit list of theorems that have been proved from the
axioms and definitions. Logicians normally do not need to distinguish theorems that have actually
been proved from those that could be proved, hence they do not normally consider sets of proven
theorems as part of a theory; rather, they take the theorems of a theory to be the (often infinite) set
of all consequences of the axioms and definitions. Another difference between logicians’ theories and
HOL theories is that, for logicians, theories are relatively static objects, but in ProofPower they can
be developed over a period of time. For example, further theorems can be proved to produce a new
version of a theory which replaces the previous version.

The purpose of the ProofPower system may be described as to provide tools to enable well-formed
theories to be constructed. All the theorems of such theories are logical consequences of the definitions
and axioms of the theory. The ProofPower system ensures that only well-formed theories can be
constructed by allowing theorems to be created by formal proof only.

In general, a new theory is not constructed in a vacuum, but rather in a context of prior theories,
which makes available the contents of the prior theories for use in the new theory. Thus theories
are related one to another as parent to child, so that the parent is logically (but not physically)
incorporated into the child.

Any new theory must be a child of an existing theory, and in fact may be a child of several different
parent theories simultaneously. A collection of theories organised in a parent-child relationship is
called a theory-hierarchy. The ProofPower system as issued contains a theory-hierarchy of approx-
imately 20 theories. Of these, the theory called ‘min’ (for ‘minimal’) is the ultimate ancestor of all
other theories, whether issued or user-defined. Each theory is devoted to a particular subject, so
that there is, for example a theory of numbers in the issued database.

5.4.2 Theory Databases

A given theory is stored in what is called a theory database, which is a file in the filing system of
the computer. Thus a theory database is what is stored between sessions of interaction with the
ProofPower system.

In principle a whole hierarchy of theories can be stored in a single theory database. In practice
however it may be more convenient to distribute a theory-hierarchy over several databases. For this
purpose, databases may be organised in a parent-child relationship. Here each child database has
exactly one parent.

Such an arrangement would allow a collection of theories in a common database to be read-only,
and other theories under development to be in updatable child databases. Similar arrangements are
possible within a single database: an individual theory may have a status of “locked” to prevent
casual changes. Thus facilities for the management of theories are available both at the level of the
individual theory and at the level of the database.
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5.4.3 The Current Theory and Current Database

Any single ProofPower session works with a single database, the “current” database, which is that
nominated in the UNIX command line which caused entry to the ProofPower system.

There is always a current theory : definitions and theorems are stored in the theory which is current
at the time the definitions or theorems are generated. Each database has a theory which by default
becomes the current theory immediately on entry to a session with that database.

Facilities for working with theories include the following:

print status(); displays the name of the current theory and other
information.

print theory”X ”;
displays the contents of the theory named X. As a
convenience, the current theory may be referred to
by the name “-”.

new theory”X ”;
will create a new, empty theory, named X, which be-
comes current, being a child of the hitherto-current
theory

open theory”X ”; will cause the existing theory X to become current.

new parent”X ”;
will cause the current theory to acquire an additional
parent, namely theory X.

5.4.4 Naming of Object

It has been explained that the state of a ProofPower session can be saved, and then retrieved on a
later occasion. Within the state of the ProofPower session, there will be theorems and other objects:
axioms, definitions, constants and so on. Now a theorem, for example, can be associated with a
name, in the state of the ProofPower session, in either or both of two ways, which are distinct.

Firstly, a theorem is an ML value like any other, in that it can be associated with an ML name by
the familiar process, seen many times above, of making a declaration:

15SML

val thm99 = refl conv pxq;

val thm99 = ` x = x : THM

The value, and the association with the name, will survive the saving and retrieving of the state of
the ProofPower session.

Secondly, the current theory is represented by a data structure within the state of the current session.
This data structure has no ML name, but is instead provided with a number of access functions by
which its contents may be inspected, extracted, and updated.

For example, the function print theory enables the content of the theory to be inspected. There is
a function save thm which takes two arguments, a string and a theorem, and causes the theorem
to be saved in the data structure which is the current theory under the name given by the string.
A name given by such a string is called a key. The theorem can be recovered by another access
function, get thm, which takes as arguments a theory name (the current theory can be referred
to by the name "−") and the key under which the theorem was stored. Note that there is no
necessary connection between this string and the name of any ML variable used to hold a theorem.
To emphasize the point, note that the key need not be a well-formed name.
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16SML

save thm ("theorem of 5 September 91", thm99 );

val it = ` x = x : THM

SML

get thm "−" "theorem of 5 September 91";

val it = ` x = x : THM

5.4.5 Example of Developing a New Theory

In this section an example is given of developing a new theory, which is chosen to be a treatment
of Peano’s postulates as axioms for the natural numbers. It is to be noted that there is already
a theory built into ProofPower, called N, which covers natural numbers and arithmetic, (in which
Peano’s postulates are in fact derived theorems rather than postulated as axioms). To emphasize
that this example theory is just an example, and has no relation to N except superficial resemblance,
the example theory will be called Peanissimo.

Executing new theory "thy" creates a new theory called thy ; it fails if there already exists a theory
so named in the current theory hierarchy.

17SML

new theory "Peanissimo";

val it = () : unit

This starts a theory called Peanissimo, which is to be made into a theory containing Peano’s postu-
lates as axioms for the natural numbers. These postulates, stated informally, are:

P1 There is a number which we will call zero.

P2 There is a function which we will call successor such that if n is a number then the successor of
n is a number.

P3 zero is not the successor of any number.

P4 If two numbers have the same successor then the numbers are equal.

P5 If a property holds of zero, and if whenever it holds of a number then it also holds of the successor
of that number, then the property holds of all numbers. This postulate is called Mathematical
Induction.

To formalize this in HOL a new type is introduced called nat (for natural number)
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18SML

new type ("nat", 0 );

val it = p:natq : TYPE

In general new type ("op" n) makes op a new n-ary type operator in the current theory. Constant
types (such as BOOL or N) are regarded as degenerate type operators with no arguments, thus the
new type nat is declared to be a 0 -ary type operator. An example of a 1 -ary type operator is LIST ,
occurring in for example p[a;b;c] : N LISTq; and an example of a 2-ary type operator is × occurring
in for example p(x ,y) : BOOL × Nq;.

The axioms P1 and P2 can now be formalized by declaring two new constants to represent zero and
successor .

Evaluating new const("c", σ) makes c a new constant of type σ in the current theory. This fails if
there already exists a constant named c in the current theory (or a parent of the current theory).

19SML

new const ("zero", p:natq);

val it = pzeroq : TERM

SML

new const ("successor", p:nat→natq);

val it = psuccessorq : TERM

The HOL type checker ensures that P1 and P2 hold. P3 is now asserted as an axiom:

20SML

new axiom(["P3"], p∀n• ¬(zero = successor n)q );

val it = ` ∀ n• ¬ zero = successor n : THM

This creates an axiom in the current theory (that is, in Peanissimo) called P3 . Axiom P4 can be
declared similarly:

21SML

new axiom(["P4"], p∀m n •(successor m = successor n) ⇒ (m = n)q);

val it = ` ∀ m n• successor m = successor n ⇒ m = n : THM

The final Peano axiom is Mathematical Induction:
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22SML

new axiom(["P5"],p∀ P• P zero ∧ (∀ n • P n ⇒ P(successor n)) ⇒ (∀n• P n)q);

val it = ` ∀ P• P zero ∧ (∀ n• P n ⇒ P (successor n)) ⇒ (∀ n• P n) : THM
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To inspect the theory, the function print theory can be used:

23SML

print theory "−";

=== The theory Peanissimo ===

−−− Parents −−−

demo

−−− Constants −−−

zero nat
successor nat → nat

−−− Types −−−

nat

−−− Axioms −−−

P3 ` ∀ n• ¬ zero = successor n
P4 ` ∀ m n

• successor m = successor n ⇒ m = n
P5 ` ∀ P

• P zero
∧ (∀ n• P n ⇒ P (successor n))

⇒ (∀ n• P n)

=== End of listing of theory Peanissimo ===

To end the session and make an update to the database in use, recording all the work of the session
including the new theory, the current state of the session is saved to the database, by executing
save and quit();.

24SML

save and quit();

/par20/users/rda/tmp/sun4demo.db:131072 bytes
Closing /par20/users/rda/tmp/sun4demo.db now
Opening /par20/users/rda/tmp/sun4demo.db

The preceding session set up a first version of a theory, Peanissimo. It is usual to include in ‘Peano
arithmetic’ axioms defining addition and multiplication. To do this a new session can be started and
the theory further developed.
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If you are using xpp and it is still running, you can start the new session by selecting the ‘Restart’
item from the Command Menu in xpp. Otherwise start a new session from UNIX as explained in
section 1.3 (or 1.9, if you are not using xpp). You should now be in a position to continue developing
the theory by issuing the ProofPower-ML command.

25SML

open theory "Peanissimo";

The two new axioms can now be added, but first constants must be declared to represent addition
and multiplication. Let us choose the names pplus and ptimes respectively for these. Since we wish to
use these syntactically in the same way as + and ∗, that is, as infix operators with appropriate values
for syntactic precedence, they are declared as such with fixity declarations declare infix followed
by new const. Constants declared with declare infix must have a type of the form σ1→σ2→σ3 .

26SML

declare infix (300 , "pplus");
declare infix (310 , "ptimes");

val it = () : unit
val it = () : unit

SML

new const ("pplus", p:nat→nat→natq);
new const ("ptimes", p:nat→nat→natq);

val it = p$pplusq : TERM
val it = p$ptimesq : TERM

Axioms defining pplus and ptimes can now be given.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USR004



38 Chapter 5. INTRODUCTION TO THE ProofPower LOGIC

27SML

new axiom(["pplus def "],
p(∀n• (zero pplus n) = n) ∧
(∀m n•((successor m) pplus n) = successor (m pplus n) )q );

val it = ` (∀ n• (zero pplus n) = n) ∧
(∀ m n• (successor m pplus n) = successor (m pplus n)) : THM

SML

new axiom(["ptimes def "],
p(∀n• (zero ptimes n) = zero) ∧
(∀m n•((successor m) ptimes n) = ((m ptimes n) pplus n) )q );

val it = ` (∀ n• (zero ptimes n) = zero) ∧
(∀ m n• (successor m ptimes n) = (m ptimes n pplus n)) : THM

The theory Peanissimo has now been extended to contain the new definitions.

This example shows how a theory is set up. How to prove consequences of axioms and definitions
is described later. The ProofPower system contains a built-in theory of numbers called N which
contains Peano’s postulates and the definitions of addition (+) and multiplication (∗) amongst others.
In fact, Peano’s postulates are theorems not axioms in the theory N. The constants 0 and Suc
(corresponding to zero and successor in Peanissimo) are defined in terms of purely logical notions.
In HOL, definitions are a special kind of axiom that are guaranteed to be consistent. The commonest
(but not only) form of a definition is:

f x1 . . . xn = t

where f is declared to be a new constant satisfying this equation (and t is a term whose free variables
are included in the set {x1 , . . . , xn}). Such definitions cannot be recursive because, for example:

f x = (f x ) + 1

would imply 0 = 1 (subtract f x from both sides) and is therefore inconsistent. An example of a
definition is:

28SML

simple new defn (["Double def "], "Double", pλx• (x pplus x )q);

val it = ` Double = (λ x• x pplus x ) : THM

This definition both declares Double as a new constant of the appropriate type and asserts the
defining equation as a definitional axiom.

5.5 Constant Specification

There is an alternative form of introduction of constants, called specification, which involves pred-
icates not restricted to the definitional form name = value, and therefore raising the question of
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possible inconsistency. Thus, in general, a specification will incur a proof obligation: a proof must
be provided that there exists something which satisfies the predicate. A complete discussion of this
topic is given in section 9, deferred until after the discussion of proof techniques.

However, in certain cases, the system is able to perform the existence-proof automatically. These
cases include the definitional name = value form, and also simple predicates such as T . This means
that the mechanism for the specification of constants can be used uniformly for both specification
and definition.

Associated with the constant-specification mechanism is a facility for a graphic display. In the source-
file of a document typeset with Latex, the characters which cause a display such as the following:

HOL Constant

Square : nat → nat

Square = λx• (x ptimes x )

can be pasted directly into the ProofPower window. The source-file characters are typed as:

sHOLCONST
Square : nat → nat

Square = λx• (x ptimes x )
¥

Entering these characters is equivalent making use of the function const spec by entering:

const spec (
["Square"],
[pSquare : nat → natq],
pSquare = λx• (x ptimes x )q );

In this tutorial, an occurrence of a display of this kind puts a strain on the convention we have
followed, of showing system input and output in session-boxes, character by character. Such a
display is meant to be understood as being in a small session-box of its own, which represents some
input.

If the theory is now examined, the treatment of Double and Square can be compared:
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29SML

print theory "−";

=== The theory Peanissimo ===

−−− Parents −−−
demo

−−− Constants −−−
zero nat
successor nat → nat
$pplus nat → nat → nat
$ptimes nat → nat → nat
Double nat → nat
Square nat → nat

−−− Types −−−
nat

−−− Fixity −−−
Infix 300 : pplus
Infix 310 : ptimes

−−− Axioms −−−
P3 ` ∀ n• ¬ zero = successor n
P4 ` ∀ m n

• successor m = successor n ⇒ m = n
P5 ` ∀ P

• P zero
∧ (∀ n• P n ⇒ P (successor n))

⇒ (∀ n• P n)
pplus def ` (∀ n• zero pplus n = n)

∧ (∀ m n
• successor m pplus n

= successor (m pplus n))
ptimes def ` (∀ n• zero ptimes n = zero)

∧ (∀ m n
• successor m ptimes n

= m ptimes n pplus n)

−−− Definitions −−−
Double def ` Double = (λ x• x pplus x )
Square ` Square = (λ x• x ptimes x )

=== End of listing of theory Peanissimo ===
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To repeat the point made earlier, the theory Peanissimo is presented here solely as a small example
of the development of a theory. In one important respect it is atypical, and that is in the introduction
of axioms. The use of axioms, as illustrated here, carries considerable danger in general because it
is very easy to assert inconsistent axioms. It is thus safer to use only definitions.

A theory containing only definitions is called a definitional theory . A number of useful definitional
theories are built-in to the ProofPower system, and are shown in the ProofPower Reference Manual
[12]. Examples include theories of numbers, sets, pairs and lists. Indeed it is particularly important
to note that, with a single exception, all the built-in theories are purely definitional. The exception is
the built-in theory init which contains the five primitive axioms of HOL. By inspecting the theories
listed in the ProofPower Reference Manual [12], it may be seen that init is the only theory containing
axioms, and all else is built up by a process of definition.

This topic is covered in section 9 below. It is noteworthy that if consistency is to be achieved by
avoiding the use of axioms then a price must be paid which amounts to doing proofs. Further
coverage of specification is thus deferred until after the coverage of proof.
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INTRODUCTION TO PROOF WITH ProofPower

For a logician, a formal proof is a sequence, each of whose elements is either an axiom or follows from
earlier members of the sequence by a rule of inference. A theorem is the last element of a proof.

Theorems are represented in HOL by values of an abstract type called THM . The only way to create
theorems is by proof. In ProofPower (following LCF, [2] ), this consists in applying ML functions
representing rules of inference to axioms or previously generated theorems. The sequence of such
applications directly corresponds to a logician’s proof.

There are five axioms of the HOL logic and eight primitive inference rules. The axioms can be
retrieved from the theory init with the function get axiom. For example, the Law of Excluded
Middle can be retrieved with the key "bool cases axiom":

30SML

get axiom "init" "bool cases axiom";

val it = ` ∀ b• (b ⇔ T ) ∨ (b ⇔ F ) : THM

Theorems are printed with a turnstile ` as illustrated above. Rules of inference are ML functions that
return values of type THM . An example of a rule of inference is specialization (or ∀− elimination).
In standard notation this might be:

Γ ` ∀x . t
Γ ` t [t ′/x ]

This means that a theorem of the form below the line may be inferred from a theorem of the form
above the line. Here Γ represents the assumptions, which must be the same in the inferred theorem
as in the premise, and t [t ′/x ] represents the result of substituting t ′ for free occurrences of x in t ,
with the restriction that no free variables in t ′ become bound after substitution.

A rule very similar to this is represented in ML by a function ∀ elim1 which, when given as arguments
a term paq and a theorem `∀x•t [x ], returns the theorem `t [a], the result of substituting a for x in
t [x ].

1This function is not a primitive rule of inference in the HOL logic, but is a derived rule. Derived rules are described
in Section 6.1.
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1SML

val Th1 = get axiom "init" "bool cases axiom";

val Th1 = ` ∀ b• (b ⇔ T ) ∨ (b ⇔ F ) : THM

SML

val Th2 = ∀ elim p1 = 2q Th1 ;

val Th2 = ` (1 = 2 ⇔ T ) ∨ (1 = 2 ⇔ F ) : THM

This session consists of a proof of two steps: using an axiom and applying the rule ∀ elim; it
interactively performs the following proof:

1. ` ∀t . t = T ∨ t = F [Axiom bool cases axiom]

2. ` (1=2 ) = T ∨ (1=2 ) = F [Specializing line 1 to ‘1=2 ’]

If the argument to an ML function representing a rule of inference is of the wrong kind, or violates
a condition of the rule, then the application fails.

A proof in the ProofPower system is constructed by repeatedly applying inference rules to axioms or
to previously proved theorems. Since proofs may consist of millions of steps, it is necessary to provide
tools to make proof construction easier for the user. The proof generating tools in the ProofPower
system are described later.

The general form of a theorem is t1 , . . . , tn ` t , where t1 , . . . , tn are boolean terms called the
assumptions and t is a boolean term called the conclusion. Such a theorem asserts that if its
assumptions are true then so is its conclusion. Its truth conditions are thus the same as those for the
single term (t1 ∧ . . . ∧ tn) ⇒ t. Theorems with no assumptions are displayed in the form ` t .

Every value of type THM in the ProofPower system can be obtained by repeatedly applying infer-
ence rules to axioms.

Every inference rule is either a derived rule or else a constructor of the abstract data type
THM.

Every derived rule is a procedure which invokes other rules each time the derived rule is invoked.
Some derived rules are supplied as part of ProofPower and others may be user-defined.

Every rule which is a constructor is either a primitive rule or else a built-in rule or else a
definition schema. The collection of constructor rules is fixed.

Every built-in rule can in principle be defined as a derived rule in terms of the primitive rules, but
for efficiency reasons is not implemented in this way.

Every definition schema is justified, not in terms of the primitive rules, but rather in terms of a
principle of definitional extension.

In the rest of this section, the process of forward proof , which has been sketched above, is decribed
in more detail. In section 7 below, goal directed proof is described. Goal directed proof provides
additional facilities for interactive proof development which makes it suitable as the most common
mode of working with ProofPower.
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6.1 Forward proof

Three of the primitive inference rules of the HOL logic are

• asm rule (assumption introduction),

• ⇒ intro (discharging, that is, eliminating, an assumption by introducing an implication) and

• ⇒ elim (eliminating an implication, that is, Modus Ponens).

These rules will be used to illustrate forward proof and the writing of derived rules. The inference
rule asm rule generates theorems of the form t ` t . The function dest thm decomposes a theorem
into a pair consisting of list of assumptions and the conclusion. The ML type SEQ , or GOAL,
abbreviates TERM list ∗ TERM ; this is motivated in Section 7.

2SML

val Th3 = asm rule pt1⇒t2q;

val Th3 = t1 ⇒ t2 ` t1 ⇒ t2 : THM

SML

dest thm Th3 ;

val it = ([pt1 ⇒ t2q], pt1 ⇒ t2q) : SEQ

The primitive inference rule ⇒ intro (discharging, assumption elimination) infers from a theorem of
the form · · · t1 · · ·`t2 the new theorem · · · · · · ` t1⇒t2 . ⇒ intro takes as arguments the term to be
discharged (i.e. t1 ) and the theorem from whose assumptions it is to be discharged and returns the
result of the discharging. The following session illustrates this:

3SML

val Th4 = ⇒ intro pt1⇒t2q Th3 ;

val Th4 = ` (t1 ⇒ t2 ) ⇒ t1 ⇒ t2 : THM

In HOL, the rule of Modus Ponens is specified in conventional notation by:

Γ1 ` t1 ⇒ t2 Γ2 ` t1
Γ1 ∪ Γ2 ` t2

Corresponding to Modus Ponens, the ML function ⇒ elim takes argument theorems of the form
· · · ` t1 ⇒ t2 and · · · ` t1 and returns · · · ` t2 . The next session illustrates the use of⇒ elim
and illustrates also a common error, namely not supplying the HOL logic type checker with enough
information.
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4SML

val Th5 = asm rule pt1q;

Exception− Fail ∗ pt1q is not of type p:BOOLq [asm rule.3031 ] ∗ raised

SML

val Th5 = asm rule pt1 :BOOLq;

val Th5 = t1 ` t1 : THM

SML

val Th6 = ⇒ elim Th3 Th5 ;

val Th6 = t1 ⇒ t2 , t1 ` t2 : THM

The assumptions of Th6 can be extracted with the ML function asms, which returns the list of
assumptions of a theorem. The conclusion of a theorem is returned by the function concl .

5SML

asms Th6 ;

val it = [pt1 ⇒ t2q, pt1q] : TERM list

SML

concl Th6 ;

val it = pt2q : TERM

Discharging Th6 twice establishes the theorem ` t1 ⇒ (t1⇒t2 )⇒t2 .

6SML

val Th7 = ⇒ intro pt1⇒t2q Th6 ;

val Th7 = t1 ` (t1 ⇒ t2 ) ⇒ t2 : THM

SML

val Th8 = ⇒ intro pt1 :BOOLq Th7 ;

val Th8 = ` t1 ⇒ (t1 ⇒ t2 ) ⇒ t2 : THM

The sequence: Th3 , Th5 , Th6 , Th7 , Th8 constitutes a proof in HOL of the theorem

` t1⇒(t1⇒t2 )⇒t2
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This proof could be written:

1. t1 ⇒ t2 ` t1 ⇒ t2 [Assumption introduction]

2. t1 ` t1 [Assumption introduction]

3. t1 ⇒ t2 , t1 ` t2 [Modus Ponens applied to lines 1 and 2]

4. t1 ` (t1 ⇒ t2 ) ⇒ t2 [Discharging the first assumption of line 3]

5. ` t1 ⇒ (t1 ⇒ t2 ) ⇒ t2 [Discharging the only assumption of line 4]

6.2 Derived rules

A proof from hypothesis th1 , . . . , thn is a sequence each of whose elements is either an axiom, or one
of the hypotheses thi , or follows from earlier elements by a rule of inference.

For example, a proof of Γ , t ′ ` t from the hypothesis Γ ` t is:

1. t ′ ` t ′ [Assumption introduction]

2. Γ ` t [Hypothesis]

3. Γ ` t ′ ⇒ t [‘Discharge’ t ′ from line 2]

4. Γ , t ′ ` t [Modus Ponens applied to lines 3 and 1]

Note that line 3 above mentions ‘discharging’ the assumption t ′, but t ′ is not actually amongst the
assumptions. The rule ⇒ intro does not in fact require its term argument (t ′) to be present in the
assumptions of its theorem argument (line 2).

This proof works for any hypothesis of the form Γ ` t and any boolean term t ′ and shows that
the result of adding an arbitrary hypothesis to a theorem is another theorem (because the four lines
above can be added to any proof of Γ ` t to get a proof of Γ , t ′ ` t).2 For example, the next
session uses this proof to add the hypothesis t3 to Th6 .

2This property of the logic is called monotonicity.
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7SML

val Th9 = asm rule pt3 :BOOLq;

val Th9 = t3 ` t3 : THM

SML

val Th10 = ⇒ intro pt3 :BOOLq Th6 ;

val Th10 = t1 ⇒ t2 , t1 ` t3 ⇒ t2 : THM

SML

val Th11 = ⇒ elim Th10 Th9 ;

val Th11 = t1 ⇒ t2 , t1 , t3 ` t2 : THM

A derived rule is an ML procedure that generates a proof from given hypotheses each time it is
invoked. The hypotheses are the arguments of the rule. An example of definition of a derived rule
will now be given. A rule, called, say, ADD ASSUM , will be defined as an ML procedure that carries
out the proof above. In standard notation this would be described by:

Γ ` t
Γ , t ′ ` t

The ML definition is:

8SML

fun ADD ASSUM t th =
let val th9 = asm rule t

val th10 = ⇒ intro t th
in
⇒ elim th10 th9
end ;

val ADD ASSUM = fn : TERM −> THM −> THM

SML

ADD ASSUM pt3 :BOOLq Th6 ;

val it = t1 ⇒ t2 , t1 , t3 ` t2 : THM

The body of ADD ASSUM has been coded to mirror the proof done in session 9 above, so as to show
how an interactive proof can be generalized into a procedure. But ADD ASSUM can be written
much more concisely as:

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USR004



6.2. Derived rules 49

9SML

fun ADD ASSUM t th = ⇒ elim (⇒ intro t th) (asm rule t);

val ADD ASSUM = fn : TERM −> THM −> THM

SML

ADD ASSUM pt3 :BOOLq Th6 ;

val it = t1 ⇒ t2 , t1 , t3 ` t2 : THM

As another example of a derived inference rule, one which moves the antecedent of an implication to
the assumptions, is shown below as UNDISCH .

Γ ` t1 ⇒ t2
Γ , t1 ` t2

An ML derived rule that implements this is:

10SML

fun UNDISCH th = ⇒ elim th (asm rule(fst(dest ⇒(concl th))));

val UNDISCH = fn : THM −> THM

SML

Th10 ;

val it = t1 ⇒ t2 , t1 ` t3 ⇒ t2 : THM

SML

UNDISCH Th10 ;

val it = t1 ⇒ t2 , t1 , t3 ` t2 : THM

Each time UNDISCH Γ ` t1 ⇒ t2 is executed, the following proof is performed:

1. t1 ` t1 [Assumption introduction]

2. Γ ` t1 ⇒ t2 [Hypothesis]

3. Γ , t1 ` t2 [Modus Ponens applied to lines 2 and 1]

Rules equivalent to ADD ASSUM and UNDISCH (named respectively asm intro and undisch rule)
are derived rules defined when the ProofPower system is built.
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6.3 Rewriting

An important derived rule is rewrite rule. This takes as arguments

• a collection of equations represented by a list of theorems, such that each theorem is an equation
or a conjunction of equations, and

• a theorem ∆ ` t

and repeatedly replaces in t instances of the lefthand side of an equation by the corresponding
instance of the righthand side until no further change occurs. The result is a theorem Γ ∪∆ ` t ′

where t ′ is the result of rewriting t in this way, and Γ is the union of the assumptions in the equations.

The session below illustrates the use of rewrite rule. In it the list of equations is a list rewrite list
containing the theorems of the theory N defining addition and multiplication.

11SML

val rewrite list = map (get defn "N") ["+", "∗"];

val rewrite list = [
` ∀ m n• 0 + n = n ∧

(m + 1 ) + n = (m + n) + 1 ∧
Suc m = m + 1 ,

` ∀ m n• 0 ∗ n = 0 ∧
(m + 1 ) ∗ n = m ∗ n + n] : THM list

In the following example, the conclusion of a theorem (an arbitrary theorem just for this example)
is rewritten using these definitions to produce a simpler theorem.

12SML

val th = asm rule p(0 + m) = ((0∗ n) +1 )q;

val th = 0 + m = 0 ∗ n + 1 ` 0 + m = 0 ∗ n + 1 : THM

SML

rewrite rule rewrite list th;

val it = 0 + m = 0 ∗ n + 1 ` m = 1 : THM

rewrite rule is not a primitive in HOL, but is a derived rule. In addition to the equations given
explicitly as an argument, rewrite rule makes use of equations in the supplied theories, as shown in
the following example of rewriting with an empty list as argument:
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13SML

(asm rule p(T ∧ x ) ∨ F ⇒ Fq);

val it = T ∧ x ∨ F ⇒ F ` T ∧ x ∨ F ⇒ F : THM

SML

rewrite rule [ ] it ;

val it = T ∧ x ∨ F ⇒ F ` ¬ x : THM

There are powerful facilities in ProofPower for producing customized rewriting tools which scan
through terms in user programmed orders; rewrite rule is the tip of an iceberg.
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GOAL ORIENTED PROOF

The style of forward proof described in the previous chapter is unnatural and too laborious for many
applications. This chapter covers the topic of an alternative style, called ‘goal-oriented proof’, also
known as ‘backward proof’ or ‘tactical proof’. In this style, interactive facilities are available to
support the proof development process. These facilities are called ‘the subgoal package’. Before
describing the subgoal package, the underlying concepts of goals and tactics are described.

7.1 Goals and Tactics

An important advance in proof generating methodology was made by Robin Milner in the early 1970s
when he invented the notion of tactics. A conjecture, stated as a sequent, is called a ‘goal’ when it
becomes a candidate for proving it to be a theorem. A tactic is a function which does two things:

• It decomposes a goal into one or more simpler goals, called subgoals.

• It keeps track of the reason why achieving the subgoal(s) will achieve the goal.

Consider, for example, the rule of ∧-introduction1 shown below:

Γ1 ` t1 Γ2 ` t2
Γ1 ∪ Γ2 ` t1 ∧ t2

In HOL, ∧-introduction is represented by the ML function ∧ intro, such that

∧ intro (Γ1 ` t1 ) (Γ2 ` t2 ) is (Γ1 ∪ Γ2 ` t1 ∧ t2 )

This is illustrated in the following new session (note that the session number has been reset to 1):

1SML

val Th1 = asm rule pA:BOOLq and Th2 = asm rule pB :BOOLq;

val Th1 = A ` A : THM val Th2 = B ` B : THM

SML

val Th3 = ∧ intro Th1 Th2 ;

val Th3 = A, B ` A ∧ B : THM

Suppose the goal is to prove A ∧ B , then this rule says that it is sufficient to prove the two subgoals
A and B , because from ` A and ` B the theorem ` A ∧ B can be deduced. Thus:

1 In higher order logic this is a derived rule; in first order logic it is usually primitive. In HOL the rule is called
∧ intro
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(i) To prove ` A ∧ B it is sufficient to prove ` A and ` B .

(ii) The justification for the reduction of the goal ` A ∧ B to the two subgoals ` A and ` B
is the rule of ∧-introduction.

A goal in HOL is a pair ([t1 ,. . . ,tn ],t) of ML type TERM list ∗ TERM . An achievement of such a
goal is a theorem t1 ,. . .,tn ` t . A tactic is an ML function that when applied to a goal generates
subgoals together with a justification function or validation, which will be an ML derived inference
rule, that can be used to infer an achievement of the original goal from achievements of the subgoals.

ML has a type abbreviating mechanism which is used to give mnemonic names to the various types
associated with goal oriented proof. Some type abbreviations are as follows:

Abbreviation Type
CONV TERM −> THM
GOAL (TERM list) ∗ TERM
PROOF THM list −> THM
SEQ (TERM list) ∗ TERM
TACTIC GOAL −> (GOAL list ∗ PROOF )
THM TACTIC THM −> TACTIC
THM TACTICAL THM TACTIC −> THM TACTIC

The left hand side of these abbreviations can be used anywhere that the right hand side can.

If T is a tactic (i.e. an ML function of type TACTIC ) and g is a goal (i.e. an ML value of type
GOAL), then applying T to g (i.e. evaluating the ML expression T g) will result in an object of ML
type GOAL list ∗ PROOF , that is, a pair whose first component is a list of goals and whose second
component is a justification function, i.e. has ML type PROOF .

An example tactic is ∧ tac. For example, consider the trivial goal of showing T ∧ T , where T is a
constant that stands for true:

2SML

val goal : GOAL =([ ], pT ∧ Tq);

val goal = ([ ], pT ∧ Tq) : GOAL

SML

∧ tac goal ;

val it = ([([ ], pTq), ([ ], pTq)], fn) : GOAL list ∗ PROOF

SML

val (goal list ,just fn) = it ;

val goal list = [([ ], pTq), ([ ], pTq)] : GOAL list
val just fn = fn : PROOF
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Applying ∧ tac has produced a goal list consisting of two identical subgoals, each of which is to show
([ ],pTq). Now, there is a preproved theorem in HOL, which is recorded in theory misc under the
name of t thm. It can be produced and bound to an ML name, say TRUTH , as follows:

3SML

val TRUTH = get thm "misc" "t thm";

val TRUTH = ` T : THM

Applying the justification function just fn to a list of theorems achieving the goals in goal list results
in a theorem achieving the original goal:

4SML

just fn [TRUTH , TRUTH ];

val it = ` T ∧ T : THM

Although this example is trivial, it does illustrate the essential idea of tactics.

7.1.1 Example of Defining a Tactic

Tactics are not special theorem-proving primitives. They are just ML functions. New tactics may
be defined in terms of inference rules or (by means to be described below) by combining existing
tactics. An example of the definition of a tactic equivalent to the built-in ∧ tac would be:

fun ∧ tac equivalent (asmlist , conjunct) =
let val (left , right) = dest ∧ conjunct
in
([(asmlist ,left), (asmlist ,right)],
fn [th1 , th2 ] => ∧ intro th1 th2 )

end ;

In this definition, the ML function dest ∧ splits a conjunctive term conjunct into its two conjuncts,
left and right . If (asmlist , pleft ∧ rightq) is a goal, then ∧ tac equivalent splits it into the list of
two subgoals (asmlist ,pleftq) and (asmlist ,prightq).

The justification function, fn [th1 , th2 ] => ∧ intro th1 th2 , takes a list [th1 , th2 ] of theorems and
applies the rule ∧ intro to th1 and th2 .

It should be noted that there are facilities, described below, for defining new tactics by combining
existing tactics

7.1.2 Effects of Tactics

To summarize: if T is a tactic and g is a goal, then applying T to g will result in an object of
ML type GOAL list ∗ PROOF , i.e. a pair whose first component is a list of goals and whose second
component is a justification function.
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Suppose T g = ([g1 , . . . , gn ], p). The idea is that g1 , . . . , gn are subgoals and p is a ‘justification’
of the reduction of goal g to subgoals g1 , . . . , gn . Suppose further that the subgoals g1 , . . . , gn have
been solved. This would mean that theorems th1 , . . . , thn had been proved such that each thi

(1 ≤ i ≤ n) ‘achieves’ the goal gi . The justification p (produced by applying T to g) is an ML
function which when applied to the list [th1 , . . ., thn ] returns a theorem, th, which ‘achieves’ the
original goal g . Thus p is a function for converting a solution of the subgoals to a solution of the
original goal. If p does this successfully, then the tactic T is called valid .

Invalid tactics cannot result in the proof of invalid theorems; the worst they can do is result in
insolvable goals or unintended theorems being proved. If tactic T were invalid and were used to
reduce goal g to subgoals g1 , . . . , gn , then effort might be spent proving theorems th1 , . . . , thn to
achieve the subgoals g1 , . . . , gn , only to find out after the work is done that this is a blind alley
because p [th1 , . . . , thn ] doesn’t achieve g (i.e. it fails, or else it achieves some other goal).

A theorem achieves a goal if the assumptions of the theorem are included in the assumptions of the
goal and if the conclusion of the theorem is equal (up to the renaming of bound variables) to the
conclusion of the goal. More precisely, a theorem t1 , . . . , tm ` t achieves a goal ([u1 , . . . , un ], u)

if and only if {t1 , . . . , tm} is a subset of {u1 , . . . , un} and t is equal to u (up to renaming of bound
variables). For example, the goal

([px=yq, py=zq, pz=wq], px=zq)

is achieved by the theorem

x=y, y=z ` x=z

the assumption z=w being not needed.

A tactic solves a goal if it reduces the goal to the empty list of subgoals. Thus T solves g if
T g = ([ ],p). If this is the case and if T is valid, then p[ ] will evaluate to a theorem achieving
g . Thus if T solves g then the ML expression snd(T g)[ ] evaluates to a theorem achieving g .

Tactics generally fail (in the ML sense) if they are applied to inappropriate goals. For example,
∧ tac will fail if it is applied to a goal whose conclusion is not a conjunction.

7.1.3 Notation for Specifying Tactics

Tactics are specified using the following notation:

goal
goal1 goal2 · · · goaln

For example, a tactic called ∧ tac is described by

t1 ∧ t2
t1 t2

Thus ∧ tac reduces a goal of the form Γ, pt1∧t2q to subgoals Γ, pt1q and Γ, pt2q . The fact that
the assumptions of the top-level goal are propagated unchanged to the two subgoals is indicated by
the absence of assumptions in the notation.
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Another example is induction tac, the tactic for doing mathematical induction on the natural num-
bers.

t [n]
t [0] {t [n]} t [Suc n]

Given the name of a variable, n say, which is to be the induction variable, induction tac pn:Nq
reduces a goal (Γ , t [n]) to

• a basis subgoal , (Γ , t [0 ]) and

• an induction step subgoal (Γ ∪ {t [n]}, t [n + 1 ]). Here the set of assumptions are the original
set Γ together with the extra assumption, written in the tactic-notation as a singleton set,
{t [n]}

5SML

(induction tac pm:Nq) ([ ], p(m + n) = (n + m)q);

val it = ([ ([], p0 + n = n + 0q),
([], p(m + 1 ) + n = n + m + 1q)],

fn) : GOAL list ∗ PROOF

The first subgoal is the basis case and the second subgoal is the step case.

7.2 Using Tactics to Prove Theorems

Suppose goal g is to be solved. If g is simple it might be possible to immediately think up a tactic, T
say, which reduces it to the empty list of subgoals. If this is the case then executing val (gl ,p) = T g ;
will

• bind gl to the empty list of goals, and

• bind p to a function which when applied to the empty list of theorems yields a theorem th
achieving g .

Thus a theorem achieving g can be computed by executing val th = p [ ];. This will be illustrated
using rewrite tac which takes a list of equations (empty in the example that follows) and tries to
prove a goal by rewriting with these equations together with built-in rewrites:
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6SML

val g = ([ ], pT ∧ x ⇒ x ∨ (y ∧ F )q) : GOAL;

val g = ([ ], pT ∧ x ⇒ x ∨ y ∧ Fq) : GOAL

SML

val T = rewrite tac [ ];

val T = fn : TACTIC

SML

val (gl , p) = T g ;

val gl = [ ] : GOAL list val p = fn : PROOF

SML

val th = p[ ];

val th = ` T ∧ x ⇒ x ∨ y ∧ F : THM

There is a useful built-in function tac proof of ML type GOAL ∗ TACTIC −> THM such that
tac proof (G , T ) proves the goal G using tactic T and returns the resulting theorem.

7.2.1 The Subgoal Package

When conducting a proof that involves many subgoals and tactics, it is necessary to keep track of
all the justification functions and compose them in the correct order. While this is feasible even
in large proofs, it is tedious. ProofPower provides a package for building and traversing the tree
of subgoals, stacking the justification functions and applying them properly; such a package was
originally implemented for LCF by Larry Paulson.

The subgoal package implements a simple framework for interactive proof. A proof tree is created
and traversed top-down. The current goal can be expanded into subgoals using a tactic; the subgoals
are pushed onto the goal stack. Subgoals can be considered in any order. If the tactic solves a
subgoal (i.e. returns an empty subgoal list), then the package proceeds to the next subgoal in the
tree.

The function set goal of type GOAL −> unit initializes the subgoal package with a new main
goal goal. It takes two arguments: a list of terms which are to be the assumptions and a term which
is to be the conclusion. Usually main goals have no assumptions; the function g is useful in this case
where g is defined by:
SML

fun g t = set goal([ ],t);
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To illustrate the facilities provided by the subgoal package the trivial theorem m + 0 = m will be
proved.

1SML

g p(m + 0 ) = mq;

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pm + 0 = mq

val it = (): unit

This sets up the goal. The system response consists of

• a display of the number of main goals now on the stack.

• A label for the goal. In this case the label is the empty string appearing between the “” marks.

• A display of the goal itself. The display consists of a list of assumptions, (there being none in
this case), followed by the conclusion. The conclusion is marked by the symbols (∗ ?` ∗)

• A display of the value returned by the set goal (or g) function, which is always () : unit . Thus
the preceding lines of the display produced are a side-effect of the function, not a returned value.

The next step is to choose a tactic and apply it to the goal. One of several possible approaches
is to use induction to split the goal into a basis and step case. A suitable tactic is provided by
induction tac. Here we will induct on m so the tactic to be applied is induction tac pm:Nq.

To apply any tactic, use is made of the function apply tactic. This frequently-used function
is available under the alias a. It applies a tactic to the top goal on the stack, then pushes the
resulting subgoals onto the goal stack, then prints the resulting subgoals. If there are no subgoals,
the justification function is applied to the theorems solving the subgoals that have been proved and
the resulting theorems are printed.
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2SML

a (induction tac pm:Nq) ;

Tactic produced 2 subgoals:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ ?` ∗) p(m + 1 ) + 0 = m + 1q

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ ?` ∗) p0 + 0 = 0q

val it = () : unit

The top of the goal stack is printed last. The basis case is an instance of the definition of addition, so
is solved by rewriting with the equations for addition in the theory N. These equations are amongst
those used in rewriting by default, and so no explicit list of equations need be supplied:

3SML

a (rewrite tac [ ]);

Tactic produced 0 subgoals:
Current goal achieved , next goal is :

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ ?` ∗) p(m + 1 ) + 0 = m + 1q

The basis is solved and the goal stack popped so that its top is now the step case. This goal can be
solved in the same way as the previous:

4SML

a (rewrite tac [ ]);

Tactic produced 0 subgoals:
Current and main goal achieved

The top goal (the step case) is solved , and since the basis is already solved, the main goal is solved.
The theorem achieving the goal can be extracted from the subgoal package with top thm, or with
pop thm: the former leaves the goal stack unchanged while the latter removes the goal from the
stack.
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5SML

top thm();

val it = ` m + 0 = m : THM

The order in which goals are worked on can be adjusted. Firstly the goal stack is backed up. The
function undotakes an argument which is the number of steps by which to back up the goal-stack to
a previous state: to go back to the point at which there were two subgoals will require undoing two
steps:

6SML

undo 2 ;

Current goal is:

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ ?` ∗) p0 + 0 = 0q

The system offers the basis case as the current subgoal. In order to survey all the possible subgoals,
the command print goal state (top goal state()) is used:
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7SML

print goal state (top goal state());

Main goal is:
(∗ ?` ∗) pm + 0 = mq

Goals to be proven are:

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ ?` ∗) p0 + 0 = 0q

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ ?` ∗) p(m + 1 ) + 0 = m + 1q

Current goal is:

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ ?` ∗) p0 + 0 = 0q

It can be seen that the current goal is labelled “1” and the other goal is labelled “2”. To choose goal
“2” to work on, it is made current with the command set labelled goal, providing an argument
value of, in this case, ”2”.

8SML

set labelled goal "2";

Current goal is:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ ?` ∗) p(m + 1 ) + 0 = m + 1q

The top goal is now the step case not the basis case, so the tactic can be applied:
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9SML

a (rewrite tac [ ]);

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ ?` ∗) p0 + 0 = 0q

These example have illustrated the working of the subgoal package, with multiple subgoals, using
just two tactics, induction and rewriting. It may be noted that in fact rewriting alone is sufficient
for this simple goal, to give a one-step proof:

10SML

g p(m + 0 ) = mq;

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pm + 0 = mq

SML

a (rewrite tac []);

Tactic produced 0 subgoals:
Current and main goal achieved

7.2.2 Multiple Main Goals

The subgoal package allows work on one main goal to be suspended(i.e. stacked) to work on another.
The second goal can be quite independent of the first, although most use of this facility would be to
prove a subsidiary theorem in the course of proving another.

To begin work on a second goal while suspending work on the first, the function push goal is used
rather than set goal for stating the second goal.

It has already been mentioned that pop thm can be used to retrieve a proved theorem from the
topmost goal, and then discard that goal from the stack. Whatever the state of the proof , the
topmost goal on the stack can be discarded by executing drop main goal ();

It may be noted that set goal is equivalent to drop main goal followed by push goal .
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7.2.3 Working With Assumptions

The following example introduces two new tactics. The first of these is a general simplifying tactic
called strip tac. One of the effects of this tactic is to simplify the conclusion of the goal by replacing
implications with assumptions. Other effects of strip tac are described below, in section 8.1.

The second of the two new tactics is called asm rewrite tac which does everything that rewrite tac
does, but in addition uses the assumptions of the current goal as a source of rewriting equations,
as well as any explicitly given as an argument, and the default equations of the built-in theories.
Although asm rewrite tac does everything that rewrite tac does, there is a purpose in retaining
the two as separately available tactics, in that a greater degree of control is provided over which
equations are used for rewriting on any occasion.

To illustrate:

11SML

g pP = Q ⇒ P x = Q xq;

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pP = Q ⇒ P x = Q xq

SML

a strip tac;

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 1 ∗) pP = Qq

(∗ ?` ∗) pP x = Q xq

Note that the goal is now displayed as a list of numbered assumptions followed by the conclusion.
Here there is only one assumption, number 1. To continue:

12SML

a (asm rewrite tac []);

Tactic produced 0 subgoals:
Current and main goal achieved
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7.3 Tacticals

It is possible to do in one step the above proof by induction, by using a compound tactic built with
the tactical2 called THEN.

Tacticals are higher order operations for combining tactics. Thus a tactical is an ML function that
returns a tactic (or tactics) as result. Tacticals may take various parameters; this is reflected in
the various ML types that the built-in tacticals have. Some important tacticals in the ProofPower
system are listed below.

7.3.1 The Tactical THEN

In the example above the tactic induction tac was applied first. Then the tactic, rewrite tac [] was
applied to all (that is, both) the resulting subgoals.

If T1 and T2 are tactics, then the ML expression T 1 THEN T 2 evaluates to a tactic which first
applies T1 and then applies T2 to all the subgoals produced by T1 . The type of THEN is TACTIC ∗
TACTIC −> TACTIC .

To illustrate, the previous example will be done again with a one-step proof. (From now on the
proof-sessions will be shown just in essentials, that is, omitting some of the annotations provided by
the system.)

1SML

g p(m + 0 ) = mq;

(∗ ?` ∗) pm + 0 = mq

SML

a ((induction tac pm:Nq) THEN (rewrite tac [ ]));

Current and main goal achieved

This is typical: it is common to use a single tactic for several goals. A tactical similar to THEN
is THEN LIST. Whereas THEN applies the same tactic to all resulting subgoals, THEN LIST
applies the members of a list of tactics, taken in order, to corresponding subgoals.

7.3.2 The Tactical REPEAT

If T is a tactic then REPEAT T is a tactic which repeatedly applies T until it fails. The type
of REPEAT is TACTIC −> TACTIC . This can be illustrated in conjunction with ∀ tac, which is
specified by:

∀x•t [x ]
t [x ′]

2This usage was introduced by Robin Milner: ‘tactical’ is to ‘tactic‘ as ‘functional’ is to ‘function’.
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where x ′ is a variant of x not free in the goal or the assumptions.

∀ tac strips off one universal quantifier; REPEAT ∀ tac strips off all universal quantifiers:

2SML

g p ∀x y z• (x + (y + z )) = ((x + y) + z ) q;

(∗ ?` ∗) p∀ x y z• x + y + z = (x + y) + zq

SML

a ∀ tac;

(∗ ?` ∗) p∀ y z• x + y + z = (x + y) + zq

SML

a (REPEAT ∀ tac );

(∗ ?` ∗) px + y + z = (x + y) + zq
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FURTHER TACTICS

This section describes some of the tactics built-in to the ProofPower system in addition to those
described above. This section is not meant to provide complete coverage of the available tactics, but
rather to acquaint the reader with more of the effects to be achieved in transforming goals,and some
tactics to achieve those effects. There are many more available tactics, and variations of tactics, than
are covered here. .

8.1 Simplifying the Goal

An important tactic is that which ‘strips’ or simplifies a goal. The tactic strip tac which has already
been mentioned, performs a variety of simplifications, and is often usefully applied at the outset of
embarking on a proof. The simplifications achieved by strip tac include the following:

• moving the antecedent of an implication from the conclusion to the assumptions of the goal:

• proving tautologies

• removing leading universal quantifiers

• using, where possible relevant, assumptions in the assumption-list
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3SML

g p(P 3 ) ⇒ ∀x• x = 3 ⇒ P xq;

(∗ ?` ∗) pP 3 ⇒ (∀ x• x = 3 ⇒ P x )q

SML

a strip tac;

(∗ 1 ∗) pP 3q

(∗ ?` ∗) p∀ x• x = 3 ⇒ P xq

SML

a strip tac;

(∗ 1 ∗) pP 3q

(∗ ?` ∗) px = 3 ⇒ P xq

SML

a strip tac;

(∗ 2 ∗) pP 3q
(∗ 1 ∗) px = 3q

(∗ ?` ∗) pP xq

SML

a strip tac;

Exception−
Fail
∗ There is no stripping technique for pP xq in the current proof
context [strip tac.28003 ] ∗ raised

SML

a (asm rewrite tac [ ]);

Current and main goal achieved
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The foregoing session showed 4 successive applications of strip tac of which the first three each had
an effect and the fourth failed, leaving a goal amenable to asm rewrite tac. With the knowledge
provided by hindsight, we can see that a single compound tactic to achieve this goal would be to
repeat strip tac until failure, and then apply asm rewrite tac, thus:

4SML

g p(P 3 ) ⇒ ∀x• x = 3 ⇒ P xq;

(∗ ?` ∗) pP 3 ⇒ (∀ x• x = 3 ⇒ P x )q

SML

a ((REPEAT strip tac) THEN (asm rewrite tac [ ]));

Current and main goal achieved

Although this particular example is specific to the goal, nevertheless (REPEAT strip tac) is often
useful as an opening gambit.

The tactic strip tac reduces the complexity in the conclusion of the goal, but does nothing to simplify
the assumptions. In order to give strip tac as much as possible to work on, it may be useful in the
early stage of a proof to move complexity from the assumptions into the conclusion. A tactic,
all asm ante tac, is available to achieve this effect. In the following example, strip tac is ineffective
on a goal with such a simple conclusion( U = V ), but moving the assumptions into the conclusion
with all asm ante tac will make the conclusion amenable to (REPEAT strip tac).

5SML

set goal([pP=Qq, p¬ P = Qq], pU = V q);

(∗ 2 ∗) p¬ P = Qq
(∗ 1 ∗) pP = Qq

(∗ ?` ∗) pU = V q

SML

a all asm ante tac;

(∗ ?` ∗) p¬ P = Q ⇒ P = Q ⇒ U = V q

SML

a (REPEAT strip tac);

Current and main goal achieved
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In this example, the conclusion of the final goal is in fact a tautology, so it would be amenable to
other tactics, notably taut tac.

6SML

set goal([pP=Qq, p¬ P = Qq], pU = V q);

(∗ 2 ∗) p¬ P = Qq
(∗ 1 ∗) pP = Qq

(∗ ?` ∗) pU = V q

SML

a (all asm ante tac THEN taut tac);

Current and main goal achieved

8.2 Specializing the Assumptions

Consider the following:

7SML

g p(∀x•P x ) ⇒ P yq;

(∗ ?` ∗) p(∀ x• P x ) ⇒ P yq

SML

a (REPEAT strip tac);

(∗ 1 ∗) p∀ x• P xq

(∗ ?` ∗) pP yq

Here there is a universally-quantified assumption of which the conclusion is an instance. There is an
applicable tactic, called spec nth asm tac which takes two arguments:

• the assumption-number of the relevant universal assumption (in this case, 1)

• a term in which to instantiate the universal, so as to yield the conclusion. In this case the
appropriate term would be pyq.
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8SML

a (spec nth asm tac 1 pyq);

Current and main goal achieved .

If specializing the universal is not sufficient to achieve the goal, the result is simply to strip the
new specialized assumption into the list of assumptions. This in itself may be a useful step towards
achieving the goal, as the following example is contrived to show.

9SML

g p (R = Q ∧ (P y) ∧ ∀x• P x ⇒ Q x ) ⇒ R yq;

(∗ ?` ∗) pR = Q ∧ P y ∧ (∀ x• P x ⇒ Q x ) ⇒ R yq

SML

a (REPEAT strip tac);

(∗ 3 ∗) pR = Qq
(∗ 2 ∗) pP yq
(∗ 1 ∗) p∀ x• P x ⇒ Q xq

(∗ ?` ∗) pR yq

SML

a (spec nth asm tac 1 pyq);

(∗ 4 ∗) pR = Qq
(∗ 3 ∗) pP yq
(∗ 2 ∗) p∀ x• P x ⇒ Q xq
(∗ 1 ∗) pQ yq

(∗ ?` ∗) pR yq

SML

a (asm rewrite tac [ ]);

Current and main goal achieved
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8.3 Existentially Quantified Goals

Consider the case when the conclusion of the goal is of the form ∃x• P x . It will commonly be the
case that propositions of this form are achievable by producing a witness w which has property P , so
the goal becomes one of showing that P w is true. The tactic ∃ tac has the purpose of transforming
the goal in this way, from ∃x• P x to P w . The following example takes the goal of proving that
there is a number less than 1, and the required witness will be the number 0.

10SML

g p∃x•x < 1q;

(∗ ?` ∗) p∃ x• x < 1q

SML

a (∃ tac p0q);

(∗ ?` ∗) p0 < 1q

This tactic has had the expected effect. By inspecting the listing of the theory N we see that a
relevant fact, that is, 0 < 1 , is obtainable from the theorem less clauses. For the purpose of
rewriting, the ‘fact’ 0 < 1 can be understood as the equation 0 < 1 = T . Thus it will be sufficient
to rewrite with : less clauses. (Rewriting with an empty list of equations would also work, picking
up =INLINEFT 0 ¡ 1 by default.)

11SML

a (rewrite tac [less clauses]);

Current and main goal achieved .

8.4 Contradiction and Resolution

In this section some further tactics are introduced by showing some different approaches to the proof
of ∃x•x < 1

Firstly, we could try a proof by contradiction: if the conclusion is true then its negation should lead
to a falsehood. A tactic to apply is contr tac.
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12SML

g p∃x•x < 1q;

(∗ ?` ∗) p∃ x• x < 1q

SML

a contr tac;

(∗ 1 ∗) p∀ x• ¬ x < 1q

(∗ ?` ∗) pFq

Assumption 1 contradicts the fact that 0 < 1 , which we have seen already can be established from
less clauses, and this contradiction can be resolved to prove the goal with conclusion F by using a
tactic called Resolution.basic res tac1. Since the resolution process may, in some circumstances
continue indefinitely, the tactic takes an argument which is a number limiting the amount of pro-
cessing. For this purpose a value of, say, 5, ought to be ample. The second argument of the tactic is
a list of theorems to be resolved with the assumptions of the goal.

We use less clauses as a suitable list.

13SML

a (Resolution.basic res tac1 5 [less clauses]);

Current and main goal achieved

We saw above that Resolution.basic res tac1 was appropriate with a goal of F and a contradiction
exploitable. A variation of this tactic will in effect first apply contr tac, so that the proof above can
be performed in one step:

14SML

g p∃x•x < 1q;

(∗ ?` ∗) p∃ x• x < 1q

SML

a (Resolution.basic res tac 5 [less clauses]);

Current and main goal achieved

Here is another example which illustrates the principle of resolution. It uses another resolution tactic
called asm prove tac
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15SML

set goal ([pP ∨ Qq , pR ∨ ¬ Qq] , pP ∨ Rq);

(∗ 2 ∗) pR ∨ ¬ Qq
(∗ 1 ∗) pP ∨ Qq

(∗ ?` ∗) pP ∨ Rq

SML

a (asm prove tac [ ]);

Current and main goal achieved

8.5 Proof Contexts

It has been mentioned that rewriting automatically uses equations in the supplied theories as well as
those equations supplied explicitly by the user. The choice of which equations are automatically used
is in fact not fixed, but is an aspect of what is called the current proof context. Other features of
the system are also influenced by the proof context, notably the stripping tactics, automatic existence
proving in constant-specification and the behaviour of tactics such as asm prove tac.

All the examples of this tutorial have been presented in the proof-context which is provided by
default.

In this default proof-context, context-sensitive features of the system have to some degree been
optimized around the issued theories. There are facilities for users developing new theories to define
proof-contexts specially tailored to those new theories. These facilities are covered in ProofPower
Reference Manual [12] but a further description is beyond the scope of this tutorial.
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SPECIFICATION WITHOUT AXIOMS

The section covers the topic of developing theories without the introduction of axioms. Firstly,
note that the function simple new defn has already been mentioned (5.4.5 above) as providing one
means of defining constants without axioms. However, the effects achievable by this function are
limited to assigning names to terms, that is, to definitions of the form name = value. Means are
now considered of specifying constants with predicates which are arbitrary, so long as consistency is
maintained.

9.1 Specifying Constants

This section covers specifying new constants of existing types. The next section will cover specifying
new types and constants of new types.

The following example shows specification of a function with a predicate consisting of two equations.
(Recall that the means of entering specifications in this way was described in section 5.5 above.)

HOL Constant

Factorial :N→N

Factorial 0 = 1 ∧
∀ x :N • Factorial (x+1 ) = (x+1 ) ∗ Factorial x

Executing print theory "−"; at this point will show a new definition theorem for Factorial. This
theorem can be retrieved by executing

• get spec pFactorialq

• get defn "−" "Factorial"

Clearly, since there are two equations, it is conceivable that there is no function which satisfies them
both. In the course of entering the definition of Factorial , the system was able to automatically prove
a theorem to the effect that the definition of Factorial is consistent, that is, there exists a function
with the same definition as Factorial . The automatic proving facilities are oriented towards defining
functions with multiple equations, such as this, and may not necessarily be able to prove existence
automatically for an arbitrary predicate. Here is an example session: a constant N is specified, very
loosely, as any non-zero number:

16HOL Constant

N :N

N > 0
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and the system response is:

val it = ` ConstSpec (λ N ′• N ′ > 0 ) N : THM

Observe that the form of the resulting theorem is different from that of the previous example: the
presence of ConstSpec is a signal that more remains to be done. Examining the specification of N
we see that it is qualified with an assumption about the consistency of the predicate:

17SML

get spec pN q;

val it = Consistent (λ N ′• N ′ > 0 ) ` N > 0 : THM

Sooner or later this consistency-assumption should be discharged. This is achieved with the functions
push consistency goal and save consistency thm as follows:

18SML

push consistency goal pN q;

...

(∗ ?` ∗) p∃ N ′• N ′ > 0q

SML

a (∃ tac p1q);
a (rewrite tac[ ]);

Current and main goal achieved

SML

save consistency thm pN q (pop thm ());

Now the specification of N can be re-examined to see the change achieved by performing the proof:
the consistency assumption has been discharged:

19SML

get spec pN q;

val it = ` N > 0 : THM
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9.2 Specifying Types

This section covers the specification of new types. A new type, as considered here, is defined in terms
of a subset of an existing type with membership characterised by a predicate. A simple example is
the ordinal numbers: the subset of the natural numbers which are non-zero.

The first step is to prove a theorem that such a subset is non-empty. The theorem must have the
form ∃x• P x so the goal is taken as ∃x :N • (λx• ¬ x = 0 ) x rather than ∃x :N • ¬ x = 0 .

20SML

new theory "ordinals";
set goal ([ ], p∃x :N• (λx• ¬ x = 0 ) xq);
a ((∃ tac p1q) THEN (rewrite tac [ ])) ;

Current and main goal achieved

The new type is now introduced. The function new type defn takes three arguments:

• one or more names (keys) under which a defining-theorem will be stored.

• a name for the type itself. In this example the name is ‘Ordinal’.

• The existence theorem just proved, which is currently available on the top of goal-stack and so
can be retrieved by top thm or pop thm.

21SML

new type defn (["ordinal def "], "Ordinal", [ ], pop thm());

val it = ` ∃ f • TypeDefn (λ x• ¬ x = 0 ) f : THM

We have a new type, ‘Ordinal’, and can construct terms with variables of that type, but so far we
have only very limited means of specifying constants.

HOL Constant

VII :Ordinal

T

Even though Ordinals were specified by a predicate which characterised a subset of the numbers, we
cannot simply equate an Ordinal variable with a number because the equality will be ill-typed – left
and right hand sides will be of different types.

HOL Const

VIII :Ordinal

VIII = 8

The system response is:
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Type error in pVIII = 8q
The operands of p$=q must have the same type
The types inferred were:
pVIII :Ordinalq
p8 :Nq
Exception− Fail ∗ Type error [HOL−Parser .16000 ] ∗ raised

Thus it is not the case that the new type is a subset of the parent type, but rather that there is
an isomorphism between the new type and the subset of the parent type. If we wish to specify the
values of constants of the new type with predicates which include terms of existing types, we will
need functions for, in this case, :

• mapping numbers to ordinals. This mapping is called ‘abstraction’ and a suitable function A
will be developed in the example. With this function terms can be written such as VII = A 7 .

• mapping ordinals to numbers. This mapping is called ‘representation’ and a suitable function R
will be developed in the example. With this function terms can be written such as 7 = R VII .

Defining the mappings A and R is the next task. A theorem must be proved which asserts that the
intended isomorphism can exist, that is, that there are two mappings with suitable properties. Here
we take a ‘cookbook’ approach, so that the following ‘recipe’ will serve, with slight adaptations, in
most cases. The goal is in a ‘standard ’ form; note the occurrence in the goal of the characteristic
predicate as ¬ n = 0 .

The reader is asked to accept without explanation that the four tactics shown below are generally
effective for proving a goal such as this.

22SML

set goal([ ],p∃ A R •
(∀ a : Ordinal • A ( R a) = a)
∧
(∀ n : N • (¬ n = 0 ) ⇔ (R (A n) = n))q);

a (strip asm tac (rewrite rule[ ]
(simple ⇒ match mp rule type lemmas thm
(get defn "−" "ordinal def "))));

a (∃ tac pabsq);
a (∃ tac prepq);
a (asm rewrite tac[ ]);

...

Current and main goal achieved

We now specify the constructor functions A and R as constants, by use of the function new spec.
This takes three arguments:

• A list of keys for the defining theorem which will be produced.

• a count of the number of constants – 2 in this case, ( A and R)
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• An existence theorem for A and R, which is the one just proved and available on the top of
the goal-stack.

23SML

val ordinal consts def =
new spec(["R","A","ordinal consts def "],2 ,pop thm());

val ordinal consts def =
` (∀ a• A (R a) = a) ∧ ∀ n• ¬ n = 0 ⇔ R (A n) = n) : THM

We are finally in a position to specify constants of the new type. Note that more than one constant
can be specifiedat a time.

HOL Constant

IX X :Ordinal

IX = A 9 ∧ X = A 10

The system response is:

val it = ` IX = A 9 ∧ X = A 10 : THM

What has been achieved is summarised in the current theory:

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - TUTORIAL USR004



80 Chapter 9. SPECIFICATION WITHOUT AXIOMS

24SML

print theory "−";

=== The theory ordinals ===

−−− Parents −−−

demo

−−− Constants −−−

VII Ordinal
R Ordinal → N
A N → Ordinal
X Ordinal
IX Ordinal

−−− Types −−−

Ordinal

−−− Definitions −−−

ordinal def ` ∃ f • TypeDefn (λ x• ¬ x = 0 ) f
VII ` T
R
A
ordinal consts def

` (∀ a• A (R a) = a)
∧ (∀ n
• ¬ n = 0 ⇔ R (A n) = n)

IX
X ` IX = A 9 ∧ X = A 10

=== End of listing of theory ordinals ===
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MOVING ON

We hope that this tutorial provides a helpful introduction to ProofPower. Depending on your
interests, we would recommend ProofPower HOL Tutorial Notes [10] or ProofPower Z Tutorial [9]
as a next step.

A comprehensive reference manual to the facilities provided by ProofPower is supplied as the Proof-
Power Reference Manual [12]. Many of these facilities are intended for use by a programmer extending
the system rather than by a user developing specifications or proofs. However, despite its length,
many users find it useful to have the ProofPower Reference Manual [12] on the screen for interactive
reference via its keyword-in-context index.

In response to popular demand, we conclude this document with a list of the names of some of
the more commonly used tactics, rules, conversions, tacticals and conversionals. These have been
extracted from some of the proof scripts provided with the system.
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10.1 Tactics

∨ left tac
∨ right tac
⇒ tac
∀ tac
∃ tac
accept tac
all asm ante tac
ante tac
asm ante tac
asm fc tac
asm prove tac
asm rewrite tac
asm rewrite thm tac
asm tac
bc tac
bc thm tac
cases tac
contr tac
conv tac
fc tac
gen induction tac
id tac
induction tac
intro ∀ tac
lemma tac
list induction tac
list spec asm tac
list spec nth asm tac
once rewrite tac
once rewrite thm tac
prove ∃ tac
prove tac
pure asm rewrite tac
pure rewrite tac
rename tac
rewrite tac
rewrite thm tac
spec nth asm tac
step strip tac
strip asm tac
strip tac
swap asm concl tac
swap nth asm concl tac

10.2 Rules

⇒ elim
∀ elim

all ∀ elim
all ∀ intro
asm rule
conv rule
eq sym rule
list ∧ intro
list ∀ elim
list ∀ intro
pc rule
prove rule
rewrite rule
strip ∧ rule
taut rule

10.3 Conversions

eq sym conv
prove ∃ conv
rewrite conv

10.4 Conversionals

ONCE MAP C
ORELSE C
THEN C
TOP MAP C

10.5 Tacticals

⇒ T
CASES T
DROP ASM T
DROP NTH ASM T
FC T
GET ASM T
GET NTH ASM T
INDUCTION T
LEMMA T
LIST DROP NTH ASM T
LIST GET NTH ASM T
LIST SPEC NTH ASM T
ORELSE
PC T
POP ASM T
THEN
TOP ASM T
TRY T
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