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Chapter 0 5

ABOUT THIS PUBLICATION

0.1 Purpose

This document will eventually provide a full narrative description of ProofPower to complement the
catalogue of detail provided by the ProofPower Reference Manual [11]. It is at present incomplete,
containing only those parts of its intended content which are least well covered by other ProofPower
user documentation. Specifically, this version of the manual describes the concrete syntax of the
specification languages supported by ProofPower.

0.2 Readership

Users of ProofPower.

0.3 Related Publications

A bibliography is given at the end of this document.

Publications relating specifically to ProofPower include:

1. ProofPower Tutorial [7], tutorial covering the basic ProofPower system.

2. ProofPower Z Tutorial [9], tutorial covering ProofPower Z support option.

3. ProofPower HOL Tutorial Notes [10];

4. ProofPower Reference Manual [11];

5. ProofPower Installation and Operation [8];

6. ProofPower Document Preparation [6].

0.4 Assumptions

Though it is not strictly prerequisite, the user may find this volume easier to read after attending a
course on ProofPower, or after consulting the ProofPower Tutorial [7].

0.5 Acknowledgements

ICL gratefully acknowledges its debt to the many researchers (both academic and industrial) who
have provided intellectual capital on which ICL has drawn in the development of ProofPower.
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6 Chapter 0. ABOUT THIS PUBLICATION

We are particularly indebted to Mike Gordon of The University of Cambridge, for his leading role in
some of the research on which the development of ProofPower has built, and for his positive attitude
towards industrial exploitation of his work.

The ProofPower system is a proof tool for Higher Order Logic which builds upon ideas arising from
research carried out at the Universities of Cambridge and Edinburgh, and elsewhere.

In particular the logic supported by the system is (at an abstract level) identical to that implemented
in the Cambridge HOL system [1], and the paradigm adopted for implementation of proof support for
the language follows that adopted by Cambridge HOL, originating with the LCF system developed
at Edinburgh [2]. The functional language “standard ML” used both for the implementation and as
a interactive metalanguage for proof development, originates in work at Edinburgh, and has been
developed to its present state by an international group of academic and industrial researchers. The
implementation of Standard ML on which ProofPower is based was itself originally implemented by
David Matthews at the University of Cambridge, and is now commercially marketed by Abstract
Hardware Limited.

The ProofPower system also supports specification and proof in the Z language, developed at the
University of Oxford. We are therefore also indebted to the research at Oxford (and elsewhere) which
has contributed to the development of the Z language.

Standard ML of New Jersey is an implementation of the Standard ML language developed by Lucent.
It is copyright c© 1989–1998 by Lucent Technologies. The following licence terms apply to Standard
ML of New Jersey:

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both the copyright notice and this permission notice and
warranty disclaimer appear in supporting documentation, and that the name of Lucent
Technologies, Bell Labs or any Lucent entity not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission.

Lucent disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall Lucent be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss
of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with the use or performance of this software.
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THE METALANGUAGE

ProofPower has been implemented using Standard ML of New Jersey (SML-NJ), an implementation
of Standard ML [4] developed by Lucent Technologies.

SML-NJ provides some extensions to the standard which have been used in the implementation of
ProofPower.

These include:

• A means for storing the state of an ML session in a ‘heap image’.

• Programmable control over the compiler’s input and output streams.

These extensions have been used in the development of ProofPower to achieve the following effects:

• The theory hierarchy is held securely in what is called in the ProofPower documentation a
‘theory database’.

• The character set accepted in the metalanguage (ML) has been extended by including appro-
priate logical and mathematical symbols. These extensions to the character set are mainly
treated as new alphabetic characters and may therefore appear in ML variable names.

• Facilities have been provided for quotation of object language expressions and for automatic
pretty-printing of values which represent such expressions.

To ensure that the ProofPower theory hierarchy is properly maintained, some of the effects normally
obtained by commands supplied with SML-NJ should be obtained using alternative commands sup-
plied with ProofPower. Users of ProofPower should only use the supplied ProofPower function in-
stead of the corresponding SML-NJ function whenever they are operating on a ProofPower database.

ProofPower users should use the UNIX command pp make database instead of the SML-NJ
commands exportML or exportFN to make a new database.

Some ProofPower ML commands supersede SML-NJ ones and we recommend you do not use the
SML-NJ versions when working with ProofPower.

Use ProofPower Command Instead of SML-NJ command
save and quit exportML
quit OS.Process.exit
use file use

Full details of the ProofPower versions of these commands may be found in the ProofPower Reference
Manual [11].

ProofPower was originally developed for the 1990 version of Standard ML. SML-NJ implements the
1997 revision to the standard. For backwards compatibility, ProofPower provides many of the 1990
basis library functions in addition to the new standard basis library functions.
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ProofPower CONTROLS

Some aspects of the behaviour of ProofPower are determined by the settings of various controls
which the user of ProofPower may change.

There are three types of control, according to the type of the Standard ML value which exercises
the control. The value may have type bool, int or string. Boolean controls are often referred to
as “flags”.

The procedures available for manipulating controls are shown in table 2.1.

name purpose
get controls return all control values
get flag return value of a flag
get flags return all flag values
get int control return an integer control value
get int controls return all integer control values
get string control return string control value
get string controls return all string control values
new int control create a new integer control
new flag create a new flag
new string control create a new string control
reset int control set an int control to its default value
reset flag set a flag to its default value
reset string control set a string control to its default value
set int control set an int control value
set flag set a flag
set flags set all flags
set string control set a string control value
set string controls set all string control values
reset controls set all control values to their defaults
reset int controls set all int control values to their defaults
reset flags reset all flags to their default values
reset string controls set all string control values to their defaults
set controls set all control values
set int controls set all int control values
set string controls set all string control values

Table 2.1: ML Procedures for Manipulating Control Values
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12 Chapter 2. ProofPower CONTROLS

name default purpose
ignore warnings false Causes warnings to be ignored.
illformed rewrite warning false Causes output of a diagnostic when rewriting is in-

hibited due to bound variable capture.
pp add brackets false When set the pretty printer uses more brackets.
pp let as lambda false If set let-expressions are not pretty printed as such.
pp prefer current language false If this flag is false, then subterms are printed with-

out changing language whenever possible. If the flag
is true, then subterms are printed using the language
of the current theory whenever possible.

pp print assumptions true If this flag is set then assumptions of theorems are
printed in full. Otherwise a single dot is printed
to indicate the presence of assumptions, but the as-
sumptions themselves are not printed.

pp show HOL types false Causes extensive inclusion of type information in the
output if the pretty printer.

pp show index false When set, the pretty printer puts indexing brackets
round the identifier occuring first in any term (used
by the theory listers).

pp types on binders false Causes the pretty printer to display type informa-
tion on binding occurrences of variables.

pp use alias true When set the pretty printer will print terms using
applicable aliases for the constants occuring in the
terms.

profiling false Turns on the ProofPower profiling facilities.
resolution diagnostics false Controls the output of diagnostics from the resolu-

tion package.
sorted listings false Causes theory listings to be sorted according to keys
subgoal package quiet false This flag may be used to suppress all output from

the subgoal package when running proofs.
subgoal package ti context true Determines whether the type inference context is

set by the subgoal package, causing type-checking of
terms to be influenced by the types of free variables
in the current subgoal.

ti verbose true When set, diagnostics printed by the HOL type in-
ferrer include the types of the variables in the failing
term.

use file non stop mode false When set errors arising while processing a file using
‘use file’ do not cause processing to be aborted.

use extended chars true When true extended characters are output while
pretty printing, when false ascii keywords are out-
put. Does not affect input or LATEX output.

gc messages false When true this turns on production of garbage col-
lection progress messages by the Standard ML com-
pilation system.

Table 2.2: Boolean Controls (Flags) for HOL and Z
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name default purpose
check is z false Controls the checking of theorems by Z inference

facilities.
standard z terms false Influences the checking of terms by the Z parser

and type checker.
standard z paras true Influences the checking of paragraphs by Z parser

and type checker.
z allow free vars in axioms false When this and z use axioms are set, Z axiomatic

descriptions are allowed to contain free variables.
This is not standard Z behaviour, and is advised
only for type-check only mode.

z type check only true When set, certain aspects of the processing of Z are
inhibited, giving a faster response for type-checking
only.

z use axioms true When set, Z ‘axiomatic descriptions’ are entered as
axioms (otherwise they are definitions with consis-
tency caveats).

compactify z terms true When set, the type inferrer optimises the space
occupied by the HOL types in the translation of
Z terms into HOL. This space optimisation will
typically reduce garbage-collection overheads, so it
should normally be turned on.

subscript z schema ops false When set, the schema operators that overload log-
ical operators in standard Z must be distinguished
with a subscript ‘s’ (i.e., ∀s , ∃s , ∧s etc. are used
for the schema operators, and ∀, ∃, ∧ etc. are
reserved for the logical operators). In terms of
the grammar in section 6.4.12 below, this means
that the second alternative in the production for
Schema2 is disallowed as is the last alternative in
the production for SQuant .

pp quote z strings false When set, the Z pretty printer inserts Z quotation
symbols around object language strings. This is for
use in implementing object languages that include
Z but with variant conventions for strings.

Table 2.3: Additional Boolean Controls (Flags) for Z
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14 Chapter 2. ProofPower CONTROLS

name default purpose
compactification mask 0 Controls the compactification algorithms.
line length - The number of characters per line to be used by

the pretty printer. The default is the number of
characters per line in the controlling terminal at
the start of the session.

listing indent 2 Used to control the formatting of theory listings.
pp format depth ~1 Influences the formatting produced by the pretty

printer.
pp top level depth ~1 Influences the formatting produced by the pretty

printer.
RW diagnostics 0 controls tracing from the Reader/Writer
thl char width 8 Used to control the formatting of theory listings.
thl chars per tab 5 Used to control the formatting of theory listings.
thl line width 13 Used to control the formatting of theory listings.
thl tab width 50 Used to control the formatting of theory listings.
tactic subgoal warning 20 When the number of subgoals arising from a tactic

application exceeds this value the subgoal package
gives a warning before displaying the subgoals.

undo buffer length 12 Determines how many steps of a proof can be un-
done by the subgoal package (using ‘undo’).

Table 2.4: Integer Controls for HOL and Z

name default purpose
prompt1 ":) " This is the prompt used by ProofPower to invite

you to type some input.
variant suffix "’" This is the character used to decorate a variable

name when alpha conversion takes place.

Table 2.5: String Controls for HOL and Z
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FORMAT OF ProofPower DIAGNOSTICS

The ProofPower specification and proof tools (i.e., the program pp, and its language-specific variants
hol and zed) report errors via the ML exception mechanism. The error messages have the following
general format:

<<Optional Explanatory Text>>
Exception− <<Error Type>> ∗ <<Text>> [<<Function>>.<<Number>>] ∗ raised

Some recoverable error conditions are treated as warnings. Depending on the value of the system
control flag ignore warnings and on whether you are running interactively, functions detecting such
conditions give you the option to ask them to recover from the error. The format of a warning
message has the general form.

<<Optional Explanatory Text>>
∗∗∗ WARNING <<Number>> raised by <<Function>>: <<Text>>
Do you wish to continue (y/n)?

For example, the following input, which contains a syntax error:

ProofPower Input

:> p(if a then b else )cq;

produces the error message:

ProofPower Output

Syntax error in: p ( if a then b else <?> )
) is not expected after p ( if ... then ... else
Exception− Fail ∗ Syntax error [HOL−Parser .19000 ] ∗ raised

Most of the functions for manipulating syntax, and carrying out proofs, do not produce any optional
explanatory text. For example, the following input, in which an inference rule is applied to a term
with the wrong type:

ProofPower Input

:> asm rulep1 + 2q;

produces the following error report:

ProofPower Output

Exception− Fail ∗ p1 + 2q is not of type p:BOOLq [asm rule.3031 ] ∗ raised

As a final example, the most commonly seen warning condition is when you ask to delete an object
from the current theory; for example, in a theory in which a number of constants and types have
been defined, the input:
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16 Chapter 3. FORMAT OF ProofPower DIAGNOSTICS

ProofPower Input

:> delete type"REAL";

might produce the warning message:

ProofPower Output

∗∗∗ WARNING 12012 raised by delete type: Deletion of REAL would require the
deletion of Constants:π, e; Type:REAL

Do you wish to continue (y/n)?

if you answer y, then delete type will continue and delete the objects listed in the error message. If
you answer n, it will raise an exception:

ProofPower Output

...

Do you wish to continue (y/n)? n
Exception− Fail ∗ execution of delete type abandoned [warn.10003 ] ∗ raised

In more detail, the various components of an error message are as follows:

Optional Explanatory Text If present, this gives an extended description of the problem encoun-
tered. It is typically used by subsystems such as the parser or type inferrer, which use a custom
layout for their error messages. If it is present then the Text part of the message is normally
a very brief summary.

Error Type This may either be: Fail indicating an error which the detecting function cannot
recover form but which may, in some circumstances, sensibly be handled by the calling function.
Error indicating an unrecoverable error condition which should not be handled. Either the
input is so seriously flawed that the condition should be reported to the user immediately, or
an unexpected failure has occurred (and should be reported to ICL).

Text In the absence of the optional explanatory text, this is the main description of the error
condition. The text of the message is generated from an entry in an error message database,
together with any details specific to the current failure - for instance, the input causing the
failure. The reference manual entry for the function raising the error may contain further
details of the cause of the error.

Function This is the name of the function or subsystem raising the error.

Number This is the error number, which is an index into the error message database (c.f. get-
error message). The reference manual entry of the function raising the exception will usually

contain the original text of the message, and sometimes a description of the causes of that
particular error.

It is intended that errors raised following the above format will either give the user a pointer to
the solution of the problem, or, if necessary, assist support staff understanding the problem. If you
contact ICL concerning a problem with ProofPower, it will be helpful to have available the text of
any relevant error messages. At least the function name and the error number should be noted.

If an exception is raised with a format other than the above then it usually indicates a Standard ML
programming error. For example, trying to evaluate 1 div 0 will raise the Standard ML exception
Div :
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ProofPower Output

Exception− Div raised

If problems arise with files, such as warnings of missing files or unexpectedly being denied read
permission, you should first contact your system administrator to see whether the problem is due to
the local installation.
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CONCRETE SYNTAX NOTATION
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The notation used for grammars in this document is BNF following the relevant British Standard [5].
The productions in a grammar are usually presented interleaved with narrative text and distinguished
by a vertical bar in the left margin headed with the letters BNF. Comments within rules are bracketed
with ‘(∗’ and ‘∗)’. Defining occurrences of identifiers in grammars are usually shown in bold type
and have an entry in the index to this document. The subset of BNF used may be summarised as
follows:

A grammar consists of a non-empty list of what are referred to as productions. Each production in
the grammar consists of: an identifier, referred to as the non-terminal symbol of the production, an
equals sign, and a list of one or more alternatives followed by a semicolon. The production introduces
(some of the) alternatives for the sentences of a language corresponding to the non-terminal symbol
and determined by the grammar as a whole. Lists of alternatives are separated by vertical bars. The
vertical bar denotes alternation (i.e. union of languages). An alternative is a comma-separated list
of items. The comma denotes concatenation.
BNF

Grammar = Identifier , ‘=‘, Alternatives, ‘;‘, {Identifier , ‘=‘, Alternatives, ‘;‘};
Alternatives = Alternative, {‘|‘, Alternative};
Alternative = Item, {‘,‘, Item};

An item is a primary optionally followed by a subtraction sign and another item. The subtraction
sign denotes set-theoretic difference of languages. A primary is either a list of alternatives enclosed
in one of square brackets or braces, or it is an atom. Square brackets denote optional omission.
Braces denote repetition (zero or more occurrences).

BNF

Item = Primary , [‘−‘, Item];
Primary = ‘[‘, Alternatives, ‘]‘ | ‘{‘, Alternatives, ‘}‘ | Atom;

An atom is a list of (one or more) alternatives enclosed in round brackets, or it is a special symbol
or a simple symbol. The round brackets are used for grouping: either for clarity or to allow a list
of alternatives or an item to be used as a primary. A special symbol is some arbitrary text enclosed
in question marks. It is used where it is not desired to give a more detailed formal description of a
construct. A simple symbol is an identifier or a string. The identifier is said to be a terminal symbol
if it does not appear on the left-hand side of any production in the grammar (and so denotes a
language specified by other means, e.g. another grammar). A string denote the language comprising
just that string.

BNF

Atom = ‘(‘, Alternatives, ‘)‘ | Special | Simple;
Special = ‘?‘, Text , ‘?‘;
Simple = Identifier | String ;

The terminal symbols of this grammar are informally defined as follows:

BNF

Text = ? Any string of characters not containing a question mark ?;
Identifier = ? An alphanumeric identifier ?;
String = ? A string of characters enclosed in quotation marks ?;
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In this chapter, the concrete representation of the ProofPower-HOL language is described.

5.1 Lexical Analysis

The following subsections describe the rules by which a fragment of HOL text, i.e. a sequence of
what we shall call lexical units, is construed as a sequence of terminal symbols to be parsed according
to the grammar defined in section 5.2.1.

The rules are intended to meet the following requirements:

1. names may have both alphanumeric and non-alphanumeric components and have components
which are subscripted or superscripted;

2. spaces are not normally be required around frequently occuring names such as ‘∀’, ‘∃1 ’, ‘=’
etc.;

3. the lexical status of names is under the control of the user rather than the system.

The approach taken generalises that taken in the lexis of Standard ML by allowing names to be
formed by joining alphanumeric and non-alphanumeric components using underscores or special
characters which indicate superscription or subscription. In addition, sequences of alphanumeric and
non-alphanumeric characters may be declared to act as terminator symbols which do not require space
separation from adjacent characters unless those characters are underscores or the superscription or
subscription characters.

5.1.1 Lexical Units

To describe the lexical analysis of HOL we consider the HOL text to have been first separated into
a sequence of lexical units (as part of the macro processing which embeds HOL in an extension of
Standard ML). These lexical units may be though of as “extended characters” corresponding to one
or more actual characters in the input stream.

A lexical unit is one of the following:

• A single character.

• A keyword symbol such as the superscription symbol, “f”, or the subscription symbol “g”.

• A term quotation.

• A type quotation.

• A string literal. These follow the same rules as string literals in Standard ML.

• A character literal. These follow the same rules as string literals in Standard ML except that
they are delimited by the backprime character ‘‘’.

• A comment. These are delimited by “(*” and by a “*)” as in Standard ML.

Lexical units are grouped into categories as shown in table 5.1.

Thus symbolic units comprise the ASCII characters other than alphanumerics and the punctuation
characters, the characters with character codes greater than 127 and the keyword symbols other than
the superscription and subscription keywords.
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Category Contents
Punctuation ‘(’, ‘)’, ‘{’, }’, ‘[’, ‘]’, ‘:’, ‘;’, ‘,’, ‘|’, ‘•’ and ‘$’
Numeric ‘0 ’ . . . ‘9 ’
Alphanumeric ‘A’ . . . ‘Z ’, ‘a’ . . . ‘z ’, ‘0 ’ . . . ‘9 ’ and ‘′’
Copula ‘f’, ‘g’ and ‘ ’
Space Space, tab, newline and other formatting characters and com-

ment units
Literal A string or character literal or a term or type quotation
Term Quotation A term quotation
Type Quotation A type quotation
Symbolic Any lexical unit not in the one of the other categories

Table 5.1: Lexical Units for ProofPower-HOL

5.1.2 Control of Lexical Analysis and Parsing

ProofPower will allow the user to control the lexical analysis and parsing of ProofPower-HOL through
the following forms of declaration (in which the term name denotes a sequence of one or more
alphanumeric, copula or symbolic lexical units).

Binder Declarations These allow binder status to be associated with a name.

Fixity Declarations These allow infix, prefix or postfix status and a numeric precedence value to
be associated with a name. They also allow the ordinary (“nonfix”) status to be restored to a name
which has previously been given infix, prefix, postfix or binder status.

Terminator Declarations These allow a name to be given the status of a lexical terminator in
the sense that, while such a name forms a name on its own, it may only form part of a longer name
if it is tied to the other constituents of the name with copula characters (or, in fact, if it forms part
of a longer terminator). The precise rules for forming identifiers are given in the next section. A
terminator must begin with a symbolic lexical unit.
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5.1.3 Lexical Analysis

Sequences of lexical units are classified into lexemes as follows:

Lexeme Sequence of Lexical Units
Identifier A sequence of one or more alphanumeric, symbolic or copula lexical

units, which either has the form of a floating point number or in which
(1) any subsequence which has been declared as a terminator is either
adjacent only to copula units, or is a subsequence of a terminator, and
(2) alphanumeric and symbolic units only appear adjacently within
subsequences which have been declared as terminators.
A floating point number comprises a sequence of digits giving the
integer part, followed by a decimal point, optionally followed by a
sequence of digits giving the mantissa, all optionally followed by a
possibly negative exponent part.

Punctuation A sequence comprising exactly one punctuation character
Space A sequence comprising one or more space units
Literal A sequence comprising exactly one literal unit
Term Quotation A sequence comprising exactly one term quotation unit
Type Quotation A sequence comprising exactly one type quotation unit

Table 5.2: ProofPower-HOL Lexemes

Thus the syntax of identifiers is as given by the following grammar:
BNF

Id = {Copula}, Atom, [{Copula, {Copula}, Atom}, {Copula}]
| Copula, {Copula}
| Num, {Num}, ‘.‘, {Num}, [(‘e‘ | ‘E‘), [‘∼‘], Num, {Num}];

Atom = AlNum , {AlNum}
| Sym, {Sym}
| Terminator ;

Terminator = Sym, {AlNum | Sym | Copula};

in which Num, AlNum, Copula and Sym stand for numeric, alphanumeric, copula and symbolic
lexical units respectively, and in which instances of Terminators are restricted to sequences of lexical
units which have been declared as terminators.

A sequence of lexical units is lexically analysed by processing it from left to right at each stage
extracting the longest possible lexeme. The sequence of lexemes is in error if any of the following
holds

1. the last lexeme of the sequence is the ‘$’ punctuation character;

2. the sequence contains the ‘$’ punctuation character followed by a type or term quotation;

3. the sequence contains a character literal which does not contain exactly one character

The non-space lexemes in the sequence of lexemes resulting from lexical analysis are then processed
from left to right to give terminal symbols in the grammar as indicated in the following table (in
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which, if two or more rows apply then the first applicable row should be used and in which some
distinctions may depend on the context within the grammar within which the terminal symbol is
required).

Terminal Lexemes
‘{’, ‘}’, ‘(’, ‘)’, ‘[’, ‘]’, ‘•’, ‘:’, ‘,’, ‘|’, ‘;’ Punctuation
‘and’, ‘else’, ‘if’, ‘in’, ‘let’, ‘then’ Identifier
Name Identifier or Literal or ‘$’ followed by any lex-

eme other than type or term quotation
Binder Identifier declared as binder
InTmOp Identifier declared as infix or the punctuation

lexeme ‘,’
InTyOp Identifier declared as infix
PostOp Identifier declared as postfix
PreOp Identifier declared as prefix
TmQ Term Quotation
TyQ Type Quotation

Table 5.3: Terminal Symbols for the HOL Grammar

Thus ‘$’ acts as an escape character and suppresses any special interpretation of what follows. ‘$’
followed by a string or character literal is taken to mean the HOL name represented by the contents
of the literal — this might be used, for example, to give access from the standard HOL syntax
described here to a language which allowed spaces in its identifiers or which had ‘let’ or ‘if’ etc. as
identifiers.

5.1.3.1 Examples

Assume that ‘=’ and ‘+’ have been declared as infix and as terminators that ‘∃1 ’ has been declared
as a binder and a terminator and that ‘div ’ has been declared as infix.

Then no space is required after the ‘∃1 ’ or the ‘v ’ in ‘∃1 δ•1divδ = 1 ’ or in ‘∃1 x•1 + x = 1 ’, however
a space is required after the ‘v ’, but not after the ‘∃1 ’ in ‘∃1 x•1div x = 1 ’; spaces are required in
both places in ‘∃1 x•1div x = 1 ’.

‘$∃1 ’ denotes the same function as ‘∃1 ’ but with ordinary function application syntax rather than
the special binder syntax.

A name such as ‘=1’ may be declared as a terminator, and then ‘x=1’ and ‘=1x’ each contain two
identifiers, whereas ‘x =1’ is a single identifier. div could not be declared as a terminator since it
does not begin with a symbolic character.

5.2 Concrete Syntax

The grammar of the ProofPower-HOL language is divided into a number of parts which build to
form the whole language. These are given in the subsections of section 5.2.1. Section 5.2.2 provides
additional explanatory material on various aspects of the grammar.
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5.2.1 Collected Grammar

The grammar for HOL is given in sections 5.2.1.1-5.2.1.5 in terms of the terminal symbols described
in section 5.1.1. The rules whereby a fragment of text is construed as a sequence of these terminal
symbols are given in section 5.1.

Sections 5.2.1.1 and 5.2.1.2 give productions for HOL terms and types. Sections 5.2.1.3-5.2.1.5 give
productions for certain auxiliary nonterminals used in the productions for terms.

5.2.1.1 Terms

To specify the concrete syntax for terms an ambiguous grammar is given, together with rules to say
how any ambiguity in parsing a sentence should be resolved. The comments against the grammar
productions refer to the sections where additional grammar rules and explanations are given.

BNF

Tm =
Binder , BndVars, ‘•‘, Tm (∗ binding construct 5 .2 .1 .4 ∗)

| ‘let‘, L, { ‘and‘, L }, ‘in‘, Tm (∗ let clause 5 .2 .1 .5 ∗)
| ‘if ‘, Tm, ‘then‘, Tm, ‘else‘, Tm (∗ conditional 5 .2 .2 .3 ∗)
| OTm (∗ operator term 5 .2 .2 .5 ∗)
| Tm, ‘:‘, Ty (∗ type cast 5 .2 .1 .2 ∗)
| Tm, Tm (∗ application 5 .2 .2 .4 ∗)
| Name (∗ variable or constant 5 .2 .2 .6 ∗)
| TmQ (∗ term quotation 5 .2 .2 .8 ∗)
| ‘{‘, OptTms, ‘}‘ (∗ set display 5 .2 .2 .2 ∗)
| ‘{‘, V , ‘|‘, Tm, ‘}‘ (∗ set comprehension 5 .2 .2 .2 ∗)
| ‘(‘, Tm, ‘)‘ (∗ bracketted term 5 .2 .2 .7 ∗)
| ‘[‘, OptTms, ‘]‘; (∗ list display 5 .2 .2 .1 ∗)

OTm = ( Tm, InTmOp, Tm (∗ infix operation 5 .2 .2 .5 ∗)
| PreOp, Tm (∗ prefix operation 5 .2 .2 .5 ∗)
| Tm, PostOp ) (∗ postfix operation 5 .2 .2 .5 ∗)

OptTms = [ Tm, { ‘;‘, Tm } ];

Ambiguities are to be resolved by the following rules:

1. The alternatives for Tm above are listed in order of increasing precedence, i.e. if a given
sentence can be parsed according to two distinct alternatives then the alternative which comes
earlier in the list above is to be preferred. For example, the sentence ‘λx•t = u’ would be parsed
as ‘λx•(t = u)’ rather than as ‘(λx•t) = u’ by this rule. Note that this rule does not apply to
the alternatives for OTm, which are disambiguated by a system of numeric precedences, see
rule 3.

2. A term containing a type must be parsed so that each type extends as far to the right as
possible. For example, ‘t : σ1 σ2 : σ3 ’ must be parsed so that the types it contains are ‘σ1 σ2 ’
and ‘σ3 ’ (not ‘σ1 ’ and ‘σ3 ’). This term might be rewritten as ‘(t : σ1 σ2 ) : σ3 ’ indicating that
types ‘σ1 σ2 ’ and ‘σ3 ’ are equivalent, and that ‘t ’ has that type.
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3. Infix, prefix and postfix function applications (see section 5.2.2.5) associate according to their
associated precedences. Higher values of precedence bind more tightly than lower values. Equal
values of precedence associate to the right. Brackets may be used to force a different order of
association. Defining the precedences of the standard HOL operators is outside the scope of
this document.

4. Juxtaposition (see section 5.2.2.4) associates to the left. For example, if a sentence can be
parsed as both ‘(f t) u’ and ‘f (t u)’, the former is preferred.

5.2.1.2 Types

Terms may be given a type explicitly using a ‘type cast’ of the form “Tm,‘:’,Ty”. This may be done
for purely documentary purposes, or to force a less general type than would otherwise be inferred,
or to disambiguate the use of aliases.

The syntax for types is given by the nonterminal Ty in the following grammar. Note that the
grammar for types is ambiguous, but the text that follows shows how to disambiguate it.

BNF

Ty = Name
| TyQ
| Typars, Name
| Ty , InTyOp, Ty
| ‘(‘, Ty , ‘)‘;

Typars = Ty
| ‘(‘, Ty , { ‘,‘, Ty }, ‘)‘;

Type variables and nullary type constructors are included under the first alternative, Name, here;
the name is construed as a type variable name if it begins with a prime (‘’’) character. In general
a type is either such a name, or a quotation (see section 5.2.2.8), or a type constructor applied to a
list of types.

Non-nullary type constructors are normally used in a postfix format. If a Binary type constructor
is declared as “infix” then it should be used infix unless preceded by ‘$’. If a type constructor has
lexical status “nonfix” then it is written postfix. If a non-nullary type constructor is given any other
lexical status then the lexical status must be suspended using ‘$’ before it can be used, and it will
then be usable only as a postfix operator. If a type constructor takes more than one argument, the
arguments are given as a comma-separated list enclosed in brackets. Brackets may also be used in
more general ways, e.g.: to group the arguments of infix type constructors.

The binary type constructors for product, sum, and function (written as ‘×’, ‘+’ and ‘→’ respectively)
are typical examples of infix type constructors.

Ambiguities in the grammar for types are resolved using the following rules:

1. The postfix form is of higher precedence than the infix.

2. Infix type constructors are assigned a precedence when their infix status is declared (see sec-
tion 5.1.2). Higher values of precedence bind more tightly than lower values. Equal values of
precedence associate to the right.
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5.2.1.3 Variable Structures

‘Variable Structures’ (often abbreviated as ‘varstructs’) may be used instead of simple variables in
any variable binding construct where the variable to be bound would otherwise have a type formed
by the ordered pair type constructor, ‘×’. In these circumstances it is convenient to allow distinct
names to be bound to each element of the pair, so that these names may be used in the scope of the
binding instead of expressions involving the projection functions from pairs (Fst ,Snd). This effect
is achieved by writing the variable names in the declaration part of the variable binding construct
combined using the pair constructor ‘,’ and enclosed in brackets. The effect may be iterated, yielding
a variable structure of arbitrarily nested pairs (consistent with type contraints).

A varstruct or any of its subterms may be given a type cast.

Examples of this notation are:
HOL terms

pλ (a,b):(N × N) • f (a,b)q;
pλ (a:N,(b,(c,d),e)) • f (a,b,c,d ,e)q;

This precise syntax for varstructs is described by the following BNF syntax rule for the nonterminal
V .
BNF

V = V1 , [ ‘:‘, Ty ];
V1 = Name

| ‘(‘, V , { ‘,‘, V }, ‘)‘;

Bindings composed using varstructs are often called ‘paired abstractions’.

Interpretation

Varstructs can only be interpreted by giving the meaning of the variable binding construct (in this
case a ‘paired abstraction’) in which they occur.

A paired λ-term is a syntactic abbreviation for (i.e. is parsed into the same term as) an application
of the constant Uncurry to a simple λ-abstraction formed by abstracting over each of the constituent
variables in turn. The function Uncurry converts a (so-called ‘curried’) function of two arguments
into a function of a single argument (which must be a pair).

For example: pλ (a, b) • tq yields the same term as pUncurry (λa•λb•t)q.

Where a binding construct is formed using a constant declared as a binder, the same effect takes
place on the underlying λ-term.

E.g. p∀ (a, b) • pq yields the same term as p$∀ (Uncurry (λa•λb•p))q.

Similar effects apply to other constructs which involve variable binding, such as let clauses and set
abstractions.

plet (a,b) = c in tq yields the same term as pLet(Uncurry(λ (a, b) • t))cq (cf. section 5.2.1.5).

5.2.1.4 Binder Abbreviation

Where λ-terms or nested terms formed by application of a constant (or variable) with lexical status
of ‘binder’ appear, the inner occurrences of ‘λ’ or of the repeated binder may be omitted. This is

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - DESCRIPTION USR005



5.2. Concrete Syntax 31

also permitted when varstructs rather than simple variables are used in the bindings. This facility
is not available for set abstractions.

Since a type in a cast applied to a varstruct extends as far as possble to the right, it may be necessary
in some cases to add additional punctuation to delimit the type. This may be done with brackets or
by the use of a semicolon. Where only the last of a series of variables has a type cast applied to it,
the cast is deemed to apply to all variables preceding it up to the first which either has a type cast
or is followed by a semi-colon.
HOL terms

p∀ x y z x1 y1 • f (x , y , z , x1 , y1 )q;
p∀ x : BOOL • x ∨ ¬ xq;
p∀ (x ,y) • P x yq;
p∀ x y : BOOL; • x ⇔ y ∨ x ∨ yq;
p∀ x y : BOOL; z x 1 : N • Tq;
p∀ (x : BOOL, y : ) • Tq;
p∀ (x ,y) : (BOOL × BOOL) • Tq;
p∀ (x ,y) ((z ,x1 ),y1 ) • Tq;
p∀ (x ,y) (z ,x1 ) (y1 ,z 1 ) : BOOL × BOOL; x2 y2 ; z 2 : N • Tq;
p∀ x : BOOL SET • x ⊆ {T ,F}q;
p∀ (x : BOOL) SET • ¬ (SET = SET ) ⇒ xq;
p∀ x : BOOL; SET • ¬ (SET = SET ) ⇒ xq;

Note that the effect of the second semicolon in the last example is to stop the type constraint on z 2

applying to x 2 and y2 . However, in the first example, where there is no cast, the variables need not
have the same type.

The intention of the grammar of binders is that the binder ranges over a series of blocks of bound
variables, which are given by rule BndVars below. Each block may declare many names or many
paired abstractions and is optionally typed. The blocks are separated by semicolons.
BNF

BndVars = Block , {‘;‘, Block };
Block = V1 , { V1 }, [ ‘:‘, Ty ];

Interpretation

The simple λ-abstraction pλx•tq yields a term formed by the primitive ‘mk abs’ constructor with
the terms x and t as its arguments. All variable binding constructs in the ProofPower-HOL concrete
syntax are syntactic abbreviations for less concise expressions in which all variable binding is done
by simple λ-expressions.

The following four ProofPower-HOL fragments yield the same ProofPower-HOL TERMs.
HOL terms

p∀ x 1 x2 x3 x4 • Tq;
p∀ x 1• ∀ x 2• ∀ x3• ∀ x4 • Tq;
p∀ x 1• (∀ x2• (∀ x3• (∀ x4• T )))q;
p($ ∀)(λ x 1•(($ ∀) λ x 2•(($ ∀) λ x3•(($ ∀) λ x4 • T ))))q;

The use of ‘$’ in the above to suppress the binder status of the name1 ‘∀’ is discussed in section 5.1.3.

1Note that giving binder status to a name affects all uses of that name, whether as a constant or as a variable.
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5.2.1.5 Local Definitions

A let clause assigns a local name to stand for the value of an arbitrary HOL term within the body
of the clause. Where the value to be assigned to the local variable is a function then the value
may either be expressed as a λ-expression. Alternatively the function may be defined in the let
clause by an equation in which the function is applied on the left of the equation to one or more
variable structures which serve as formal parameters to the function. The variables occurring in the
varstructs are binding occurrences whose scope is the right hand side of the equation.

A single let clause may introduce several local definitions in parallel, separated by the terminal ‘and’.

Examples of local definitions are:
HOL terms

plet (a,b) = c in f (a)q;
plet (a:N,(b,(c,d),e)) = exp in f (a,b,c,d ,e)q;
plet x = exp1 in exp2q;
plet f x = exp1 in exp2q;
plet f (x 1 ,x2 ) (y1 ,(y2 ,y3 ),y4 ) = exp1 in exp2q;
plet x = exp1
and f x = exp2
and g f (x ,b) (y1 ,(y2 ,y3 ),y4 ) = exp3
in exp3q;

For a local function definition the function name is followed by formal argument patterns, a sequence
of variable structures in the same form as would be permitted in a ‘λ’-expression. Production L below
gives the part of the clauses between the let or and keywords and the ‘in’.
BNF

L = Vs ‘=‘, Tm;
Vs = V | Name, V1s;
V1s = V1 | V1s, V1 ;

Thus if there is a list of varstructs after the let or and the first one must just be a name.

Interpretation

A let clause abbreviates the application of the constant Let to a lambda abstraction.

The following pairs of expressions yield the same ProofPower-HOL TERMs.
Identical HOL TERMs

plet x = t in uq;
pLet(λ x • u) tq;

Identical HOL TERMs

plet x = t and y = u and z = v in wq;
pLet(Let(Let(λ x y z • w)t)u)vq;

Identical HOL TERMs

plet x = t in let y = u in let z = v in wq;
pLet(λ x • Let(λ y • Let(λ z • w)v)u)tq;
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Note that the defining expressions on the right hand side of the equations of the let clause are not
in the scope of the variable binding created. This applies to all the expressions involved in multiple
local declarations formed using and in the let clause.

Thus in : plet f x = f x in bq the local definition is not recursive since the second occurrence of f
is not in the scope of the local declaration.

5.2.2 Explanations of the Grammar

The above sections gave the full grammar of ProofPower-HOL and the description of parts of it. The
next sections complete the description.

5.2.2.1 Lists

The square bracket notation is for lists. Elements of lists are separated by semicolons, and the empty
list is allowed.

Interpretation

The list ‘[t ; u; v . . .]’ stands for ‘Cons t(Cons u(Cons v(. . .Nil) . . .)))’, and the empty list ‘[ ]’
stands for ‘Nil .’

5.2.2.2 Set Terms

Set terms may be given in two forms. Either by enumeration of the values, or by set comprehension.
Examples of set terms are as follows.
HOL terms

p{1 ; 4 ; 9 ; 16 ; 55}q;
p{x | ∃ y : N • y ≤ 5 ∧ x = y ∗ y}q;
p{(x ,y) | x ≥ y}q;

Interpretation

The set ‘{t ; u; v . . .}’ stands for ‘Insert t(Insert u(Insert v(. . .Empty) . . .)))’, and the empty set
‘{ }’ stands for ‘Empty .’

A set comprehension stands for the constant SetComp applied to a lambda term. The set ‘{x |p}’
stands for ‘SetComp(λx•p).’

5.2.2.3 Conditionals

Conditionals are of the form ‘if condition then consequence else alternative.’

Interpretation

The conditional form stands for an application of the polymorphic constant ‘Cond ’. The conditional
‘if t then u else v ’ stands for the term ‘Cond t u v .’
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5.2.2.4 Juxtaposition

Juxtaposition stands for the application of a function to an argument, e.g. f a stands for application
of f to a. This corresponds to the primitive mk comb.

5.2.2.5 Infix, Prefix and Postfix Operators

As described in section 5.1.2 the user may declare that a name2 is to be used with infix, prefix or
postfix syntax. A numeric precedence is assigned to the name in such a declaration and is used to
determine the order of application, as described in rule 3 of section 5.2.1.1, and illustrated by the
following examples.

Assuming that ‘I1 ’, ‘I4 ’, ‘R2 ’, ‘R5 ’, ‘S3 ’ and ‘S6 ’ are two infix, two prefix and two postfix operators
respectively with precedences as given in the name (i.e., precedences of 1, 4, 2, 5, 3 and 6 respectively)
then the brackets in the following examples are redundant.
HOL fragments

(t I4 u) I1 v t I1 (u I4 v) (t I4 u) I4 v
R2 (R5 t) R5 (R2 t)
(t S6 ) S3 (t S3 ) S6
(R5 t) S3 R2 (t S6 )
(R5 t) I1 (u S6 ) R2 ((t I4 u) S3 )

Interpretation

These forms simply provide additional ways of expressing function application. For example, in each
of the following three examples the two terms shown are equivalent. In these examples, we use the
‘$’ symbol to suppress the infix, prefix or postfix status of an identifier (as described in section 5.1).
Equivalent HOL terms

l i op r
($i op l) r

Equivalent HOL terms

pre op a
$pre op a

Equivalent HOL terms

a post op
$post op a

5.2.2.6 Names of Variables and Constants

This alternative is for variables and constants, it includes any identifier which has not been declared
to have special syntactic status (as defined in section 5.1.2) and which is not escaped by preceding
it with a ‘$’.

For example with typical binder declarations, ‘$∀’ the name of the universal quantification operation
considered as a constant in its own right, whereas ‘∀’ is not a name.

2Note that operator names need not necessarily be constants; they may be variables with associated fixity syntax.
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5.2.2.7 Grouping

Brackets may be used to override the precedence and precedence rules.

5.2.2.8 Quotation

ProofPower is a multilingual system which supports mixed language working.

The lexical terminals ‘TmQ ’ and ‘TyQ ’ in the grammar of ProofPower-HOL represent points at which
TERMs or TYPEs respectively may be entered by nested quotation in some other language.

5.3 Aliases and Overloading

The HOL system allows aliases, to be declared for particular instances of constants. This facility
allows different names (and associated fixities and precedences) to be used for the same function.
For example, the symbol ‘⇔’ is set up in the supplied system as an alias for the boolean instance
of the polymorphic equality operator, ‘=’. ‘⇔’ is given a lower precedence than ‘=’, so that a term
such as px = y ⇔ a = bq associates as p(x = y) ⇔ (a = b)q .

Different constants may have a common alias. This allows aliases to be used to achieve the effect of
overloaded constant names. For example, it would be natural to use ‘+’ as an alias for the additions
on natural number, integers, rational etc.

An alias may be the same as a constant name. This allows an application in which the terminology
conflicts with that used in a library theory to be handled in its own terms. For example, if sin denotes
the sine function in a library theory, the name sin might be made an alias of transgression in a
theory of ethics.

5.4 Type Abbreviations

To ease the use of complicated types, a name (with a possibly empty list of type parameters) may
be declared as a type abbreviation. A name which has been declared as a type abbreviation may be
used either as a Name in the production for Ty in section 5.2.1.2 above, or, if an infix declaration
for the name is in force, as an InTyOp.

For example, if the name auto, with the single parameter ′a had been declared as an abbreviation
for the function type ′a→′a. Then (bool)auto would denote the same type as bool→bool .

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - DESCRIPTION USR005



36 Chapter 5. ProofPower-HOL CONCRETE SYNTAX

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - DESCRIPTION USR005



Part III

ProofPower-Z





Chapter 6 39

ProofPower-Z CONCRETE SYNTAX

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - DESCRIPTION USR005



40 Chapter 6. ProofPower-Z CONCRETE SYNTAX

6.1 STANDARD AND EXTENDED Z

The ProofPower-Z language is an extension of an approximation to the Z language of the ongoing
standardisation activity for Z. In this document the term extended Z is used to refer to the full
ProofPower-Z language, and the term standard Z for the subset which approximates the language of
the standard.

Normally, the ProofPower parser and type checker prohibit the use of non-standard features within
the paragraphs of a specification but allow them within predicates and expressions entered as term
quotations (see 6.2 and 6.4 below). (This default behaviour may be modified by changing the settings
of the system control flags standard z paras and standard z terms.)

The main differences between standard and extended Z are as follows;

• Extended Z is higher-order, in effect the ProofPower-HOL type, p:Bq, of truth values acts as
a given set, so removing the distinction between the syntactic categories of predicates and
expressions in standard Z. In particular, in extended Z, one can state and prove theorems
involving propositional variables.

• Nested term quotations are allowed in extended Z, permitting mixed language working (see
section 6.3 below).

• Extended Z supports two cast operators required to enter fragments of Z during proof (see
section 6.5.1 below).

(Remark, the first of these differences is not fully checked in the current implementation of the
system.)

6.2 ENTERING A Z SPECIFICATION

A ProofPower-Z specification is presented as a LATEX document using the facilities described in [6]
and in what follows familiarity is assumed with the use of the extended character set discussed in
that document.

The lexical rules for ProofPower-Z are defined in section 6.3 in terms of the slightly abstract view
of the Z character set shown in table 6.1. Each of these characters be entered into a ProofPower-Z
document or into the ProofPower system using a single key-stroke with the following exceptions:

• The guillemet characters, “¿” and “À”, are entered as %<<% and %>>%.

• A calligraphic letter such as “ M” that has not been assigned a single key-stroke is entered as
%calM%.

• Most of the additional symbols from the LATEX manual mentioned under Symbol are entered
by enclosing the alphabetic part of the LATEX name in percent characters. E.g. the infinity
symbol, “∞”, which is invoked by the macro \infty in LATEX, is entered as %infty%. There
are some exceptions to this rule, mainly because LATEX has more than one name for some of
the symbols. The exceptions are listed in the file sievekeyword provided in the subdirectory
sun3bin or sun4bin of the installation directory.

• A character is entered as a subscript by preceding it with the character g.
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• The Box characters are entered simply by laying the box out as formal Z material in the sense
of [6]. Note that the paragraph forms which do not use a box, namely, fixity paragraphs, given
set definitions, abbreviation definitions and free type definitions, must be preceded by a line
containing the two characters “sZ” and followed by a line containing the single character “¥”.
Boxes beginning with “ ” or “ ” must be terminated with a line beginning “ ” (not “¥”).

The paragraph forms behave like ML functions executed at the top-level for their side-effects (and the
formatting directive characters which terminate the boxes implicitly insert the semi-colon required
to cause the function to be executed by the ML compiler after them).

Z term quotations, see section 6.4 below, are entered bracketed with the characters pZ and q, for
example, pZ〈1 , 2 , 3 〉q. Z term quotations behave like ML functions executed for their result value.

As described in [6], the normal effect of the characters ↗ and l is to begin and end sections of
superscripted text. Thus, for example, the name of the iteration operation is “ ↗ l”, so that,
something entered as R ↗ i l prints as R i .

Letter

A B C D E F G H I J K L
M N O P Q R S T U V W X
Y Z
a b c d e f g h i j k l
m n o p q r s t u v w x
y z

GreekLetter

α β γ δ ε ζ η θ ι κ λ µ
ν ξ π ρ σ τ υ φ χ ψ ω

Γ ∆ Θ Λ
Ξ Π Σ Υ Φ Ψ Ω

Digit 0 1 2 3 4 5 6 7 8 9

Symbol

∪ ∩ ⋃ ⋂ ⊆ ⊂ ∅ 6∈ (| |) −C −B
C B ` o

9 ⊕ 7→ → 7½ ½ 7³ ³ ³½
↔ ≤ ≥ < > a a/ 6= + − ∗ #
. ∼ ] [[ ]] / \ ∧ ∨ ¬ ⇒
⇔ = ∈ ∀ ∃ × & ?` o

9 ¹ ⊕
⊕

and the calligraphic letters and any other symbols from tables 3.4, 3.5,
3.6 and 3.7 of the LATEX User’s Guide and Reference Manual, [3]

Stop
, ; : • ( ) [ ] { } 〈 〉
[[ ]] ¿ À | ::= =̂ B C F N P
Q R S U Z

Underscore
Stroke ′ ? !
Subscript Subscripted forms of any of the above characters.
Shift ↗ l
Box

AX SCH END IS ST BAR

Quote
"

Format A format character such as space, tab, line-break or page-break.

Table 6.1: Character Set
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6.3 LEXICAL ANALYSIS

Token A token is a sequence of characters, as shown in table 6.1, conforming to the grammar given
in this section. The terminal symbols of the grammar are the sets of characters defined in the table,
and the sentence symbol is Token. The different sorts of token correspond to the sorts of terminal
symbols of the grammar for Z given in section 6.4, together with an extra sort of space tokens.

A sequence of characters is interpreted as a sequence of non-space tokens by a left-to-right scan taking
tokens which are as long as possible and then discarding any Space tokens. If it is not possible to do
this then the sequence of characters is erroneous.

ProofPower-Z supports inline comments within both paragraphs and terms. These comments follow
the same rules as for comments in ProofPower-HOL and ProofPower-ML.

As an extension to Z, quotation of terms using other ProofPower languages, e.g. HOL, is allowed.

BNF

Token = Identifier
| Decor
| Narrative
| Natural
| Float
| String
| Punctuation
| Quotation
| Space;

Identifier There are four sorts of identifier.
BNF

Identifier = Alphanumeric
| Greek
| Symbolic
| QuotedIdentifier ;

Alphanumeric
= Letter , {Letter | Digit | ‘ ‘}, {Subscript}
| ‘ ‘, (Letter | Digit | ‘ ‘),

{Letter | Digit | ‘ ‘}, {Subscript};

Greek = GreekLetter , {Subscript};

Symbolic = (Symbol | Shift), {(Symbol | Shift)}, {Subscript}
| Punctuation, Subscript , {Subscript};

QuotedIdentifier
= ‘$‘, String ;
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Decoration Decoration comprises just a sequence of stroke characters
BNF

Decor = Stroke, {Stroke};

Numbers An natural number literal is a non-empty sequence of decimal digits
BNF

Natural = Digit , {Digit};

A floating point numeric literal comprises two non-empty sequences of digits separated by a decimal
point together with an optional exponent part.
BNF

Float = Digit , {Digit}, ‘.‘, Digit , {Digit}, [(‘e‘ | ‘E‘), [‘∼‘], Digit , {Digit}];

A token preceded by the reserved identifer ‘.’ is not interpreted as a floating point numeric literal.
E.g., in ‘(x , y , (a, b)).1 .2 ’, ‘1.2’ is treated as two natural number literals separated by a ‘.’ and not a
floating point literal so that the expression is a valid tuple component selection (see section 6.4.15).

Strings A string literal denotes a sequence of arbitary text. String literals conform to the same
syntax as HOL string literals, which follow Standard ML.
BNF

String = ‘"‘, {StringItems}, ‘"‘;
StringItems = ? As in Standard ML ?;

Narrative The means for delimiting the narrative sections between formal material in a Z docu-
ment is defined in [6]:

BNF

Narrative = ? See Document Preparation User Guide ?

Punctuation This kind of token includes the stop and box characters of section 6.2 symbols and
an underscore optionally followed by a question mark or an exclamation mark.
BNF

Punctuation = Stop
| Box
| ‘ ‘

| ‘ ?‘
| ‘ !‘;

Quotation A quotation must be a term valued quotation . E.g. an HOL type quotation is not
allowed, while an HOL term quotation is.
BNF

Quotation = ? A term valued quotation ?;
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Space A space token is a sequence of one or more white space characters or a comment.

BNF

Space = Format , {Format}
| Comment ;

Comments follow the syntax for comments in Standard ML:

BNF

Comment = ? As in Standard ML ?;
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6.4 GRAMMAR

The following grammar defines two languages over the set of all non-space tokens as defined in
section 6.3. The languages are the language of Z specifications corresponding to the non-terminal
Specification in section 6.4.1 and the language of Z terms corresponding to the non-terminal Term
in section 6.4.3. The language of terms is, in a sense, an extension to standard Z permitting entry
of Z constructs needed as parameters to proof procedures etc.

The specific terminal symbols of the grammar are the punctuation symbols and reserved identifiers
listed below.
Punctuation

‘P‘ ‘:‘ ‘;‘ ‘\‘ ‘(‘ ‘)‘ ‘[‘ ‘]‘ ‘{‘ ‘}‘ ‘〈‘ ‘〉‘
‘¿‘ ‘À‘ ‘•‘ ‘ ‘ ‘::=‘ ‘AX‘ ‘SCH‘ ‘END‘ ‘IS‘ ‘ST‘ ‘BAR‘

Reserved Identifiers

‘∃1‘ ‘θ‘ ‘λ‘ ‘µ‘ ‘∆‘ ‘Ξ‘ ‘.‘ ‘...‘ ‘>>‘ ‘⇔‘ ‘∧‘ ‘∨‘
‘¬‘ ‘⇒‘ ‘∀‘ ‘∃‘ ‘|‘ ‘×‘ ‘&‘ ‘,‘ ‘/‘ ‘∈‘ ‘=‘ ‘=̂‘

‘==‘ ‘?`‘ ‘¹s‘ ‘o
9s‘ ‘\s‘ ‘⇔s‘ ‘∧s‘ ‘∨s‘ ‘¬s‘ ‘⇒s‘ ‘∀s‘ ‘∃s‘

‘false‘ ‘pre‘ ‘true‘ ‘let‘

In addition to the reserved identifiers, the following identifiers associated with fixity paragraphs
are mentioned in the grammar. These identifiers may be used as ordinary identifiers except in the
appropriate position in a fixity paragraph.
Reserved Identifiers

‘fun‘ ‘function‘
‘gen‘ ‘generic‘
‘rel‘ ‘relation‘
‘leftassoc‘
‘rightassoc‘

The only difference between punctuation symbols and reserved identifiers is that the former are not
identifiers according to the lexical rules given in section 6.3 whereas the latter are. The grammar
prohibits attempts to use the reserved identifiers as variables.

The general terminal symbols of the grammar are as shown in table 6.2.

Symbol Description
Id Identifier other than the reserved identifiers
Decor A sequence of decoration characters
Natural Natural number literal
Float Numeric literal
Character Character literal
String String literal
Narrative Informal text

Table 6.2: Terminal Symbols for the Z Grammar

6.4.1 Specification

A specification comprises a sequence of paragraphs interleaved with narrative text
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BNF

Specification = [Narrative], {Paragraph, Narrative}, [Paragraph];

6.4.2 Paragraphs

A paragraph takes one of 7 forms:

BNF

Paragraph = Fixity
| GivenSet
| AbbDef
| FreeTypeDef
| AxBox
| Constraint
| Conjecture;

6.4.3 Term

This non-terminal is an extension to Z enabling expressions, predicates and schemas to be supplied
as parameters to proof procedures etc.

A term comprises a Z predicate (which, in extended Z, includes expression and schema) together
with optional generic parameters.

BNF

Term = [GenFormals], Pred ;

Note that the above is actually the same as the Constraint paragraph. No ambiguity arises because
of the use of different beginning and end markers for the two forms as described in section 6.2 above.

6.4.4 Fixity Paragraph

A fixity paragraph describes syntactic abbreviations which are to be used in the specification. The
constructs which can be abbreviated are application of a function to a tuple of arguments, explicit
instantiation of a generic constant and the membership predicate. These three possibilities are given
by the Function, Generic and Relation options in the following production.

BNF

Fixity = Function , [Prec, [Assoc]], Template, {‘,‘, Template}
| Generic, [Prec, [Assoc]], GTemplate, {‘,‘, Template}
| Relation, Template, {‘,‘, Template};

Each of the three alternatives for a fixity paragraph begins with an identifier as shown in the following
productions. The options in each of these productions support both the original ProofPower-Z syntax
and the Standard Z syntax. These identifiers are not treated as reserved except when they appear
at the beginning of a Z paragraph.
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BNF

Function = ‘fun‘ | ‘function‘;
Generic = ‘gen‘ | ‘generic‘;
Relation = ‘rel‘ | ‘relation‘;

A numeric precedence may be specified in a function or generic fixity paragraph. The precedence gives
a non-negative numeric precedence for the abbreviations being described. Omitting the precedence
number is equivalent to supplying it as 0 . This is only relevant to postfix, prefix, or infix templates,
i.e., those that begin with the placeholder ‘ ‘, end with the placeholder ‘ ‘, or both begin and end
with the placeholder ‘ ‘ (respectively).

Prec = Natural ;

Left or right associativity may be specified in a function or generic fixity paragraph using the identi-
fiers listed in the following production. This is only relevant to infix templates, i.e., those that begin
and end with the placeholder ‘ ‘. If the associativity specification is omitted, then an infix template
is treated as right associative, An example of a function defined with a right associative template is
the function arrow in the Z toolkit, for which ‘X → Y → Z ’ means the same as ‘X → (Y → Z )’
rather than ‘(X → Y ) → Z ’.

BNF

Assoc = ‘leftassoc‘ | ‘rightassoc‘;

A template has the form of a sample use of the abbreviation with stubs for the arguments. The
stubs are either ‘ ’ (optionally followed by ‘?’ or ‘!’), corresponding to an argument position where
a single expression is expected, or ‘...’, corresponding to an argument position requiring a list of
expressions (a possibility which does not arise in generic fixity paragraphs or at the beginning and
end of function and relation fixity paragraphs). The form ‘, ,’ may also be used and is equivalent to
‘...’. Quoted identifiers are not allowed in templates.

BNF

Template = ([Stub1 ], {Id , Stub}, Id , [Stub1 ]) − Id ;

GTemplate = ([Stub1 ], {Id , Stub1}, Id , [Stub1 ]) − Id ;

Stub1 = ‘ ‘ | ‘ ?‘ | ‘ !‘;

Stub = Stub1 | ‘...‘ | ‘,,‘;

In standard Z, the arguments of functions, relations and generic operators must be expressions. In
ProofPower-Z, functions and relations can also take predicates as arguments. The stubs ‘ ?’ and
‘ !’ are for use in defining operators that use this extension: ‘ ?’ indicates an argument that is to
be parsed as a predicate and ‘ !’ indicates an argument that is to be parsed as a predicate or as an
expression according to the context. See sections 6.5.1 and 6.5.2 below for examples.

The syntactic abbreviations introduced by a fixity paragraph are in force throughout the entire
specification containing them. The following rules apply to the identifiers which appear in a template:

1. the first and last identifiers in the template must not appear anywhere in any other template
in any fixity paragraph in the specification, unless that template introduces exactly the same
syntactic abbreviation.
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2. identifiers other than the first and last in the template must not appear as the first, or last,
identifier in any template in the specification.

Standard Z imposes the rule that no two infix templates may be assigned the same precedence but
different associativities. This rule is not imposed by ProofPower-Z, which instead prohibits use of
the resulting syntactic abbreviations in a way which would be ambiguous.

We use the term fancy-fix syntax to refer to a use of a syntactic abbreviation.

6.4.5 Given Set Definition

A given set definition lists the names of the given sets being defined, optionally followed by a con-
straint:
BNF

GivenSet = ‘[‘, DecName, {‘,‘, DecName}, ‘]‘, [‘&‘, Constraint ];

6.4.6 Abbreviation Definition

BNF

AbbDef = EqDef
| SchemaBox ;

EqDef = DefLhs, (‘=̂‘ | ‘==‘), Schema;

SchemaBox = SCH, DefLhs, IS, VSchemaText , END;

DefLhs = ([VarName], {Id , VarName}, IdDec, [VarName]) − Id
| VarName, [GenFormals];

GenFormals = ‘[‘, DecName, {‘,‘, DecName}, ‘]‘;

An instance of the first alternative for DefLhs must match some template in some gen fixity paragraph
in the specification, in the sense that the template results if we delete any decoration from the DefLhs
and replace each VarName in it by ‘ ’.

Note that the Expr possibility for Schema allows an abbreviation definition to be used either as a
“horizontal” equivalent of the SchemaBox form or as a means of giving an equational definition of
a, possibly generic, global variable.

6.4.7 FreeType Definition

In a free type definition, constructors which appear in a fun fixity paragraph may be written using
fancy-fix syntax:
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BNF

FreeTypeDef= DecName, ‘::=‘, Branch, {, ‘|‘, Branch}, [‘&‘, FreeTypeDef ];

Branch = ([FreeTypePar ], {Id , FreeTypePar}, IdDec, [FreeTypePar ])
| VarName, [FreeTypePar ];

FreeTypePar= Expr ;

We say that the first alternative for a branch matches a template if the template may be obtained
from the branch by deleting any decoration and replacing each FreeTypePar by ‘...‘ or ‘ ‘. Each
branch construed under the first alternative for Branch must match some template in some fun fixity
paragraph in the specification.

For compatibility with other dialects of Z, the expressions in a FreeTypePar may be enclosed in
guillemet brackets as described in section 6.5.4.

6.4.8 Axiomatic Box

An axiomatic box has an optional list of generic formal parameters, a declaration, and an optional
predicate.

BNF

AxBox = AX, [GenFormals, BAR], VSchemaText , END;

6.4.9 Constraint

A constraint may optionally start with a list of generic formal parameters.

BNF

Constraint = [GenFormals], Pred ;

There is an ambiguity between this rule and the second alternative of the rule for the non-terminal
Expr3 , since a phrase of the form [X ]Y could be interpreted either as a constraint with generic
formals [X ] or as a term beginning with an application of a horizontal schema expression to Y . The
former interpretation is to be preferred (and, indeed, the second interpretation cannot be well-typed).

6.4.10 Conjecture

A conjecture comprises an optional label, an optional list of formal parameters and a predicate.
A conjecture serves either for documentary purposes or as a means of recording an assertion for
subsequent proof: the ProofPower system checks that it the conjecture is type-correct and then
stores it in the theory database (whence it may be retrieved using the function get conjecture).

BNF

Conjecture = [Id ], ‘?`‘, [GenFormals], Pred ;

As with Constraint there is an ambiguity between this rule and the second alternative of the rule for
the non-terminal Expr3 . The interpretation as a generic conjecture rather than as a phrase beginning
with an application of a horizontal schema expression is to be preferred.
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6.4.11 Declaration

A declaration is a sequence of basic declarations each of which is either an explicit declaration of a
list of variables ranging over some set or a schema-as-declaration.
BNF

Decl = BasicDecl , {‘;‘, BasicDecl};

BasicDecl = DecName, {‘,‘, DecName}, ‘:‘, Expr
| Schema;

6.4.12 Schema

The syntax for schema-expressions is as follows:
BNF

Schema = Schema2
| SQuant , SchemaText , ‘•‘, Schema;

SQuant = ‘∀s‘ | ‘∃s‘ | ‘∃1 s‘ | Quant ;

Quant = ‘∀‘ | ‘∃‘ | ‘∃1‘;

Schema2 = Schema3
| Schema2 , SchInOp1 , Schema2 ;
| Schema2 , SchInOp2 , Schema2 ;

SchInOp1 = ‘∧‘ | ‘∨‘ | ‘⇒‘ | ‘⇔‘ ;

SchInOp2 = ‘∧s‘ | ‘∨s‘ | ‘⇒s‘ | ‘⇔s‘ | ‘¹s‘ | ‘o
9s‘;

Schema3 = Schema4
| SchPreOp, Schema3 ;

SchPreOp = ‘¬‘ | ‘pre‘ | ‘∆‘ | ‘Ξ‘;

Schema4 = Expr0
| Schema4 , [RenameList ]
| ‘[‘, SchemaText , ‘]‘
| Schema4 , ‘\s‘, ‘(‘, DecName, {‘,‘, DecName}, ‘)‘;

RenameList = ‘[‘, Renaming , {‘,‘ Renaming}, ‘]‘;

Renaming = DecName, ‘/‘, DecName;

The grammar for Schema2 is ambiguous. The ambiguities are resolved by taking the operators of
SchInOp1 and SchInOp2 as listed in decreasing order of precedence and taking each operator as
right associative. The corresponding operators in SchInOp1 and SchInOp2 have equal precedence.
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The operators of SchInOp1 are overloaded: they are also used for the logical connectives. The rules
for resolving the overloading are given in section 6.4.14 below. The operators of SchInOp2 are not
overloaded and can only denote schema operations.

6.4.13 Schema Text

The grammar distinguishes between vertical schema text and horizontal schema text to ensure that
declaration and predicate parts are separated by a horizontal bar when arranged vertically and by a
vertical bar when arranged horizontally.
BNF

VSchemaText = [Decl ], [ST, Pred ];

SchemaText = [Decl ], [‘|‘, Pred ];

6.4.14 Predicate

The syntax for predicate is as follows. Note that a schema-expression, and so an arbitrary expression,
is one of the possibilities for a predicate.
BNF

Pred = Pred1 , { ‘;‘, Pred1 }

Pred1 = Pred2
| Quant , SchemaText , ‘•‘, Pred1
| ‘let‘, EqDef , {‘;‘ EqDef }, ‘•‘, Pred1 ;

Pred2 = Pred3
| Pred2 , LogInOp, Pred2 ;

LogInOp = ‘∧‘ | ‘∨‘ | ‘⇒‘ | ‘⇔‘;

Pred3 = Pred4
| ‘¬‘, Pred3 ;

Pred4 = Expr , Rel , Expr {Rel , Expr} (∗ Pred4 .A ∗)
| ([Expr ], {Id , Exprs}, Id , [Expr ])

− (Id | (Expr , Id , Expr)) (∗ Pred4 .B ∗)
| Schema
| ‘true‘
| ‘false‘
| ‘(‘, Pred , ‘)‘;

Rel = Id | ‘∈‘ | ‘=‘;
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The grammar for predicates is ambiguous. The ambiguities are resolved by imposing the following
rules:

1. The operators in the production for LogInOp are listed in decreasing order of precedence, and
are right associative.

2. In Pred4 .A the Id in each Rel must appear in a template of the form Id in a rel fixity
paragraph.

3. The alternative Pred4 .B is only allowed when the resulting phrase matches a template in a
rel fixity paragraph in the specification. Here the phrase is said to match a template if the
template can be obtained from it by replacing each direct constituent Expr in the phrase by
‘ ’ and replacing each direct constituent Exprs by ‘...’.

4. Negation is to have higher precedence than the infix schema operators of section 6.4.12

5. An argument corresponding to a stub of the form ‘ ?’ is to be construed as a Pred .

6. An argument corresponding to a stub of the form ‘ !’ is to be construed as a Pred or a Schema
according to whether the surrounding phrase is to be construed as a Pred or a Schema.

7. A phrase which can be construed both as a Pred and a Schema and not governed by rules 5
or 6 above should be construed as a Pred , unless this makes some enclosing phrase impossible
to construe.

Rule 2 above controls the resolution of the overloading in Z of the logical connectives, ∀, ∃, ∃1 , ∧, ∨,
⇒, ⇔and ¬, which are used both to construct schema expressions and to construct predicates. This
resolution is done on the basis of syntactic context only, i.e. it can be done without a knowledge of
the types of a construct and its constituents.

In some syntactic contexts where a construct formed with one of these connectives may appear,
only a truth value, i.e. a predicate, is semantically acceptable, whereas, in other contexts either
a set of bindings, i.e. a schema-as-expression, or a truth value would be acceptable, and in other
contexts a truth value is not considered to be syntactically acceptable (because standard is a first
order language).

The syntactic contexts demanding predicates are the positions where Pred occurs in SchemaBox ,
AxBox , Constraint , Conjecture and SchemaText ; the syntactic contexts permitting either predicates
or expressions are the operand positions of the logical connectives; and the contexts demanding
expressions are the operand positions of the other schema operators, the Pred which occurs in Term,
and all positions where Expr , Expr0 , Expr1 , Expr2 , Expr3 and Expr4 appear. The rule is that
the overloading of the logical connectives is to be resolved in favour of the predicate interpretation
except where so doing would force a predicate to appear in some enclosing context which demands
an expression.

As stated in rules 5 and 6 above, templates containing stubs of the form ‘ ?’ and ‘ !’ provide exceptions
to the general rule. See section 6.5.1 and 6.5.2 below for useful examples of such templates.

6.4.15 Expression

The syntax for expressions is as follows. Note that a predicate in brackets is one of the alternatives
for expressions. This is because extended Z is higher-order not first-order. In standard Z, the
predicate must take the Schema alternative of Pred4 unless the expression appears, perhaps nested
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in additional (and redundant) layers of brackets, as an immediate constituent of one of the alternatives
for Pred , Pred21 or Pred3 .

BNF

Expr = Expr1 ;

Expr0 = Expr1
| ‘µ‘, SchemaText , ‘•‘, Expr0
| ‘λ‘, SchemaText , ‘•‘, Expr0 ;
| ‘let‘, EqDef , {‘;‘ EqDef }, ‘•‘, Expr0 ;

Expr1 = Expr2
| ([Expr1 ], {Id , Exprs}, Id , [Expr1 ]) − Id ; (∗ Expr1 .A ∗)
| Expr1 , ‘×‘, Expr1 , {‘×‘, Expr1}; (∗ Expr1 .B ∗)

Expr2 = Expr3
| ‘P‘, Expr2 ;

Exprs = [Expr , {‘,‘, Expr}];

Expr3 = Expr4
| Expr3 , Expr4
| ‘θ‘, Expr4 , [Decor ];

Expr4 = VarName, [GenActuals]
| Literal
| Quotation
| ‘(‘, Pred , ‘)‘
| ‘(‘, Schema, ‘)‘, [Decor ]
| ‘(‘, ‘µ‘, SchemaText , ‘)‘
| ‘(‘, Expr , {‘,‘, Expr}, ‘)‘
| Schema
| ‘(‘, [EqDef , {‘,‘ EqDef }], ‘)‘
| ‘〈‘, [Expr , {‘,‘, Expr}], ‘〉‘
| ‘{‘, [Expr , {‘,‘, Expr}], ‘}‘ (∗ Expr4 .A ∗)
| ‘{‘, SchemaText , [‘•‘, Expr ], ‘}‘ (∗ Expr4 .B ∗)
| Expr4 , ‘.‘, VarName
| Expr4 , ‘.‘, Natural (∗ Expr4 .C ∗)
| Quotation;

GenActuals = ‘[‘, Expr , {‘,‘, Expr}, ‘]‘;

Literal = Natural | Float | Character | String ;

The third alternative for Expr4 here is part of extended Z and is not allowed in standard Z.
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The grammar for expressions is ambiguous, the ambiguities are to be resolved using the following
rules.

1. The alternative Expr1 .A is only allowed when the resulting phrase matches a template in a gen
or fun fixity paragraph in the specification. Here the phrase is said to match a template if the
template can be obtained from it by replacing each direct constituent Expr in the phrase by ‘ ’
and replacing each direct constituent Exprs by ‘...’. (In extended Z, Expr1 .A is also allowed
when the phrase matches a template in a rel fixity paragraph.)

2. The alternative Expr1 .A corresponding to a gen fixity paragraph has lower precedence that the
alternative Expr1 .B which has lower precedence than the alternative Expr1 .A corresponding
to a fun fixity paragraph. The precedence and associativity in the fixity paragraphs give the
precedence and associativity to apply for a phrase which can be interpreted in two ways using
Expr1 .A with the same sort of fixity paragraph. (In extended Z, a rel fixity paragraph is treated
as right associative with precedence 0 ). A phase which can be interpreted in two ways using
Expr1 .A and for which the relevant precedences are different but the relevant associativities
are the same is not allowed.

3. A phrase of the form {S} where S is a Name could be interpreted as a set display (Expr4 .A)
or as a set comprehension (Expr4 .B). The set display is to be preferred.

4. A phrase of the form V [S ] where V is a Name could be interpreted as a generic instanti-
ation (Expr4 .A) or as application of V to a horizontal schema (Schema4 .A). The generic
instantiation is to be preferred.

5. A phrase which can be construed both as a Schema and an Exp should be construed as an
Exp, wherever possible (this is not a source of semantic ambiguity).

6. In extended Z, the ambiguity between the fourth and fifth alternatives of Expr4 is to be resolved
in favour of the former (there is no semantic ambiguity here).

7. A token should not be treated as a floating point literal if it is preceded by the reserved
identifier ‘.‘’. I.e., the alternative Expr4 .C above is to be preferred over the production for
Float in section 6.3.

6.4.16 Names

BNF

VarName = IdDec
| ‘(‘, (([Stub1 ], {Id , Stub}, IdDec, [Stub1 ]) − IdDec), ‘)‘;

BNF

DecName = IdDec
| (([Stub1 ], {Id , Stub}, IdDec, [Stub1 ]) − IdDec)
| Quotation;

In the first alternative in both of the above productions the Id in the IdDec must not appear in any
fixity paragraph in the specification. In the second alternative the result of deleting any decoration
must make the phrase between the brackets the same as some template in some fixity paragraph in
the specification.

In the third alternative for DecName, the nested quotation must be an HOL variable or constant.
BNF

IdDec = Identifier , [Decor ];
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6.5 LANGUAGE SUPPORT LIBRARY

Certain features, such as conditional predicates and expressions, that are language constructs in
other dialects of Z can be defined in ProofPower-Z. Also, in order to enter fragments of Z while
doing proofs, some additional language features, such as casts, are desirable and these too can be
defined in the language. This section describes the library that provide these features.

6.5.1 Casts

The global variables ‘ ⊕
⊕ ’ and ‘Π ’ are defined in the library of theories which support ProofPower-

Z as if by the following paragraphs; however, they are treated specially by the parser and type checker.

Informal Z

fun ⊕
⊕

Z

[X ]
⊕
⊕ : X × P X → X

( ⊕
⊕ ) = first

Informal Z

fun Π ?

Z

[X ]
Π ? : B → B

∀x•Π x = x

‘ ⊕
⊕ ’ is an operator which acts as a type cast, i.e., it ensures that its left operand has the same

type as the elements of its second operand and it takes the same value as its left operand. This
is intended for use during proof when it is necessary to enter Z expressions which do not contain
enough information to fix the types of all their sub-expressions. For this reason, an expression of the
form pZx ⊕

⊕ sq is treated as identical with pZxq, except that during type-checking the type constraints
imposed by the above definition of ‘ ⊕

⊕ ’ are enforced.

In entering Z terms, one occasionally needs to provide a syntactic context which will force the schema
interpretation of the logical connectives. The left-hand operand of ‘ ⊕

⊕ ’ supplies such a context.
For example, pZ [x :Z] ∧ [x :Z]q is a predicate conjunction, whereas pZ([x :Z] ∧ [x :Z]) ⊕

⊕ U q is a schema
conjunction.

‘Π ’, while it acts as a prefix function from the point of view of the grammar for Z (i.e., it may be used
to form expressions taking the alternative of Expr0 above labelled Expr1 .AS ), supplies a syntactic
context forcing the predicate interpretation of the logical connectives, and forcing the type checker
to treat a schema-expression as a schema-as-declaration. For example, in pZ [x :Z] ∧ [x :Z] 6= [x :N]q,
the conjunction is necessarily a schema conjunction by the rules of section 6.4.14. One can force the
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interpretation as a logical conjunction and have the right hand-side treated as a schema-as-predicate
by writing pZΠ ([x :Z] ∧ [x :Z]) 6= Π ([x :N])q. Apart from this special interpretation during parsing
and type-checking, pZΠ xq is treated as identical with pZxq.

If for some reason, it is necessary to construct a Z term which actually has ‘ ⊕
⊕ ’ or ‘Π ’ as a

sub-term, this may be done by not using the fancy-fix notation, for example, while pZ1 ⊕
⊕ Zq is just

the same as pZ1q, pZ( ⊕
⊕ )(1 , Z)q really is an application of pZ( ⊕

⊕ )q to the pair pZ(1 ,Z)q.

6.5.2 Conditionals

Standard Z supports a conditional expression form which is defined as a higher-order operator in
ProofPower-Z: the global variable ‘if ? then ! else !’ is defined in the library of theories which
support ProofPower-Z as follows:

Z

function 0 if ? then ! else !

Z

[X ]
if ? then ! else ! : B × X × X → X

∀x , y :X •
(if true then x else y) = x

∧ (if false then x else y) = y

6.5.3 Guillemet Brackets

ProofPower-Z supports the syntax for free types in Standard Z by providing an outfix operator
¿ À. This makes the symbols “¿” and “À” act as general purpose brackets that will not be
eliminated by the type-checker. The guillemet brackets are defined as follows:

Z

function 0 ¿ ! À

Z

[X ]
¿ ! À : X → X

∀x :X • ¿xÀ = x

6.5.4 Underlined Infix Relations

An arbitrary expression can be used as an infix relation symbol in ProofPower-Z by enclosing it in
the underlining brackets, ( and ). These cause the expression to be underlined when printed. The
underlining brackets are defined as follows:
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Z

relation

Z

[X ,Y ]
: P(X × P(X × Y ) × Y )

∀x :X ; R : P(X × Y ); y : Y • x R y ⇔ (x , y) ∈ R
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