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Chapter 0 5

ABOUT THIS PUBLICATION

0.1 Purpose

This document is a tutorial on the use of ProofPower for formal reasoning about specifications in
the Z language.

The objectives of this tutorial are:

• to describe the basic principles and concepts underlying support for Z in ProofPower

• to enable the student to write simple specifications and undertake elementary proofs in Z using
ProofPower

• to enable the student to make effective use of the reference documentation

0.2 Readership

This document is intended to be among the first to be read by new users of ProofPower wishing to
use the specification language Z.

0.3 Related Publications

A bibliography is given at the end of this document. Publications relating specifically to ProofPower
include:

1. ProofPower Tutorial [6];

2. ProofPower HOL Tutorial Notes [8];

3. ProofPower Description Manual [7];

4. ProofPower Reference Manual [9];

5. ProofPower Document Preparation [5].

0.4 Area Covered

This tutorial is an introductory course on proof in Z using ProofPower which explains how Proof-
Power may be used for checking specifications and conducting proofs in Z. After working through
this tutorial, the reader should be capable of using ProofPower with Z for simple tasks, and should
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6 Chapter 0. ABOUT THIS PUBLICATION

be able to make effective use of the ProofPower documentation where necessary for approaching
more difficult problems.

This tutorial supplements the ProofPower Tutorial [6] and the ProofPower HOL Tutorial Notes [8]
with material relating to the Z language. The tutorial should enable users of ProofPower to become
familiar with the following subjects:

1. The dialect of Z supported by the ProofPower system (which we call ProofPower-Z) and its
manipulation via the metalanguage.

2. Forward proof and derived rules of inference for Z.

3. Goal directed proof, and tactics and tacticals for Z.

0.5 Prerequisites

The tutorial is not intended as an introduction to formal methods or to the language Z.

We assume a working knowledge of:

• Z as a specification language.

• Use of ProofPower as used for specification and proof in HOL.

Ideally a reader who has not attended a course should read ProofPower Tutorial [6] and work
through the exercises in ProofPower HOL Tutorial Notes [8] before beginning this tutorial.

0.6 How To Use This Tutorial

It is intended that this document will allow ProofPower users who have not attended the ProofPower
Z course to work through the course material independently.

The best way to learn about ProofPower is by doing things with it.

The two kinds of things which you can do while working through these tutorial notes are:

• Do the set exercises.

To make it easier to do the exercises the installation procedure for ProofPower results in the
establishment of a ProofPower database called ‘example_zed’, which contains the results of
executing all of this tutorial document except the material in Chapter 8 where the solutions to
the exercises may be found. To do the exercises the reader should attempt to set up his own
version of the solutions document (‘usr011S.doc’) by working interactively in a ProofPower
session using a copy of database ‘example_zed’.

This is best done using a writeable copy of the database so that you can save the database after
completing some of the exercises and then resume from that point later. This can be done as
follows:

cp $PPHOME/db/example_zed.polydb .
chmod +w example_zed.polydb
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0.7. Acknowledgements 7

Here, $PPHOME is an environment variable which should be set up to be the pathname of
the directory in which ProofPower has been installed.

If you wish to use the X interface for ProofPower, xpp, you can now start your ProofPower
session by starting X if necessary and then giving the UNIX command:

xpp -d example_zed

• Replay the illustrative material.

This is best done using the source of the tutorial OHP transparencies, usr023_slides.doc. It
can be done running on database example_zed, though you will find that some of the material
will be rejected because definitions have already been made in this database. Alternatively you
can work from a clean database (but then you may find problems if you miss out any of the
material). E.g., to work on the existing database using xpp, you might use the command:

xpp -f $PPHOME/doc/usr023_slides.doc -d example_zed

Source documents are supplied for the exercises (Chapter 7 in file usr011X.doc) and solutions (Chap-
ter 8 in file usr011S.doc).

It is best to build up your own document containing your solutions to the exercises and any exper-
iments you might wish to undertake. ProofPower does not keep a record of what you type into it,
and so if you want to do it again you will need to keep a copy of your script.

0.7 Acknowledgements

ICL gratefully acknowledges its debt to the many researchers (both academic and industrial) who
have provided intellectual capital on which ICL has drawn in the development of ProofPower.

We are particularly indebted to Mike Gordon of The University of Cambridge, for his leading role in
some of the research on which the development of ProofPower has built, and for his positive attitude
towards industrial exploitation of his work.

The ProofPower system is a proof tool for Higher Order Logic which builds upon ideas arising from
research carried out at the Universities of Cambridge and Edinburgh, and elsewhere. In particular
the logic supported by the system is (at an abstract level) identical to that implemented in the
Cambridge HOL system [1], and the paradigm adopted for implementation of proof support for the
language follows that adopted by Cambridge HOL, originating with the LCF system developed at
Edinburgh [2]. The functional language ‘Standard ML’ used both for the implementation and as
an interactive metalanguage for proof development, originates in work at Edinburgh, and has been
developed to its present state by an international group of academic and industrial researchers. The
implementation of Standard ML on which ProofPower is based was itself originally implemented by
David Matthews at the University of Cambridge, and is now commercially marketed by Abstract
Hardware Limited.

The ProofPower system also supports specification and proof in the Z language, developed at the
University of Oxford. We are therefore also indebted to the research at Oxford (and elsewhere) which
has contributed to the development of the Z language.
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Chapter 1 9

INTRODUCTION TO ProofPower-Z

1.1 Using ProofPower for Z

1.1.1 Setting Up

A ProofPower system issued with the ProofPower-Z option will be provided with more than one
database, not all of which will contain the Z support facilities. These include a database called
‘zed’ (full name ‘sun4zed.db’) will be available supporting the ProofPower-Z option, and a database
called ‘example zed’ which contains the results of executing the formal material in Chapters 1-7 of
this tutorial. This includes Chapter 7 containing the exercises but not Chapter 8 which contains the
solutions to the exercises.

For undertaking application work with ProofPower it is first necessary to set up a new database as
a child of the issued database ‘pp zed’.

This is done using ‘pp make database’ as follows:

pp_make_database -p installdir/sun4bin/pp_zed zed

Where installdir is the pathname of the directory in which ProofPower has been installed and zed is
the name to be given to the new database, for which the user may substitute a name of his choice.

ProofPower can then be invoked by the UNIX command:

pp -d databasename

Where databasename is the name given by the user to the database created in the previous step (zed
if the database was created with the command as shown above).

For the purpose of undertaking the exercises in this tutorial a special database (called ‘example
zed’) is constructed during the ProofPower installation procedure containing material which has
been pre-loaded from this document. The user should make his own copy of this database with write
access permission and use this database for doing the tutorial exercises.

Apart from selecting or setting up a database including the Z support facilities, entering and leaving
ProofPower for work in Z is the same as for work in HOL.

1.1.2 Formal Material in this Document

In this document the behaviour of ProofPower is frequently illustrated by showing how the system
responds to various inputs. In these illustrations a line input to ProofPower is shown by a vertical
line on the left, with ‘SML’ at the head of the line, thus:

SML
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10 Chapter 1. INTRODUCTION TO ProofPower-Z

‘SML’ is an acronym for standard ML, the ‘meta-language’ in which the user of ProofPower com-
municates with the system.

The output from ProofPower usually displayed on the console in response to such an input will be
marked by a vertical line on the left, thus:

ProofPower output

Sometimes we omit parts of the output, and supply ‘...’ to mark the point of such an omission.

1.1.3 Setting the Context

A ProofPower database supporting Z will also support HOL. Though the system does support mixed
language working, i.e. working at the same time with both of these languages, it is usual to work
normally with a single language. To do this smoothly the context needs to be set up correctly for
that language.

The main aspect of context which is relevant is the current theory. Associated with each theory is a
language code, and the language code of the current theory influences the behaviour of the system.

The best place in the theory hierarchy to do work in Z is in a descendant of the theories which
provide the Z ToolKit. The theory z library should therefore be a parent of any theories which the
user creates for work in Z.

SML

open theory "z library";
new theory "usr011";

Theories inherit by default the language of their parent, so any theory created while z library is the
current theory will have Z as its language.

A second important aspect of context is the proof context . Many of the facilities provided by
ProofPower work with either HOL or Z by access to information in the current proof context which
may be set by a call to set pc. A proof context should therefore be chosen which supports Z.
Suitable candidates are z language, which incorporates a knowledge of the Z language but not of
the Z ToolKit and z library , which includes knowledge of both.

SML

set pc "z library";

A further element of context of which the user should be aware is the current subgoal, when the
subgoal package has been invoked. The subgoal package keeps a record, known as the current
‘typing context’, of the types of the variables which occur freely in the current subgoal. This context
is referred to when type-checking terms entered through the HOL or Z parsers. If a subgoal relating
to an incomplete proof is left on the goal stack, then this may cause terms entered into the system to
fail to type-check if they may use of variables with types which disagree with the usage of the same
variables in the subgoal.

To clear the goal stack the command:
SML

repeat drop main goal ;
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may be used.

The command print status will display information about the current context, e.g.:

SML

print status();

ProofPower output

Current theory name: usr011 ;
Current proof context name(s): [z library ];
The subgoal package is not in use;
There is no current goal .
val it = () : unit
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THE Z LANGUAGE IN ProofPower

2.1 Introduction

ProofPower-Z is a dialect of Z which falls somewhere between that defined in the ZRM [3][4] and that
which will ultimately be defined as an ISO standard. The dialect is based on a proposal made to the
Z standard review committee in March 1992, some elements of which have since been incorporated
into the draft standard [10].

In due course we hope to bring ProofPower-Z closely in line with the ISO standard, and in particular
we would like to provide an option which will fully check specifications against that standard. For
the purpose of conducting proofs however, we anticipate that extensions will continue to be available.

2.1.1 The Structure of this Tutorial

In this and following chapters the ProofPower-Z language and its proof support is described system-
atically but informally.

The description is organised around the abstract syntax for ProofPower-Z. One section or subsection
is devoted to each constructor in the abstract syntax. Each of these subsections covers the abstract
and concrete syntax, the semantics and proof support.

The emphasis is on illustration and example rather than on formal description.

This introductory section also addresses some topics orthogonal to the following sections.

2.1.1.1 Paragraphs

Usage of the term “Paragraph” follows the literature on Z. Paragraphs form the top level constituents
of Z specifications, and correspond to declarations, definitions, or constant specifications in HOL.
These effects in HOL are often not available as object language syntactic contructs, but are effected
by the use of procedure calls in the metalanguage ProofPower-ML.

The effect of processing a paragraph in Z therefore corresponds most closely to that of executing a
metalanguage procedure in HOL. Paragraphs do not have values, but are evaluated for their side
effects, which are recorded in the ProofPower theory hierarchy.

Paragraphs in Z are formed using various other syntactic categories, including predicates, expressions,
schema-expressions, and declarations. In HOL the syntactic categories having similar roles are types
and terms.

2.1.1.2 Z Terms

In mapping Z into HOL all of the syntactic categories for Z except paragraphs are mapped into HOL
terms. It is therefore convenient at times to talk of ZTerms, even though ‘term’ is not used in the
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14 Chapter 2. THE Z LANGUAGE IN ProofPower

literature on Z, meaning a HOL term in the image of the Z to HOL mapping.

Furthermore, when dealing with Z in ProofPower at an abstract or computational level, it is conve-
nient to regard the syntactic categories predicate, expression, and schemaexpression as being com-
bined into the single category term. This is reflected by the provision of a ProofPower-ML datatype
called Z TERM which reveals the abstract structure of the Z language in these terms.

Two functions are supplied with ProofPower which enable TERM s to be constructed from their
components or broken up into their components via the datatype Z TERM :

SML

mk z term : Z TERM −> TERM ;
dest z term : TERM −> Z TERM ;

e.g., to contruct the Z predicate pZtrueq:
SML

val term true = mk z term ZTrue;

ProofPower output

val term true = pZtrueq : TERM

To construct an implication:
SML

val term imp = mk z term (Z⇒ (term true, term true));

ProofPower output

val term imp = pZtrue ⇒ trueq : TERM

To display the kind of Z construct represented by a HOL term, and the constituents of the construct:
SML

dest z term term imp;

ProofPower output

val it = Z⇒ (pZtrueq, pZtrueq) : Z TERM

SML

dest z term term true;

ProofPower output

val it = ZTrue : Z TERM

To bind the values of the constituents of a Z TERM to ML names use a pattern matching ML binding
with dest z term:

SML

val (Z⇒ (ante, concl)) = dest z term term imp;

ProofPower output

val ante = pZtrueq : TERM val concl = pZtrueq : TERM

The datatype Z TERM is described in detail below, and its structure is used as the basis for the
explanation of the Z language support in ProofPower.
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2.1.1.3 Z Types

Z is a typed language, and in ProofPower, the types of Z are mapped into types in HOL. Types in Z
are not provided with a concrete syntax, but a Z type may be described using a Z expression which
denotes a set co-extensive with the type. The function:

SML

z type of : TERM −> TERM ;

when given the HOL term representing a Z expression, returns a HOL term representing a Z expres-
sion which denotes the set of all elements of the type of the Z expression.

e.g.:
SML

z type of pZ{x ,y :N | x > y}q;

ProofPower output

val it = pZZ ↔ Zq : TERM

z type of also works on Z schema expressions and predicates:
SML

z type of pZ [x ,y :N | x > y ]q;

ProofPower output

val it = pZP [x , y : Z]q : TERM

SML

z type of pZx > yq;

ProofPower output

val it = pZBq : TERM

2.1.1.4 Quotation

As illustrated above, for many of the syntactic categories in Z, and for terms in HOL, quotation
facilities are provided in ProofPower-ML which permit phrases to be written in the concrete syntax
of Z or HOL. Such quotations, whether in HOL or in Z, evaluate (after syntax checking and type
inference) to yield HOL terms which form the internal representation of the construct. When such
terms are displayed a pretty printer is automatically invoked, which will use an appropriate concrete
syntax for displaying the term. The pretty printer is able to determine which concrete syntax is
more appropriate for displaying a term, that of Z or that of HOL.

Both in quotations and in the formatting of terms for display, mixed languages are supported. A
term may have subterms in distinct languages.

The three languages of concern for this tutorial are ProofPower-ML, ProofPower-HOL, and
ProofPower-Z. They are quoted using the quotation characters ‘ pML’, ‘ p’ and ‘ pZ ’ respectively. Quo-
tations are terminated by the character ‘ q’, irrespective of language, and may be nested. Quotations
in ML are sometimes known as “anti-quotations”. ML quotations are compiled and evaluated to
yield a value of type TERM. In addition HOL TYPEs may be quoted using ‘p:’, and may be entered
as ML expressions of type TYPE using the character sequence:

p↘SML:l

which is printed as ‘ pSML:’.
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2.1.1.5 Type Inference and Casts

For the purposes of conducting proofs in Z using ProofPower it is often necessary to enter into the
system fragments of Z in which free variables occur. These are sometimes necessary, for example,
when providing a witness for an existence proof.

When type inference takes place on a term entered with free variables the following rules apply:

• Variables with names corresponding to the names of previously declared global variables are
treated as occurrences of those global variables. They are required to have types which are
instances of the type of the global variable. Z global variables are represented in HOL as
constants.

• The subgoal package used for goal oriented or backward proof maintains a type inference
context in which the types of all the free variables in the current subgoal are held (unless flag
subgoal package ti context is set false). Free variables in terms entered by Z quotation will be
assigned the type given in the type inference context if there is one, forcing them to match free
variables in the current subgoal.

• If a free variable is not a global variable and does not appear in the type inference context,
then its type will be inferred from its context in the quotation if possible. Otherwise a new
type variable will be introduced and used for the type of the variable.

• Type variables introduced during type inference cannot be constrained to range over tuple
types or binding types in the present implementation, and therefore in places where a value of
binding or tuple type is required (e.g., before ‘.’) the type inferrer will report an error unless
the type of the tuple or binding is apparent.

In the following ‘x’ and ‘y’ are assigned type variables without demur:

SML

pZ(x ,y).2q;

ProofPower output

val it = pZ(x , y).2q : TERM

Whereas in this example, ‘t’ must be assigned a tuple type, a type variable will not suffice:

SML

pZt .2q;

ProofPower output

Type error in pZt . 2q
In a term of the form pZT .numberq, T must be a tuple
The following sub−term is not a tuple

pZt :′aq
Exception− Fail ∗ Type error [Z−Parser .62000 ] ∗ raised

• To overcome the above problem the user may supply, when necessary, additional information
in the form of type casts.

For the purpose of applying type casts the infix operator ‘ ⊕
⊕ ’ may be used to give guidance to

the type inferrer on the type of a construct.
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The constant ‘ ⊕
⊕ ’ is defined as follows:

Z

[X ]
⊕
⊕ : (X × P X ) → X

∀ x :X ; y : P X • x ⊕
⊕ y = x

When used as an infix operator ‘⊕⊕’ forces its left hand operand to be an expression, whose type
is that of the elements of the expression which is the right hand operand. However, after type
inference is complete, the term is constructed as if the constant and its right hand operand had
not been present. If it is required to generate a term which does include this constant then its
fixity status may be locally suspended by writing ‘( ⊕

⊕ )’ as a prefix operator. In this case the
constant will be treated normally.

2.1.1.6 Elided Actual Generic Parameters

Generic global variables in Z are set-generic rather than polymorphic. This means that when instan-
tiated for use, they are instantiated with values which are sets rather than types.

When actual generic parameters are elided, the type of the parameter can usually be established
by type inference, but this leaves open the choice of a particular set of that type for the actual
parameter.

The choice made by the system depends upon whether the occurrence of the generic variable is in the
paragraph defining the variable or in a later paragraph or term. In the defining paragraph, generic
parameters must be omitted, and are supplied by the system as identical with the formal parameters.

This may be seen by viewing the generic predicate subsequently extracted from such a paragraph:

SML

z get specpZ
⋂q;

ProofPower output

val it = ` [X ]({⋃[X ],
⋂

[X ]} ⊆ P P X → P X
∧ (∀ A : P P X
• ⋃

[X ] A = {x : X | ∃ S : A • x ∈ S}
∧ ⋂

[X ] A = {x : X | ∀ S : A • x ∈ S})) : THM

In this generic predicate all occurrences of ‘
⋂

’ are explicitly supplied with the formal parameter
which was taken as implicit in the original declaration.

When actual generic parameters to global generic variables are omitted in contexts other than the
defining paragraph the set supplied is the largest set of the inferred type, i.e. the set co-extensive
with that type.

2.1.1.7 U

Because of the above behaviour of the system in inferring types and actual generic parameters, a
special global variable, which we have called ‘U’, turns out to be very useful.
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18 Chapter 2. THE Z LANGUAGE IN ProofPower

‘U’ may be though of as if defined by the abbreviation definition:
Z

U[X ] =̂ X

If ‘U’ is used in some specification or expression without supplying an actual generic parameter, the
type inferrer will infer an appropriate type, and will then use for the actual parameter the set of all
elements of that type.

This is used for two main purposes. It is frequently used by the proof facilities where quantifiers
are introduced automatically. The main merit here is brevity and efficiency. The second purpose is
for expressing theorems which may be used for unconditional rewriting, since formulae universally
quantified over ‘U’ can readily be specialised for any type-correct rewrite, whereas quantification
over other expressions gives rise to proof obligations which must be discharged before specialisation
for rewriting can take place.

2.1.2 Syntactic Categories

There is only one form of quotation available for all syntactic categories in Z, encompassing predicates,
expressions, and schema expressions.

Ambiguities therefore arise. Two mechanisms are available to force interpretations other than the
default interpretation taken by the parser.

The first is the use of casts of the form value⊕⊕set , described above. The left hand operand of a cast
must be an expression or schema expression rather than a predicate, and use of a cast (even if the
right hand operand is simply ‘U’), will therefore force interpretation of the left hand operand as an
expression or schema expression (if this is possible).

The second feature is the operator Π .

Π will accept as an operand only a predicate, and acts as an identity function on predicates. It may
therefore be used to force interpretation of an expression as a predicate.

While:
SML

val schexp = pZ [x :N]q;

is interpreted as a schema expression:
SML

z type of schexp;

ProofPower output

val it = pZP [x : Z]q : TERM

SML

val predicate = pZΠ [x :N]q;

is interpreted as a schema-as-predicate:
SML

z type of predicate;

ProofPower output

val it = pZBq : TERM

When occurring at the outer level in a quotation, or in other contexts where a predicate is expected,
logical connectives are treated as propositional connectives rather than schema calculus operators.
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2.1.3 Z Terms

The definition of the ProofPower-ML datatype Z TERM is used as a guide to the syntactic structure
of ProofPower-Z in the following description of support for ProofPower-Z.

This datatype is not the type used for representing Z in HOL. Ordinary HOL terms are used for this
purpose. However, HOL terms are an abstract datatype, and for some purposes it is more convenient
to have a concrete datatype. A Z TERM is a hybrid representation in which the top level structure
has been made more visible, through the structure of the datatype, but where the consituents are
still HOL terms.

The definition of Z TERM begins:

Z TERM

datatype Z TERM =

and then continues with a definition of each of the constructors which may be used to make a
Z TERM (these may be found at the beginning of subsequent sections of this document).

A constructor definition consists of the name of a constructor function, all of which (for this datatype)
begin with “Z”. In most cases the name of the constructor is followed by a clause of the form: “of
type” where “type” is an ML type. This indicates that the constructor has a parameter and gives
the type of the parameter. Where there are in effect several parameters they must be supplied as a
tuple.

For example, a logical conjunction of two predicates is represented as a Z TERM by applying the
constructor Z∧ to a pair of arguments which are HOL terms representing the two conjuncts, e.g:

SML

val conj = Z∧ (pZtrueq, pZtrueq);

ProofPower output

val conj = Z∧ (pZtrueq, pZtrueq) : Z TERM

The structure of the datatype Z TERM therefore presents a view of the abstract syntax of Z.
Under this view all the syntactic categories are collapsed into one, though the formation of terms is
subject to well-typing conditions. To assist the reader each constructor specification is preceded by
an example of the concrete syntax of the construct, and parameter specifications are annotated with
the syntactic category which would normally be expected.

Associated with these syntactic descriptions in the following are descriptions of the facilities for
reasoning about the construct obtained, and more general descriptions of effective proof facilities
and methods covering each area of the language.

2.1.4 Definitions for Examples

Wherever sensible the examples below are drawn simply from the language, using variables (some-
times propositional variables). Sometimes global variables introduced in the Z ToolKit are used.

For the schema calculus examples however, free variables will not suffice, and the ToolKit offers no
help.

The following schema definitions are therefore provided for use in the examples:
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SML

open theory "usr011";
set pc "z library";
set flag("z type check only", false);

Z

[NAME ,DATE ]

Z

File
people : P NAME ;
age : NAME 7→ DATE

dom age = people

Z

File2
people : P NAME ;
height : NAME 7→ Z

dom height = people

Z

File3
people : P NAME

Z

FileOp
File;File ′; i?:N

2.2 Variables

2.2.1 Syntax

Z TERM

(∗ local variable pZ xq ∗)

| ZLVar of string (∗ variable name ∗)
∗ TYPE (∗ HOL type of variable ∗)
∗ TERM list (∗ generic parameters ∗)
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(∗ global variable pZ U[DATE ]q ∗)

| ZGVar of string (∗ variable name ∗)
∗ TYPE (∗ HOL type of variable ∗)
∗ TERM list (∗ generic parameters ∗)

In the literature variables in Z are either ‘local variables’ or ‘global variables’. This distinction cor-
responds fairly closely to the distinction in most logical systems between ‘variables’ and ‘constants’.
In ProofPower, Z global variables are represented by HOL constants, and only local variables are
represented by HOL variables.

2.2.2 Proof Support

Local variables are mainly used either in constructs in which they are bound (e.g. in quantification),
in which case the details of proof support may be found in the section for the relevant binding
construct. When free occurrences of local variables appear it is usually because of the skolemisation
of existential quantifiers, or the elimination of universals. In either case they then behave similarly
to global variables about which only the facts in the assumptions of the current subgoal are known.

Global variables are most often dealt with in proof by rewriting the expressions containing them
with the defining axiom for the variable, or by the use of theorems established about them by similar
means. Details of how this is achieved may be found in the chapter on Z paragraphs.

Integer and string literals are special cases of global variables whose definitions are built into the
system.

2.3 Literals

2.3.1 Syntax

Z TERM

(∗ positive integer literal pZ 34q ∗)

| ZInt of string

(∗ string literal pZ "characters"q ∗)

| ZString of string

Integer and string variables in ProofPower-Z are treated in a manner analogous to their treatment
in HOL. They are treated as if they were global variables (HOL constants) whose characterisation
is built into the system.

2.3.2 Proof Support

Proof support for numeric literals is provided primarily through the proof context for the theory
z numbers, which is incorporated in the context z library . These include conversions for evaluating
arithmetic expressions formed from literals.
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SML

PC C1 "z library" rewrite conv [] pZ543∗20q;

ProofPower output

val it = ` 543 ∗ 20 = 10860 : THM

Proof support for strings requires a modest amount of mixed language working. The conversion
z string conv converts a string literal into a sequence of character literals, however since the Z
language contains at present no character literals, so these are displayed as HOL character literals.

SML

z string conv pZ"string"q;

ProofPower output

val it = ` "string" = 〈p‘s‘q, p‘t‘q, p‘r‘q, p‘i‘q, p‘n‘q, p‘g‘q〉 : THM

Combined with the facilities for reasoning about sequences, and char eq conv which decides equa-
tions over HOL character literals, this enables equations and inequalities concerning string literals
to be solved.

2.4 Declarations

2.4.1 Syntax

Z TERM

(∗ declaration, e.g . pMLdec of pZ [x ,y :Z]qq ∗)

| ZDec of TERM list (∗ variables ∗)
∗ TERM (∗ expression ∗)

(∗ schema reference, e.g . pMLdec of pZ [File!]qq ∗)

| ZSchemaDec of TERM (∗ schema expression ∗)
∗ string (∗ decoration ∗)

(∗ declaration list , e.g . pMLdecl of pZ [x ,y :Z; File!]qq ∗)

| ZDecl of TERM list (∗ declarations ∗)

Declarations are constituents of most variable binding constructs, including the quantifiers which
appear in the predicate calculus. It is rarely necessary to enter a bare declaration using the Z parser,
and declarations are not accepted by the parser as top level constituents of a Z quotation. These
remarks apply both to declaration lists, (which are using in the variable binding constructs) and
their top level constituents, declarations and schemas as declarations.
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If it is necessary to enter any of these constructs using the Z parser, a horizontal schema expression
should be entered containing only the required declaration. ProofPower-ML functions may then be
used to extract the required declaration list or declaration from the horizontal schema. If a declaration
list is required, then the function decl of should be used, if a single declaration is required, then the
horizontal schema expression entered should contain only the one declaration, and the ML function
dec of should be used to extract the declaration.

When declaration lists or declarations are displayed using the pretty printer the same format is used,
involving an ML quotation.

SML

val dec1 = dec of pZ [x ,y :Z]q;

ProofPower output

val dec1 = pZ pMLdec of pZ [x , y : Z]qqq : TERM

The pretty printer has here introduced some extra quotation symbols, which have no effect in this
context.

SML

val dec2 = dec of pZ [File!]q;

ProofPower output

val dec2 = pZ pMLdec of pZ [File!]qqq : TERM

SML

val decl1 = decl of pZ [x ,y :Z; File!]q;

ProofPower output

val decl1 = pZ pMLdecl of pZ [x , y : Z; File!]qqq : TERM

2.4.2 Proof Support

For most uses of the system, proof support for transformation of declarations is built into the proof
support for the construct in which the declaration appears, e.g. for the logical quantifiers. Use
of the features specific to declarations is therefore unlikely to be necessary unless detailed tactical
programming is being undertaken.

In that event the basic facilities concern transformation between declarations and their implicit
predicates. This reflects the fact that the terms obtained by the above methods are semantically the
same as the predicate implicit in the declaration list or declaration. Other aspects of the semantics
of a declaration (e.g. the characteristic tuple) are present only syntactically in these terms, and are
not incorporated semantically until the declaration is used in the formation of some construct in
which the characteristic tuple is semantically significant (e.g. a lambda expression).

The conversion z dec pred conv may be used to transform a declaration into its implicit predicate:
SML

val pred2 = z dec pred conv dec1 ;

ProofPower output

val pred2 = ` pMLdec of pZ [x , y : Z]qq ⇔ {x , y} ⊆ Z : THM
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SML

val pred3 = z dec pred conv dec2 ;

ProofPower output

val pred3 = ` pMLdec of pZ [File!]qq ⇔ (File!) : THM

The conversion z decl pred conv may be used to cause a declaration list to be transformed into its
implicit predicate:

SML

val pred4 = z decl pred conv decl1 ;

ProofPower output

val pred4 = ` pMLdecl of pZ [x , y : Z; File!]qq ⇔ {x , y} ⊆ Z ∧ (File!) : THM

Conversions taking predicates into declarations are also available:

SML

val dec3 = z pred dec conv pZ{x , y} ⊆ Zq;

ProofPower output

val dec3 = ` {x , y} ⊆ Z ⇔ pMLdec of pZ [x , y : Z]qq : THM

SML

val dec3 = z pred dec conv pZΠ (File !)q;

ProofPower output

val dec3 = ` (File!) ⇔ pMLdec of pZ [(File!)]qq : THM

Note that here the use of Π was necessary in the term quotation to force File! to be interpreted as
a predicate rather than as a schema expression.
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THE Z PREDICATE CALCULUS

3.1 Propositional Connectives

Z TERM

(∗ pZ trueq ∗)

ZTrue

(∗ pZ falseq ∗)

| ZFalse

(∗ negation, e.g . pZ ¬ pq ∗)

| Z¬ of TERM (∗ predicate ∗)

(∗ conjunction, e.g . pZ p ∧ qq ∗)

| Z∧ of TERM ∗ TERM (∗ predicates ∗)

(∗ disjunction, e.g . pZ p ∨ qq ∗)

| Z∨ of TERM ∗ TERM (∗ predicates ∗)

(∗ implication, e.g . pZ p ⇒ qq ∗)

| Z⇒ of TERM ∗ TERM (∗ predicates ∗)

(∗ bi−implication, e.g . pZ p ⇔ qq ∗)

| Z⇔ of TERM ∗ TERM (∗ predicates ∗)

3.1.1 Propositional Reasoning in Z

The Z propositional connectives are mapped directly to the corresponding connective in HOL, and
propositional reasoning in ProofPower-Z behaves therefore in a manner identical to propositional
reasoning in ProofPower-HOL.

The behaviour is sensitive to the current proof context, but almost all the proof contexts behave in
the same way for propositional reasoning.
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A suitable context for propositional reasoning in Z is “z language”, and all other Z proof contexts
contain the same material for propositional reasoning.

The main methods of proof are:

1. Forward proof using elementary rules.

2. Goal oriented proof by stripping.

3. Goal oriented automatic proof.

These methods are described and illustrated in each of the following subsections.

3.1.1.1 Forward proof using elementary rules

Forward propositional reasoning is rarely required in ProofPower-Z proofs. The methods of forward
proof are illustrated below showing the use of the following rules.

These are all rules which behave identically for ProofPower-HOL and ProofPower-Z. In the case of Z
however, it should be noted that they concern only the propositional connectives, and do not operate
on the corresponding schema calculus operators.

asm rule - make or use an assumption

Given an arbitrary boolean term ‘t ’, infer ‘t ` t ’, e.g.:

SML

val x eq y = asm rule pZx=yq;

ProofPower output

val x eq y = x = y ` x = y : THM

SML

val eq sym thm = asm rule pZx=y ⇒ y=xq;

ProofPower output

val eq sym thm = x = y ⇒ y = x ` x = y ⇒ y = x : THM

⇒ elim - use an implication (modus ponens)

Given a theorem of the form ‘Ψ ` a ⇒ b’ and one of the form ‘Υ ` a’ infer ‘Ψ , Υ ` b’, e.g:

SML

val y eq x = ⇒ elim eq sym thm x eq y ;

ProofPower output

val y eq x = x = y ⇒ y = x , x = y ` y = x : THM
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⇒ intro - prove an implication

Given an arbitrary theorem ‘Ψ`a’ possibly having pZp1q as an assumption, infer the theorem
‘ Ψ\{pZp1q} ` p1 ⇒ a$′.

SML

val imp thm = ⇒ intro pZx = y ⇒ y = xq y eq x ;

ProofPower output

val imp thm = x = y ` (x = y ⇒ y = x ) ⇒ y = x : THM

SML

val imp thm2 = ⇒ intro pZx = yq imp thm;

ProofPower output

val imp thm2 = ` x = y ⇒ (x = y ⇒ y = x ) ⇒ y = x : THM

strip ∧ rule - split up a conjunction

Given an arbitrary theorem whose conclusion is a conjunction, e.g. ‘Ψ`a∧b∧c’ deliver a list
of theorems, one for each conjunct separately: ‘[Ψ`a,Ψ`b,Ψ`c]’.

SML

val [thm1 ,thm2 ,thm3 ] = strip ∧ rule (asm rule pZa ∧ b ∧ cq);

ProofPower output

val thm1 = a ∧ b ∧ c ` a : THM
val thm2 = a ∧ b ∧ c ` b : THM
val thm3 = a ∧ b ∧ c ` c : THM

list ∧ intro - create a conjunction from a list of theorems

Takes ‘[Ψ`a,Ω`b,Υ`c]’ to ‘Ψ ,Ω ,Υ`a∧b∧c’.

SML

val newconj = list ∧ intro [thm1 ,thm2 ,thm3 ];

ProofPower output

val newconj = a ∧ b ∧ c ` a ∧ b ∧ c : THM

3.1.1.2 Proof by stripping

In suitable proof contexts (which is almost all of them) proofs of propositional results can be com-
pleted using only “stripping” facilities.

In such cases a proof of the form:
SML

set goal([],pZ conjecture q);
a contr tac;

will suffice.
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e.g., first set the goal:

SML

set goal([],pZ a ∧ b ⇒ b ∧ aq);

ProofPower output

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZa ∧ b ⇒ b ∧ aq
...

Then initiate proof by contradiction by applying contr tac.

SML

a contr tac;

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val it = () : unit

In this proof method the conjecture is negated and “stripped” into the assumptions, which process
is sometimes sufficient to discharge the result without further intervention by the user. In the case
of pure propositional results this is always sufficient.

It is however instructive to undertake such proofs in a more piecemeal way, so as to get an under-
standing of how these stripping facilities work.

To achieve this a proof of the form:

SML

set goal([],pZ conjecture q);
a z strip tac; (∗ repeat as often as necessary ∗)

may be used.

e.g.:

SML

set goal([],pZ a ∧ b ⇒ b ∧ aq);

ProofPower output

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZa ∧ b ⇒ b ∧ aq
...
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SML

a z strip tac;

The current goal is an implication, which is dealt with by transferring the antecedent of the implica-
tion into the assumption list. As it is added to the assumptions the antecedent, pZa∧bq, is completely
stripped, which in this case results in it being split into two separate assumptions pZaq and pZbq.

ProofPower output

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 2 ∗) pZaq
(∗ 1 ∗) pZbq

(∗ ?` ∗) pZb ∧ aq
...

Now the conclusion of the current goal is a conjunction, and stripping results in two subgoals, one
for each conjunct.

SML

a z strip tac;

ProofPower output

Tactic produced 2 subgoals:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 2 ∗) pZaq
(∗ 1 ∗) pZbq

(∗ ?` ∗) pZaq

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 2 ∗) pZaq
(∗ 1 ∗) pZbq

(∗ ?` ∗) pZbq
...

Each of these subgoals has its conclusion among its assumptions. If no other action is possible
z strip tac will check for this condition and will discharge the subgoal if it applies.

SML

a z strip tac;
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ProofPower output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 2 ∗) pZaq
(∗ 1 ∗) pZbq

(∗ ?` ∗) pZaq
...

SML

a z strip tac;

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val it = () : unit

In such a proof, the conclusion of the current goal is stripped one step at a time. Whenever an
assumption is added to the list of assumptions in the current goal, this assumption is completely
stripped. If the original goal was completely well formed Z, (and the proof context is appropriate for
reasoning in Z) then this stripping process should result only in subgoals which are also well formed
Z. If the original subgoal was true, so will be any subgoals obtained by this stripping process, so if
an evidently false subgoal appears the original conjecture must have been false.

To get an idea of how the assumptions are being stripped a tactic is available which performs step-
by-step stripping on new assumptions before they are taken out of the conclusion.

SML

set goal([],pZ conjecture q);
a step strip tac; (∗ repeat as often as necessary ∗)

e.g.:
SML

set goal([], pZ (a ∧ b ∧ (¬a ∨ ¬b)) ⇒ falseq);

ProofPower output

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZa ∧ b ∧ (¬ a ∨ ¬ b) ⇒ falseq
...

If z strip tac were used at this point the antecendent of the implication in the conclusion of the goal
would be completely stripped into the assumptions, which would in fact solve the goal.
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step strip tac, however, performs as much stripping as possible while the antecedent is still in place
in the conclusion, creating new assumptions only when no further stripping is possible.

In this case the leftmost conjunct of the antecendent is considered completely stripped and is added
to the assumptions, while the remaining conjuncts are left for further attention.

SML

a step strip tac;

ProofPower output

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 1 ∗) pZaq

(∗ ?` ∗) pZb ∧ (¬ a ∨ ¬ b) ⇒ falseq
...

SML

a step strip tac;

The leftmost conjunct of the antecedent is again transferred to the assumptions.

ProofPower output

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 2 ∗) pZaq
(∗ 1 ∗) pZbq

(∗ ?` ∗) pZ¬ a ∨ ¬ b ⇒ falseq
...

The antecedent is now a disjunction. Stripping a disjunction into the assumptions gives rise to a
case split.

SML

a step strip tac;
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ProofPower output

Tactic produced 2 subgoals:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 2 ∗) pZaq
(∗ 1 ∗) pZbq

(∗ ?` ∗) pZ¬ b ⇒ falseq

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 2 ∗) pZaq
(∗ 1 ∗) pZbq

(∗ ?` ∗) pZ¬ a ⇒ falseq
...

The next step would attempt to strip pZ¬ aq into the assumptions. However, pZaq is already in the
assumptions and this results in the discharge of the subgoal.

SML

a step strip tac;

ProofPower output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 2 ∗) pZaq
(∗ 1 ∗) pZbq

(∗ ?` ∗) pZ¬ b ⇒ falseq
...

SML

a step strip tac;

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val it = () : unit
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3.1.1.3 Automatic Proof

An automatic proof procedure is provided for each proof context which is usually capable of solving
results reducible to the pure propositional calculus. Even when it fails it may have resulted in more
simplification than would be obtained by other methods.

SML

set goal([],pZ conjectureq);
a (prove tac[]); (∗ once only ∗)

e.g.:

SML

set goal([],pZ (a ∧ b ∧ (¬a ∨ ¬b)) ⇒ falseq);

ProofPower output

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZa ∧ b ∧ (¬ a ∨ ¬ b) ⇒ falseq
...

SML

a (prove tac[]);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val it = () : unit

If subgoals are left by prove tac then they will not normally be further progressed by repeated
application of the tactic.

prove tac should be used only when the current goal has no assumptions, or where it is expected
that prove tac can completely discharge the current goal without making use of the assumptions.

If the assumptions must be used to obtain the proof, or if there are assumptions and prove tac is
likely to leave some outstanding subgoals, then instead of prove tac, asm prove tac should be used:

SML

a (asm prove tac[]); (∗ once only ∗)

e.g.:

SML

set goal([pZ¬aq,pZ¬bq], pZ ¬(a ∨ b)q);
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ProofPower output

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 2 ∗) pZ¬ bq
(∗ 1 ∗) pZ¬ aq

(∗ ?` ∗) pZ¬ (a ∨ b)q
...

SML

a (asm prove tac[]);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val it = () : unit

If prove tac is used in these circumstances then it may fail.

If the conjecture to be proven can be completely proved by one application of prove tac then in-
vocation of the subgoal package is unnecessary. prove rule may be used to obtain the result as
follows:

SML

prove rule [] pZ (a ∧ b ∧ (¬a ∨ ¬b)) ⇒ falseq;

ProofPower output

val it = ` a ∧ b ∧ (¬ a ∨ ¬ b) ⇒ false : THM

3.2 Predicates

Z TERM

(∗ equation, e.g . pZ a = bq ∗)

| ZEq of TERM ∗ TERM (∗ expressions ∗)

(∗ membership, e.g . pZ a ∈ bq ∗)

| Z∈ of TERM ∗ TERM (∗ expressions ∗)

(∗ schema predicate, e.g . pZ Π (File ′)q ∗)

| ZSchemaPred of TERM (∗ schema expression ∗)
∗ string (∗ decoration ∗)
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At bottom there are just two kinds of predicate in Z, equations and membership assertions, though
there are a variety of ways in which these are presented in the concrete syntax.

Equations always appear in a direct literal way, but membership statements come in a variety of
concrete forms.

Where a rel fixity paragraph has been entered the actual membership sign is omitted, and the set
may be “applied” to its member as if it were a propositional function or predicate using prefix,
postfix or “fancyfix” notation, according to the details in the fixity declaration.

Finally schemas as predicates are effectively abbreviations of assertions about the membership of
theta terms in the schema expressions, the theta terms themselves being abbreviations of binding
displays.

3.2.1 Equations

3.2.1.1 Syntax

Z TERM

(∗ equation, e.g . pZ a = bq ∗)

| ZEq of TERM ∗ TERM (∗ expressions ∗)

3.2.1.2 Proof Support

Equations are exploited in proof usually by the use of the rewriting facilities, which enable equations
to be used to transform terms.

Equations are established in two main ways:

• By rewriting either or both sides of the equation until they are identical.

• By using identity criteria specific to the type of the expressions equated.

In the former case the main resource deployed will be the standard rewriting facilities.

The latter case can be further divided into cases according to the type of the expression. Types
of expressions in Z may be classified according to their outer type constructor into the following
categories:

1. Elements of Given sets

2. Sets

3. Tuples

4. Bindings

5. Elements of Free Types

Elements of given sets, unless further constraints are added, admit no opportunities for proving
equations other than by rewriting the two sides of the equation, since nothing is known about the
elements of a given set.
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Sets may be proven equal using the principle of extensionality, that two sets are equal if and only if
they have the same members. This principle is built in to the proof context z language ext :

SML

PC C1 "z language ext" rewrite conv [] pZ x = y ⊕
⊕ P Uq;

ProofPower output

val it = ` x = y ⇔ (∀ x1 : U • x1 ∈ x ⇔ x1 ∈ y) : THM

Note the need for the type cast here to ensure that the free variables have power set types; otherwise
the principle of extensionality could not be applied. Normally the cast would not be necessary
because the context would be sufficient to determine the type of the free variables.

Tuples are proven equal with an analogous principle, viz. that two tuples are equal if and only if each
of their components is equal. The well typing rules will ensure that they have the same number and
type of components. This principle, for use with tuple displays only, is built into the proof context
z language.

SML

rewrite conv [] pZ (x , y) = (v , w)q;

ProofPower output

val it = ` (x , y) = (v , w) ⇔ x = v ∧ y = w : THM

Bindings are similar to tuples, being labelled rather than unlabelled records. Two bindings are equal
iff each of their respective components are equal. The type system ensures that the names and types
of the components are the same. This principle is supported by z binding eq conv1 , which is built
into the proof context “z language” for binding displays.

SML

rewrite conv [] pZ(cn1 =̂ x , cn2 =̂ y) = (cn1 =̂ v , cn2 =̂ w)q;

ProofPower output

val it = ` (cn1 =̂ x , cn2 =̂ y) = (cn1 =̂ v , cn2 =̂ w)
⇔ x = v ∧ y = w : THM

SML

z binding eq conv1 pZx = y ⊕
⊕ [cn1 : U; cn2 : U]q;

ProofPower output

val it = ` x = y ⇔ x .cn1 = y .cn1 ∧ x .cn2 = y .cn2 : THM

Two elements of the same free type are equal under the following conditions:

1. They are formed using the same constructor (the ranges of the constructors are disjoint)

2. Where the constructor is a function the values supplied to this function are the same (the
constructor functions are injections).

An equality principle may be derived from the axiom which introduces the free type. Automatic
derivation of this principle is not yet supported.
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3.2.2 Membership Assertions

3.2.2.1 Syntax

Z TERM

(∗ membership, e.g . pZ a ∈ bq ∗)

| Z∈ of TERM ∗ TERM (∗ expressions ∗)

The forms of concrete syntax are varied by the use of rel fixity paragraphs (see section 5.2.1).

The following examples illustrate these variations.

Without a rel fixity paragraph in force prerel in the example below is treated as a local variable
denoting a function, and the quoted term as a function application.

SML

dest z term pZprerel xq;

ProofPower output

val it = ZApp (pZprerelq, pZxq) : Z TERM

The following paragraph attaches prefix status to the name prerel (even though this has not been
declared as a global variable).

Z

rel prerel

Which causes the same Z quotation to be interpreted as a set membership assertion:

SML

dest z term pZprerel xq;

ProofPower output

val it = Z∈ (pZxq, pZ(prerel )q) : Z TERM

Note that to parse the term consisting only of the local variable prerel once the fixity clause has
been introduced, the name must be supplied with an underscore and enclosed in brackets.

Z

rel postrel

SML

dest z term pZx postrelq;

ProofPower output

val it = Z∈ (pZxq, pZ( postrel)q) : Z TERM

Z

rel infixrel
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SML

dest z term pZx infixrel yq;

ProofPower output

val it = Z∈ (pZ(x , y)q, pZ( infixrel )q) : Z TERM

The above example shows that where there is more than one argument these are made into a tuple.
Z

rel rellb ... relrb

SML

dest z term pZrellb 1 ,2 ,3 relrbq;

ProofPower output

val it = Z∈ (pZ〈1 , 2 , 3 〉q, pZ(rellb ... relrb)q) : Z TERM

The use of “...” in a rel fixity clause indicates a position at which a sequence display is required with
the sequence brackets omitted. This is interpreted as asserting the membership of the sequence in
the set.

3.2.2.2 Proof Support

Reasoning about membership is in general specific to the construct of which membership is asserted.
Throughout this tutorial constructs in the Z language which yield sets are normally characterised
by identifying the conditions for membership of the resulting set. Each of these characterisations
provides a method for proving a result about set membership from more elementary results (possibly
also about membership, but in this case usually of simpler expressions).

A general convention is adopted for the naming of conversions concerning set membership, and they
may therefore be sought in the keyword index for the Reference Manual. Such conversions have
names of the form z ∈ something conv , where something is the name of the kind of construct of
which membership is asserted. In the case of constructs which form part of the Z language most
of these conversion are built into the proof context “z language” and so their names need not be
invoked or remembered for most purposes. Where global variables are defined in the Z ToolKit
which are functions yielding sets, then the relevant theory will normally contain a theorem giving a
characterisation by membership of the resulting sets, and a proof context will normally be supplied
which invokes this characterisation.

3.2.3 Schemas as Predicates

3.2.3.1 Syntax

An arbitrary expression denoting a set of bindings, together with an optional decoration, may be
used as a predicate.
Z TERM

(∗ schema predicate, e.g . pZ Π (File ′)q ∗)

| ZSchemaPred of TERM (∗ schema expression ∗)
∗ string (∗ decoration ∗)
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3.2.3.2 Proof Support

Schemas as predicates are eliminated in favour of membership statements by z schema pred conv
(which is built into rewriting in proof context z language) or by rewriting with z ′schema pred def :

SML

pure rewrite conv [z ′schema pred def ]pZ Π [x :X ]q;

ProofPower output

val it = ` [x : X ] ⇔ (x =̂ x ) ∈ [x : X ] : THM

Normally the membership statement will be eliminated immediately, as follows:
SML

rewrite conv []pZ Π [x :X ]q;

ProofPower output

val it = ` [x : X ] ⇔ x ∈ X : THM

3.2.4 Propositional Equational Reasoning

Special facilities are provided for solving problems which lie in the domain of the propositional
calculus augmented by equality. These facilities are not specific to Z but work in Z because in this
region the mapping from Z to HOL is completely transparent.

The facilities provided consist of decision procedures for problems in this domain provided through
prove tac and prove rule in proof contexts prop eq and prop eq pair .

e.g.:
SML

push pc "prop eq";
prove rule [] pZa=b ∧ c=d ∧ e=f ⇒ b=e ⇒ c=a ⇒ d=f q;
pop pc();

ProofPower output

...

val it = ` a = b ∧ c = d ∧ e = f ⇒ b = e ⇒ c = a ⇒ d = f : ...
THM

PC T1 may be used to invoke this decision procedure during a tactical proof in the following way:
SML

set goal([], pZa=b ⇒ b=c ⇒ c=aq);
a (PC T1 "prop eq" prove tac[]);

ProofPower output

...

Tactic produced 0 subgoals:
Current and main goal achieved
...
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This method avoids the need to change the current proof context. (PC T and PC T1 are general
facilities for invoking a tactic in a specific proof context)

prop eq pair is a similar proof context which extends the domain or reasoning of prop eq to include
a knowledge of HOL ordered pairs, however, since HOL pairs are distinct from Z pairs (2-tuples)
this does not work for Z.

3.3 Quantifiers

Z TERM

(∗ universal quantification, pZ ∀ File | p • qq ∗)

| Z∀ of TERM (∗ declaration ∗)
∗ TERM ∗ TERM (∗ predicates ∗)

(∗ existential quantification, pZ ∃ File | p • qq ∗)

| Z∃ of TERM (∗ declaration ∗)
∗ TERM ∗ TERM (∗ predicates ∗)

(∗ unique existential quantification, pZ ∃1 File | p • qq ∗)

| Z∃1 of TERM (∗ declaration ∗)
∗ TERM ∗ TERM (∗ predicates ∗)

3.3.1 Universal Quantification

3.3.1.1 Syntax

Z TERM

(∗ universal quantification, pZ ∀ File | p • qq ∗)

| Z∀ of TERM (∗ declaration ∗)
∗ TERM ∗ TERM (∗ predicates ∗)

3.3.1.2 Proof Support

For forward proof the rules z ∀ elim and z ∀ intro are the key facilities.

In its most simple case, where the signature of the declaration part of the universal quantifier contains
only a single component name, a value for that variable is supplied:

SML

z plus order thm;

ProofPower output

val it = ` ∀ i : U
• ∀ j , k : U
• j + i = i + j ∧ (i + j ) + k = i + j + k
∧ j + i + k = i + j + k : THM
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SML

z ∀ elim pZ43q z plus order thm;

ProofPower output

val it = ` 43 ∈ U ∧ true
⇒ (∀ j , k : U
• j + 43 = 43 + j
∧ (43 + j ) + k = 43 + j + k
∧ j + 43 + k = 43 + j + k) : THM

Where the signature has more than one component it is necessary to supply a binding which has the
same signature as the outermost quantifier. Any expression of the right type will do:

SML

z plus assoc thm;

ProofPower output

val it = ` ∀ i , j , k : U • (i + j ) + k = i + j + k : THM

SML

z ∀ elim pZexp ⊕
⊕ [i , j , k : Z]q z plus assoc thm;

ProofPower output

val it = ` {exp.i , exp.j , exp.k} ⊆ U ∧ true
⇒ (exp.i + exp.j ) + exp.k = exp.i + exp.j + exp.k : THM

In the above case projections were used when substituting the value into the new conclusion. If an
explicit binding is supplied (which is the most common case) these projections are not required:

SML

z ∀ elim pZ(i =̂ 2 , j =̂ 3 , k =̂ 4 )q z plus assoc thm;

ProofPower output

val it = ` {2 , 3 , 4} ⊆ U ∧ true ⇒ (2 + 3 ) + 4 = 2 + 3 + 4 : THM

z ∀ intro1 is a left inverse of z ∀ elim, and may be used to introduce universal quantifiers.
SML

z ∀ elim pZ(i =̂ v⊕⊕Z, j =̂ w⊕
⊕Z, k =̂ x⊕⊕Z)q z plus assoc thm;

ProofPower output

val it = ` {v , w , x} ⊆ U ∧ true ⇒ (v + w) + x = v + w + x : THM

SML

z ∀ intro1 it ;

ProofPower output

val it = ` ∀ v , w , x : U • (v + w) + x = v + w + x : THM
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Because of the complications caused by the predicate implicit in the declarations, forward proof using
these rules is much less convenient than using more powerful facilities.

For example, if the result required is (2 + 3 ) + 4 = 2 + 3 + 4 , then this can most conveniently be
proven using prove rule in an appropriate proof context.

e.g.

SML

prove rule [z plus assoc thm] pZ(2 + 3 ) + 4 = 2 + 3 + 4q;

ProofPower output

val it = ` (2 + 3 ) + 4 = 2 + 3 + 4 : THM

In goal oriented proof a wider range of facilities provide support for universal quantification.

Elimination of an outer universal quantifier in the conclusion of the current goal is accomplished by
z ∀ tac.

SML

set goal([],pZ∀ x :X • x = xq);

ProofPower output

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZ∀ x : X • x = xq
...

SML

a z ∀ tac;

ProofPower output

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZx ∈ X ∧ true ⇒ x = xq
...

Exactly the same effect for universal quantifiers is obtained by using z strip tac.

Universal assumptions may be specialised in a number of ways.

The tactics z spec asm tac or z spec nth asm tac may be used in a manner analogous to z ∀ elim
to specialise an assumption which is unversally quantified. The result of the specialisation is stripped
into the assumptions, and the original assumption also remains in the assumptions.

SML

set goal([], pZ [X ] (∀x :X • P x ⇒ Q x ) ⇒ (∀x :X • P x ) ⇒ (∀x :X • Q x )q);
a (REPEAT z strip tac);
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ProofPower output

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 3 ∗) pZ∀ x : X • P x ⇒ Q xq
(∗ 2 ∗) pZ∀ x : X • P xq
(∗ 1 ∗) pZx ∈ X q

(∗ ?` ∗) pZQ xq
...

SML

a (z spec nth asm tac 3 pZxq);

ProofPower output

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 4 ∗) pZ∀ x : X • P x ⇒ Q xq
(∗ 3 ∗) pZ∀ x : X • P xq
(∗ 2 ∗) pZx ∈ X q
(∗ 1 ∗) pZ¬ P xq

(∗ ?` ∗) pZQ xq
...

The effect of stripping pZP x ⇒ Q xq into the assumptions here has been to cause a case split into
the two cases pZQ xq and pZ¬ P xq of which the first case was discharged automatically because the
new assumption matches the conclusion of the goal.

One more specialisation completes the proof:

SML

a (z spec nth asm tac 3 pZxq);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val it = () : unit

Specialisation of assumption 3 has created a new assumption which contradicts an existing assump-
tion, and therefore discharges the goal.
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3.3.2 Existential Quantification

3.3.2.1 Syntax

Z TERM

(∗ existential quantification, pZ ∃ File | p • qq ∗)

| Z∃ of TERM (∗ declaration ∗)
∗ TERM ∗ TERM (∗ predicates ∗)

3.3.2.2 Proof Support

Support for existential quantifiers in goal oriented proof consists in three main features.

Firstly, existentials entered into the assumptions are skolemised automatically in all Z proof contexts.

SML

set goal([],pZ(∃ x :Z • x=2 ∧ x=3 ) ⇒ falseq);
a z strip tac;

ProofPower output

...

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 3 ∗) pZx ∈ Zq
(∗ 2 ∗) pZx = 2q
(∗ 1 ∗) pZx = 3q

(∗ ?` ∗) pZ falseq
...

Secondly when stripping a negated existential conclusion the negation is pushed over the quantifier,
resulting in a universal quantifier, which will be eliminated in the next stage of stripping. The uni-
versal quantifier will be elimated on the next step of stripping so the effect is similar to skolemisation.

SML

set goal([],pZ¬(∃ x :Z • x=2 ∧ x=3 )q);
a z strip tac;

ProofPower output

...

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZ∀ x : Z • ¬ (x = 2 ∧ x = 3 )q
...

SML

a z strip tac;
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ProofPower output

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZx ∈ Z ∧ true ⇒ ¬ (x = 2 ∧ x = 3 )q
...

Finally, the user may attempt to prove a goal with an existential conclusion by offering a witness.
This is done using z ∃ tac.

SML

set merge pcs ["z library"];
set goal([],pZ∃ x :Z • x∗x = 4q);
a (z ∃ tac pZ2q);

ProofPower output

...

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZ2 ∈ Z ∧ true ∧ 2 ∗ 2 = 4q
...

z ∃ tac is parameterised in a manner similar to z ∀ elim, accepting a binding (display or expression)
in general, and other types of value where the binding would have only one component.

The proof can be completed in this proof context by rewriting.
SML

a (rewrite tac[]);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val it = () : unit

WARNING: z ∃ tac could send you down a blind alley. A true existential goal can be transformed
into a false subgoal if the wrong witness is identified.

In some cases it may be more convenient effectively to offer several alternative witnesses which work
in difference circumstances. This is analogous to instantiating the same universal assumption in
more than one way. If this is desired then instead of using z ∃ tac the user should switch to proof
by contradiction by using contr tac. This will transfer the negated existential conclusion into the
assumptions, which will appear as a universally quantified assumption after the negation has been
pushed in. The assumption may then be specialised as often as necessary.

3.3.3 Unique Existential Quantification

3.3.3.1 Syntax

Z TERM

(∗ unique existential quantification, pZ ∃1 File | p • qq ∗)

| Z∃1 of TERM (∗ declaration ∗)
∗ TERM ∗ TERM (∗ predicates ∗)
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3.3.3.2 Proof Support

Support for unique existential quantifiers in goal oriented proof consists in two main features.

Firstly, unique existentials entered into the assumptions are skolemised automatically in all Z proof
contexts. A unique existential results in a universal assumption which expresses the uniqueness
condition.

SML

set goal([],pZ(∃1 x :Z • x=2 ∧ x=3 ) ⇒ falseq);
a z strip tac;

ProofPower output

...

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 4 ∗) pZx ∈ Zq
(∗ 3 ∗) pZx = 2q
(∗ 2 ∗) pZx = 3q
(∗ 1 ∗) pZ∀ x ′ : Z | true ∧ x ′ = 2 ∧ x ′ = 3 • x ′ = xq

(∗ ?` ∗) pZ falseq
...

Secondly when stripping a negated unique existential conclusion the negation is pushed over the
existential quantifier, resulting in a universal quantifier, which will be eliminated in the next stage
of stripping. The universal quantifier will be elimated on the next step of stripping so the effect is
similar to skolemisation.

SML

set goal([],pZ¬(∃1 x :Z • x=2 ∨ x=3 )q);
a z strip tac;

ProofPower output

...

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZ∀ x : Z
| true ∧ (x = 2 ∨ x = 3 )
• ¬
(∀ x ′ : Z | true ∧ (x ′ = 2 ∨ x ′ = 3 ) • x ′ = x )q

...

A unique existential conclusion may be handled by proof by contradiction using contr tac.

3.4 Predicate Calculus Proofs

Several methods of proof may be adopted for results in the predicate calculus (or for dealing with
the predicate calculus aspects of other proofs):
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They are:

1. Proof by stripping.

2. Automatic proof.

3. Proof by the “two tactic method”.

4. Proof using forward chaining.

The first two methods, which are complete for propositional logic may fail to solve some results in
the pure predicate calculus. For these a simple and systematic and simple approach known as the
‘two-tactic’ approach will suffice, or alternatively forward chaining, may suffice to obtain the result
with less effort on the part of the user.

These two new methods are described in each of the following subsections, and then a selection of
examples are provided which may be attempted by any of the above methods.

3.4.1 The Two Tactic Method

Proof by stripping is effective in discharging a goal only where the reasoning is mainly propositional.
Where the proof will depend either on appropriate specialisation of universally quantified assump-
tions, or on the choice of a suitable witness for proving an existential conclusion stripping will not
suffice.

The two tactic method injects into the proof process based on stripping, user directed specialisation
of universal assumptions. In the context of a proof by contradiction (in which existential conclusions
will not arise) this is sufficient to discharge any goals which are reduced to reasoning in the pure first
order predicate calculus.

The method is therefore as follows:
SML

set goal([],conjecture);
a contr tac; (∗ once suffices ∗)
a (z spec asm tac pZ assumption q pZ valueq); (∗ as many times as necessary ∗)

The choice of universal assumptions and of the values to specialise them to depends on the user
identifying one or more specialisations which will result in the derivation of a contradiction from the
assumptions.

3.4.2 Forward Chaining

Forward chaining facilities often provide an easier way of achieving proofs requiring instantiation of
universal assumptions.

When a proof fails to be solved by contr tac alone, all asm fc tac may be capable progressing the
proof.

all asm fc tac will attempt to instantiate universally quantified assumptions which are effectively
implications to values which will enable forward inference to take place. This is achieved by matching
the antecedent of the implication against other assumptions.

If contr tac leaves goals outstanding, try progressing the proof using:
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SML

a (all asm fc tac[]); (∗ once or twice ∗)

This may lead to the derivation of a contradiction with less effort from the user, however it will
sometimes fail to solve a goal (and often generate a lot of irrelevant new asumptions). If forward
chaining is not heading anywhere useful, revert to the two tactic method.

A related tactic suitable for use with Z is all fc tac, which chains forward using implications derived
from a list of theorems supplied as an argument, matching these against the assumptions, using the
assumptions to match the antecedents of the implications.

fc tac and asm fc tac are also useful (see ProofPower Reference Manual [9]), but these are liable to
introduce HOL universals, leaving a mixed language subgoal.

3.4.3 Predicate Calculus with Equality

The above facilities primarily support reasoning in the pure predicate calculus, and a proof using
these facilities may fail by failing to exploit equations which could be used to complete the proof.

A variety of additional proof facilities are available to make use of equations.

1. asm rewrite tac

may be used to cause equations in the assumptions to rewrite the conclusion of a subgoal. This
may sometimes prove sufficient to complete a proof.

2. eq sym asm tac or eq sym nth asm tac

may be used to turn round an equation in an assumption which is the wrong way round to
achieve the required rewrite.

3. var elim asm tac or var elim nth asm tac

may be used to completely eliminate from the subgoal occurrences of a variable which appears
on one side of an equation in the specified assumption. This causes the conclusion and all
the other assumptions to be rewritten with the equation, eliminating occurrences of it. The
assumption will then be discarded. These tactics will work whichever way round the equation
appears in the assumption.

4. all var elim asm tac, all var elim asm tac1

automatically eliminate from the assumptions all equations of a sufficiently simple kind, by
rewriting the subgoal with them and then discarding the equations. They avoid eliminating
equations where this might cause a looping rewrite. The first variant only eliminates equations
where both sides are either variables or constants, the second variant will eliminate any equation
of which one side is a variable which does not appear on the other side.

3.4.4 Rewriting

Rewriting using any collection of theorems from which equations are derivable is supported by the
standard HOL rewriting facilities (rewrite tac etc.), using Z specific preprocessing of the rewrite
theorems (supplied in the Z proof contexts).

Many Z paragraphs give rise to predicates which can be used without further preparation by these
standard rewriting facilities. This applies to given sets, abbreviation definitions and schema defini-
tions.
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Axiomatic descriptions, and generic axiomatic descriptions will result in equations which are likely
to be effectively conditional. In such cases it is necessary to establish the applicability of the rewrite
before it can be undertaken.

One way of achieving this is by forward chaining using the conditional equation after establishing
the relevant condition. The relevant conditions are usually the membership assertions corresponding
to the declaration part of the outer universal quantifier on the theorem to be used for rewriting.

For example, to prove the goal:

SML

set pc "z library";
set goal([], pZ ∀ i :N • abs i = abs ∼iq);

using theorem z abs thm (which is : ` ∀ i : N • abs i = i ∧ abs ∼ i = i). First strip the goal:

SML

a (REPEAT z strip tac);

ProofPower output

...

(∗ 1 ∗) pZ0 ≤ iq

(∗ ?` ∗) pZabs i = abs ∼ iq
...

Then forward chain using the theorem and rewrite with the results:

SML

a (ALL FC T rewrite tac [z abs thm]);
save pop thm "abs eq abs minus thm";

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved

In more complicated cases the proof of the required conditions may be non-trivial, often because
reasoning about membership of expressions formed with function application is involved. This topic
is further discussed in section 4.1.1.
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Z EXPRESSIONS

4.1 Expressions

Z TERM

(∗ function application: pZ f xq ∗)

| ZApp of TERM ∗ TERM (∗ expressions ∗)

(∗ lambda expression: pZ λ x :N | x > 3 • x ∗ x q ∗)

| Zλ of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ expression ∗)

(∗ definite description: pZ µ x :N | x ∗ x = 4 • xq ∗)

| Zµ of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ expression ∗)

(∗ power set construction: pZ P Zq ∗)

| ZP of TERM (∗ expression ∗)

(∗ set display : pZ {1 ,2 ,3 ,4} q ∗)

| ZSetd of TYPE (∗ HOL type of elements ∗)
∗ TERM list (∗ expressions ∗)

(∗ set abstraction: pZ {x :Z | 1≤x≤4 • x∗x} q∗)

| ZSeta of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ expression ∗)

(∗ tuple: pZ (1 ,2 ,3 ,4 ) q ∗)

| ZTuple of TERM list (∗ expressions ∗)
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(∗ tuple element selection: pZ (x ,y).2q ∗)

| ZSelt of TERM (∗ expression ∗)
∗ int (∗ element number ∗)

(∗ cartesian product : pZ (Z × N) q ∗)

| Z× of TERM list (∗ expressions ∗)

(∗ binding display : pZ (people =̂ {}, age =̂ {}) q ∗)

| ZBinding of ( string (∗ component name ∗)
∗ TERM (∗ component value ∗)
) list

(∗ theta term: pZ θFile ′ q ∗)

| Zθ of TERM (∗ schema expression ∗)
∗ string (∗ decoration ∗)

(∗ binding component selection: pZ (a =̂ 1 , b =̂ "4").b q ∗)

| ZSels of TERM (∗ expression ∗)
∗ string (∗ component name ∗)

(∗ horizontal schema expression: pZ [x :Z | x>0 ] q ∗)

| Zs of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)

(∗ sequence display : pZ 〈1 ,2 ,3 〉q ∗)

| Z〈〉 of TYPE (∗ type of elements ∗)
∗ TERM list (∗ values of elements ∗)

The main new feature here is the binding display, which is important in expressing convenient proof
rules.

Though absent from the first edition of the ZRM [3], binding displays have been introduced into the
second edition [4] for exposition, but not as part of Z, and have now appeared in the draft standard,
with two distinct concrete syntaxes neither of which corresponds to our proposal.

Bag displays and relational image, which were once treated as part of the language, can now be
introduced in the library using appropriate fixity declarations.
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4.1.1 Function Application

4.1.1.1 Syntax

Z TERM

(∗ function application: pZ f xq ∗)

| ZApp of TERM ∗ TERM (∗ expressions ∗)

Function application may also use infix, postfix or “fancyfix” notation if an appropriate fixity para-
graph has been entered. In such cases the arguments are effectively the name of the global variable
and the second is the term consisting of a tuple of arguments.

SML

dest z term pZ f aq;

ProofPower output

val it = ZApp (pZ f q, pZaq) : Z TERM

SML

dest z term pZa ∪ bq;

ProofPower output

val it = ZApp (pZ( ∪ )q, pZ(a, b)q) : Z TERM

In the following case the fixity declaration for bag brackets required a single argument which is a
sequence (with sequence brackets elided in the concrete syntax of the bag display).

SML

dest z term pZ [[1 ,2 ,3 ,2 ,1 ]]q;

ProofPower output

val it = ZApp (pZ([[ ... ]])q, pZ〈1 , 2 , 3 , 2 , 1 〉q) : Z TERM

4.1.1.2 Proof Support

Applications of lambda abstractions can be eliminated by (conditional) β-conversion.

SML

z β conv pZ (λ x :X | P x • f x ) aq;

ProofPower output

val it = P a, a ∈ X ` (λ x : X | P x • f x ) a = f a : THM

Applications may also be eliminated in favour of definite descriptions (though this is not particularly
helpful).

SML

z app conv pZ f aq;
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ProofPower output

val it = ` f a = µ f a : U | (a, f a) ∈ f • f a : THM

More commonly function applications are eliminated by rewriting with the definition of the relevant
function.

Reasoning at a low level, z app eq tac may be used to reduce an equation involving an application
to sufficient conditions for its truth, in terms of the membership of the function, e.g.:

SML

set goal([],pZ f a = vq);
a z app eq tac;

ProofPower output

...

(∗ ?` ∗) pZ(∀ f a : U | (a, f a) ∈ f • f a = v) ∧ (a, v) ∈ f q
...

The first conjunct of this result is needed to ensure that f is functional at a (i.e. maps a to only one
value). In the case that f is known to be a function, the theorem z fun app clauses may be used
with forward chaining, avoiding the need to prove that f is functional at a.

val z fun app clauses =
` ∀ f : U; x : U; y : U; X : U; Y : U
• (f ∈ X 7→ Y

∨ f ∈ X 7½ Y
∨ f ∈ X 7³ Y
∨ f ∈ X → Y
∨ f ∈ X ½ Y
∨ f ∈ X ³ Y
∨ f ∈ X ³½ Y )

∧ (x , y) ∈ f
⇒ f x = y : THM

In this case the result (a, v) ∈ f would have to be proven and added to the assumptions before
undertaking the forward chaining, e.g.:

SML

drop main goal();
set goal([], pZ f ∈ N ³ Z ⇒ (4 , ∼45 ) ∈ f ⇒ f 4 = ∼45q);
a (REPEAT z strip tac);

ProofPower output

...

(∗ 2 ∗) pZ f ∈ N ³ Zq
(∗ 1 ∗) pZ(4 , ∼ 45 ) ∈ f q

(∗ ?` ∗) pZ f 4 = ∼ 45q
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SML

a (all fc tac [z fun app clauses]);
pop thm();

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved

A common problem is to have to establish that the value of some expression formed by application
falls within some particular set. This is often needed to establish the conditions necessary for use of
a rewriting equation on the expression.

In these circumstances the theorem z fun ∈ clauses may be used:

val z fun ∈ clauses = ` ∀ f : U; x : U; X : U; Y : U
• ((f ∈ X → Y ∨ f ∈ X ½ Y ∨ f ∈ X ³ Y ∨ f ∈ X ³½ Y ) ∧ x ∈ X

⇒ f x ∈ Y )
∧ ((f ∈ X 7→ Y ∨ f ∈ X 7½ Y ∨ f ∈ X 7³ Y ) ∧ x ∈ dom f

⇒ f x ∈ Y ) : THM

The claim that a global variable is a member of a function space will often be obtained from the
specification of the constant (as part of the predicate implicit in the declaration part of the specifi-
cation). Where the function is an expression the result is likely to have been established by forward
inference using similar methods.

SML

set goal([], pZ [X ](∀ b: bag X • count [X ] b ∈ X → N)q);
a (REPEAT z strip tac);

ProofPower output

...

(∗ 1 ∗) pZb ∈ bag X q

(∗ ?` ∗) pZcount [X ] b ∈ X → Nq
...

We need the fact about count which is found in its defining declaration instantiated to X to make
the required inference. This is added to the assumptions as follows:

SML

a (strip asm tac (z gen pred elim [pZX q] (z get spec pZcountq)));

ProofPower output

...

(∗ 3 ∗) pZb ∈ bag X q
(∗ 2 ∗) pZcount [X ] ∈ bag X ³½ X → Nq
(∗ 1 ∗) pZ∀ x : X ; B : bag X • count [X ] B = (λ x : X • 0 ) ⊕ Bq

(∗ ?` ∗) pZcount [X ] b ∈ X → Nq
...
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Assumption 1 is spurious but harmless. Next we forward chain using the theorem z fun ∈ clauses,
which suffices to discharge the goal.

SML

a (all fc tac [z fun ∈ clauses]);
save pop thm "bag lemma1";

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
...

Care is sometimes needed when proving membership lemmas which require intermediate results
which involve constructs such as cartesian products, since most proof contexts will eliminate these.

SML

set goal([],pZ [X ](∀ b,c: bag X • (( ] )[X ](b, c)) ∈ bag X )q);
a (REPEAT strip tac);
a (strip asm tac (z gen pred elim [pZX q] (z get spec pZ( ] )q)));

ProofPower output

...

(∗ 4 ∗) pZb ∈ bag X q
(∗ 3 ∗) pZc ∈ bag X q
(∗ 2 ∗) pZ( ] )[X ] ∈ (bag X ) × (bag X ) → bag X q
(∗ 1 ∗) pZ∀ B , C : bag X ; x : X

• count (( ] )[X ] (B , C )) x = count B x + count C xq

(∗ ?` ∗) pZ( ] )[X ] (b, c) ∈ bag X q
...

Here the assumption (b,c) ∈ (bag X ) × (bag X ) is needed to enable the required forward chaining,
but the obvious methods of obtaining this, e.g.:

SML

a (lemma tac pZ(b,c) ∈ (bag X ) × (bag X )q THEN1 contr tac);

have no effect since the lemma is broken up as it is added to the assumptions. This break-up can be
inhibited as follows:

SML

a (LEMMA T pZ(b,c) ∈ (bag X ) × (bag X )q asm tac THEN1 contr tac);

ProofPower output

...

(∗ 1 ∗) pZ(b, c) ∈ (bag X ) × (bag X )q

(∗ ?` ∗) pZ( ] )[X ] (b, c) ∈ bag X q
...
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where asm tac is used instead of the default strip asm tac for processing the new assumption. Now
the forward chaining will work.

SML

a (all fc tac [z fun ∈ clauses]);
save pop thm "bag lemma2";

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
...

4.1.2 Lambda Abstraction

4.1.2.1 Syntax

Z TERM

(∗ lambda expression pZ λ x :N | x > 3 • x ∗ x q ∗)

| Zλ of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ expression ∗)

4.1.2.2 Proof Support

λ-abstractions when applied to arguments may be eliminated by z β conv (see 4.1.1).

Assertions about membership of λ-abstractions may be directly eliminated.

SML

rewrite conv [] pZz ∈ (λ x :X | P x • f x )q;

ProofPower output

val it = ` z ∈ λ x : X | P x • f x ⇔ z .1 ∈ X ∧ P z .1 ∧ f z .1 = z .2 : THM

Since λ-abstractions denote sets they may also be eliminated in favour of set comprehensions using
z λ conv .

SML

z λ conv pZλ x :X | P x • f xq;

ProofPower output

val it = ` (λ x : X | P x • f x ) = {x : X | P x • (x , f x )} : THM
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4.1.3 Definite Description

4.1.3.1 Syntax

Z TERM

(∗ definite description pZ µ x :N | x ∗ x = 4 • xq ∗)

| Zµ of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ expression ∗)

4.1.3.2 Proof Support

Definite descriptions may be eliminated using z µ rule.

SML

z µ rule pZ µ x :X | P • yq;

ProofPower output

val it = ` ∀ x ′ : U
• (∀ x : X | P • y = x ′) ∧ (∃ x : X | P • y = x ′)
⇒ (µ x : X | P • y) = x ′ : THM

4.1.4 Let Expression

4.1.4.1 Syntax

Z TERM

(∗ let expression pZ let x =̂ 9 • (x , x+x ) q ∗)
| ZLet

of (string ∗ TERM ) list (∗ local definitions ∗)
∗ TERM (∗ expression ∗)

4.1.4.2 Proof Support

Let expressions may be expanded using z let conv .

SML

z let conv pZ let x =̂ 9 • (x , x + x ) q;

ProofPower output

val it = `
(let x =̂ 9 • (x , x + x )) = (9 , 9 + 9 ) : THM
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4.1.5 The Power Set

4.1.5.1 Syntax

Z TERM

(∗ power set construction, pZ P Zq ∗)

| ZP of TERM (∗ expression ∗)

4.1.5.2 Proof Support

Membership statements concerning power sets may be eliminated using z ∈ P conv , or by rewriting
in proof context z language ext .

SML

PC C1 "z language ext" rewrite conv [] pZ z ∈ P yq;

ProofPower output

val it = ` z ∈ P y ⇔ (∀ x1 : U • x1 ∈ z ⇒ x1 ∈ y) : THM

4.1.6 Set Displays

4.1.6.1 Syntax

Z TERM

(∗ set display , pZ {1 ,2 ,3 ,4} q ∗)

| ZSetd of TYPE (∗ HOL type of elements ∗)
∗ TERM list (∗ expressions ∗)

4.1.6.2 Proof Support

Membership statements sets displays may be eliminated using z ∈ setd conv , or by rewriting in
proof context z language.

SML

rewrite conv [] pZ z ∈ {1 ,2 ,3 ,4 ,5}q;

ProofPower output

val it = ` z ∈ {1 , 2 , 3 , 4 , 5} ⇔
z = 1 ∨ z = 2 ∨ z = 3 ∨ z = 4 ∨ z = 5 : THM
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4.1.7 Set Abstractions

4.1.7.1 Syntax

Z TERM

(∗ set abstraction, pZ {x :Z | 1≤x≤4 • x∗x} q∗)

| ZSeta of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ expression ∗)

4.1.7.2 Proof Support

Statements about membership of set abstractions may be eliminated using z ∈ seta conv , or by
rewriting in proof context z language.

A simple abstraction results in straightforward substitution into the body of the abstraction:
SML

rewrite conv [] pZ 9 ∈ {x :N | x < 12}q;

ProofPower output

val it = ` 9 ∈ {x : N | x < 12} ⇔ 9 ∈ N ∧ 9 < 12 : THM

Where the signature is more complex tuple projections are introduced:
SML

rewrite conv []pZ z ∈ {x , y :N | x < y}q;

ProofPower output

val it = ` z ∈ {x , y : N | x < y}
⇔ (z .1 ∈ N ∧ z .2 ∈ N) ∧ z ∈ ( < ) : THM

Where membership is asserted of a tuple the projections are undertaken automatically.
SML

rewrite conv []pZ (v ,w) ∈ {x , y :N | x < y}q;

ProofPower output

val it = ` (v , w) ∈ {x , y : N | x < y}
⇔ (v ∈ N ∧ w ∈ N) ∧ v < w : THM

In the general case introduction of an existential is necessary, though this is avoided whenever
possible.

SML

rewrite conv []pZ z ∈ {x , y :N | x < y • x ∗ y − x}q;

ProofPower Output

val it = ` z ∈ {x , y : N | x < y • x ∗ y − x}
⇔ (∃ x , y : N | x < y • x ∗ y − x = z ) :THM
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4.1.8 Tuple Displays

4.1.8.1 Syntax

Z TERM

(∗ tuple, pZ (1 ,2 ,3 ,4 ) q ∗)

| ZTuple of TERM list (∗ expressions ∗)

Note that n−tuples for n > 2 are not iterated pairs, i.e. pZ(1 , (2 , 3 ))q is not the same as pZ(1 , 2 , 3 )q
(and doesn’t have the same type either).

4.1.8.2 Proof Support

Two tuple displays are equal iff each of their respective components are equal. This fact is built into
the proof context z language both for rewriting and stripping assumptions or conclusions.

SML

rewrite conv [] pZ(x ,y) = (a,b)q;

ProofPower output

val it = ` (x , y) = (a, b) ⇔ x = a ∧ y = b : THM

4.1.9 Tuple Element Selection

4.1.9.1 Syntax

Z TERM

(∗ tuple element selection, pZ (x ,y).2q ∗)

| ZSelt of TERM (∗ expression ∗)
∗ int (∗ element number ∗)

4.1.9.2 Proof Support

Conversions to effect projection from tuple displays are also built into proof context z language.

SML

rewrite conv [] pZ (x ,y).1q;

ProofPower output

val it = ` (x , y).1 = x : THM
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4.1.10 Cartesian Products

4.1.10.1 Syntax

Z TERM

(∗ cartesian product , pZ (Z × N) q ∗)

| Z× of TERM list (∗ expressions ∗)

Note that the n-ary cartesian products for n > 2 are not formed by iteration of the binary cartesian
product.

4.1.10.2 Proof Support

The membership conversion for n-ary cartesian products is z ∈ × conv which is built into proof
context z language.

SML

rewrite conv [] pZ (a, b, c) ∈ (x × y × z )q;

ProofPower output

val it = ` (a, b, c) ∈ x × y × z
⇔ a ∈ x ∧ b ∈ y ∧ c ∈ z : THM

Cartesian products may also be converted into set abstractions using z × conv .

SML

z × conv pZ (x × y × z )q;

ProofPower output

val it = ` x × y × z = {t1 : x ; t2 : y ; t3 : z} : THM

Extensional proof contexts incorporate an extensional understanding of equality of cartesian prod-
ucts:

SML

PC C1 "z language ext"
rewrite conv [] pZ (x × y × z ) = (x ′ × y ′ × z ′)q;

ProofPower output

val it = ` x × y × z = x ′ × y ′ × z ′

⇔ (∀ x1 : U; x2 : U; x3 : U
• x1 ∈ x ∧ x2 ∈ y ∧ x3 ∈ z
⇔ x1 ∈ x ′ ∧ x2 ∈ y ′ ∧ x3 ∈ z ′) : THM

Such an equation can also be demonstrated by rewriting if each of the respective components can
be proven equal, however this is not a necessary condition for the equality (since any single empty
component set will render the cartesian product empty).
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4.1.11 Binding Displays

4.1.11.1 Syntax

Z TERM

(∗ binding pZ (people =̂ {}, age =̂ {}) q ∗)

| ZBinding of ( string (∗ component name ∗)
∗ TERM (∗ component value ∗)
) list

4.1.11.2 Proof Support

Two binding displays are equal iff each of their respective components are equal. This fact is built
into the proof context z language for rewriting and for stripping assumptions and conclusions.

SML

rewrite conv [] pZ (x =̂ a, y =̂ b) = (y =̂ d , x =̂ c)q;

ProofPower output

val it = ` (x =̂ a, y =̂ b) = (x =̂ c, y =̂ d) ⇔ a = c ∧ b = d : THM

4.1.12 Theta Terms

4.1.12.1 Syntax

Z TERM

(∗ theta term pZ θFile ′ q ∗)

| Zθ of TERM (∗ schema expression ∗)
∗ string (∗ decoration ∗)

The extended syntax allows arbitrary expressions of appropriate type in place of the schema reference
usually required.

4.1.12.2 Proof Support

Theta terms may be though of as abbreviations for explicit binding constructions. Rewriting with
z ′θ def will reveal the underlying binding construction:

SML

rewrite conv [z ′θ def ] pZ θFile ′q;

ProofPower output

val it = ` θFile ′ = (age =̂ age ′, people =̂ people ′) : THM

Alternatively z θ conv may be used to secure the same effect:
SML

z θ conv pZ θFile ′q;

ProofPower output

val it = ` θFile ′ = (age =̂ age ′, people =̂ people ′) : THM

In most respects θ-terms are treated in the same way as binding displays.
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4.1.13 Binding Component Selection

4.1.13.1 Syntax

Z TERM

(∗ binding component selection pZ (a =̂ 1 , b =̂ "4").b q ∗)

| ZSels of TERM (∗ expression ∗)
∗ string (∗ component name ∗)

The s here and in the following is entered into the source document as:

gs

The ‘subscript-shift character’, g, here may be obtained from the palette of mathematical symbols
or typed directly (as Meta+tab under SunView, or as Meta+d when using xpp).

4.1.13.2 Proof Support

Projection from binding displays is built in to proof context z language.
SML

rewrite conv [] pZ (x =̂ a, y =̂ b).yq;

ProofPower output

val it = ` (x =̂ a, y =̂ b).y = b : THM

Projection from theta terms is also built in to proof context z language.
SML

rewrite conv [] pZ (θFile ′).ageq;

ProofPower output

val it = ` (θFile ′).age = age ′ : THM

4.1.14 Horizontal Schemas

4.1.14.1 Syntax

Z TERM

(∗ horizontal schema expression: pZ [x :Z | x>0 ] q ∗)

| Zs of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)

4.1.14.2 Proof Support

The basic rule for horizontal schemas is the conversion z ∈ horiz schema conv1 , which is built into
the standard rewrites for proof context z language.
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SML

rewrite conv []pZz ∈ [x :Z;y :N]q;

ProofPower output

val it = ` z ∈ [x : Z; y : N]
⇔ z .x ∈ Z ∧ z .y ∈ N : THM

Where a binding display or theta term is used the selections take place automatically.
SML

rewrite conv []pZ(x =̂ a, y =̂ b) ∈ [x :Z;y :N]q;

ProofPower output

val it = ` (x =̂ a, y =̂ b) ∈ [x : Z; y : N]
⇔ a ∈ Z ∧ b ∈ N : THM

4.1.15 Sequence Displays

4.1.15.1 Syntax

Z TERM

(∗ sequence display : pZ 〈1 ,2 ,3 〉q ∗)

| Z〈〉 of TYPE (∗ type of elements ∗)
∗ TERM list (∗ values of elements ∗)

4.1.15.2 Proof Support

The basic rules for sequence displays are the conversion z 〈〉 conv and z ∈ 〈〉 conv , which differ
only in that the latter will trigger only for membership assertions. z ∈ 〈〉 conv is built into the
standard rewrites for proof context z language.

SML

z 〈〉 conv pZ〈a,b,c〉q;

ProofPower output

val it = ` 〈a, b, c〉 = {(1 , a), (2 , b), (3 , c)} : THM

In the context of a membership assertion, rewriting in the proof context z language performs the
same elimination:

SML

once rewrite conv []pZz ∈ 〈a,b,c〉q;

ProofPower output

val it = ` z ∈ 〈a, b, c〉 ⇔
z ∈ {(1 , a), (2 , b), (3 , c)} : THM

Which (without the “once”) is further reduced as follows:
SML

rewrite conv []pZz ∈ 〈a,b,c〉q;

ProofPower output

val it = ` z ∈ 〈a, b, c〉 ⇔
z = (1 , a) ∨ z = (2 , b) ∨ z = (3 , c) : THM
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4.2 Schema Expressions

Z TERM

(∗ schema negation: pZ(¬ File)⊕⊕Uq ∗)

| Z¬s of TERM (∗ schema expression ∗)

(∗ schema conjunction: pZ(File ∧ File2 )⊕⊕Uq ∗)

| Z∧s of TERM ∗ TERM (∗ schema expressions ∗)

(∗ schema disjunction: pZ(File ∨ File2 )⊕⊕Uq ∗)

| Z∨s of TERM ∗ TERM (∗ schema expressions ∗)

(∗ schema implication pZ(File ⇒ File2 )⊕⊕Uq ∗)

| Z⇒s of TERM ∗ TERM (∗ schema expressions ∗)

(∗ schema equivalence: pZ(File ⇔ File2 )⊕⊕Uq ∗)

| Z⇔s of TERM ∗ TERM (∗ schema expressions ∗)

(∗ schema existential : pZ(∃ File3 | people = {} • File2 )⊕⊕Uq ∗)

| Z∃s of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ schema expression ∗)

(∗ schema unique existential : pZ(∃1 File3 | people = {} • File2 )⊕⊕Uq ∗)

| Z∃1s of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ schema expression ∗)

(∗ schema universal : pZ(∀ File3 | people = {} • File2 )⊕⊕Uq ∗)

| Z∀s of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ schema expression ∗)

(∗ decoration: pZ File ′′q ∗)

| ZDecors of TERM (∗ schema expression ∗)
∗ string (∗ decoration ∗)
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(∗ pre−condition: pZ pre FileOpq ∗)

| ZPres of TERM (∗ schema expression ∗)

(∗ schema hiding : pZ FileOp \s (age, i?)q ∗)

| ZHides of TERM (∗ schema expression ∗)
∗ string list (∗ component names ∗)

(∗ schema renaming : pZFile [aged/age, input/i?]q ∗)

| ZRenames of TERM (∗ schema expression ∗)
∗ (string ∗ string) list(∗ rename list ∗)

(∗ schema projection: pZFileOp ¹s Fileq∗)

| Z¹s of TERM ∗ TERM (∗ schema expressions ∗)

(∗ schema composition: pZ∆File o
9s ∆Fileq ∗)

| Zo
9s of TERM ∗ TERM (∗ schema expressions ∗)

(∗ delta operation: pZ∆Fileq ∗)

| Z∆s of TERM (∗ schema expression ∗)

(∗ Ξ operation: pZΞFileq ∗)

| ZΞs of TERM (∗ schema expression ∗)
;

Note here that though the logical operators have been overloaded, at present the system does not
support the overloading of other schema operators which clash with names in the Z ToolKit. For
these operators (o

9s , ¹s , \s), the name subscripted with s has been used for the schema operator.

4.2.1 Schema Negation

4.2.1.1 Syntax

Z TERM

(∗ schema negation pZ(¬ File)⊕⊕Uq ∗)

| Z¬s of TERM (∗ schema expression ∗)

A negation occurring at the outermost level in a term quotation is interpreted as a logical negation
rather than a schema negation, unless a cast is applied.
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4.2.1.2 Proof Support

A binding is an element of the schema negation of a schema iff it is not an element of the schema.

This rule is captured by the conversion z ∈ ¬s conv , which is built into the standard rewrites for
proof context z language.

SML

rewrite conv []pZz ∈ (¬ File)q;

ProofPower output

val it = ` z ∈ (¬ File) ⇔ ¬ z ∈ File : THM

4.2.2 Schema Conjunction

4.2.2.1 Syntax

Z TERM

(∗ schema conjunction: pZ(File ∧ File2 )⊕⊕Uq ∗)

| Z∧s of TERM ∗ TERM (∗ schema expressions ∗)

The two operands must be schema expressions with compatible types.

A conjunction occurring at the outermost level in a term quotation is interpreted as a logical con-
junction rather than a schema conjunction, unless a cast is applied.

4.2.2.2 Proof Support

A binding is an element of the schema conjunction of two schemas iff both the projections of the
binding to the signatures of the operands are elements of the corresponding operand schemas.

This rule is captured by the conversion z ∈ ∧s conv , which is built into the standard rewrites for
proof context z language.

SML

rewrite conv [] pZz ∈ (File ∧ File2 )q;

ProofPower output

val it = ` z ∈ (File ∧ File2 )
⇔ (age =̂ z .age, people =̂ z .people) ∈ File
∧ (height =̂ z .height , people =̂ z .people) ∈ File2 : THM

4.2.3 Schema Disjunction

4.2.3.1 Syntax

Z TERM

(∗ schema disjunction: pZ(File ∨ File2 )⊕⊕Uq ∗)

| Z∨s of TERM ∗ TERM (∗ schema expressions ∗)
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The two operands must be schema expressions with compatible types.

A disjunction occurring at the outermost level in a term quotation is interpreted as a logical disjunc-
tion rather than a schema disjunction, unless a cast is applied.

4.2.3.2 Proof Support

A binding (of appropriate type) is an element of the schema disjunction of two schemas iff either of
the projections of the binding to the signatures of the operands are elements of the corresponding
operand schemas.

This rule is captured by the conversion z ∈ ∨s conv , which is built into the standard rewrites for
proof context z language.

SML

rewrite conv [] pZz ∈ (File ∨ File2 )q;

ProofPower output

val it = ` z ∈ (File ∨ File2 )
⇔ (age =̂ z .age, people =̂ z .people) ∈ File
∨ (height =̂ z .height , people =̂ z .people) ∈ File2 : THM

4.2.4 Schema Implication

4.2.4.1 Syntax

Z TERM

(∗ schema implication pZ(File ⇒ File2 )⊕⊕Uq ∗)

| Z⇒s of TERM ∗ TERM (∗ schema expressions ∗)

The two operands must be schema expressions with compatible types.

An implication occurring at the outermost level in a term quotation is interpreted as a logical
implication rather than a schema implication, unless a cast is applied.

4.2.4.2 Proof Support

A binding (of appropriate type) is an element of the schema implication of two schemas iff whenever
the projection of the binding to the signature of the first operand is an element of the corresponding
operand schemas, the projections of the binding to the signature of the second operand is also an
element of the second operand schema.

This rule is captured by the conversion z ∈ ⇒s conv , which is built into the standard rewrites for
proof context z language.

SML

rewrite conv [] pZz ∈ (File ⇒ File2 )q;

ProofPower output

val it = ` z ∈ (File ⇒ File2 )
⇔ (age =̂ z .age, people =̂ z .people) ∈ File
⇒ (height =̂ z .height , people =̂ z .people) ∈ File2 : THM
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4.2.5 Schema Equivalence

4.2.5.1 Syntax

Z TERM

(∗ schema equivalence: pZ(File ⇔ File2 )⊕⊕Uq ∗)

| Z⇔s of TERM ∗ TERM (∗ schema expressions ∗)

The two operands must be schema expressions with compatible types.

An equivalence occurring at the outermost level in a term quotation is interpreted as a logical
equivalence rather than a schema equivalence, unless a cast is applied.

4.2.5.2 Proof Support

A binding (of appropriate type) is an element of the schema equivalence of two schemas iff the
projection of the binding to the signature of the first operand is an element of the corresponding
operand schema iff the projection of the binding to the signature of the second operand is an element
of the second operand schema.

This rule is captured by the conversion z ∈ ⇔s conv , which is built into the standard rewrites for
proof context z language.

SML

rewrite conv []pZz ∈ (File ⇔ File2 )q;

ProofPower output

val it = ` z ∈ (File ⇔ File2 )
⇔ (age =̂ z .age, people =̂ z .people) ∈ File
⇔ (height =̂ z .height , people =̂ z .people) ∈ File2 : THM

4.2.6 Schema Existential

4.2.6.1 Syntax

Z TERM

(∗ schema existential : pZ(∃ File3 | people = {} • File2 )⊕⊕Uq ∗)

| Z∃s of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ schema expression ∗)

The last operand must be a schema expressions with type compatible with the signature of the
declaration. The signature of the declaration part must be contained in the signature of the body.

An existential occurring at the outermost level in a term quotation is interpreted as a logical exis-
tential rather than a schema existential, unless a cast is applied.
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4.2.6.2 Proof Support

The basic rule for schema existentials is the conversion z ∈ ∃s conv , which is built into the standard
rewrites for proof context z language.

SML

rewrite conv []pZz ∈ (∃ File3 | people = {} • File2 )q;

ProofPower output

val it = ` z ∈ (∃ File3 | people = {} • File2 )
⇔ (∃ x1 : U
• ((people =̂ x1 .people) ∈ File3
∧ x1 .people = {})
∧ (height =̂ z .height , people =̂ x1 .people) ∈ File2 ) : THM

4.2.7 Schema Unique Existence

4.2.7.1 Syntax

Z TERM

(∗ schema unique existential : pZ(∃1 File3 | people = {} • File2 )⊕⊕Uq ∗)

| Z∃1s of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ schema expression ∗)

The last operand must be a schema expressions with type compatible with the signature of the
declaration. The signature of the declaration part must be contained in the signature of the body.

A unique existential occurring at the outermost level in a term quotation is interpreted as a logical
existential rather than a schema existential, unless a cast is applied.

4.2.7.2 Proof Support

The basic rule for schema existentials is the conversion z ∈ ∃1 s conv , which is built into the standard
rewrites for proof context z language.

SML

rewrite conv []pZz ∈ (∃1 File3 | people = {} • File2 )q;

ProofPower output

val it = ` z ∈ (∃1 File3 | people = {} • File2 )
⇔ (∃1 x1 : U
• ((people =̂ x1 .people) ∈ File3
∧ x1 .people = {})
∧ (height =̂ z .height , people =̂ x1 .people) ∈ File2 ) : THM
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4.2.8 Schema Universal

4.2.8.1 Syntax

Z TERM

(∗ schema universal : pZ(∀ File3 | people = {} • File2 )⊕⊕Uq ∗)

| Z∀s of TERM (∗ declaration ∗)
∗ TERM (∗ predicate ∗)
∗ TERM (∗ schema expression ∗)

The last operand must be a schema expressions with type compatible with the signature of the
declaration. The signature of the declaration part must be contained in the signature of the body.

A universal occurring at the outermost level in a term quotation is interpreted as a logical universal
rather than a schema universal, unless a cast is applied.

4.2.8.2 Proof Support

The basic rule for schema universals is the conversion z ∈ ∀s conv , which is built into the standard
rewrites for proof context z language.

SML

rewrite conv []pZz ∈ (∀ File3 | people = {} • File2 )q;

ProofPower output

val it = ` z ∈ (∀ File3 | people = {} • File2 )
⇔ (∀ x1 : U
• (people =̂ x1 .people) ∈ File3 ∧ x1 .people = {}
⇒ (height =̂ z .height , people =̂ x1 .people) ∈ File2 ) : THM

4.2.9 Decoration

4.2.9.1 Syntax

Z TERM

(∗ decoration: pZ File ′′q ∗)

| ZDecors of TERM (∗ schema expression ∗)
∗ string (∗ decoration ∗)

4.2.9.2 Proof Support

The operation of decoration is extensionally characterised by z ∈ decs conv which is built into the
proof context z language.

SML

rewrite conv []pZz ∈ File ′′q;

ProofPower output

val it = ` z ∈ (File ′′) ⇔ (age =̂ z .age ′′, people =̂ z .people ′′) ∈ File : THM
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4.2.10 Pre-Condition

4.2.10.1 Syntax

Z TERM

(∗ pre−condition: pZ pre FileOpq ∗)

| ZPres of TERM (∗ schema expression ∗)

4.2.10.2 Proof Support

The operation of forming a pre-condition is extensionally characterised by z ∈ pres conv which is
built into the proof context z language.

SML

once rewrite conv []pZz ∈ (pre FileOp)q;

ProofPower output

val it = ` z ∈ (pre FileOp) ⇔
z ∈ [age : U; i? : U; people : U

| ∃ age ′ : U; people ′ : U • FileOp] : THM

Normally the membership of the horizontal schema thus introduced would be immediately eliminated.
Where a binding display or theta term is used selections are eliminated.

SML

rewrite conv []pZ(age =̂ age, i? =̂ i?, people =̂ people) ∈ (pre FileOp)q;

ProofPower output

val it = ` (age =̂ age, i? =̂ i?, people =̂ people) ∈ (pre FileOp)
⇔ (∃ age ′ : U; people ′ : U • FileOp) : THM

4.2.11 Schema Hiding

4.2.11.1 Syntax

Z TERM

(∗ schema hiding : pZ FileOp \s (age, i?)q ∗)

| ZHides of TERM (∗ schema expression ∗)
∗ string list (∗ component names ∗)

This is entered into the source document as:

pZ FileOp \gs (age, i?)q
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4.2.11.2 Proof Support

This is characterised by z ∈ hides conv which is built into the proof context z language.

SML

once rewrite conv []pZz ∈ (File \s (age))q;

ProofPower output

val it = ` z ∈ (File \s (age)) ⇔ z ∈ [people : U | ∃ age : U • File] : THM

Normally further membership eliminations, and possibly selection eliminations, will take place:

SML

rewrite conv []pZ(people =̂ people) ∈ (File \s (age))q;

ProofPower output

val it = ` (people =̂ people) ∈ (File \s (age)) ⇔ (∃ age : U • File) : THM

4.2.12 Schema Renaming

4.2.12.1 Syntax

Z TERM

(∗ schema renaming : pZFile [aged/age, input/i?]q ∗)

| ZRenames of TERM (∗ schema expression ∗)
∗ (string ∗ string) list(∗ rename list ∗)

4.2.12.2 Proof Support

Schema renaming is extensionally characterised by z ∈ renames conv which is built into the proof
context z language.

SML

once rewrite conv []pZz ∈ File[aged/age]q;

ProofPower output

val it = ` z ∈ (File [aged/age]) ⇔
(age =̂ z .aged , people =̂ z .people) ∈ File : THM

Normally further membership eliminations, and possibly selection eliminations, will take place:

SML

rewrite conv []pZ(aged =̂ age, people =̂ people) ∈ File[aged/age]q;

ProofPower output

val it = ` (aged =̂ age, people =̂ people) ∈ (File [aged/age]) ⇔ File : THM
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4.2.13 Schema Projection

4.2.13.1 Syntax

Z TERM

(∗ schema projection: pZFileOp ¹s Fileq∗)

| Z¹s of TERM ∗ TERM (∗ schema expressions ∗)

4.2.13.2 Proof Support

Schema projection is extensionally characterised by z ∈ ¹s conv , which is built into proof context
z language.

SML

once rewrite conv []pZz ∈ (FileOp ¹s File)q;

ProofPower output

val it = ` z ∈ (FileOp ¹s File)
⇔ z ∈ ((FileOp ∧ File) \s (age ′, i?, people ′)) : THM

Normally further membership eliminations, and possibly selection eliminations, will take place:

SML

rewrite conv []pZ(age =̂ age, people =̂ people) ∈ (FileOp ¹s File)q;

ProofPower output

val it = ` (age =̂ age, people =̂ people) ∈ (FileOp ¹s File)
⇔ (∃ age ′ : U; i? : U; people ′ : U • FileOp ∧ File) : THM

4.2.14 Schema Composition

4.2.14.1 Syntax

Z TERM

(∗ schema composition: pZFileOp o
9s FileOpq ∗)

| Zo
9s of TERM ∗ TERM (∗ schema expressions ∗)

4.2.14.2 Proof Support

Schema projection is extensionally characterised by z ∈ o
9s conv , which is built into proof context

z language.

SML

once rewrite conv []pZz ∈ (FileOp o
9s FileOp)q;
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ProofPower output

val it = ` z ∈ (FileOp o
9s FileOp)

⇔ z
∈ [age : U; i? : U; people : U; age ′ : U; people ′ : U
| ∃ x1 : U; x2 : U
• (age =̂ age, age ′ =̂ x1 , i? =̂ i?, people =̂ people, people ′ =̂ x2 )

∈ FileOp
∧ (age =̂ x1 , age ′ =̂ age ′, i? =̂ i?, people =̂ x2 ,

people ′ =̂ people ′)
∈ FileOp] : THM

Normally further membership eliminations, and possibly selection eliminations, will take place:
SML

rewrite conv []pZz ∈ (FileOp o
9s FileOp)q;

ProofPower output

val it = ` z ∈ (FileOp o
9s FileOp)

⇔ (∃ x1 : U; x2 : U
• (age =̂ z .age, age ′ =̂ x1 , i? =̂ z .i?, people =̂ z .people, people ′ =̂ x2 )

∈ FileOp
∧ (age =̂ x1 , age ′ =̂ z .age ′, i? =̂ z .i?, people =̂ x2 ,

people ′ =̂ z .people ′)
∈ FileOp) : THM

4.2.15 ∆

4.2.15.1 Syntax

Z TERM

(∗ delta operation: pZ∆Fileq ∗)

| Z∆s of TERM (∗ schema expression ∗)

Delta is currently supplied in ProofPower-Z as a schema operator rather than a convention.

4.2.15.2 Proof Support

Delta is extensionally characterised by z ∈ ∆s conv , which is built into proof context z language.
SML

once rewrite conv []pZz ∈ (∆File)q;

ProofPower output

val it = ` z ∈ (∆ File) ⇔ z ∈ [File; File ′] : THM

Normally further membership eliminations, and possibly selection eliminations, will take place:
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SML

rewrite conv []pZz ∈ (∆File)q;

ProofPower output

val it = ` z ∈ (∆ File)
⇔ (age =̂ z .age, people =̂ z .people) ∈ File
∧ (age =̂ z .age ′, people =̂ z .people ′) ∈ File : THM

4.2.16 Ξ

4.2.16.1 Syntax

Z TERM

(∗ Ξ operation: pZΞFileq ∗)

| ZΞs of TERM (∗ schema expression ∗)

Rather than a convention, ProofPower-Z currently provides an operator.

4.2.16.2 Proof Support

This operation is extensionally characterised by z ∈ Ξ s conv , which is built into proof context
z language.

SML

once rewrite conv []pZz ∈ (ΞFile)q;

ProofPower output

val it = ` z ∈ (Ξ File) ⇔ z ∈ [File; File ′ | θFile = θFile ′] : THM

Normally further membership eliminations, and possibly selection eliminations, will take place:

SML

rewrite conv []pZz ∈ (ΞFile)q;

ProofPower output

val it = ` z ∈ (Ξ File)
⇔ ((age =̂ z .age, people =̂ z .people) ∈ File
∧ (age =̂ z .age ′, people =̂ z .people ′) ∈ File)
∧ z .age = z .age ′

∧ z .people = z .people ′ : THM
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Z PARAGRAPHS

5.1 Introduction

• Fixity declaration

• Given set definition

• Structured set definition

• Axiomatic definition

• Constraint

• Generic definition

• Abbreviation definition

• Schema boxes

5.1.1 Syntax

Unlike lower level constructs in the Z language, such as predicates and expressions, paragraphs are
not represented as HOL terms, though predicates arising from the paragraphs are represented as
terms.

Paragraphs in Z are mapped to the facilities in HOL for introducing new constants and types.
Consequently, they are not entered using the Z term quotes ‘ pZ ’ and ‘ q’, and they are not to be
found in the structure of the datatype Z TERM .

In the following description of Z paragraphs in ProofPower the syntax sections show how these
paragraphs are rendered in the source documents, and omit any details of abstract syntax.

In general Z paragraphs are entered in documents using one are other of the paragraph introduction
symbols, sZ or sZAX , at the beginning of a new line, and are terminated with the character ¥
on its own on a line. The characters s, ¥ may be obtained from the palette of extended characters
or typed directly (as Meta+‘(’ and Meta+‘)’). However in some cases (schemas, and generics) the
characters used to form the relevant boxes suffice to introduce the paragraphs.

5.1.2 Paragraph Processing Modes and Flags

There are several different modes of processing Z paragraphs which are controlled by flags.

• Type-check-only Mode

If the flag z type check only is set to true then only type checking of Z paragraphs is performed.
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This makes the response faster, and permits greater flexibility in amending paragraphs. This
mode is suitable for use while developing specifications prior to undertaking any proof work.

In type-check-only mode the definitions of global variables are not saved, only their types.
This makes it possible to change the definitions without reprocessing all subsequent definitions.
No diagnostics are given in type-check-only mode if a global variable is redefined, though a
diagnostic still arises if a new type is entered twice. This facility is only available in theories
which have no children.

When a global variable is redefined global variables depending on it are not re-checked, and
so it is desirable to re-check the specification as a whole when the changes are complete. If
it is required to reason about a specification which has been entered in type-check-only mode
then the specification will have to be re-processed with z type check only set false. This would
normally be done by extracting the specification from the source document using docsml and
loading it using use file.

• Axiomatic Mode

If the flag z use axioms is set to true (and z type check only is set to false) then axiomatic
descriptions and free-type descriptions are introduced using axioms.

• Conservative Mode

If both the above flags are set false then all Z axiomatic descriptions are introduced using the
ProofPower new specification facility, i.e. by conservative extension.

Consistency proof obligations, unless discharged automatically, will have to be discharged by
the user.

In a future release it is hoped that free-types will also be supported by conservative extension.

5.2 Paragraphs

5.2.1 Fixity Declarations

The fixity paragraphs currently supported by ProofPower generalise a facility required to avoid
special treatment to constants introduced in the Z-ToolKit such as relational image and bag brackets.
This more general facility has been proposed for inclusion in the standard under development[10].

Fixity declarations may be entered for:

• functions, e.g.:

Z

fun 10 twice

Z

fun select ... from

• generics, e.g.:

Z

gen swap
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• relations, e.g.:

Z

rel is even

In each of these cases:

• The first word is a keyword indicating the kind of fixity declaration involved, which must be
fun, gen or rel .

• The next element is an optional numeric value, which is the precedence of the name or template.
This is not permitted in a rel fixity paragraph.

• The final part of the declaration is a template, showing the form of the ‘name’ and the position
and kind of the parameters.

– ‘ ’ is a place for a parameter

– ‘...’ is a place for a sequence of parameters (with sequence brackets elided)

Where a name or template is declared using a ‘fun’ fixity paragraph three possible methods of
subsequent use are possible.

Firstly, the template may be used in exactly the form used in the fixity declaration in the defining
declaration of a global or local variable.

Secondly, within the scope of such a declaration or as a free variable, the template may be applied
by substituting expressions in place of the formal parameter markers in the template. In this case
the resulting expression is interpreted as a function application, where the variable whose name is
the template is applied to a tuple formed from the actual arguments.

Finally the template may be used verbatim as an expression, if enclosed in brackets. This is necessary
if the template is declared as a generic global variable and it is necessary to supply actual generic
parameters rather than accept the set of all elements of the type inferred by the type inferrer.

Where a name or template is declared using a ‘gen’ fixity paragraph the forms of use are similar to
those described for ‘fun’ fixity paragraphs above except that:

• the expressions substituted for the formal parameter markers must be sets (the formal param-
eter may not be ‘...’).

• the expression is interpreted as an instance of the generic rather than an application of the
variable.

Where a name or template is declared using a ‘rel’ fixity paragraph the forms of use are similar to
those for ‘fun’ fixity paragraph except that the variable represented by the name or template must
denote a set, and the expression involving use of this name or template will be interpreted as a set
membership assertion (provided expressions are supplied in place of the formal parameter markers).

Fixity clauses can be deleted only by deleting the theory they are contained in.
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5.2.2 Given Sets

5.2.2.1 Syntax

Given sets are introduced as a list of names enclosed in square brackets. Typed in as:

sZ
[G1 , G2 ]
¥

The printed form is:

Z

[G1 , G2 ]

5.2.2.2 Proof Support

Each given set causes the introduction of a new type and a new global variable known to be the set
of all elements of that type.

The specification of the given set may be retrieved as follows:

SML

val G1 def = z get spec pZG1q;

ProofPower output

val G1 def = ` G1 = U : THM

‘U’ is the generic identity function, and when its actual generic parameter is not printed it may be
assumed to be the set of all elements of the relevant (inferred) type. The normal proof contexts have
knowledge of ‘U’ so that rewriting with the specification of a given set will enable assertions about
membership of the given set to be proven.

SML

rewrite conv [G1 def ] pZx ∈ G1q;

ProofPower output

val it = ` x ∈ G1 ⇔ true : THM

A special facility is provided to enable the information in the given set declarations in a theory to be
collected for inclusion in a proof context (so that it may be used in rewriting). theory u simp eqn cxt
will extract an equational context from a named theory incorporating conversions which prove results
of the form:

x ∈ GIVENSET ⇔ true

for each of the given sets declared in the theory.

This may be made into a partial proof context and then merged to form a new proof context, e.g.:
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SML

new pc "′usr011";
set u simp eqn cxt (theory u simp eqn cxt "usr011")

"′usr011";
set merge pcs ["′usr011", "z language"];

(note here that ′usr011 should come first in the list)

Now knowledge of the given sets defined in the theory “usr011” is built into the rewriting facilities:

SML

rewrite conv [] pZx ∈ NAMEq;

ProofPower output

val it = ` x ∈ NAME ⇔ true : THM

5.2.3 Abbreviation and Generic Definitions

5.2.3.1 Syntax

Typed in as:

sZ
GPROD =̂ G1 × G2
¥

Displayed as:

Z

GPROD =̂ G1 × G2

Similarly generics:

Z

X swap Y =̂ Y × X

and schema definitions:
Z

SCHEMA =̂ [x , y :G1 | ¬ x = y ]

The ProofPower system currently uses ‘=̂’, not only for schema definitions, but also instead of ‘==’
for abbreviation definitions and generic definitions. This reflects a proposal to the Z standardisation
panel to eliminate unnecessary distinctions between global variables denoting schemas and those
denoting other types of value.

The fixity status of the relevant name or template should be declared beforehand.
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5.2.3.2 Proof Support

These definitions will generally yield equations when retrieved using z get spec.
SML

val gprod def = z get spec pZGPRODq;

ProofPower output

val gprod def = ` GPROD = G1 × G2 : THM

If the declaration is of a generic global variable then the resulting predicate will also be generic.
SML

val swap def = z get spec pZ( swap )q;

ProofPower Output

val swap def = ` [X , Y ](X swap Y = Y × X ) : THM

Specialisation of such a generic predicate will be done automatically by the rewriting facilities when
required:

SML

rewrite conv [swap def ] pZZ swap Nq;

ProofPower Output

val it = ` Z swap N = N × Z : THM

Specialisation may also be done using ∀ elim or list ∀ elim.

Schema declarations may be used in a similar manner, using the rewriting facilities to expand an
occurence of the schema name.

SML

rewrite conv [z get spec pZSCHEMAq] pZSCHEMA ∨ x = yq;

ProofPower output

val it = ` SCHEMA ∨ x = y ⇔ ¬ x = y ∨ x = y : THM

(Note here that the predicate implicit in the declaration part of the horizontal schema has been
simplified away because we inserted the given set declarations into the current proof context.)

5.2.4 Schema Boxes

5.2.4.1 Syntax

A schema box is typed in as :

Sch
x , y : Z;
z : N

x = y ∨ y = z
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resulting in the printed text:

Z

Sch
x , y : Z;
z : N

x = y ∨ y = z

The dividing horizontal bar and the following predicate are optional.

The horizontal and vertical bar characters in the source text may also be omitted without affecting
the printed form or the logical significance of the paragraph.

Elision of semicolons between declarations and predicates is not supported. Use of semicolons as low
precedence conjunctions in the predicate part is supported.

5.2.4.2 Proof Support

The predicate obtained from such a schema declaration is the same as that which would result from
the equivalent schema declaration using =̂ and a horizontal schema expression:

SML

val sch def = z get spec pZSchq;

ProofPower Output

val sch def = ` Sch =
[x , y : Z; z : N | x = y ∨ y = z ] : THM

This can be used in rewriting in the normal manner.

SML

rewrite conv [sch def ]
pZ∀ x ,y :Z; z :N • Sch ∨ disjoint 〈{x},{y},{z}〉q;

ProofPower Output

val it = ` (∀ x , y : Z; z : N • Sch ∨ disjoint 〈{x}, {y}, {z}〉)
⇔ (∀ x , y : Z; z : N
• ({x , y} ⊆ Z ∧ z ∈ N) ∧ (x = y ∨ y = z )
∨ disjoint 〈{x}, {y}, {z}〉) : THM

Note that where a schema reference as a predicate is expanded into a horizontal schema, the horizontal
schema is immediately eliminated to give the constituent predicate (in the proof context z language).
Similar observations will also apply to schemas which are defined in terms of schema operations. The
operation will normally be eliminated if it appears as a predicate, using the relevant membership
conversion (since membership of the relevant theta-term is implicit in the formation of a predicate
from a schema expression, i.e. sexp⇔θsexp∈sexp).
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5.2.5 Generic Schema Boxes

5.2.5.1 Syntax

Z

DSUBS [X ]
set1 , set2 : P X

set1 ∩ set2 = {}

These differ from ordinary schemas only in having formal generic parameters.

5.2.5.2 Proof Support

The defining predicate is a generic equation with a horizontal schema on the right hand side.
SML

val dsubs def = z get spec pZDSUBSq;

ProofPower Output

val dsubs def = ` [X ](DSUBS [X ] =
[set1 , set2 : P X | set1 ∩ set2 = {}]) : THM

This is normally used by rewriting, the actual generic parameters being supplied automatically.
SML

rewrite conv [dsubs def ]
pZ∀ DSUBS [N] • set1 ⊆ N ∧ set2 ⊆ Nq;

ProofPower Output

val it = ` (∀ (DSUBS [N]) • set1 ⊆ N ∧ set2 ⊆ N)
⇔ (∀ [set1 , set2 : P N | set1 ∩ set2 = {}]
• set1 ⊆ N ∧ set2 ⊆ N) : THM

Note here that, because the schema reference expanded was in a declaration, the result is not within
the language described in [3]. This extension to the language is expected to appear in the forthcoming
Z standard.

This works out more naturally in a goal oriented proof as follows:
SML

push merge pcs ["′usr011", "z library"];

set goal([],pZ∀ DSUBS [N] • set1 ⊆ N ∧ set2 ⊆ Nq);
a z strip tac;

ProofPower output

...

(∗ ?` ∗) pZ(DSUBS [N]) ∧ true ⇒ set1 ⊆ N ∧ set2 ⊆ Nq
...
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The first step of stripping has converted the schema-as-declaration into a schema-as-predicate.
Rewriting with the definition is now appropriate.

SML

a (rewrite tac [dsubs def ]);

ProofPower output

...

(∗ ?` ∗) pZ{set1 , set2} ⊆ P N ∧ set1 ∩ set2 = {}
⇒ set1 ⊆ N ∧ set2 ⊆ Nq

...

SML

a (REPEAT strip tac);
pop pc();

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved

5.2.6 Axiomatic Descriptions

5.2.6.1 Syntax

Entered as:

sZAX
twice : Z → Z

∀i : Z • twice i = 2∗i
¥

Printed as:
Z

twice : Z → Z

∀i : Z • twice i = 2∗i

5.2.6.2 Proof Support

The predicate obtained from z get spec is a conjunction of which the first part is the predicate
implicit in the declaration part of the definition, and the second conjunct is the explicit predicate.

SML

val twice def = z get spec pZ(twice )q;
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ProofPower Output

val twice def = ` (twice ) ∈ Z → Z
∧ (∀ i : Z • twice i = 2 ∗ i) : THM

The predicate can be used for rewriting, provided the condition implicit in the universal quantifier
can be proven. In the current proof context this is not achieved:

SML

rewrite conv [twice def ] pZtwice 4q;

ProofPower Output

Exception− Fail ∗ no rewriting occurred
[rewrite conv .26001 ] ∗ raised

because Z is not known to be a given set in this context.

A common way of obtaining a usable rewrite is by forward chaining using all fc tac or all asm fc tac
(fc tac and asm fc tac may also be used, but are likely to give mixed-language results, involving
HOL quantifiers).

SML

set goal([],pZ∀ n:Z • twice n = 2∗nq);
a (REPEAT z strip tac);

ProofPower Output

...

(∗ 1 ∗) pZn ∈ Zq

(∗ ?` ∗) pZtwice n = 2 ∗ nq
...

SML

a (all fc tac [twice def ]);

ProofPower Output

Current and main goal achieved

5.2.7 Generic Axiomatic Descriptions

5.2.7.1 Syntax

Entered as:

[X ]
length : seq X → N

length 〈〉 = 0 ;
∀ h:X ; t : seq X •
length (〈h〉 a t) = length t + 1
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The double horizontal bar characters are inessential, though the top left hand corner is not.

Printed as:
Z

[X ]
length : seq X → N

length 〈〉 = 0 ;
∀ h:X ; t : seq X •
length (〈h〉 a t) = length t + 1

The following example shows the use in the declaration part and the predicate part of the schema
of a template for which a fixity declaration has been entered.

Use of the template is necessary in the predicate of this generic description because the ‘...’ parameter
position in a template requires a parameter which is a list display (with list brackets omitted); no
other kind of expression is permitted at this point.

Z

[X ,Y ,Z ]
select ... from : (X ↔ Y ) × (Y ↔ Z ) → (Y ↔ Z )

∀ indexed set :(X ↔ Y ); relation:(Y ↔ Z ) •
(select ... from ) (indexed set , relation)

= (ran indexed set) C relation

5.2.7.2 Proof Support

Generic axiomatics definitions give rise to generic predicates whose bodies are the conjunction of the
predicate implicit in the declaration part and the explicit predicate in the body of the paragraph.

In the body of the paragraph the normal rules for supply of actual generic parameters where these
have been omitted are varied. The formal generic parameters are supplied, rather than the set of
all elements of the inferred type. Omission of the actual generic parameters is mandatory in this
context.

SML

val select from def = z get spec pZ(select ... from )q;

ProofPower Output

val select from def = ` [X ,
Y ,

Z ]((select ... from )[X , Y , Z ] ∈ (X ↔ Y ) × (Y ↔ Z ) → Y ↔ Z
∧ (∀ indexed set : X ↔ Y ; relation : Y ↔ Z
• (select ... from )[X , Y , Z ] (indexed set , relation)

= ran indexed set C relation)) : THM
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We see in the above that even if the ‘...’ parameter type had not been used the verbatim template
would have appeared in the generic predicate, since this is the only way to supply actual generic
parameters to a template.

Other than in the defining occurrences the template is applied in the intended fashion, e.g.:
SML

pZselect 1 ,3 ,8 from sequenceq;

5.2.8 Structured Set Definitions

“Structured Set Definition” is the name in version 1.0 of the Z standard[10] for what has hitherto
been called a “Free Type” paragraph.

5.2.8.1 Syntax

Entered as:

sZ
TREE ::= tip | fork (N × TREE × TREE )
¥

Printed as:
Z

TREE ::= tip | fork (N × TREE × TREE )

Note that ProofPower at present neither requires nor allows the normal chevrons in these definitions.
Where a fixity clause is in force it is applied normally in the context of a structured set definition.

5.2.8.2 Proof Support

A structured set definition gives rise to defining axioms as described in the ZRM [3].

For each given set an axiom defines it as the set of all elements of a new type:
SML

val tree def = z get spec pZTREEq;

ProofPower Output

val tree def = ` TREE = U : THM

A single axiom characterises all the constructors of the ‘structured set’.
SML

val tip def = z get spec pZtipq;

ProofPower Output

val tip def = ` (tip ∈ TREE
∧ fork ∈ N × TREE × TREE ½ TREE )
∧ disjoint 〈{tip}, ran fork〉
∧ (∀ W : P TREE | {tip} ∪ fork (| N × W × W |) ⊆ W •

TREE ⊆ W ) : THM
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5.2.9 Mutually Recursive Structured Set Definitions

Mutually recursive structured set definitions are also supported by ProofPower.

5.2.9.1 Syntax

Entered as:

sZ
TYPE ::= Tvar G1 | Tcon (G1 × seq TERM )
&
TERM ::= Con (G1 × TYPE ) | App (TERM × TERM )
¥

Printed as:
Z

TYPE ::= Tvar G1 | Tcon (G1 × seq TERM )
&
TERM ::= Con (G1 × TYPE ) | App (TERM × TERM )

5.2.9.2 Proof Support

The axiomatisation of these definitions is a generalisation of the simpler cases:

SML

val tvar def = z get spec pZTvarq;

ProofPower Output

val tvar def = ` (Tvar ∈ G1 ½ TYPE
∧ Tcon ∈ G1 × (seq TERM ) ½ TYPE
∧ Con ∈ G1 × TYPE ½ TERM
∧ App ∈ TERM × TERM ½ TERM )
∧ (disjoint 〈ran Tvar , ran Tcon〉
∧ (∀ W : P TYPE
| Tvar (| G1 |) ∪ Tcon (| G1 × (seq TERM ) |) ⊆ W
• TYPE ⊆ W ))

∧ disjoint 〈ran Con, ran App〉
∧ (∀ W : P TERM
| Con (| G1 × TYPE |) ∪ App (| W × W |) ⊆ W
• TERM ⊆ W ) : THM

5.2.10 Constraints

Constraints are arbitrary axioms introduced by the user, which are permitted in ProofPower to be
generic.
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5.2.10.1 Syntax

A constraint is entered as follows:

sZ
{1} swap {〈1 〉} = {〈1 〉} × {1}

∧ Sch 6= [x , y , z : Z]
¥

which is printed as:

Z

{1} swap {〈1 〉} = {〈1 〉} × {1}
∧ Sch 6= [x , y , z : Z]

An example of a generic constraint is:

Z

[X ] ((∃f : X ½ G1 • true) ⇔ (∃f : X ½ G2 • true))

5.2.10.2 Proof Support

The axioms resulting from the entry of constraints are stored in the current theory under keys which
are of the form “Constraint n” where n is a numeric literal.

They may not be retrieved using z get spec since they are not associated with any specific global
variable.

A constraint is therefore accessed using get axiom with the relevant key.

SML

val c1 = get axiom "−" "Constraint 2";

ProofPower output

val c1 = ` [X ]((∃ f : X ½ G1 • true) ⇔
(∃ f : X ½ G2 • true)) : THM

5.2.11 Conjectures

Conjectures are arbitrary predicates mentioned by the user, normally to suggest or claim that they
are true.

If entered into the source document as a conjecture paragraph then the conjecture will be syntax
and type checked by the system whenever the document is processed by ProofPower.

Such conjectures are permitted to be generic.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z TUTORIAL USR011



5.3. Proof Support for Paragraphs 93

5.2.11.1 Syntax

A conjecture paragraph is entered as follows:

sZ
?` 0=1

¥

which is printed as:

Z

?` 0=1

This conjecture can be proven false in ProofPower. Its assertion as a constraint would render the
relevant theory inconsistent, but its inclusion as a conjecture is harmless.

An example of a generic conjecture is:

Z

?` [X ,Y ] (∀s:P(X × Y )•(∀x :X • ∃y :Y • (x ,y) ∈ s)
⇒ (∃f : X → Y • true))

This conjecture should in fact be provable under ProofPower. Asserting it as a constraint would
avoid the need to prove it but would not render the theory inconsistent. Including it as a conjecture
however leaves the result still in need of proof should the result be required.

5.2.11.2 Proof Support

There is no proof support for conjecture paragraphs. The ProofPower system provides support for
syntax and type checking conjectures only. Once checked the contents of a conjecture paragraph are
discarded.

If it required to prove a conjecture then it should be entered into the subgoal package using set goal
or push goal .

5.3 Proof Support for Paragraphs

5.3.1 Consistency Proofs for Axiomatic Descriptions

Specifications are treated as extension to the logical system supplied by ProofPower. Such extensions
take the form of introducing new type constructors (in Z these are always 0-ary type constructors
corresponding to new given sets), new constants (called global variables in Z) and new axioms which
generally provide information about these new types and constants.

When a new constant is introduced together with an axiom describing that constant, the extension
will often be conservative. To say that such an extension is conservative is to say that the information
in the axiom only serves to define the constant which is introduced, and does not enable any new
facts to be proved which do not mention that constant.

Conservative extensions are important since an extension known to be conservative cannot render
the logical system inconsistent, whereas an arbitrary logical extension may render the system incon-
sistent, thus enabling ‘false’ conjectures to be proven.
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Because of the special importance of extensions which are conservative, axioms which are introduced
as a part of a conservative extension are known by the system as definitions and are kept distinct from
axioms which are not known to be conservative. The system provides mechanisms for undertaking
conservative extensions in ways which it can check, so that specifications introduced using only these
means can be guaranteed by the system not to interfere with the consistency of the logical system.

If Z axiomatic descriptions are entered into ProofPower while flag z use axioms is false the descrip-
tions will be stored as definitions rather than as axioms. In order to do this the system has to
establish that the resulting axiom is a conservative extension of the previous logical context. This
is done either by the system automatically constructing a proof that this is the case for the axiom
as supplied (which the supplied proof contexts are not capable of doing), or by the system adding a
consistency caveat to the axiom before storing it as a definition. The proof of consistency of the ax-
iom with caveat is trivial, ensuring that the extension is conservative, but the user will subsequently
need to prove the consistency result before the axiom can be used in proof without caveat.

We demonstrate this with a very simple axiomatic description. First ensure that we are in the right
mode:

SML

set flag("z use axioms", false);
set pc "z library";

Then enter the axiomatic specification:

Z

root : Z

root ∗ root = 9

Now retrieve the specification:

SML

z get spec pZrootq;

ProofPower output

...

` root ∈ Z ∧ root ∗ root = 9 : THM

The indigestible assumption (not shown here) is a consistency caveat. Until the caveat is proven the
specification is unusable for proof.

To prove the caveat the goal should be set up by z push consistency goal .

SML

z push consistency goal pZrootq;

ProofPower output

...

(∗ ?` ∗) pZ∃ root ′ : Z • root ′ ∗ root ′ = 9q
...

This is easily discharged by supplying a witness as follows:
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SML

a (z ∃ tac pZ3q THEN rewrite tac[]);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
...

Then the result must be saved using save consistency thm as follows:
SML

save consistency thm pZrootq (pop thm());

We can now retrieve a useful theorem using z get spec.
SML

val root def = z get spec pZrootq;

ProofPower output

val root def = ` root ∈ Z ∧ root ∗ root = 9 : THM

5.3.2 Consistency Proofs for Generic Axiomatic Descriptions

A similar pattern is necessary when introducing generics, though some additional complications
arise. Though ProofPower requires no uniqueness condition to establish a generic global variable,
the consistency caveat arising cannot be expressed in Z, since it involves generic local variables, which
are not permitted.

The consistency caveat therefore appears in a mixture of Z and HOL and some mixed language
working is necessary.

Z

[X ]
empty : P X

empty = {}

SML

z push consistency goal pZemptyq;

ProofPower output

...

(∗ ?` ∗) pZ∃ empty ′ : U
• ∀ X : U • pempty ′ pZ(X )qq ∈ P X ∧ pempty ′ pZ(X )qq = {}q

...

Here the outermost existential in fact quantifies over generic local variable (though this is obscured
by the use of U) and the uses of the generic local variable in the predicate are displayed by switching
into HOL.
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The witness supplied must be a HOL function which takes a tuple of formal parameters and yields
the required instance:

SML

a (z ∃ tac pλ X • pZ{}qq THEN PC T1 "hol" rewrite tac[]);

ProofPower output

...

(∗ ?` ∗) pZpλ X • pZ{}qq ∈ U ∧ (∀ X : U • {} ∈ P X )q
...

Here the rewriting was done in a HOL proof context because a HOL beta reduction is needed. Now
we rewrite again in the Z proof context:

SML

a (rewrite tac[]);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
...

SML

save consistency thm pZemptyq (pop thm());
val empty def = z get spec pZemptyq;

ProofPower output

val empty def = ` [X ](empty [X ] ∈ P X ∧ empty [X ] = {}) : THM

Z

[X ,Y ]
cprod : P (X × Y )

∀x :PX ; y :PY • cprod = X × Y

SML

z push consistency goal pZcprodq;

ProofPower output

(∗ ?` ∗) pZ∃ cprod ′ : U
• ∀ X : U; Y : U
• pcprod ′ pZ(X , Y )qq ∈ P (X × Y )
∧ (∀ x : P X ; y : P Y • pcprod ′ pZ(X , Y )qq = X × Y )q

Note here that the parameter to the required HOL function is a Z 2-tuple. In the general case it is
an n − tuple, where n is the number of generic parameters, even when n = 1 (very limited support
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for 1-tuples is available). When used the appropriate projection function must therefore be applied.
A type cast is likely to be necessary for the type inferrer, as below.

SML

a (z ∃ tac pλ xy• pZ(xy⊕⊕(U×U)).1 × xy .2qq);
a (PC T1 "hol" rewrite tac[]);
a (rewrite tac[]);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
...

Later releases of ProofPower may be expected to discharge such consistency results automatically,
and proficient users may themselves adapt the available consistency provers for HOL specifications
to give a basic capability for Z.

5.4 Theories

Z specifications are held in theories in the same way as specifications in HOL. The content of these
theories is the same as the HOL theories in respect of matters of a logical nature, but there are differ-
ences in the information held in the theories relating to the concrete presentation of a specification.

In HOL the fixity information held concerns which names are pre-fix, post-fix and infix, and which
names are binders. HOL also allows aliases and type abbreviations.

None of this information is appropriate for Z specifications. ProofPower-Z provides a generalised
mixfix notation, and the information controlling this is provided in the form of fixity paragraphs.
This information is retained in theories whose language is Z. Aliases and type abbreviations are not
supported for Z.

The primary facilities for access to Z theories are z print theory and z get spec. Other facilities
available for HOL theories may also be used on Z theories, e.g. get parents, get ancestors, get thm.
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THE Z TOOLKIT IN ProofPower

This chapter introduces the theories forming the Z ToolKit.

The focus is on reasoning within the theories using the proof contexts supplied for the theories.

The Z ToolKit is split aross six theories in the ProofPower database, one for each of the main sections
in Annex C to the draft Z standard [10].

Each of these theories is fully populated with appropriate definitions, in the form in which they
appear in the standard. In the development of the theories we have not felt it appropriate to
populate the theories with collections of theorems such as those given as rules in the ZRM [4]. In
general we have found that the results required in applications are rarely found in these collections,
and that these rules are not the most satisfactory basis from which to derive the required results.
The rules cited in the ZRM are nevertheless (when true) useful tests of whether our proof system is
able to conveniently prove results in these theories, and similar results have been used extensively
for examples and exercises.

The approach adopted has generally been to prove those results which are most helpful in providing
an automatic proof capability in the relevant theory and to incorporate these results into proof
contexts which facilitate their automatic application. This may involve quite different techniques in
different theories.

In the following descriptions we identify for each theory suitable proof contexts for proving results
in that theory, and give a description of the proof methods which are effective in the theory (where
these have been established).

A selection proof contexts are listed in the following table:

z predicates
z language

z language ext
z sets alg
z sets ext
z rel ext
z fun ext
z library

z library ext

For general purpose use z library is recommended. Retreat to a context earlier in the list if your
current proof context is doing too much. To do proofs using extensionality results use one of the
ext contexts.

6.1 Sets

The theory z sets contains those parts of the Z ToolKit corresponding to section C.1 of the draft Z
standard [10].
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A suitable proof context for establishing results in this theory is z sets ext .

This proof context attempts proofs of conjectures using the principles of extensionality of sets. These
enable relations over sets to be expressed in terms of logical relations between the membership condi-
tions for the sets. These are combined with principles which account for each of the defined operations
defined in this theory for constructing sets expressed as elimination rules for claims about member-
ship of the constructed sets. The resulting collections of principles suffice to reduce statements in set
theory to statements in the predicate calculus with equality, which can be proven by the established
methods.

6.2 Relations

The theory z relations contains those parts of the Z ToolKit corresponding to section C.2 of the
draft Z standard [10].

This theory is well supported, the principles of reasoning being straightforward.

This theory adds operators over sets which are specific to sets of ordered pairs, such as dom and
ran. The main principles for reasoning automatically in this theory remain the same, viz: rewriting
with extensionality results to reduce the problem to the predicate calculus. The main source of extra
complexity, in addition to the extra operators which must be eliminated, is the fact that definitions
of these operations often involve ordered pairs, and the resulting predicate calculus results require
equational reasoning to complete the proof. We are more often faced with reduction only to predicate
calculus with equality, which our resolution facilities do not support.

6.3 Functions

The theory z functions contains those parts of the Z ToolKit corresponding to section C.3 of the
draft Z standard [10].

Extensional reasoning suffices for automatic proof of many of the results required in this theory.
However, much reasoning in the system, particulary that concerning ‘set inference’ (demonstrating
that values lie in the domain of the functions applied to them, or within the range of applicability of
some rewrite rule), is better done using rules about functions rather than eliminating the vocabulary
in favour of set theory. No specific support is as yet available for this latter sort of reasoning
about functions, though general purpose facilities (particularly forward and backward chaining) are
available which provide a measure of automation.

6.4 Numbers and Finiteness

The theory z numbers contains those parts of the Z ToolKit corresponding to section C.4 of the
draft Z standard [10].

The basic theory of integers is reasonably well developed. The kind of results needed to do more or
less manual proofs in arithmetic are available. Induction tactics of various kinds are available. The
proof context z lin arith provides a proof procedure for linear arithmetic. The proof context for
this theory undertakes evaluation of expressions of numeric literals automatically during rewriting
or stripping.

The theory of finiteness is not yet properly developed, though all the definitions are present.
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6.5 Sequences

The theory z sequences contains those parts of the Z ToolKit corresponding to section C.5 of the
draft Z standard [10].

By comparison with the theory of lists in HOL this theory is much more difficult to reason about.
This is because sequences are defined in terms of finite functions over natural numbers, by contrast
with lists, which are a structured or free type for which induction results come more easily.

In addition to difficulties arising from the representation of sequeces in Z, further difficulties arise from
the form of the definitions of the various operators. Since these do not follow and general inductive
pattern reasoning about them will not be straigtforwardly supported by induction principles.

Though the theory of sequences is relatively underdeveloped, the definitions are all present, and
specifications may therefore be written using them. The proof facilities are adequate for the devel-
opment of these theories and the provision of a reasonable degree of automation for them. However,
the required development is non-trivial and has not yet been completed.

6.6 Bags

The theory z bags contains those parts of the Z ToolKit corresponding to section C.6 of the draft Z
standard [10].

This theory is also present but not well developed.
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EXERCISES

These exercises are presented in sections which correspond to chapters in the tutorial as follows:

1. The Z Predicate Calculus

• Forward Propositional Proofs

• Goal Oriented Propositional Proofs

• Forward Predicate Calculus Proofs

• Goal Oriented Predicate Calculus Proofs

• Rewriting

2. Expressions and Schema Expressions

3. Z Paragraphs and Theories

4. The Z ToolKit

(a) Sets

(b) Relations

(c) Functions

(d) Numbers and Finiteness

(e) Sequences

(f) Bags

In order to save labour at the keyboard, the student may do the exercises by working with a spe-
cially prepared database called ‘example zed’. This database should have been built during the
installation of ProofPower, if you have any difficulty in obtaining access to the database consult
your systems administrator. The database is created by loading this tutorial document into Proof-
Power with the exception only of the material in Chapter 8. The formal material used to set up the
‘exercises’ database (and automatically stripped from the source of this document for that purpose)
is documented by being marked with a sidebar, thus:

SML

for material in Standard ML. Z paragraphs are also included in the material processed, except where
they are specially presented to show the format of the source for such paragraphs.

A sidebar like this:
Student
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marks material which the student is expected to enter, either through the keyboard or by cut-and-
paste.

The prepared database contains 4 theories, each with some predefined material: in particular, lists
of goals. A goal can be conveniently selected by name and set up to be worked on by the subgoal
package, by using the function predefined by:

SML

fun setlg name goallist = set goal([],lassoc3 goallist name);

For example, to work on the goal which is the first in the list PM2 (see 7.1.2 below), noting that
this goal is named ‘*2.02’, execute:

Student

setlg "∗2 .02" PM2 ;

Another useful function attempts to prove a conjecture using prove rule and store the results in the
current theory. It is predefined by:

SML

fun prove and store (key , term) = save thm (key , prove rule[] term);

It is important that each exercise be attempted in the correct context. For this reason, at various
points in the sequence of exercises, instructions are given to set up the appropriate context for the
group of exercises which follow, up to the next setting of context. Setting up the context covers
clearing the goal-stack, opening the appropriate ‘exercise’ theory, setting the proof-context and flags.

The following lines of ML are for preparing the database:
SML

repeat drop main goal ;
open theory "z library";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", true)];

7.1 Predicate Calculus Exercises

The following line of ML is for preparing the database by setting up the first exercise theory:
SML

new theory "z exercises 1";

7.1.1 Forward Propositional Proofs

Set the context by:
Student

repeat drop main goal ;
open theory "z exercises 1";
set pc "z library";

and then, using the methods described in 3.1.1 prove a selection of the following results by use of
⇒ elim, asm rule and ⇒ intro:
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(a) b⇒c, a⇒b, a ` c

(b) a⇒b⇒c, a, b ` c

(c) a⇒b⇒c, b ` a⇒c

(d) ` (a⇒b⇒c)⇒b⇒(a⇒c)

7.1.2 Goal Oriented Propositional Proofs

• Choose examples from PM2 below to set up as a goal. E.g. to choose as a goal pZq ⇒ ( p ⇒ q)q,
execute setlg "∗2 .02" PM2 ;. Work the example with

1. a z strip tac;

2. and/or: a step strip tac;

• Observe the steps taken and try to identify the reasons for discharge of subgoals.

• Select the weakest “proof context”:

Student

push pc "initial";

then retry the examples (or previous exercises).

• When you have finished restore the original proof context by:

Student

pop pc();

The following lines of ML are for preparing the ‘exercises’ database. They are taken from Principia
Mathematica *2, and are shown together with their reference numbers.

SML

val PM2 =[
("∗2 .02", pZq ⇒ ( p ⇒ q)q),
("∗2 .03", pZ(p ⇒ ¬ q) ⇒ (q ⇒ ¬ p)q),
("∗2 .15", pZ(¬ p ⇒ q) ⇒ (¬ q ⇒ p)q),
("∗2 .16", pZ(p ⇒ q) ⇒ (¬ q ⇒ ¬ p)q),
("∗2 .17", pZ(¬ q ⇒ ¬ p) ⇒ (p ⇒ q)q),
("∗2 .04", pZ(p ⇒ q ⇒ r) ⇒ (q ⇒ p ⇒ r)q),
("∗2 .05", pZ(q ⇒ r) ⇒ (p ⇒ q) ⇒ (p ⇒ r)q),
("∗2 .06", pZ(p ⇒ q) ⇒ (q ⇒ r) ⇒ (p ⇒ r)q),
("∗2 .08", pZp ⇒ pq),
("∗2 .21", pZ¬ p ⇒ (p ⇒ q)q)];

The following are from Principia Mathematica *3.
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SML

val PM3 =[
("∗3 .01", pZp ∧ q ⇔ ¬(¬ p ∨ ¬ q)q),
("∗3 .2", pZp ⇒ q ⇒ p ∧ qq),
("∗3 .26", pZp ∧ q ⇒ pq),
("∗3 .27", pZp ∧ q ⇒ qq),
("∗3 .3", pZ(p ∧ q ⇒ r) ⇒ (p ⇒ q ⇒ r)q),
("∗3 .31", pZ(p ⇒ q ⇒ r) ⇒ (p ∧ q ⇒ r)q),
("∗3 .35", pZ(p ∧ (p ⇒ q)) ⇒ qq),
("∗3 .43", pZ(p ⇒ q) ∧ (p ⇒ r) ⇒ (p ⇒ q ∧ r)q),
("∗3 .45", pZ(p ⇒ q) ⇒ (p ∧ r ⇒ q ∧ r)q),
("∗3 .47", pZ(p ⇒ r) ∧ (q ⇒ s) ⇒ (p ∧ q ⇒ r ∧ s)q)];

Results from Principia Mathematica *4

SML

val PM4 =[
("∗4 .1", pZp ⇒ q ⇔ ¬ q ⇒ ¬ pq),
("∗4 .11", pZ(p ⇔ q) ⇔ (¬ p ⇔ ¬ q)q),
("∗4 .13", pZp ⇔ ¬ ¬ pq),
("∗4 .2", pZp ⇔ pq),
("∗4 .21", pZ(p ⇔ q) ⇔ (q ⇔ p)q),
("∗4 .22", pZ(p ⇔ q) ∧ (q ⇔ r) ⇒ (p ⇔ r)q),
("∗4 .24", pZp ⇔ p ∧ pq),
("∗4 .25", pZp ⇔ p ∨ pq),
("∗4 .3", pZp ∧ q ⇔ q ∧ pq),
("∗4 .31", pZp ∨ q ⇔ q ∨ pq),
("∗4 .33", pZ(p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)q),
("∗4 .4", pZp ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)q),
("∗4 .41", pZp ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)q),
("∗4 .71", pZ(p ⇒ q) ⇔ (p ⇔ (p ∧ q))q),
("∗4 .73", pZq ⇒ (p ⇔ (p ∧ q))q)];

Results from Principia Mathematica *5

SML

val PM5 =[
("∗5 .1", pZp ∧ q ⇒ (p ⇔ q)q),
("∗5 .32", pZ(p ⇒ (q ⇔ r)) ⇒ ((p ∧ q) ⇔ (p ∧ r))q),
("∗5 .6", pZ(p ∧ ¬ q ⇒ r) ⇒ (p ⇒ (q ∨ r))q)];

7.1.3 Forward Predicate Calculus Proofs

The following exercises concern proof in the predicate calculus in Z. Set the context by:
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Student

repeat drop main goal ;
open theory "z exercises 1";
set pc "z library";

and then

1. Using z ∀ elim with z N ¬ plus1 thm prove:

(a) 0 ∈ N ∧ true ⇒ ¬ 0 + 1 = 0
(b) x ∗ x ∈ N ∧ true ⇒ ¬ x ∗ x + 1 = 0

2. Using prove rule with z ≤ trans thm prove:

i ≤ j ∧ j ≤ k ⇒ i ≤ k

3. Using prove rule and z N ¬ plus1 thm and z 0 N thm prove:

(a) ¬ 0 + 1 = 0
(b) x ∗ x ∈ N ⇒ ¬ x ∗ x + 1 = 0

4. Using prove rule prove:

(a) ¬ 0 < 1 ⇔ 1 ≤ 0 (using z ¬ less thm), and
(b) ∀ n:Z • 3 ≤ x ∗ x ∧ x ∗ x ≤ n ⇒ 3 ≤ n (using z ≤ trans thm)

5. Using prove rule with ≤ clauses prove:

∀ i , m, n: Z • i + m ≤ i + n ⇔ m ≤ n

7.1.4 Goal Oriented Predicate Calculus Proofs

The methods of proof, described in Chapter 3, to be illustrated in these exercises are:

1. Proof by stripping.

2. Automatic proof.

3. Proof by the “two tactic method”.

4. Proof using forward chaining.

Use the following bits and pieces to try a variety of proofs of the following conjectures (PM9 to
PM11b) in the predicate calculus in Z,

a contr tac;
a z strip tac;
a strip tac;
a step strip tac;
a (prove tac[]);
a (asm prove tac[]);
a (z spec asm tac pZ q pZ q);
a (z spec nth asm tac 1 pZ q);
a (all asm fc tac[]);
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The following are essentially the same results, taken from Principia Mathematica, as were previously
used for exercises in HOL. However, the results are set generic rather than polymorphic, and quanti-
fiers range over sets rather than types. The required proofs are similar to those in HOL, but slightly
complicated by the set relativisation of the quantification.

The following are from Principia Mathematica *9.

SML

val PM9 =[
("∗9 .01", pZ [X ](¬ (∀x :X • φx )) ⇔ (∃x : X • ¬ φx )q),
("∗9 .02", pZ [X ](¬ (∃x :X • φx ) ⇔ (∀x :X • ¬ φx ))q),
("∗9 .03", pZ [X ](∀x :X • φx ∨ p) ⇔ (∀x :X • φx ) ∨ pq),
("∗9 .04", pZ [X ]p ∨ (∀x :X • φx ) ⇔ (∀x :X • p ∨ φx )q),
("∗9 .05", pZ [X ](∃ x :X •true) ⇒ ((∃x :X • φx ∨ p) ⇔ (∃x :X • φx ) ∨ p)q),
("∗9 .06", pZ [X ]p ∨ (∃x :X • φx ) ⇔ p ∨ (∃x :X • φx )q)];

The following are from Principia Mathematica *10.

SML

val PM10 =[
("∗10 .01", pZ [X ](∃x :X • φx ) ⇔ ¬ (∀y :X • ¬ φy)q),
("∗10 .1", pZ(∀x :U• φx ) ⇒ φyq),
("∗10 .21", pZ [X ](∀x :X • p ⇒ φx ) ⇔ p ⇒ (∀y :X • φy)q),
("∗10 .22", pZ [X ](∀x :X • φx ∧ ψx ) ⇔ (∀y :X • φy) ∧ (∀z :X • ψz )q),
("∗10 .24", pZ [X ](∀x :X • φx ⇒ p) ⇔ (∃y :X • φy) ⇒ pq),
("∗10 .27", pZ [X ](∀x :X • φx ⇒ ψx ) ⇒ ((∀y :X • φy) ⇒ (∀z :X • ψz ))q),
("∗10 .28", pZ [X ](∀x :X • φx ⇒ ψx ) ⇒ ((∃y :X • φy) ⇒ (∃z :X • ψz ))q),
("∗10 .35", pZ [X ](∃x :X • p ∧ φx ) ⇔ p ∧ (∃y :X • φy)q),
("∗10 .42", pZ [X ](∃x :X • φx ) ∨ (∃y :X • ψy) ⇔ (∃z :X • φz ∨ ψz )q),
("∗10 .5", pZ [X ](∃x :X • φx ∧ ψx ) ⇒ (∃y :X • φy) ∧ (∃z :X • ψz )q),
("∗10 .51", pZ [X ] (¬ (∃x :X • φx ∧ ψx ) ⇒ (∀y :X • φy ⇒ ¬ ψy))q)];

SML

val PM10b =[
("∗10 .271", pZ [X ](∀x :X • φx ⇔ ψx ) ⇒ ((∀y :X • φy) ⇔ (∀z :X • ψz ))q),
("∗10 .281", pZ [X ](∀x :X • φx ⇔ ψx ) ⇒ ((∃y :X • φy) ⇔ (∃z :X • ψz ))q)];

The following are from Principia Mathematica *11.

SML

val PM11 =[
("∗11 .1", pZ(∀x , y :U• φ(x ,y)) ⇒ φ(z ,w)q),
("∗11 .2", pZ [X ](∀x , y :X • φ(x ,y)) ⇔ (∀y , x :X • φ(x ,y))q),
("∗11 .3", pZ [Y ](p ⇒ (∀x , y :Y • φ(x ,y)))

⇔ (∀x , y :Y • p ⇒ φ(x ,y))q),
("∗11 .35", pZ [Y ](∀x , y :Y • φ(x ,y) ⇒ p) ⇔ (∃x , y :Y • φ(x ,y)) ⇒ pq)
];
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SML

val PM11b =[
("∗11 .32", pZ [Y ](∀x , y :Y • φ(x ,y) ⇒ ψ(x ,y))

⇒ (∀x , y :Y • φ(x ,y)) ⇒ (∀x , y :Y • ψ(x ,y))q),
("∗11 .45", pZ [Y ](∃x , y :Y • true) ⇒ ((∃x , y :Y • p ⇒ φ(x ,y))

⇔ (p ⇒ (∃x , y :Y • φ(x ,y))))q),
("∗11 .54", pZ [Y ](∃x , y :Y • φx ∧ ψy) ⇔ (∃x :Y • φx ) ∧ (∃y :Y • ψy)q),
("∗11 .55", pZ [Y ](∃x , y :Y • φx ∧ ψ(x ,y))

⇔ (∃x :Y • φx ∧ (∃y :Y • ψ(x ,y)))q),
("∗11 .6", pZ [X ](∃x :X • (∃y :Y • φ(x ,y) ∧ ψy) ∧ χx )

⇔ (∃y :Y • (∃x :X • φ(x ,y) ∧ χx ) ∧ ψy)q),
("∗11 .62", pZ(∀x :X ; y :Y • φx ∧ ψ(x ,y) ⇒ χ(x ,y))

⇔ (∀x :X • φx ⇒ (∀y :Y • ψ(x ,y) ⇒ χ(x ,y)))q)
];

7.1.5 Rewriting

7.1.5.1 Rewriting with the Subgoal Package

Set the context with:
Student

repeat drop main goal ;
open theory "z exercises 1";
set pc "z library ext";

and then

1. choose a goal from set theory, e.g.:

Student

set goal([],pZ a \ (b ∩ c) = (a \ b) ∪ (a \ c)q);

2. rewrite the goal using the current proof context:

Student

a (rewrite tac[]);

3. step back using undo:

Student

undo 1 ;

4. now try rewriting without using the proof context:

Student

a (pure rewrite tac[]);

(this should fail)
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5. try rewriting one layer at a time:

Student

a (once rewrite tac[]);

repeat until it fails.

6. now try rewriting with specific theorems:

Student

set goal([],pZ a \ (b ∩ c) = (a \ b) ∪ (a \ c)q);
a (pure rewrite tac[z sets ext clauses]);
a (pure rewrite tac[z set dif thm]);
a (pure rewrite tac[z ∩ thm, z ∪ thm]);
a (pure rewrite tac[z set dif thm]);

7. finish the proof by stripping:

Student

a (REPEAT strip tac);

8. extract the theorem
Student

top thm();

9. repeat the above then try repeating:

Student

pop thm();

7.1.5.2 Combining Forward and Backward Proof

The following exercise illustrates how forward inference may be helpful in specialising results for use
in rewriting. Some hints are given about the method. For each example try the methods suggested
for the previous example to see how they fail before following the hint.

Set the context with
Student

repeat drop main goal ;
open theory "z exercises 1";
set pc "z library";

and then prove the following results by rewriting using the goal package.

1. :
Student

set goal([],pZ x + y = y + xq);
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2. :
Student

set goal([],pZ x + y + z = (x + y) + zq);
(∗ hint : try using z plus assoc thm ∗)

3. :
Student

set goal([],pZ z + y + x = y + z + xq);
(∗ hint : try using z plus assoc thm1 ∗)

4. :
Student

set goal([],pZ x + y + z = y + z + xq);
(∗ hint : try using z ∀ elim with z plus assoc thm1 ∗)

5. :
Student

set goal([],pZ x + y + z + v = y + v + z + xq);
(∗ hint : try using z ∀ elim with z plus order thm ∗)

7.1.6 Stripping

• Use the examples from Principia Mathematica and also ZRM, e.g.:
Student

set goal([],pZ p ∧ q ⇒ (p ⇔ q)q);

with

1. :
Student

a z strip tac;

2. and/or:
Student

a step strip tac;

• Observe the steps taken and try to identify the reasons for discharge of subgoals.

• Select the weakest “proof context”:
Student

push pc "initial";

then retry the examples (or previous exercises).

• When you have finished restore the original proof context by:
Student

pop pc();
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7.2 Expressions and Schema Expressions

The following lines of ML are for preparing the exercise database:
SML

open theory "z library";
new theory "z exercises 2";
new parent "usr011";

7.2.1 Expressions

The following examples are provable by prove tac or prove rule in proof context z library , so first
set the context by:

Student

repeat drop main goal ;
open theory "z exercises 2";
set pc "z library";

SML

val ZE1 = [
("ZE1 .1", pZ(2 ,4 ) ∈ (λx :N • 2∗x )q),
("ZE1 .2", pZ{1 ,2 ,3} ∈ P {1 ,2 ,3 ,4}q),
("ZE1 .3", pZN ∈ P Zq),
("ZE1 .4", pZ"a" ∈ {"a", "b"}q),
("ZE1 .5", pZ¬ 2 ∈ {3 ,4}q),
("ZE1 .6", pZx ∈ {1 ,2} ⇒ x ∈ {1 ,2 ,3}q),
("ZE1 .7", pZx∗x ∈ {y :Z | ∃z :Z • y = z∗z}q),
("ZE1 .8", pZ(x ,y ,z ) = (v ,w ,x ) ⇒ (y ,z ) = (w ,v)q),
("ZE1 .9", pZ(x =̂ a, y =̂ b) = (x =̂ v , y =̂ w) ⇒ (v =̂ a, w =̂ w) = (w =̂ b, v =̂ v)q),
("ZE1 .10", pZ∀File;File ′• θFile = θFile ′ ⇒ age = age ′q),
("ZE1 .11", pZ∀File• (θFile ′).age = age ′q),
("ZE1 .12", pZ∀File;File ′•(θFile).age = age ′ ∧ (θFile).people = people ′

⇒ θFile = θFile ′q)];

The next examples are provable by prove tac or prove rule in proof context z language ext , so set
the context by:

Student

repeat drop main goal ;
open theory "z exercises 2";
set pc "z language ext" ;

SML

val ZE2 = [
("ZE2 .1", pZ∀a:U×U•(a.1 ,a.2 ) = aq),
("ZE2 .2", pZ [X ,Y ](∀ p: P (X × Y )•

{x :X ; y :Y | (x ,y) ∈ p}
= {z :X × Y | z ∈ p})q),

("ZE2 .3", pZ [x :Z | x > 0 ] = {x :Z | x>0 • (x =̂ x )}q)];
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The following problems are more difficult, typically the proofs involve about four steps each.

SML

val ZE3 = [
("ZE3 .1", pZ(λx :Z• x+1 ) 3 = 4q),
("ZE3 .2", pZ{(1 ,2 ), (3 ,4 )} 3 = 4q),
("ZE3 .3", pZ(1 , ∼2 ) ∈ (abs ) ⇒ abs 1 = ∼2q),
("ZE3 .4", pZ∀ i ,j :Z• (i ,j ) ∈ (abs ) ⇒ abs i = jq),
("ZE3 .5", pZ∀i :Z• abs i ∈ Nq),
("ZE3 .6", pZ(µx :Z | x=3 • x∗x ) = 9q),
("ZE3 .7", pZ25 ∈ {y :Z • y∗y}q),
("ZE3 .8", pZ(a × b × c) = (d × e × f ) ⇒ (a × b) = (d × e) ∨ (c ∩ f ) = ∅q),
("ZE3 .9", pZ [X ,Y ](∀ p: P (X × Y )•

(∀ x :X ; y :Y • (x ,y) ∈ p)
⇔ (∀ z :X × Y • z ∈ p))q),

("ZE3 .10", pZ [File | people = {}] = {File | people = {}}q),
("ZE3 .11", pZ〈a,b〉 = 〈c,d〉 ⇒ a=c ∧ b=dq),
("ZE3 .12", pZ〈a,b〉 = 〈d ,e〉 ⇒ 〈b,d〉 = 〈e,a〉q)];

Hints for group ZE3:

1. Use conv tac(MAP C z β conv).

2. Use z app eq tac.

3. Forward chain (all fc tac) using z → ∈ rel ⇔ app eq thm. But first you need to get into
the assumptions the things it needs to chain on.

4. Very similar to number 3.

5. Forward chain using z fun ∈ clauses.

6. Specialise the result of applying z µ rule to the µ expression (using z ∀ elim) and strip this into
the assumptions. Then use the “two tactic” method (i.e. specialise assumptions as necessary) to
derive a contradiction. The last step requires rewriting an assumption to make the contradiction
apparent.

7. Rewriting gives and existential which can be solved using z ∃ tac. Alternatively a proof
by contradiction can be used, but this needs rewriting an assumption at the end to get the
contradiction out.

8. The proof must begin by using extensionality (either use proof context z library ext or rewrite
with z sets ext clauses). A straightforward proof by contradiction is possible using the “two
tactic method”.

9. Use of z sel t intro conv is necessary in this proof.

10. The easiest proof is obtained by a single z strip tac in proof context z library ext followed by
prove tac in proof context z library which leaves just one existential subgoal.

11. Two tactic method in proof context z library ext suffices.

12. Similar to the previous example.
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7.2.2 Propositional Schema Calculus

We define five schemas with distinct but compatible signatures called Pab, Qac, Rbc, Sabc and Tde
and then prove the following goals showing that the schema calculus operators behave in the same
way as the ordinary logical connectives. The names of the schemas are chosen to remind us of the
signatures, since this is of significance in the examples. ( The following lines of Z are for preparing
the exercises database.)

Z

Pab =̂ [a,b:Z]

Z

Qac =̂ [a,c:Z]

Z

Rbc =̂ [b,c:Z]

Z

Sabc =̂ [a,b,c:Z]

Z

Tde =̂ [d ,e:Z]

The following problems are analogous to theorems taken from Principia Mathematica *2, and are
shown together with their reference numbers. Set the context with:

Student

repeat drop main goal ;
open theory "z exercises 2";
set pc "z language";

SML

val SCPM2 = [

("∗2 .02", pZ Π ((Qac ⇒ (Pab ⇒ Qac))⊕⊕U)q),

("∗2 .03", pZ Π (((Pab ⇒ ¬ Qac) ⇒ (Qac ⇒ ¬ Pab))⊕⊕U)q),

("∗2 .15", pZ Π (((¬ Pab ⇒ Qac) ⇒ (¬ Qac ⇒ Pab))⊕⊕U)q),

("∗2 .16", pZ Π (((Pab ⇒ Qac) ⇒ (¬ Qac ⇒ ¬ Pab))⊕⊕U)q),

("∗2 .17", pZ Π (((¬ Qac ⇒ ¬ Pab) ⇒ (Pab ⇒ Qac))⊕⊕U)q),

("∗2 .04", pZ Π (((Pab ⇒ Qac ⇒ Rbc) ⇒ (Qac ⇒ Pab ⇒ Rbc))⊕⊕U)q),

("∗2 .05", pZ Π (((Qac ⇒ Rbc) ⇒ (Pab ⇒ Qac) ⇒ (Pab ⇒ Rbc))⊕⊕U)q),

("∗2 .06", pZ Π (((Pab ⇒ Qac) ⇒ (Qac ⇒ Rbc) ⇒ (Pab ⇒ Rbc))⊕⊕U)q),

("∗2 .08", pZ Π ((Pab ⇒ Pab)⊕⊕U)q),

("∗2 .21", pZ Π ((¬ Pab ⇒ (Pab ⇒ Qac))⊕⊕U)q)];

The following are analogous to Principia Mathematica *3
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SML

val SCPM3 = [

("∗3 .01", pZ Π ((Pab ∧ Qac ⇔ ¬(¬ Pab ∨ ¬ Qac))⊕⊕U)q),

("∗3 .2", pZ Π ((Pab ⇒ Qac ⇒ Pab ∧ Qac)⊕⊕U)q),

("∗3 .26", pZ Π ((Pab ∧ Qac ⇒ Pab)⊕⊕U)q),

("∗3 .27", pZ Π ((Pab ∧ Qac ⇒ Qac)⊕⊕U)q),

("∗3 .3", pZ Π (((Pab ∧ Qac ⇒ Rbc) ⇒ (Pab ⇒ Qac ⇒ Rbc))⊕⊕U)q),

("∗3 .31", pZ Π (((Pab ⇒ Qac ⇒ Rbc) ⇒ (Pab ∧ Qac ⇒ Rbc))⊕⊕U)q),

("∗3 .35", pZ Π (((Pab ∧ (Pab ⇒ Qac)) ⇒ Qac)⊕⊕U)q),

("∗3 .43", pZ Π (((Pab ⇒ Qac) ∧ (Pab ⇒ Rbc) ⇒ (Pab ⇒ Qac ∧ Rbc))⊕⊕U)q),

("∗3 .45", pZ Π (((Pab ⇒ Qac) ⇒ (Pab ∧ Rbc ⇒ Qac ∧ Rbc))⊕⊕U)q),

("∗3 .47", pZ Π (((Pab ⇒ Rbc) ∧ (Qac ⇒ Sabc) ⇒ (Pab ∧ Qac ⇒ Rbc ∧ Sabc))⊕⊕U)q)];

Problems analogous to results in Principia Mathematica *4.

SML

val SCPM4 = [

("∗4 .1", pZ Π ((Pab ⇒ Qac) ⇔ (¬ Qac ⇒ ¬ Pab)⊕⊕U)q),

("∗4 .11", pZ Π ((Pab ⇔ Qac) ⇔ (¬ Pab ⇔ ¬ Qac)⊕⊕U)q),

("∗4 .13", pZ Π ((Pab ⇔ (¬ ¬ Pab))⊕⊕U)q),

("∗4 .2", pZ Π ((Pab ⇔ Pab)⊕⊕U)q),

("∗4 .21", pZ Π ((Pab ⇔ Qac) ⇔ (Qac ⇔ Pab)⊕⊕U)q),

("∗4 .22", pZ Π (((Pab ⇔ Qac) ∧ (Qac ⇔ Rbc) ⇒ (Pab ⇔ Rbc))⊕⊕U)q),

("∗4 .24", pZ Π ((Pab ⇔ (Pab ∧ Pab))⊕⊕U)q),

("∗4 .25", pZ Π ((Pab ⇔ (Pab ∨ Pab))⊕⊕U)q),

("∗4 .3", pZ Π ((Pab ∧ Qac ⇔ Qac ∧ Pab)⊕⊕U)q),

("∗4 .31", pZ Π ((Pab ∨ Qac ⇔ Qac ∨ Pab)⊕⊕U)q),

("∗4 .33", pZ Π (((Pab ∧ Qac) ∧ Rbc ⇔ Pab ∧ (Qac ∧ Rbc))⊕⊕U)q),

("∗4 .4", pZ Π ((Pab ∧ (Qac ∨ Rbc) ⇔ (Pab ∧ Qac) ∨ (Pab ∧ Rbc))⊕⊕U)q),

("∗4 .41", pZ Π ((Pab ∨ (Qac ∧ Rbc) ⇔ (Pab ∨ Qac) ∧ (Pab ∨ Rbc))⊕⊕U)q),

("∗4 .71", pZ Π (((Pab ⇒ Qac) ⇔ (Pab ⇔ (Pab ∧ Qac)))⊕⊕U)q),

("∗4 .73", pZ Π ((Qac ⇒ (Pab ⇔ (Pab ∧ Qac)))⊕⊕U)q)];

Problems analogous to results in Principia Mathematica *5.

SML

val SCPM5 = [

("∗5 .1", pZ Π ((Pab ∧ Qac ⇒ (Pab ⇔ Qac))⊕⊕U)q),

("∗5 .32", pZ Π (((Pab ⇒ (Qac ⇔ Rbc)) ⇒ ((Pab ∧ Qac) ⇔ (Pab ∧ Rbc)))⊕⊕U)q),

("∗5 .6", pZ Π (((Pab ∧ ¬ Qac ⇒ Rbc) ⇒ (Pab ⇒ (Qac ∨ Rbc)))⊕⊕U)q)];

repeat drop main goal ;
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7.2.3 Schema Calculus Quantification

Set the context with:
Student

open theory "z exercises 2";
set pc "z library";

SML

val SCPM9 =[

("∗9 .01", pZΠ (((¬ (∀Qac• Sabc)) ⇔ (∃Qac• ¬ Sabc))⊕⊕U)q),

("∗9 .02", pZΠ (((¬ (∃Qac• Sabc) ⇔ (∀Qac• ¬ Sabc)))⊕⊕U)q)];

SML

val SCPM10 =[

("∗10 .01", pZΠ (((∃Qac• Sabc) ⇔ ¬ (∀Qac• ¬ Sabc))⊕⊕U)q),

("∗10 .21", pZΠ (((∀Qac• Tde ⇒ Sabc) ⇔ Tde ⇒ (∀Qac• Sabc))⊕⊕U)q),

("∗10 .22", pZΠ (((∀Rbc• Sabc ∧ Rbc) ⇔ (∀Rbc• Sabc) ∧ (∀Rbc• Rbc))⊕⊕U)q)];

7.3 Paragraphs

SML

open theory "z library";
new theory "z exercises 3";

7.3.1 Axiomatic Descriptions and Generics

Do the following exercises in axiomatic mode to avoid the consistency proofs which would otherwise
be necessary. (Consistency-proof examples follow.) Thus set the context as follows:

Student

repeat drop main goal ;
open theory "z exercises 3";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", true)];

1. In this context, using a fun fixity paragraph and a generic axiomatic description define a
conditional construct if a then b else c. (Hints: you will need to use the higher order capabilities
of ProofPower HOL for this one. The first parameter will have type BOOL.)

2. Using the specification prove the following result:

set goal ([], pZ if 2>1 then 1 else 0 = 1q);
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7.3.2 Consistency Proofs

1. Set the context as follows:
Student

repeat drop main goal ;
open theory "z exercises 3";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", false)];

2. Use an axiomatic description to define a global variable num whose value is a natural number
between 4 and 50.

3. Prove the consistency result for this description and save it.

4. now use the specification to prove that:

?` num ≥ 0

and save the result in the theory.

7.3.3 Reasoning using Schema Definitions

Set the context as follows:
Student

repeat drop main goal ;
open theory "z exercises 3";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", false)];

7.3.3.1 Simple Pre-conditions and Refinement

Using the following definitions (which are predefined in the ‘exercises’ database):
Z

STATE
r : Z ↔ Z

Z

OP
STATE ; STATE ′; i?:N

Z

OP2
OP

r ′ = {i?} −C r

formulate and prove the following simple conjectures:
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1. ?` pre OP ⇔ i? ≥ 0

2. ?` (pre OP ⇒ pre OP2 ) ∧ (pre OP ∧ OP2 ⇒ OP) that is, OP2 is a correct refinement of
OP

7.3.3.2 The Vending Machine

Write a specification of a vending machine which has a stock of a single variety of commodity
(chocolate bar for example), and accepts cash (input), outputs (a number of) goods and an amount
of cash in change.

Do this in two stages of which the second is a correct (algorithmic) refinement of the first, and prove
that this is the case.

Define the property of such systems that they do not undercharge for the goods they deliver and
prove that the specified systems have this property.

7.4 The Z ToolKit

SML

open theory "z library";
new theory "z exercises 4";

7.4.1 Sets

The following problems are all in the theory of elementary sets as defined in section 4.1 of The
Z Notation [4]. Following [4] we have used free-variable formulations, though this is not usually
recommended, since universally quantified results (over “U”) are usually needed for rewriting. Proofs
of the results quantified over U are very similar.

All the results are provable using the proof context z_sets_ext (which provides for extensional
proofs of results in elementary set theory). Set the context as follows:

Student

repeat drop main goal ;
open theory "z exercises 4";
set pc "z sets ext";

7.4.1.1 Results Provable by Stripping

SML

val Z1 = [
("Z1 .1", pZ a ∪ a = a ∪ {} = a ∩ a = a \ {} = aq),
("Z1 .2", pZ a ∩ {} = a \ a = {} \ a = {}q),
("Z1 .3", pZ a ∪ b = b ∪ aq),
("Z1 .4", pZ a ∩ b = b ∩ aq),
("Z1 .5", pZ a ∪ (b ∪ c) = (a ∪ b) ∪ cq),
("Z1 .6", pZ a ∩ (b ∩ c) = (a ∩ b) ∩ cq),
("Z1 .7", pZ a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)q),
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("Z1 .8", pZ a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)q),
("Z1 .9", pZ (a ∩ b) ∪ (a \ b) = aq),
("Z1 .10", pZ ((a \ b) ∩ b) = {}q),
("Z1 .11", pZ a \ (b \ c) = (a \ b) ∪ (a ∩ c)q),
("Z1 .12", pZ (a \ b) \ c = a \ (b ∪ c)q),
("Z1 .13", pZ a ∪ (b \ c) = (a ∪ b) \ (c \ a)q),
("Z1 .14", pZ a ∩ (b \ c) = (a ∩ b) \ cq),
("Z1 .15", pZ (a ∪ b) \ c = (a \ c) ∪ (b \ c)q)];

SML

val Z2 = [
("Z2 .1", pZ a \ (b ∩ c) = (a \ b) ∪ (a \ c)q),
("Z2 .2", pZ ¬ x ∈ {}q),
("Z2 .3", pZ a ⊆ aq),
("Z2 .4", pZ ¬ a ⊂ aq),
("Z2 .5", pZ {} ⊆ aq),
("Z2 .6", pZ

⋃ {} = {}q),
("Z2 .7", pZ

⋂ {} = Uq)];

For the following stripping alone will not suffice. The “two tactic method” will solve them all, so
will “prove tac”.

SML

val Z3 = [
("Z3 .1", pZ a ⊆ b ⇔ a ∈ P bq),
("Z3 .2", pZ a ⊆ b ∧ b ⊆ a ⇔ a = bq),
("Z3 .3", pZ ¬ (a ⊂ b ∧ b ⊂ a)q),
("Z3 .4", pZ a ⊆ b ∧ b ⊆ c ⇒ a ⊆ cq),
("Z3 .5", pZ a ⊂ b ∧ b ⊂ c ⇒ a ⊂ cq),
("Z3 .6", pZ {} ⊂ a ⇔ ¬ a = {}q),
("Z3 .7", pZ

⋃
(a ∪ b) = (

⋃
a) ∪ (

⋃
b)q),

("Z3 .8", pZ
⋂

(a ∪ b) = (
⋂

a) ∩ (
⋂

b)q),
("Z3 .9", pZ a ⊆ b ⇒ ⋃

a ⊆ ⋃
b q),

("Z3 .10", pZ a ⊆ b ⇒ ⋂
b ⊆ ⋂

a q)];

SML

val Z3b = [
("Z3b.1", pZ a ⊆ b ∧ b ⊆ a ⇔ a = bq),
("Z3b.2", pZ a ⊂ b ∧ b ⊂ c ⇒ a ⊂ cq),
("Z3b.3", pZ {} ⊂ a ⇔ ¬ a = {}q)];
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7.4.2 Relations

Set the context by:

Student

repeat drop main goal ;
open theory "z exercises 4";
set pc "z rel ext";

SML

val Z4 = [
("Z4 .1", pZ [X ,Y ] (R ∈ X ↔ Y ) ⇒ (∀ x : X • x ∈ dom R ⇔ (∃ y : Y • (x ,y) ∈ R))q),
("Z4 .2", pZ [X ,Y ] (R ∈ X ↔ Y ) ⇒ (∀ y : Y • y ∈ ran R ⇔ (∃ x : X • (x ,y) ∈ R))q),
("Z4 .3", pZdom {x1 7→ y1 , x2 7→ y2} = {x1 , x2}q),
("Z4 .4", pZran {x1 7→ y1 , x2 7→ y2} = {y1 , y2}q),
("Z4 .5", pZdom (Q ∪ R) = dom Q ∪ dom Rq),
("Z4 .6", pZran (Q ∪ R) = ran Q ∪ ran Rq),
("Z4 .7", pZdom (Q ∩ R) ⊆ dom Q ∩ dom Rq),
("Z4 .8", pZran (Q ∩ R) ⊆ ran Q ∩ ran Rq),
("Z4 .9", pZdom {} = {}q),
("Z4 .10", pZran {} = {}q)];

SML

val Z5 = [
("Z5 .1", pZ [X ,Y ,Z ] P ∈ X ↔ Y ∧ Q ∈ Y ↔ Z ⇒

((x 7→ z ) ∈ P o
9 Q ⇔ (∃ y : Y • (x ,y) ∈ P ∧ (y ,z ) ∈ Q))q),

("Z5 .2", pZP o
9 (Q o

9 R) = (P o
9 Q) o

9 Rq)];

SML

val Z5b = [
("Z5b.1", pZ [X ] (x 7→ x ′) ∈ id X ⇔ x = x ′ ∈ X q),
("Z5b.2", pZ(id X ) o

9 P = X C Pq),
("Z5b.3", pZP o

9 id Y = P B Y q),
("Z5b.4", pZ(id V ) o

9 id W = id (V ∩ W )q)];

SML

val Z5c = [
("Z5c.1", pZ [X ,Y ,Z ] (∀x :U;g :U• g ∈ X 7→ Y ∧ x ∈ dom g ⇒ (x , g x ) ∈ g)q),
("Z5c.2", pZ [X ,Y ,Z ] x ∈ dom g ∧ g x ∈ dom f ∧ g ∈ X 7→ Y

∧ f ∈ Y 7→ Z ⇒ (f ◦ g)(x ) = f (g(x ))q)];
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SML

val Z6 = [
("Z6 .1", pZdom (S C R) = S ∩ dom Rq),
("Z6 .2", pZran (R B T ) = ran R ∩ Tq),
("Z6 .3", pZS C R ⊆ Rq),
("Z6 .4", pZR B T ⊆ Rq),
("Z6 .5", pZ(S C R) B T = S C (R B T )q),
("Z6 .6", pZS C (V C R) = (S ∩ V ) C Rq),
("Z6 .7", pZ(R B T ) B W = R B (T ∩ W )q)];

SML

val Z6b = [
("Z6b.1", pZran R ⊆ Y ⇒ (S C R = (id S ) o

9 R = (S × Y ) ∩ R)q),
("Z6b.2", pZdom R ⊆ X ⇒ (R B T = R o

9 (id T ) = R ∩ (X × T ))q)];

SML

val Z7 = [
("Z7 .1", pZdom R ⊆ X ⇒ S −C R = (X \ S ) C Rq),
("Z7 .2", pZran R ⊆ Y ⇒ R −B T = R B (Y \ T )q),
("Z7 .3", pZ(S C R) ∪ (S −C R) = Rq),
("Z7 .4", pZ(R B T ) ∪ (R −B T ) = Rq)];

SML

val Z8 = [
(∗ ("Z8 .1", pZ(y 7→ x ) ∈ R ∼ ⇔ (x 7→ y) ∈ Rq), ∗)
("Z8 .2", pZ(R ∼) ∼ = Rq),
("Z8 .3", pZ(Q o

9 R) ∼ = R ∼ o
9 Q ∼q),

("Z8 .4", pZdom(R ∼) = ran Rq),
("Z8 .5", pZran(R ∼) = dom Rq)];

SML

val Z8b = [
("Z8b.1", pZ(id V ) ∼ = id V q),
("Z8b.2", pZ id(dom R) ⊆ R o

9 (R ∼)q),
("Z8b.3", pZ id(ran R) ⊆ (R ∼) o

9 Rq)];
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SML

val Z9 = [
("Z9 .1", pZS ⊆ X ⇒ (y ∈ R (| S |) ⇔ (∃ x : X • x ∈ S ∧ (x ,y) ∈ R))q),
("Z9 .2", pZR (| S |) = ran(S C R)q),
("Z9 .3", pZdom(Q o

9 R) = (Q ∼) (| dom R |)q),
("Z9 .4", pZran(Q o

9 R) = R (| ran Q |)q),
("Z9 .5", pZR (| S ∪ T |) = R (| S |) ∪ R (| T |)q),
("Z9 .6", pZR (| S ∩ T |) ⊆ R (| S |) ∩ R (| T |)q),
("Z9 .7", pZR (| dom R |) = ran Rq)];

SML

val Z9b = [
("Z9b.1", pZdom R = first (| R |)q),
("Z9b.2", pZran R = second (| R |)q)];

SML

val Z10 = [
("Z10 .1", pZR ⊕ R = Rq),
("Z10 .2", pZP ⊕ (Q ⊕ R) = (P ⊕ Q) ⊕ Rq),
("Z10 .3", pZ∅ ⊕ R = R ⊕ ∅ = Rq),
("Z10 .4", pZdom Q ∩ dom R = ∅ ⇒ Q ⊕ R = Q ∪ Rq),
("Z10 .5", pZV C (Q ⊕ R) = (V C Q) ⊕ (V C R)q),
("Z10 .6", pZ(Q ⊕ R) B W ⊆ (Q B W ) ⊕ (R B W )q)];

SML

val Z10b = [
("Z10b.1", pZdom(Q ⊕ R) = (dom Q) ∪ (dom R)q),
("Z10b.2", pZ f ∈ X 7→ Y ∧ g ∈ X 7→ Y ⇒

x ∈ (dom f ) \ (dom g) ⇒ (f ⊕ g) x = f xq),
("Z10b.3", pZg ∈ X 7→ Y ∧ x ∈ dom g ⇒ (f ⊕ g) x = g xq)];

SML

val Z11 = [
("Z11 .1", pZR ⊆ R +q),
("Z11 .2", pZ id X ⊆ R ∗q),
("Z11 .3", pZR ⊆ R∗q)];
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SML

val Z11b = [
("Z11b.1", pZR + o

9 (R +) ⊆ R +q),
("Z11b.2", pZ(R +) + = R +q),
("Z11b.3", pZ(R ∗) ∗ = R ∗q),
("Z11b.4", pZR ⊆ Q ∧ Q o

9 Q ⊆ Q ⇒ R + ⊆ Qq),
("Z11b.5", pZR∗ o

9 R∗ = R∗q),
("Z11b.6", pZ id X ⊆ Q ∧ R ⊆ Q ∧ Q o

9 Q ⊆ Q ⇒ R∗ ⊆ Qq),
("Z11b.7", pZR∗ = R + ∪ id X = (R ∪ id X )+q),
("Z11b.8", pZR+ = R o

9 R ∗ = R ∗ o
9 Rq),

("Z11b.9", pZS ⊆ R ∗ (| S |)q),
("Z11b.10", pZS ⊆ T ∧ R (| T |) ⊆ T ⇒ R ∗ (|S |) ⊆ Tq),
("Z11b.11", pZR (|R ∗ (| S |) |) ⊆ R ∗ (|S |)q)];

7.4.3 Functions

Set the context:
Student

repeat drop main goal ;
open theory "z exercises 4";
set pc "z fun ext";

SML

val Z12 = [
("Z12 .1", pZ f ∈ X 7→ Y ∧ (x , y) ∈ f ⇒ f x = y q),
("Z12 .2", pZ f ∈ X 7½ Y ∧ (x , y) ∈ f ⇒ f x = y q),
("Z12 .3", pZ f ∈ X ½ Y ∧ (x , y) ∈ f ⇒ f x = y q),
("Z12 .4", pZ f ∈ X 7½ Y ∧ (x , y) ∈ f ⇒ f x = y q),
("Z12 .5", pZ f ∈ X ³½ Y ∧ (x , y) ∈ f ⇒ f x = y q),
("Z12 .6", pZ f ∈ X 7³ Y ∧ (x , y) ∈ f ⇒ f x = y q)
];
val Z12a = [
("Z12a.1", pZ f ∈ (X 7→ Y ) ∪ (X 7½ Y ) ∪ (X ½ Y )

∪ (X 7½ Y ) ∪ (X ³½ Y ) ∪ (X 7³ Y )
∧ (x , y) ∈ f ⇒ f x = y q)];

SML

val Z12b = [
("Z12b.1", pZ f ∈ X ↔ Y ⇒ (f ∈ X 7→ Y ⇔ f ◦ f ∼ = id(ran f ))q),
("Z12b.2", pZ f ∈ X 7½ Y ⇔ (f ∈ X 7→ Y ∧ f ∼ ∈ Y 7→ X )q),
("Z12b.3", pZ f ∈ X 7½ Y ⇔ (f ∈ X 7→ Y ∧ f ∼ ∈ Y 7→ X )q),
("Z12b.4", pZ f ∈ X ½ Y ⇔ (f ∈ X → Y ∧ f ∼ ∈ Y 7→ X )q),
("Z12b.5", pZ f ∈ X 7½ Y ⇒ f (|S ∩ T |) = f (|S |) ∩ f (|T |)q),
("Z12b.6", pZ f ∈ X ³½ Y ⇔ (f ∈ X → Y ∧ f ∼ ∈ Y → X )q),
("Z12b.7", pZ f ∈ X 7³ Y ⇒ f ◦ f ∼ = id Y q)];
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7.4.4 Numbers and Finiteness

1. Set the context to axiomatic mode as follows:
Student

repeat drop main goal ;
open theory "z exercises 4";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", true)];

and then give an inductive definition using a Z axiomatic description of the function Σ which
maps the natural number n to the sum of the first n natural numbers.

2. Using z N induction tac prove that: ∀n: N• (Σ n) ∗ 2 = n ∗ (n+1 )‘

3. Set the context as follows:
Student

repeat drop main goal ;
open theory "z exercises 4";
set pc "z library ext";
set flags [("z type check only", false), ("z use axioms", true)];

and then, using the specification of ( .. )(obtained using z get spec) and forward chaining
(all fc tac) with the theorem z ≤ trans thm prove that:

∀ x , y : Z • x ≤ y ⇒ (0 .. x ) ⊆ (0 .. y)

4. Now prove the harder result: ∀ x , y : Z • ¬ x ≤ y ⇒ (0 .. y) ⊆ (0 .. (x − 1 ))

Helpful theorems in this case are z ≤ less trans thm, z ≤ ≤ 0 thm, z plus order thm and
z minus thm.

SML

val ZNum = [
("ZNum.2", pZ∀ x , y : Z • x ≤ y ⇒ (0 .. x ) ⊆ (0 .. y)q),
("ZNum.3", pZ∀ x , y : Z • ¬ x ≤ y ⇒ (0 .. y) ⊆ (0 .. (x − 1 ))q)];

(The term for the first goal cannot be entered until the definition of Σ has been processed).
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SOLUTIONS TO EXERCISES

The section numbers of this chapter correspond to those in the Exercises chapter.

The source script for this chapter is the file usr011S.doc. This may be converted into an ML script
using docsml , or alternatively the formal text can be entered interactively by cut-and-paste from the
source document into a command tool in which ProofPower is running.

8.1 The Z Predicate Calculus

8.1.1 Forward Propositional Proofs

Solutions to forward proof exercises.
SML

repeat drop main goal ;
open theory "z exercises 1";
set pc "z library";

SML

(∗ (a) ∗)
val ex1a thm1 = asm rule pZ a⇒bq;
val ex1a thm2 = asm rule pZ b⇒cq;
val ex1a thm3 = asm rule pZ Π (a)q;
val ex1a thm4 = ⇒ elim ex1a thm1 ex1a thm3 ;
val ex1a thm = ⇒ elim ex1a thm2 ex1a thm4 ;

save thm ("ex1a thm", ex1a thm);

(∗ (b) ∗)
val ex1b thm1 =
⇒ elim (asm rule pZ a⇒b⇒cq)(asm rule pZ Π (a)q);

val ex1b thm =
⇒ elim ex1b thm1 (asm rule pZ Π (b)q);

save thm ("ex1b thm", ex1b thm);

(∗ (c) ∗)
val ex1c thm = ⇒ intro pZ Π (a)q ex1b thm;

save thm ("ex1c thm", ex1c thm);
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(∗ (d) ∗)
val ex1d thm1 = ⇒ intro pZ Π (b)q ex1c thm;
val ex1d thm = ⇒ intro pZ a ⇒ b ⇒ cq ex1d thm1 ;

save thm ("ex1d thm", ex1d thm);

8.1.2 Goal Oriented Propositional Proofs

For each of the exercises either:
SML

a (prove tac[]);

or:
SML

a (REPEAT z strip tac);

will complete the proof in one step.

To get an understanding of how this is done the proofs may be obtained in steps by manually
repeating:

SML

a z strip tac;

or:
SML

a step strip tac;

We show here just one example of proof by stripping, you may work through as many other examples
as you like.

SML

setlg "∗2 .02" PM2 ;

The results may be proven automatically as follows:

SML

map prove and store PM2 ;
map prove and store PM3 ;
map prove and store PM4 ;
map prove and store PM5 ;

Though technically these may be considered forward proofs since they use prove rule, prove rule
itself uses prove tac, and so the difference between completely automatic forward and backward
proof is insignificant.
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8.1.3 Forward Predicate Calculus Proofs

Forward proof using elementary rules is less convenient in Z because of the extra complications
arising when quantifiers are eliminated or introduced.

SML

repeat drop main goal ;
open theory "z exercises 1";
set pc "z library";

(∗ 1 (a) ∗)
val ex1a thm1 = z ∀ elim pZ 0q z N ¬ plus1 thm;
(∗ 1 (b) ∗)
val ex1b thm = z ∀ elim pZ x∗xq z N ¬ plus1 thm;

(∗ 2 ∗)
val ex2 thm = prove rule [z ≤ trans thm]

pZ i ≤ j ∧ j ≤ k ⇒ i ≤ kq ;

(∗ note that :

z ∀ elim pZ(i=̂i⊕⊕Z, j =̂j⊕⊕Z, k=̂k⊕⊕Z)q z ≤ trans thm;
doesn ′t do the job.
∗)

(∗ 3 (a) ∗)
val ex3a thm = prove rule [z N ¬ plus1 thm]

pZ¬ 0 + 1 = 0q;
(∗ 3 (b) ∗)
val ex3b thm = prove rule [z N ¬ plus1 thm]

pZ x ∗ x ∈ N ⇒ ¬ x ∗ x + 1 = 0q;

(∗ 4 (a) ∗)
val ex4a thm = prove rule[z ¬ less thm]

pZ¬ 0 < 1 ⇔ 1 ≤ 0q;
(∗ 4 (b) ∗)
val ex4b thm = prove rule[z ≤ trans thm]

pZ∀ n:Z • 3 ≤ x ∗ x ∧ x ∗ x ≤ n ⇒ 3 ≤ nq;

(∗ 5 (a) ∗)
val ex5a thm = prove rule[z ≤ clauses]

pZ∀ i , m, n :Z• i + m ≤ i + n ⇔ m ≤ nq;
(∗ 5 (b) ∗)
val ex5b thm = prove rule[z ≤ clauses]

pZ∀ m, i , n :Z• i + m ≤ i + n ⇔ m ≤ nq;
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8.1.4 Goal Oriented Predicate Calculus Proof

These proofs are also conducted automatically.
SML

map prove and store PM9 ;
map prove and store PM10 ;
map prove and store PM10b;
map prove and store PM11 ;

The problems in PM11b cannot be solved by prove tac.
SML

set goal([], lassoc3 PM11b "∗11 .32");

ProofPower output

...

(∗ ?` ∗) pZ [Y ]((∀ x , y : Y • φ (x , y) ⇒ ψ (x , y))
⇒ (∀ x , y : Y • φ (x , y))
⇒ (∀ x , y : Y • ψ (x , y)))q

...

SML

a contr tac;

ProofPower output

...

(∗ 4 ∗) pZ∀ x , y : Y • φ (x , y) ⇒ ψ (x , y)q
(∗ 3 ∗) pZ∀ x , y : Y • φ (x , y)q
(∗ 2 ∗) pZx ∈ Y q
(∗ 1 ∗) pZy ∈ Y q

(∗ ?` ∗) pZψ (x , y)q
...

SML

a(z spec nth asm tac 5 pZ(x =̂ x , y =̂ y)q);

ProofPower output

...

(∗ 6 ∗) pZ∀ x , y : Y • φ (x , y) ⇒ ψ (x , y)q
(∗ 5 ∗) pZ∀ x , y : Y • φ (x , y)q
(∗ 4 ∗) pZx ∈ Y q
(∗ 3 ∗) pZy ∈ Y q
(∗ 2 ∗) pZ¬ ψ (x , y)q
(∗ 1 ∗) pZ¬ φ (x , y)q

(∗ ?` ∗) pZ falseq
...
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SML

a(z spec nth asm tac 5 pZ(x =̂ x , y =̂ y)q);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val it = () : unit

SML

save pop thm("∗11 .32");

SML

setlg "∗11 .45" PM11b;
a contr tac;
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(x =̂ x ′, y =̂ y ′)q);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(x =̂ x , y =̂ y)q);
(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(x =̂ x ′, y =̂ y ′)q);
save pop thm("∗11 .45");

SML

setlg "∗11 .54" PM11b;
a contr tac;
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(x =̂ x )q);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(y =̂ y)q);
(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(x =̂ x , y =̂ y)q);
save pop thm("∗11 .54");
setlg "∗11 .55" PM11b;
a contr tac;
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(x =̂ x )q);
a(z spec nth asm tac 1 pZ(y =̂ y)q);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(x =̂ x , y =̂ y)q);
save pop thm("∗11 .55");
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SML

setlg "∗11 .6" PM11b;
a contr tac;
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(y =̂ y)q);
a(z spec nth asm tac 1 pZ(x =̂ x )q);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(x =̂ x )q);
a(z spec nth asm tac 1 pZ(y =̂ y)q);
save pop thm("∗11 .6");

SML

setlg "∗11 .62" PM11b;
a contr tac;
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z spec nth asm tac 6 pZ(x =̂ x , y =̂ y)q);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(z spec nth asm tac 6 pZ(x =̂ x )q);
a(z spec nth asm tac 1 pZ(y =̂ y)q);
save pop thm("∗11 .62");

Forward chaining suffices. To show this we first delete the theorems from the theory:
SML

map delete thm (map fst PM11b);

Then we write a function to do the proofs using a simpler approach:
SML

fun prove and store2 (key , term) = save thm (key ,
tac proof (([],term),
(contr tac

THEN (all asm fc tac[])
THEN (all asm fc tac[]))));

map prove and store2 PM11b;

8.1.5 Rewriting

8.1.5.1 Rewriting with the Subgoal Package

SML

repeat drop main goal ;
open theory "z exercises 1";
set pc "z library ext";

No solutions.
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8.1.5.2 Combining Forward and Backward Proof

SML

repeat drop main goal ;
open theory "z exercises 1";
set pc "z library";

1. :
SML

set goal([],pZ x + y = y + xq);
a (rewrite tac[]);
save pop thm "X6 .1";

2. :
SML

set goal([],pZ x + y + z = (x + y) + zq);
a (rewrite tac[z plus assoc thm]);
save pop thm "X6 .2";

3. :
SML

set goal([],pZ z + y + x = y + z + xq);
a (rewrite tac[z plus assoc thm1 ]);
save pop thm "X6 .3";

4. :
SML

set goal([],pZ x + y + z = y + z + xq);
a (rewrite tac[z ∀ elim pZ(i=̂y ,j =̂z ,k=̂x )q

z plus assoc thm1 ]);
save pop thm "X6 .4";

5. :
SML

set goal([],pZ x + y + z + v = y + v + z + xq);
a (rewrite tac[z ∀ elim pZ xq z plus order thm]);
save pop thm "X6 .5";

8.1.6 Stripping

No solutions.
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8.2 Expressions and Schema Expressions

8.2.1 Expressions

SML

repeat drop main goal ;
open theory "z exercises 2";
set pc "z library";

Group ZE1 are all provable automatically in proof context z library .

SML

map prove and store ZE1 ;

Group ZE2 are provable automatically in proof context z library ext .

SML

repeat drop main goal ;
open theory "z exercises 2";
set pc "z language ext" ;

map prove and store ZE2 ;

Group ZE3 results are not automatically provable. Thought the results are primarily about the
language, they make use of definitions in the Z ToolKit and therefore need to be conducted in the
proof context z library .

SML

set pc "z library";

SML

(∗ ZE3 .1 ∗)
set goal ([], pZ(λx :Z• x+1 ) 3 = 4q);
a (conv tac (MAP C z β conv));
a (rewrite tac[]);
save pop thm "ZE3 .1";

SML

(∗ ZE3 .2 ∗)
set goal ([], pZ{(1 ,2 ), (3 ,4 )} 3 = 4q);
a (z app eq tac);
a (rewrite tac []);
a (REPEAT strip tac);
save pop thm "ZE3 .2";
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SML

(∗ ZE3 .3 ∗)
set goal ([], pZ(1 ,∼2 ) ∈ (abs ) ⇒ abs 1 = ∼2q);
a (REPEAT strip tac);
a (strip asm tac (z get spec pZ(abs )q));
a (asm tac (prove rule[] pZ 1 ∈ Zq));
a (all fc tac [z → ∈ rel ⇔ app eq thm]);
save pop thm "ZE3 .3";

SML

(∗ ZE3 .4 ∗)
set goal ([], pZ∀ i ,j :Z• (i ,j ) ∈ (abs ) ⇒ abs i = jq);
a (REPEAT strip tac);
a (strip asm tac (z get spec pZ(abs )q));
a (asm tac (prove rule[] pZ i ∈ Zq));
a (all fc tac [z → ∈ rel ⇔ app eq thm]);
save pop thm "ZE3 .4";

SML

(∗ ZE3 .5 ∗)
set goal ([], pZ∀i :Z• abs i ∈ Nq);
a (REPEAT strip tac);
a (strip asm tac (z get spec pZ(abs )q));
a (asm tac (prove rule[] pZ i ∈ Zq));
a (all fc tac [z fun ∈ clauses]);
save pop thm "ZE3 .5";

SML

(∗ ZE3 .6 ∗)
set goal ([], pZ(µx :Z | x=3 • x∗x ) = 9q);
a (strip asm tac (z ∀ elim pZ9q (z µ rule pZ(µx :Z | x=3 • x∗x )q)));
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a (var elim nth asm tac 2 );
a (asm ante tac pZ¬ 3 ∗ 3 = 9q THEN rewrite tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a (z spec nth asm tac 1 pZ3q);
a (asm ante tac pZ¬ 3 ∗ 3 = 9q THEN rewrite tac[]);
save pop thm "ZE3 .6";

SML

(∗ ZE3 .7 ∗)
set goal ([], pZ25 ∈ {y :Z • y∗y}q);
a (rewrite tac[]);
a (z ∃ tac pZ5q);
a (rewrite tac[]);
save pop thm "ZE3 .7";
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SML

(∗ ZE3 .8 ∗)
set goal ([], pZ(a × b × c) = (d × e × f ) ⇒ (a × b) = (d × e) ∨ (c ∩ f ) = ∅ q);
a (PC T1 "z library ext" rewrite tac[]);
a (contr tac THEN all asm fc tac[]);
a (z spec nth asm tac 6 pZ(x1 =̂ x1 , x2 =̂ x2 , x3 =̂ x1 ′)q);
a (z spec nth asm tac 6 pZ(x1 =̂ x1 , x2 =̂ x2 , x3 =̂ x1 ′)q);
save pop thm "ZE3 .8";

SML

(∗ ZE3 .9 ∗)
set goal ([], pZ [X ,Y ](∀ p: P (X × Y )•

(∀ x :X ; y :Y • (x ,y) ∈ p)
⇔ (∀ z :X × Y • z ∈ p))q);

a (REPEAT strip tac);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a (z spec nth asm tac 3 pZ(x =̂ z .1 , y =̂ z .2 )q);

a (conv tac (ONCE MAP C z sel t intro conv));

a (asm rewrite tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a (z spec nth asm tac 3 pZ(x ,y)q);
save pop thm "ZE3 .9";

SML

(∗ ZE3 .10 ∗)
set goal ([], pZ [File | people = {}] = {File | people = {}}q);
a (PC T "z library ext" z strip tac);
a (prove tac[]);
a (z ∃ tac pZ(age =̂ x1 , people =̂ x2 )q);
a (asm rewrite tac[]);
save pop thm "ZE3 .10";

SML

(∗ ZE3 .11 ∗)
set goal ([], pZ〈a,b〉 = 〈c,d〉 ⇒ a=c ∧ b=dq);
a (PC T "z library ext" contr tac);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a (z spec nth asm tac 2 pZ(x1 =̂ 1 , x2 =̂ a)q);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a (z spec nth asm tac 2 pZ(x1 =̂ 2 , x2 =̂ b)q);
save pop thm "ZE3 .11";
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SML

(∗ ZE3 .12 ∗)
set goal ([], pZ〈a,b〉 = 〈d ,e〉 ⇒ 〈b,d〉 = 〈e,a〉q);
a (PC T "z library ext" z strip tac);
a (z spec nth asm tac 1 pZ(x1 =̂ 1 , x2 =̂ a)q);
a (z spec nth asm tac 2 pZ(x1 =̂ 2 , x2 =̂ b)q);
a (asm rewrite tac[]);
save pop thm "ZE3 .12";

8.2.2 Propositional Schema Calculus

These results can be solved by stripping in a manner analogous to the analogous propositional result.
SML

repeat drop main goal ;
open theory "z exercises 2";
set pc "z language";

We illustrate the proofs by showing one example in detail.
SML

setlg "∗2 .03" SCPM2 ;

ProofPower output

...

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZ((Pab ⇒ ¬ Qac) ⇒ Qac ⇒ ¬ Pab)q
...

In the following proof two main things are taking place.

Firstly, the logical schema operators are being transformed into the corresponding propositional logic
operators, and secondly, the stripping of these follows the normal course.

In addition there is some switching taking place between schemas-as-predicates, in which there is an
implicit binding membership assertion, and explicit statements about membership of bindings.

The basic proof facilities are provided for the binding membership assertions since these are more
general than the schema-as-predicate format, and also are likely to arise from the latter when sub-
stitutions take place. At present the stripping facilities will revert to the schema-as-predicate format
at the top level of the conclusion or assumptions if possible.

SML

a z strip tac;

ProofPower output

..

(∗ ?` ∗) pZ(a =̂ a, b =̂ b, c =̂ c) ∈ (Pab ⇒ ¬ Qac)
⇒ (a =̂ a, b =̂ b, c =̂ c) ∈ (Qac ⇒ ¬ Pab)q

...
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The first step has transformed the implication to a logical implication.
SML

a z strip tac;

ProofPower output

Tactic produced 2 subgoals:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) pZ¬ Qacq

(∗ ?` ∗) pZ(Qac ⇒ ¬ Pab)q

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 1 ∗) pZ¬ Pabq

(∗ ?` ∗) pZ(Qac ⇒ ¬ Pab)q
...

When the implication is stripped the left hand side is completely stripped into the assumptions. This
results in a case split. Note here that the negation in the assumption is now a logical negation.

SML

a z strip tac;

ProofPower output

...

(∗ 1 ∗) pZ¬ Pabq

(∗ ?` ∗) pZ(a =̂ a, c =̂ c) ∈ Qac ⇒ (a =̂ a, b =̂ b) ∈ (¬ Pab)q
...

SML

a z strip tac;

ProofPower output

...

(∗ 2 ∗) pZ¬ Pabq
(∗ 1 ∗) pZQacq

(∗ ?` ∗) pZ(¬ Pab)q
...

Here we are not quite finished because the negation in the assumption is a logical negation while the
one in the conclusion is a schema-negation.
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SML

a z strip tac;

ProofPower output

...

(∗ 2 ∗) pZ¬ Pabq
(∗ 1 ∗) pZQacq

(∗ ?` ∗) pZ¬ (a =̂ a, b =̂ b) ∈ Pabq
...

SML

a z strip tac;

ProofPower output

...

(∗ 2 ∗) pZ¬ Pabq
(∗ 1 ∗) pZQacq

(∗ ?` ∗) pZ¬ Pabq
...

Now the conclusion really is the same as the assumption.

SML

a z strip tac;

ProofPower output

Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) pZ¬ Qacq

(∗ ?` ∗) pZ(Qac ⇒ ¬ Pab)q
...

The proof of this subgoal contains nothing new so we do it in one step.

SML

a (REPEAT z strip tac);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val it = () : unit
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An alternative approach is to eliminate the schema operations first by rewriting, and then complete
the proof by stripping.

SML

setlg "∗2 .03" SCPM2 ;

ProofPower output

...

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZ((Pab ⇒ ¬ Qac) ⇒ Qac ⇒ ¬ Pab)q
...

Since all the membership conversions are built in to the proof context z language rewriting with no
parameters suffices to eliminate the schema operators. This would not be the case if the schema
expression had not been used as a predicate, since the implicit membership statement is essential to
trigger the transformations in this context.

SML

a (rewrite tac[]);

This yields the syntactically similar goal in which all operators are logical operators rather than
schema operators.

ProofPower output

...

(∗ ?` ∗) pZ(Pab ⇒ ¬ Qac) ⇒ Qac ⇒ ¬ Pabq
...

A cleaner proof is now obtained by stripping.

SML

a z strip tac;

ProofPower output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) pZ¬ Qacq

(∗ ?` ∗) pZQac ⇒ ¬ Pabq

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 1 ∗) pZ¬ Pabq

(∗ ?` ∗) pZQac ⇒ ¬ Pabq
...
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We will not complete the proof, which proceeds as the previous one but with a number of steps
omitted.

SML

drop main goal();

Many other examples are provided for you to play through if you wish. The following script demon-
strates that the system can prove them all automatically.

SML

map prove and store SCPM2 ;
map prove and store SCPM3 ;
map prove and store SCPM4 ;
map prove and store SCPM5 ;

8.2.3 Schema Calculus Quantification

SML

open theory "z exercises 2";
set pc "z library";

SML

map prove and store SCPM9 ;
map prove and store SCPM10 ;

8.3 Paragraphs

8.3.1 Axiomatic Descriptions and Generics

1.
SML

repeat drop main goal ;
open theory "z exercises 3";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", true)];

Z

fun if then else

2.
Z

[X ]
if then else : (B × X × X ) → X

∀ e1 ,e2 :X •
if true then e1 else e2 = e1

∧ if false then e1 else e2 = e2
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3.

First specialise the specification to U to simplify using it as a rewrite.

SML

val if then else thm = z gen pred elim [pZUq]
(z get spec pZ(if then else ) q);

ProofPower output

val if then else thm = ` (if then else ) ∈ B × U × U → U
∧ (∀ e1 , e2 : U
• if true then e1 else e2 = e1 ∧ if false then e1 else e2 = e2 ) : THM

The required result can then be obtained directly using rewrite conv :

SML

rewrite conv [if then else thm] pZ if 2>1 then 1 else 0q;

ProofPower output

val it = ` if 2 > 1 then 1 else 0 = 1 : THM

Adding if then else thm to any rewrite will result in elimination of conditionals.

8.3.2 Consistency Proofs

Set the flags appropriately:

SML

repeat drop main goal ;
open theory "z exercises 3";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", false)];

Now define the required global variable:

Z

num:N

4 ≤ num ≤ 50

Push the consistency goal, and tidy it up:

SML

z push consistency goal pZnumq;

Supply a witness:

SML

a (z ∃ tac pZ10q);

Then complete the proof by rewriting:
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SML

a (rewrite tac[]);

Then save the consistency goal.
SML

save consistency thm pZnumq (pop thm());

Now set up the required goal:
SML

set goal([], pZ num ≥ 0q);

Strip the specification of num into the assumptions:
SML

a (strip asm tac (z get spec pZnumq));

ProofPower output

...

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ 3 ∗) pZ0 ≤ numq
(∗ 2 ∗) pZ4 ≤ numq
(∗ 1 ∗) pZnum ≤ 50q

(∗ ?` ∗) pZnum ≥ 0q
..

Then rewrite the conclusion of the goal with the assumptions.
SML

a (asm rewrite tac []);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
...

SML

save pop thm "ZP1";

8.3.3 Reasoning using Schema Definitions

SML

repeat drop main goal ;
open theory "z exercises 3";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", false)];
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8.3.3.1 Simple Pre-conditions and Refinement

Before beginning the proofs we extract the specifications for the relevant constants and bind them
to an ML name:

SML

val specs = (map z get spec [pZOP2q, pZOPq, pZSTATEq]);

Conjecture 1:

First set the goal:
SML

set goal ([], pZ pre OP ⇔ i? ≥ 0q);

ProofPower output

...

(∗ ?` ∗) pZ(pre OP) ⇔ i? ≥ 0q
...

Now rewrite with the specifications of OP and STATE :
SML

a (rewrite tac (map z get spec [pZOPq, pZSTATEq]));

ProofPower output

...

(∗ ?` ∗) pZ(∃ r ′ : U • true) ∧ 0 ≤ i? ⇔ 0 ≤ i?q
...

SML

a (REPEAT strip tac);

ProofPower output

...

(∗ 1 ∗) pZ0 ≤ i?q

(∗ ?` ∗) pZ∃ r ′ : U • trueq

SML

a (z ∃ tac pZxq);

ProofPower output

...

(∗ ?` ∗) pZx ∈ U ∧ true ∧ trueq
...

SML

a contr tac;
save pop thm "ZP2";

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z TUTORIAL USR011



8.3. Paragraphs 143

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
...

Conjecture 2:
SML

save thm ("ZP3", (prove rule specs
pZ (pre OP ⇒ pre OP2 ) ∧ (pre OP ∧ OP2 ⇒ OP)q));

ProofPower output

val it = ` ((pre OP) ⇒ (pre OP2 )) ∧ ((pre OP) ∧ OP2 ⇒ OP) : THM

8.3.3.2 The Vending Machine

SML

repeat drop main goal ;
open theory "z exercises 3";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", true)];

Z

price :N

Z

VMSTATE
stock , takings :N

Z

VM operation
∆VMSTATE ;
cash tendered?, cash refunded ! :N;
bars delivered ! :N

Z

exact cash
cash tendered? :N

cash tendered? = price

Z

insufficient cash
cash tendered? :N

cash tendered? < price
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Z

some stock
stock :N

stock > 0

Z

VM sale
VM operation

stock ′ = stock − 1 ;
bars delivered ! = 1 ;
cash refunded ! = cash tendered? − price;
takings ′ = takings + price

Z

VM nosale
VM operation

stock ′ = stock ;
bars delivered ! = 0 ;
cash refunded ! = cash tendered?;
takings ′ = takings

Z

VM1 =̂ exact cash ∧ some stock ∧ VM sale

Z

VM2 =̂ insufficient cash ∧ VM nosale

Z

VM3 =̂ VM1 ∨ VM2

Now for convenience we bind the various specifications to ML variables:

SML

val [price, VMSTATE , VM operation, exact cash,
insufficient cash, some stock , VM sale,
VM nosale, VM1 , VM2 , VM3 ]

= map z get spec [pZpriceq,pZVMSTATEq,pZVM operationq,pZexact cashq,
pZ insufficient cashq,pZsome stockq,pZVM saleq,
pZVM nosaleq,pZVM1q,pZVM2q,pZVM3q];
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We prove various preconditions (though these are not needed for the following correctness proofs).
First the pre-condition of VM1 .

SML

set goal([],pZpre VM1 ⇔
(0 < stock
∧ cash tendered? = price
∧ 0 ≤ takings)q);

a (rewrite tac [VM1 , VM sale, some stock ,
VM operation, VMSTATE , exact cash]);

a (pure rewrite tac [z get spec pZ( ≤ )q]);
a (rewrite tac[]);
a (REPEAT z strip tac);
a (z ∃ tac pZ(

bars delivered ! =̂ 1 ,
cash refunded ! =̂ cash tendered? + ∼ price,
stock ′ =̂ stock + ∼ 1 ,
takings ′ =̂ takings + price)q

THEN rewrite tac[]);
a (PC T1 "z library ext" asm rewrite tac

[rewrite rule [] price]);
a (LEMMA T pZstock + ∼ 1 ≤ stockq asm tac THEN1 rewrite tac[]);
a (all fc tac [z ≤ trans thm]);
a (asm rewrite tac []);
a (strip asm tac (z get spec pZpriceq));
a (all fc tac [z N plus thm]);
val pre VM1 thm = save pop thm "pre VM1 thm";

Now we establish the precondition of VM2.
SML

set goal([], pZpre VM2 ⇔
cash tendered? < price
∧ cash tendered? ≥ 0
∧ stock ≥ 0
∧ takings ≥ 0q);

a (rewrite tac [VM2 , VM nosale, VM operation, VMSTATE , insufficient cash]);
a (REPEAT z strip tac);
a (z ∃ tac pZ(

bars delivered ! =̂ 0 ,
cash refunded ! =̂ cash tendered?,
stock ′ =̂ stock ,
takings ′ =̂ takings)q

THEN PC T1 "z library ext" asm rewrite tac[]);
val pre VM2 thm = save pop thm "pre VM2 thm";

We next establish the precondition of VM3. The proof is simplified if the following result is established
first:
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SML

set goal([], pZpre (VM1 ∨ VM2 ) ⇔ pre VM1 ∨ pre VM2q);
a (prove tac[]);
val VM1VM2 lemma = pop thm();

SML

set goal([],pZpre VM3 ⇔
0 < stock ∧ cash tendered? = price ∧ 0 ≤ takings
∨ cash tendered? < price
∧ 0 ≤ cash tendered?
∧ 0 ≤ stock
∧ 0 ≤ takingsq);

a (pure rewrite tac [VM3 , VM1VM2 lemma, pre VM1 thm, pre VM2 thm]);
a (z strip tac

THEN z strip tac
THEN z strip tac
THEN strip asm tac price
THEN asm rewrite tac[]);

val pre VM3 thm = save pop thm "pre VM3 thm";

Now we prove that VM3 is a correct refinement of VM1.

The results about preconditions are not particularly helpful here, since the top level structure of the
specification suffices to obtain the result without detailed knowledge of the preconditions.

SML

set goal([], pZ¬ (insufficient cash ∧ exact cash)q);
a (rewrite tac [insufficient cash, exact cash]);

ProofPower output

...

(∗ ?` ∗) pZ¬
((0 ≤ cash tendered?

∧ cash tendered? < price)
∧ 0 ≤ cash tendered?
∧ cash tendered? = price)q

...

We eliminate the < relation by rewriting with its specification. However, the specification of <
contains other facts whose inverses are in the current proof context, so a simple rewrite with the
specification loops. pure rewrite tac is therefore used.

SML

a (pure rewrite tac [z get spec pZ( < )q]);

ProofPower output

(∗ ?` ∗) pZ¬
((0 ≤ cash tendered?

∧ 0 ≤ price + ∼ (cash tendered? + 1 ))
∧ 0 ≤ cash tendered?
∧ cash tendered? = price)q
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The remaineder of the proof is a routine arithmetic manipulation.
SML

a (rewrite tac [z minus thm, z plus assoc thm1 ]);
a (REPEAT N 3 z strip tac THEN asm rewrite tac[]);
val cash lemma = save pop thm "cash lemma";

Proving the correctness of the refinement is now straightforward.
SML

set goal([], pZ (pre VM1 ⇒ pre VM3 ) ∧ (pre VM1 ∧ VM3 ⇒ VM1 )q);
a (rewrite tac [VM1 , VM2 , VM3 ]);

ProofPower output

(∗ ?` ∗) pZ((∃ bars delivered ! : U;
cash refunded ! : U;
stock ′ : U;
takings ′ : U

• exact cash ∧ some stock ∧ VM sale)
⇒ (∃ bars delivered ! : U;

cash refunded ! : U;
stock ′ : U;
takings ′ : U

• exact cash ∧ some stock ∧ VM sale
∨ insufficient cash ∧ VM nosale))

∧ ((∃ bars delivered ! : U;
cash refunded ! : U;
stock ′ : U;
takings ′ : U

• exact cash ∧ some stock ∧ VM sale)
∧ (exact cash ∧ some stock ∧ VM sale
∨ insufficient cash ∧ VM nosale)

⇒ exact cash ∧ some stock ∧ VM sale)q

SML

a (strip asm tac cash lemma THEN asm rewrite tac[]);

ProofPower output

(∗ 1 ∗) pZ¬ insufficient cashq

(∗ ?` ∗) pZ(∃ bars delivered ! : U;
cash refunded ! : U;
stock ′ : U;
takings ′ : U

• exact cash ∧ some stock ∧ VM sale)
∧ exact cash
∧ some stock
∧ VM sale

⇒ exact cash ∧ some stock ∧ VM saleq
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a (REPEAT z strip tac); val VM3 refines VM1 = save pop thm ”VM3 refines VM1”;

Next we express the requirement that a vending machine does not undercharge:

Z

VM ok : P P VM operation

∀ vm : P VM operation•
vm ∈ VM ok ⇔

(∀ VM operation • vm ⇒
takings ′ − takings ≥ price ∗ (stock − stock ′))

Before using this definition we convert it into an unconditional rewrite.

SML

val VM ok = z defn simp rule (z get spec pZVM okq);

We now prove that VM3 is a VM ok.

SML

set goal([], pZVM3 ∈ VM okq);
a (rewrite tac [VM1 ,VM2 ,VM3 ,VM ok ,VM sale,VM nosale]);

ProofPower output

...

(∗ ?` ∗) pZ(exact cash
∧ some stock
∧ [VM operation
| stock ′ = stock + ∼ 1
∧ bars delivered ! = 1
∧ cash refunded ! = cash tendered? + ∼ price
∧ takings ′ = takings + price]

∨ insufficient cash
∧ [VM operation
| stock ′ = stock
∧ bars delivered ! = 0
∧ cash refunded ! = cash tendered?
∧ takings ′ = takings])

⊆ VM operation
∧ (∀ VM operation
• exact cash

∧ some stock
∧ VM operation
∧ stock ′ = stock + ∼ 1
∧ bars delivered ! = 1
∧ cash refunded ! = cash tendered? + ∼ price
∧ takings ′ = takings + price

∨ insufficient cash
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∧ VM operation
∧ stock ′ = stock
∧ bars delivered ! = 0
∧ cash refunded ! = cash tendered?
∧ takings ′ = takings

⇒ price ∗ (stock + ∼ stock ′) ≤ takings ′ + ∼ takings)q
...

There are a lot of propositional logic (or related schema calculus) operators here which can be simpli-
fied by stripping. The subset sign will need to be treated extensionally, so proof context z library ext
is probably appropriate. It is also clear that several equations will arise in the assumptions, and
therefore likely that rewriting with the assumptions will be a good idea, so:

SML

a (PC T "z library ext" (REPEAT z strip tac) THEN asm rewrite tac[]);

Which considerably simplified the problem:

ProofPower output

...

(∗ 7 ∗) pZVM operationq
(∗ 6 ∗) pZexact cashq
(∗ 5 ∗) pZsome stockq
(∗ 4 ∗) pZstock ′ = stock + ∼ 1q
(∗ 3 ∗) pZbars delivered ! = 1q
(∗ 2 ∗) pZcash refunded ! = cash tendered? + ∼ priceq
(∗ 1 ∗) pZtakings ′ = takings + priceq

(∗ ?` ∗) pZprice ∗ (stock + ∼ (stock + ∼ 1 )) ≤ (takings + price) + ∼ takingsq
...

To solve this little arithmetic problem we move pZ∼ takingsq left to place it next to takings:

SML

a (rewrite tac [z ∀ elim pZ∼ takingsq z plus order thm]);

ProofPower output

...

(∗ ?` ∗) pZprice ∗ (stock + ∼ (stock + ∼ 1 )) ≤ ∼ takings + takings + priceq
...

Pushing in the minus sign and associating the additions to the left will result in the goal being proved
using the cancellation results built into our current proof context.

SML

a (rewrite tac [z minus thm, z plus assoc thm1 ]);
val VM3 ok thm = save pop thm "VM3 ok thm";
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8.4 The Z ToolKit

8.4.1 Sets

All of the examples in this theory can be proven automatically by the system.

First we set up an appropriate context:

SML

repeat drop main goal ;
open theory "z exercises 4";
set pc "z sets ext";

8.4.1.1 Results Provable by Stripping

We display one case partly expanded out:

SML

set goal([],pZa ∩ (b \ c) = a ∩ b \ cq);
a z strip tac;

ProofPower output

(∗ ?` ∗) pZ∀ x1 : U • x1 ∈ a ∩ (b \ c) ⇔ x1 ∈ a ∩ b \ cq

SML

a z strip tac;

ProofPower output

(∗ ?` ∗) pZx1 ∈ U ∧ true ⇒ (x1 ∈ a ∩ (b \ c) ⇔ x1 ∈ a ∩ b \ c)q

continuing only using z strip tac (but omitting the display of this) as follows:

ProofPower output

(∗ ?` ∗) pZx1 ∈ a ∩ (b \ c) ⇔ x1 ∈ a ∩ b \ cq

ProofPower output

(∗ ?` ∗) pZ(x1 ∈ a ∩ (b \ c) ⇒ x1 ∈ a ∩ b \ c)
∧ (x1 ∈ a ∩ b \ c ⇒ x1 ∈ a ∩ (b \ c))q

ProofPower output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
(∗ ?` ∗) pZx1 ∈ a ∩ b \ c ⇒ x1 ∈ a ∩ (b \ c)q

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
(∗ ?` ∗) pZx1 ∈ a ∩ (b \ c) ⇒ x1 ∈ a ∩ b \ cq
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ProofPower output

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
(∗ 3 ∗) pZx1 ∈ aq
(∗ 2 ∗) pZx1 ∈ bq
(∗ 1 ∗) pZ¬ x1 ∈ cq

(∗ ?` ∗) pZx1 ∈ a ∩ b \ cq

ProofPower output

...

(∗ ?` ∗) pZx1 ∈ a ∩ b ∧ x1 6∈ cq

ProofPower output

(∗ ∗∗∗ Goal "1 .2" ∗∗∗ ∗)
(∗ 3 ∗) pZx1 ∈ aq
(∗ 2 ∗) pZx1 ∈ bq
(∗ 1 ∗) pZ¬ x1 ∈ cq

(∗ ?` ∗) pZx1 6∈ cq

(∗ ∗∗∗ Goal "1 .1" ∗∗∗ ∗)
(∗ 3 ∗) pZx1 ∈ aq
(∗ 2 ∗) pZx1 ∈ bq
(∗ 1 ∗) pZ¬ x1 ∈ cq

(∗ ?` ∗) pZx1 ∈ a ∩ bq

ProofPower output

(∗ ∗∗∗ Goal "1 .1" ∗∗∗ ∗)
(∗ 3 ∗) pZx1 ∈ aq
(∗ 2 ∗) pZx1 ∈ bq
(∗ 1 ∗) pZ¬ x1 ∈ cq

(∗ ?` ∗) pZx1 ∈ a ∧ x1 ∈ bq

ProofPower output

(∗ ∗∗∗ Goal "1 .1 .2" ∗∗∗ ∗)
(∗ 3 ∗) pZx1 ∈ aq
(∗ 2 ∗) pZx1 ∈ bq
(∗ 1 ∗) pZ¬ x1 ∈ cq

(∗ ?` ∗) pZx1 ∈ bq

(∗ ∗∗∗ Goal "1 .1 .1" ∗∗∗ ∗)
(∗ 3 ∗) pZx1 ∈ aq
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(∗ 2 ∗) pZx1 ∈ bq
(∗ 1 ∗) pZ¬ x1 ∈ cq

(∗ ?` ∗) pZx1 ∈ aq

ProofPower output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "1 .1 .2" ∗∗∗ ∗)
...

ProofPower output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "1 .2" ∗∗∗ ∗)
...

ProofPower output

...

(∗ ?` ∗) pZ¬ x1 ∈ cq

ProofPower output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ ?` ∗) pZx1 ∈ a ∩ b \ c ⇒ x1 ∈ a ∩ (b \ c)q
...

Goal 2 being similar to goal 1 we complete its proof in one step:
SML

a (REPEAT z strip tac);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved

The following groups of exercises are provable in exactly the same manner.
SML

map prove and store Z1 ;
map prove and store Z2 ;
map prove and store Z3 ;
map prove and store Z3b;
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8.4.2 Relations

SML

repeat drop main goal ;
open theory "z exercises 4";
set pc "z rel ext";

The following simple example shows how stripping followed by forward chaining often suffices for
proofs in this theory.

SML

set goal([], pZP o
9 Q o

9 R = (P o
9 Q) o

9 Rq);
a contr tac;

ProofPower output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 4 ∗) pZ(x1 , y ′) ∈ Pq
(∗ 3 ∗) pZ(y ′, y) ∈ Qq
(∗ 2 ∗) pZ(y , x2 ) ∈ Rq
(∗ 1 ∗) pZ∀ y : U • ¬ ((x1 , y) ∈ P ∧ (y , x2 ) ∈ Q o

9 R)q

(∗ ?` ∗) pZ falseq

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 4 ∗) pZ(x1 , y) ∈ Pq
(∗ 3 ∗) pZ(y , y ′) ∈ Qq
(∗ 2 ∗) pZ(y ′, x2 ) ∈ Rq
(∗ 1 ∗) pZ∀ y : U • ¬ ((x1 , y) ∈ P o

9 Q ∧ (y , x2 ) ∈ R)q

(∗ ?` ∗) pZ falseq

The “implications” in the assumptions of these subgoals are well buried, but are nevertheless uncov-
ered by the forward chaining facilities.

SML

a (all asm fc tac[]);

ProofPower output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:
...

SML

a (all asm fc tac[]);
pop thm();
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ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
...

val it = ` P o
9 Q o

9 R = (P o
9 Q) o

9 R : THM
...

Many of the exercises are therefore proven automatically as follows.

SML

map prove and store Z4 ;
map prove and store Z5 ;

SML

map prove and store Z5b;

SML

(∗ "Z5c.1" ∗)
set goal([], pZ [X ,Y ,Z ] (∀x :U;g :U• g ∈ X 7→ Y ∧ x ∈ dom g ⇒ (x , g x ) ∈ g)q);
a (REPEAT z strip tac);
a (POP ASM T (PC T1 "z library ext" strip asm tac));
a (all fc tac [z fun app clauses]);
a (asm rewrite tac[]);
val Z5c1 = save pop thm "Z5c.1";

The following proof make use of the previous result (Z5c1).

SML

(∗ "Z5c.2" ∗)
set goal([], pZ [X ,Y ,Z ] x ∈ dom g ∧ g x ∈ dom f ∧ g ∈ X 7→ Y

∧ f ∈ Y 7→ Z ⇒ (f ◦ g)(x ) = f (g(x ))q);
set pc "z library";
a (REPEAT z strip tac);
a(z app eq tac);
a (PC T1 "z library ext" rewrite tac[]);
a (REPEAT z strip tac);
a (lemma tac pZg x = yq);
(∗ ∗∗∗ Goal "1 .1" ∗∗∗ ∗)
a (all fc tac [z fun app clauses]);
(∗ ∗∗∗ Goal "1 .2" ∗∗∗ ∗)
a (all fc tac [z fun app clauses]);
a (asm rewrite tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a (z ∃ tac pZg xq);
a (REPEAT z strip tac);
(∗ ∗∗∗ Goal "2 .1" ∗∗∗ ∗)
a (all fc tac [Z5c1 ]);
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(∗ ∗∗∗ Goal "2 .2" ∗∗∗ ∗)
a (all fc tac [Z5c1 ]);
save pop thm("Z5c.2");

SML

set pc "z rel ext";
map prove and store Z6 ;
map prove and store Z6b;
map prove and store Z7 ;
map prove and store Z8 ;
map prove and store Z8b;
map prove and store Z9 ;

SML

setlg "Z9b.1" Z9b;
a(prove tac[z ∈ first thm]);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(contr tac);
a(z spec nth asm tac 1 pZ(x =̂ (x1 , y))q);
a(swap nth asm concl tac 1 );
a(rewrite tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(contr tac);
a(z spec nth asm tac 1 pZ(y =̂ (x .2 ))q);
a(all var elim asm tac1 );
a(swap nth asm concl tac 1 );
a(conv tac(ONCE MAP C z tuple intro conv));
a(asm rewrite tac[]);
save pop thm "Z9b.1";
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SML

setlg "Z9b.2" Z9b;
a(prove tac[z ∈ second thm]);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(contr tac);
a(z spec nth asm tac 1 pZ(x =̂ (x , x1 ))q);
a(swap nth asm concl tac 1 );
a(rewrite tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(contr tac);
a(z spec nth asm tac 1 pZ(x =̂ (x .1 ))q);
a(all var elim asm tac1 );
a(swap nth asm concl tac 1 );
a(conv tac(ONCE MAP C z tuple intro conv));
a (asm rewrite tac[]);
save pop thm "Z9b.2";

SML

map prove and store Z10 ;

SML

setlg "Z10b.1" Z10b;
a(contr tac);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(y =̂ y)q);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(y =̂ y)q);
(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(y =̂ y)q);
a(z spec nth asm tac 3 pZ(y =̂ y ′)q);
(∗ ∗∗∗ Goal "4" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(y =̂ y)q);
save pop thm "Z10b.1";
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SML

set pc "z library ext";
setlg "Z10b.2" Z10b;
a (REPEAT strip tac);
a(z app eq tac);
a(z spec nth asm tac 6 pZ(x1 =̂ x ,x2 =̂ y)q);
a(REPEAT strip tac);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z spec nth asm tac 9 pZ(x1 =̂ x ,x2 =̂ f a)q);
a(z app eq tac);
a(REPEAT strip tac);
a(z spec nth asm tac 11 pZ(x1 =̂ x ,x2 =̂ f a ′)q);
a(z spec nth asm tac 11 pZ(x =̂ x , y1 =̂ f a ′, y2 =̂ f a)q);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(z spec nth asm tac 4 pZ(y =̂ f a)q);
(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
a(z spec nth asm tac 4 pZ(y =̂ y ′)q);
(∗ ∗∗∗ Goal "4" ∗∗∗ ∗)
a(lemma tac pZ f x = yq);
(∗ ∗∗∗ Goal "4 .1" ∗∗∗ ∗)
a(z app eq tac);
a(REPEAT strip tac);
a(z spec nth asm tac 9 pZ(x =̂ x , y1 =̂ f a, y2 =̂ y)q);
a(z spec nth asm tac 11 pZ(x1 =̂ x ,x2 =̂ f a)q);
(∗ ∗∗∗ Goal "4 .2" ∗∗∗ ∗)
a(swap nth asm concl tac 2 );
a(asm rewrite tac[]);
save pop thm "Z10b.2";

SML

setlg "Z10b.3" Z10b;
a(contr tac);
a(swap nth asm concl tac 1 );
a(z app eq tac);
a(contr tac);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z spec nth asm tac 3 pZ(y =̂ y)q);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(swap nth asm concl tac 1 );
a(z app eq tac);
a(contr tac);
a(z spec nth asm tac 6 pZ(x1 =̂ x ,x2 =̂ f a)q);
a(z spec nth asm tac 8 pZ(x1 =̂ x ,x2 =̂ f a ′)q);
a(z spec nth asm tac 8 pZ(x =̂ x , y1 =̂ f a ′, y2 =̂ f a)q);
(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
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a(z spec nth asm tac 5 pZ(x1 =̂ x ,x2 =̂ y)q);
a(lemma tac pZg x = yq);
(∗ ∗∗∗ Goal "3 .1" ∗∗∗ ∗)
a(z app eq tac);
a(contr tac);
a(z spec nth asm tac 9 pZ(x1 =̂ x ,x2 =̂ f a)q);
a(z spec nth asm tac 9 pZ(x =̂ x , y1 =̂ f a, y2 =̂ y)q);
(∗ ∗∗∗ Goal "3 .2" ∗∗∗ ∗)
a(swap nth asm concl tac 4 );
a(asm rewrite tac[]);
(∗ ∗∗∗ Goal "4" ∗∗∗ ∗)
a(z spec nth asm tac 5 pZ(x1 =̂ x ,x2 =̂ y)q);
a(lemma tac pZg x = yq);
(∗ ∗∗∗ Goal "4 .1" ∗∗∗ ∗)
a(z app eq tac);
a(contr tac);
a(z spec nth asm tac 9 pZ(x1 =̂ x ,x2 =̂ f a)q);
a(z spec nth asm tac 9 pZ(x =̂ x , y1 =̂ f a, y2 =̂ y)q);
(∗ ∗∗∗ Goal "4 .2" ∗∗∗ ∗)
a(swap nth asm concl tac 4 );
a(asm rewrite tac[]);
save pop thm "Z10b.3";

SML

map prove and store Z11 ;

SML

setlg "Z11b.1" Z11b;
a contr tac;
a(z spec nth asm tac 2 pZ(x1 =̂ x1 , x2 =̂ x2 )q);
a(z spec nth asm tac 6 pZ(S =̂ S )q);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(asm fc tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(z spec nth asm tac 6 pZ(x1 =̂ x1 ′, x2 =̂ x2 ′)q);
a(z spec nth asm tac 1 pZ(y =̂ y ′)q);
(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
a(z spec nth asm tac 6 pZ(S =̂ S )q);
(∗ ∗∗∗ Goal "3 .1" ∗∗∗ ∗)
a(asm fc tac[]);
(∗ ∗∗∗ Goal "3 .2" ∗∗∗ ∗)
a(z spec nth asm tac 7 pZ(x1 =̂ x1 ′, x2 =̂ x2 ′)q);
a(z spec nth asm tac 1 pZ(y =̂ y ′)q);
(∗ ∗∗∗ Goal "3 .3" ∗∗∗ ∗)
a(z spec nth asm tac 3 pZ(y =̂ y)q);
save pop thm "Z11b.1";
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8.4.3 Functions

SML

repeat drop main goal ;
open theory "z exercises 4";
set pc "z fun ext";

SML

setlg "Z12 .1" Z12 ;
a (rewrite tac[] THEN REPEAT strip tac);
a (z app eq tac THEN REPEAT strip tac);
a (all asm fc tac[]);
a (all asm fc tac[]);
save pop thm "Z12 .1";

SML

setlg "Z12 .2" Z12 ;
a (rewrite tac[] THEN REPEAT strip tac);
a (z app eq tac THEN REPEAT strip tac);
a (all asm fc tac[]);
a (all asm fc tac[]);
save pop thm "Z12 .2";

SML

setlg "Z12 .3" Z12 ;
a (rewrite tac[] THEN REPEAT strip tac);
a (z app eq tac THEN REPEAT strip tac);
a (all asm fc tac[]);
a (all asm fc tac[]);
save pop thm "Z12 .3";

SML

setlg "Z12 .4" Z12 ;
a (rewrite tac[] THEN REPEAT strip tac);
a (z app eq tac THEN REPEAT strip tac);
a (all asm fc tac[]);
a (all asm fc tac[]);
save pop thm "Z12 .4";

SML

setlg "Z12 .5" Z12 ;
a (rewrite tac[] THEN REPEAT strip tac);
a (z app eq tac THEN REPEAT strip tac);
a (all asm fc tac[]);
a (all asm fc tac[]);
save pop thm "Z12 .5";
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SML

setlg "Z12 .6" Z12 ;
a (rewrite tac[] THEN REPEAT strip tac);
a (z app eq tac THEN REPEAT strip tac);
a (all asm fc tac[]);
a (all asm fc tac[]);
save pop thm "Z12 .6";

SML

setlg "Z12a.1" Z12a;
a (EVERY [

rewrite tac[],
REPEAT strip tac,
z app eq tac,
REPEAT strip tac,
all asm fc tac[],
all asm fc tac[]]);

save pop thm "Z12a.1";

SML

setlg "Z12b.1" Z12b;
a(contr tac THEN all asm fc tac[]);
a(all asm fc tac[]);
a(z spec nth asm tac 3 pZ(y =̂ x )q);
a(swap nth asm concl tac 6 );
a(asm rewrite tac[]);
save pop thm "z12b.1";

SML

setlg "Z12b.2" Z12b;
a (contr tac THEN all asm fc tac[]);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z spec nth asm tac 7 pZ(x1 =̂ y1 , x2 =̂ y2 )q);
(∗ ∗∗∗ Goal "1 .1" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(y =̂ x )q);
(∗ ∗∗∗ Goal "1 .2" ∗∗∗ ∗)
a(z spec nth asm tac 1 pZ(y =̂ x )q);
(∗ ∗∗∗ Goal "1 .3" ∗∗∗ ∗)
a(swap nth asm concl tac 1 );
a(ALL ASM FC T rewrite tac [get thm "−" "Z12a.1"]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(lemma tac pZy = f x1q);
(∗ ∗∗∗ Goal "2 .1" ∗∗∗ ∗)
a(z app eq tac);
a(contr tac);
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a(z spec nth asm tac 14 pZ(x1 =̂ x1 , x2 =̂ f a)q);
a(z spec nth asm tac 14 pZ(x =̂ x1 , y1 =̂ f a, y2 =̂ y)q);
(∗ ∗∗∗ Goal "2 .2" ∗∗∗ ∗)
a(swap nth asm concl tac 9 );
a(asm rewrite tac[]);
a(contr tac);
a(z spec nth asm tac 13 pZ(x1 =̂ x1 , x2 =̂ f x2 )q);
a(z spec nth asm tac 11 pZ(x =̂ pZ f x2q, y1 =̂ x1 , y2 =̂ x2 )q);
a(lemma tac pZy ′ = f x2q);
(∗ ∗∗∗ Goal "2 .2 .1" ∗∗∗ ∗)
a(z app eq tac);
a(contr tac);
a(z spec nth asm tac 17 pZ(x1 =̂ x2 , x2 =̂ f a)q);
a(z spec nth asm tac 17 pZ(x =̂ x2 , y1 =̂ f a, y2 =̂ y ′)q);
(∗ ∗∗∗ Goal "2 .2 .2" ∗∗∗ ∗)
a(swap nth asm concl tac 12 );
a(asm rewrite tac[]);
save pop thm "Z12b.2";

No solutions for Z12.b3 to Z12b.7.

8.4.4 Numbers and Finiteness

SML

repeat drop main goal ;
open theory "z exercises 4";
set pc "z library";
set flags [("z type check only", false), ("z use axioms", true)];

Z

Σ : N → N

∀n:N•
Σ 0 = 0

∧ Σ (n+1 ) = (n + 1 ) + Σ n

The second problem:
SML

set goal([],pZ ∀n: N• (Σ n) ∗ 2 = n ∗ (n+1 )q);

ProofPower output

...

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZ∀ n : N • Σ n ∗ 2 = n ∗ (n + 1 )q
...
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SML

a (strip asm tac (z get spec pZ(Σ )q));

ProofPower output

...

(∗ 2 ∗) pZΣ ∈ N → Nq
(∗ 1 ∗) pZ∀ n : N • Σ 0 = 0 ∧ Σ (n + 1 ) = (n + 1 ) + Σ nq

(∗ ?` ∗) pZ∀ n : N • Σ n ∗ 2 = n ∗ (n + 1 )q
...

SML

a (z strip tac THEN PC T1 "z language" rewrite tac[]);

ProofPower output

...

(∗ 2 ∗) pZΣ ∈ N → Nq
(∗ 1 ∗) pZ∀ n : N • Σ 0 = 0 ∧ Σ (n + 1 ) = (n + 1 ) + Σ nq

(∗ ?` ∗) pZn ∈ N ⇒ Σ n ∗ 2 = n ∗ (n + 1 )q
...

SML

a z N induction tac;

ProofPower output

...

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 4 ∗) pZΣ ∈ N → Nq
(∗ 3 ∗) pZ∀ n : N • Σ 0 = 0 ∧ Σ (n + 1 ) = (n + 1 ) + Σ nq
(∗ 2 ∗) pZ0 ≤ iq
(∗ 1 ∗) pZΣ i ∗ 2 = i ∗ (i + 1 )q

(∗ ?` ∗) pZΣ (i + 1 ) ∗ 2 = (i + 1 ) ∗ ((i + 1 ) + 1 )q

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 2 ∗) pZΣ ∈ N → Nq
(∗ 1 ∗) pZ∀ n : N • Σ 0 = 0 ∧ Σ (n + 1 ) = (n + 1 ) + Σ nq

(∗ ?` ∗) pZΣ 0 ∗ 2 = 0 ∗ (0 + 1 )q
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SML

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a (z spec nth asm tac 1 pZ0q

THEN asm rewrite tac[]);

ProofPower output

...

Current goal achieved , next goal is:
...

SML

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a (all asm fc tac[]);

ProofPower output

...

(∗ 6 ∗) pZΣ ∈ N → Nq
(∗ 5 ∗) pZ∀ n : N • Σ 0 = 0 ∧ Σ (n + 1 ) = (n + 1 ) + Σ nq
(∗ 4 ∗) pZ0 ≤ iq
(∗ 3 ∗) pZΣ i ∗ 2 = i ∗ (i + 1 )q
(∗ 2 ∗) pZΣ 0 = 0q
(∗ 1 ∗) pZΣ (i + 1 ) = (i + 1 ) + Σ iq

(∗ ?` ∗) pZΣ (i + 1 ) ∗ 2 = (i + 1 ) ∗ ((i + 1 ) + 1 )q

SML

a (asm rewrite tac[]);

ProofPower output

...

(∗ ?` ∗) pZ((i + 1 ) + Σ i) ∗ 2 = (i + 1 ) ∗ ((i + 1 ) + 1 )q
...

SML

a (asm rewrite tac[z times plus distrib thm]);

ProofPower output

...

(∗ ?` ∗) pZ(i ∗ 2 + 2 ) + i ∗ i + i = ((i ∗ i + i) + i + 1 ) + i + 1q
...

SML

a (rewrite tac [z ∀ elim pZ i∗iq z plus order thm]);
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ProofPower output

...

(∗ ?` ∗) pZ(i ∗ 2 + 2 ) + i = (i + i + 1 ) + i + 1q
...

SML

a (rewrite tac [z ∀ elim pZ iq z plus order thm]);

ProofPower output

...

(∗ ?` ∗) pZ i ∗ 2 + 2 = i + i + 2q
...

SML

a (rewrite tac[z plus assoc thm1 ]);

ProofPower output

...

(∗ ?` ∗) pZ i ∗ 2 = i + iq

SML

a (pure rewrite tac
[prove rule []pZ2 = 1 + 1q,
z times plus distrib thm]);

ProofPower output

...

(∗ ?` ∗) pZ i ∗ 1 + i ∗ 1 = i + iq

SML

a (rewrite tac[]);

ProofPower output

...

Current and main goal achieved

SML

save pop thm "ZNum.1";

The solution to the third problem of this section is:
SML

repeat drop main goal ;
open theory "z exercises 4";
set pc "z library ext";
set flags [("z type check only", false), ("z use axioms", true)];

setlg "ZNum.2" ZNum;
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ProofPower output

(∗ ?` ∗) pZ∀ x , y : Z • x ≤ y ⇒ 0 .. x ⊆ 0 .. yq

First expand ...
SML

a(rewrite tac[z get spec pZ( .. )q] THEN REPEAT strip tac);

ProofPower output

...

(∗ 3 ∗) pZx ≤ yq
(∗ 2 ∗) pZ0 ≤ x1q
(∗ 1 ∗) pZx1 ≤ xq

(∗ ?` ∗) pZx1 ≤ yq
...

Then forward chain using transitivity of ≤.
SML

a(all fc tac[z ≤ trans thm]);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved

SML

save pop thm "ZNum.2";

The solution to the fourth problem of this section is:
SML

setlg "ZNum.3" ZNum;

ProofPower output

...

(∗ ?` ∗) pZ∀ x , y : Z • ¬ x ≤ y ⇒ 0 .. y ⊆ 0 .. x − 1q
...

First expand the definition of ...
SML

a(rewrite tac[z get spec pZ( .. )q] THEN REPEAT strip tac);

ProofPower output

...

(∗ 3 ∗) pZy < xq
(∗ 2 ∗) pZ0 ≤ x1q
(∗ 1 ∗) pZx1 ≤ yq

(∗ ?` ∗) pZx1 ≤ x + ∼ 1q
...
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Now forward chain on the assumptions using z ≤ less trans thm to obtain x1 < x .
SML

a(all fc tac[z ≤ less trans thm]);

ProofPower output

...

(∗ 1 ∗) pZx1 < xq

(∗ ?` ∗) pZx1 ≤ x + ∼ 1q
...

Now it is necessary to expand the definition of < in the last assumption. POP ASM T takes out
the last assumption and feeds it into the THM TACTIC supplied to it. In this case we rewrite
the assumption with the specification of < before passing it to ante tac, which inserts in into the
conclusion of the goal as the antecedent of a new implication.

SML

a(POP ASM T (ante tac o pure once rewrite rule[z get specpZ( < )q]));

ProofPower output

...

(∗ ?` ∗) pZx1 + 1 ≤ x ⇒ x1 ≤ x + ∼ 1q
...

In the absence of support for linear arithmetic this obvious result must be proven by transforming
the conclusion of the goal until the various built in cancellation laws apply. First we move everything
to the left hand side of the inequalities using z ≤ ≤ 0 thm.

SML

a(once rewrite tac[z ≤ ≤ 0 thm]);

ProofPower output

...

(∗ ?` ∗) pZ(x1 + 1 ) + ∼ x ≤ 0 ⇒ x1 + ∼ (x + ∼ 1 ) ≤ 0q
...

Now we use z plus order thm to reorder the arithmetic expressions and z minus thm to provide
some cancellation results which have been omitted from the proof context.

SML

a(rewrite tac[z ∀ elim pZ∼ xq z plus order thm, z minus thm]);

ProofPower output

...

Current and main goal achieved
...

SML

save pop thm "ZNum.3";
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