ProofPower

Z REFERENCE MANUAL

PPTex-2.9.1w2.rda.110727

Copyright © : Lemma 1 Ltd. 2006

Information on the current status of ProofPower is available on the World-Wide Web, at URL:

http://www.lemma-one.demon.co.uk/ProofPower/index.html

This document is published by:

Lemma 1 Ltd. 2nd Floor 31A Chain Street Reading Berkshire UK RG1 2HX

 $e\text{-}mail: \; \texttt{pp@lemma-} \texttt{one.com}$

CONTENTS

0	ABOUT THIS PUBLICATION 5					
	0.1	Purpose				
	0.2	Readership				
	0.3	Related Publications	5			
	0.4	<u>.</u>	5			
	0.5	Acknowledgements	5			
1	UN	IX INTERFACES	7			
2	PRO	OGRAMMING UTILITIES 1				
	2.1	Error Management				
	2.2	Data Types				
	2.3	Lists				
	2.4	Functions	8			
	2.5	Combinators				
	2.6	Characters				
	2.7	Simple Dictionary				
	2.8	Efficient Dictionary				
	2.9	Sorting				
		Sparse Arrays				
		Dynamic Arrays				
		Arbitrary Magnitude Integer Arithmetic				
		Order-preserving Efficient Dictionary				
	2.14	Compatibility with SML'90	1			
3	SYSTEM FACILITIES 45					
	3.1	System Control	6			
	3.2	System Initialisation	8			
	3.3	Warnings				
	3.4	Profiling	3			
	3.5	Timing	4			
4	INF	PUT AND OUTPUT 5	5			
	4.1	The Reader/Writer	5			
	4.2	Output	7			
	4.3	HOL Lexical Analysis	9			
	4.4	Pretty Printing	3			
	4.5	Theory Lister	5			
	4.6	Z Theory Lister	8			
5	но	L TYPES AND TERMS 7	9			
	5.1	Syntactic Manipulations	9			
	5.2	Discrimination Nets	7			

6	TH	E MANAGEMENT OF THEORIES AND THEOREMS	119
	6.1	Standard ML Type Definitions	. 119
	6.2	Symbol Table	
	6.3	The Kernel Interface	. 129
	6.4	Conjectures Database	
	6.5	Theorem Finder	. 151
7	PRO	OOF IN HOL	153
	7.1	General Inference Rules	. 153
	7.2	Subgoal Package	. 221
	7.3	General Tactics and Tacticals	
	7.4	Propositional Equational Reasoning	
	7.5	Algebraic Normalisation	
	7.6	First Order Resolution	
	7.7	Proof Contexts	
8	CIII	PPORT FOR Z	359
O	8.1	Syntactic Manipulations	
	8.2	Reasoning about Predicates	
	8.3	Reasoning about Expressions	
	8.4	Reasoning about Schema Expressions	
	0		
9	TH	EORIES	447
	9.1	Theory Listings	. 447
		9.1.1 The Theory z_arithmetic_tools	. 448
		9.1.2 The Z Theory z_bags	. 450
		9.1.3 The Z Theory z_functions	. 452
		9.1.4 The Z Theory z_functions1	. 455
		9.1.5 The Theory z_language	. 459
		9.1.6 The Z Theory z_language_ps	. 460
		9.1.7 The Z Theory z_library	. 461
		9.1.8 The Z Theory z_numbers	. 462
		9.1.9 The Z Theory z_numbers1	. 469
		9.1.10 The Z Theory z_reals	. 472
		9.1.11 The Z Theory z_relations	. 478
		9.1.12 The Z Theory z_sequences	. 483
		9.1.13 The Z Theory z_sequences1	. 486
		9.1.14 The Z Theory z_sets	. 489
	9.2	Theory Related ML Values	. 493
		9.2.1 Z Sets	. 493
		9.2.2 Z Relations	. 499
		9.2.3 Z Functions	. 507
		9.2.4 Z Numbers	. 510
		9.2.5 Z Arithmetic Proof Support	. 519
		9.2.6 Z Sequences	
		9.2.7 Z Finiteness and Sequences	
		9.2.8 Z Bags	
ÐΙ		9.2.9 Z Reals	
	सम्बन	RENCES	537
τſ	r Ed		<i>აა (</i>
ΤN	DEX		539

KEYWORD INDEX

569

Chapter 0 5

ABOUT THIS PUBLICATION

0.1 Purpose

This document, one of several making up the user documentation for the ProofPower system, is the reference manual for the system.

0.2 Readership

This document is intended to be consulted by users already acquainted with the basic principles behind ProofPower who need detailed information on the behaviour of specific facilities provided by the system. It is not a tutorial for learning the basic use of the system. A 'keyword in context' index is supplied, which is useful for identifying the full range of facilities of a particular kind, provided that the reader is familiar with the naming conventions adopted in the development of ProofPower.

0.3 Related Publications

A bibliography is given at the end of this document. Publications relating specifically to ProofPower are:

- 1. ProofPower Tutorial [4], tutorial covering the basic ProofPower system.
- 2. ProofPower Z Tutorial [6], tutorial covering ProofPower Z support option.
- 3. ProofPower Installation and Operation [5];
- 4. ProofPower Document Preparation [3].

0.4 Assumptions

It is assumed that the reader has some prior acquintance with ProofPower either by attending a course on ProofPower or by reading the tutorial.

0.5 Acknowledgements

ICL gratefully acknowledges its debt to the many researchers (both academic and industrial) who have provided intellectual capital on which ICL has drawn in the development of ProofPower.

We are particularly indebted to Mike Gordon of The University of Cambridge, for his leading role in some of the research on which the development of ProofPower has built, and for his positive attitude towards industrial exploitation of his work.

The ProofPower system is a proof tool for Higher Order Logic which builds upon ideas arising from research carried out at the Universities of Cambridge and Edinburgh, and elsewhere. In particular the logic supported by the system is (at an abstract level) identical to that implemented in the Cambridge HOL system [1], and the paradigm adopted for implementation of proof support for the language follows that adopted by Cambridge HOL, originating with the LCF system developed at Edinburgh [2]. The functional language 'Standard ML' used both for the implementation and as an interactive metalanguage for proof development, originates in work at Edinburgh, and has been developed to its present state by an international group of academic and industrial researchers. The implementation of Standard ML on which ProofPower is based was itself originally implemented by David Matthews at the University of Cambridge, and is now commercially marketed by Abstract Hardware Limited.

The ProofPower system also supports specification and proof in the Z language, developed at the University of Oxford. We are therefore also indebted to the research at Oxford (and elsewhere) which has contributed to the development of the Z language.

Chapter 1 7

UNIX INTERFACES

```
| hol_list [-c] [-d database[\#theoryname]] [-i scripts] [-v] theory ... | hol_list [-d database[\#theoryname]] [-i scripts] [-v] | hol_list [-c] [-d database] [-i scripts] [-v] -a
```

Description hol_list is used to obtain selected information from a ProofPower-HOL database. It functions in the same manner as zed_list except that it uses defaults appropriate to the ProofPower-HOL, and a HOL theory lister.

In the first form of use, where a list of one or more theory names is specified, hol_list uses ProofPower-HOL to generate on its standard output listings (in the HOL language using the function output_theory) of the indicated theories in a form suitable for processing by doctex. Any cache theory (i.e. the theory name is in the list returned by get_cache_theories) will be printed with most of the theory detail elided, unless the -c option is given.

In the second form, with no list of theory names, hol_list lists the names of all the theories in the database whose language is "HOL", in a sorted order, one per line on its standard output channel. The third form, with -a, is like the first but causes all of the theories in the database whose language is "HOL" to be listed in a sorted order.

In any of the three forms the program will start a session as if by command hol with the supplied -d and -i arguments (if any), and it is in this environment that the theory listing is done. The output of this startup will be suppressed, including any indication of failure to load the initialisation scripts.

Each theory is, if possible, made current, or at least in scope, when it is listed.

In any form -v indicates the log of the preprocessing should also be output.

Errors hol_list prints a message and exits (with the value 1) if the database or any of the theories does not exist. The log of the failure is sent to the standard output, the message to the error output.

See Also pp_list, zed_list, pp, pp_make_database

```
 \begin{vmatrix} \mathbf{hol} & [-d & database[\#theoryname]] & [-i & files] & [-f & files] & [-n|-s] & [-v] & [-ml\_flags] \\ \mathbf{zed} & [-d & database[\#theoryname]] & [-i & files] & [-f & files] & [-n|-s] & [-v] & [-ml\_flags] \end{vmatrix}
```

Description hol and zed are identical to pp. q.v., except that they use default databases hol and zed respectively, and hence -d database is optional.

Description pp_list is used to obtain selected information from a ProofPower database.

In the first form of use, where a list of one or more theory names is specified, pp_list uses ProofPower to generate on its standard output listings of the indicated theories held in the database given by the -d option in a form suitable for processing by doctex.

If there is no -1 option then the theory lister used will depend on the language of the theory. If the language is "HOL" then $output_theory$ is used. Otherwise it will attempt to use a function named:

|<language in lower case>_output_theory

and only if that doesn't exist will it use *output_theory*. All but the first language will be ignored.

If the -l lang option is given then it will take the language code of all theories given to be lang, and then work as above.

If no -d option is given then the function fails.

Any cache theory (i.e. the theory name is in the list returned by $get_cache_theories$) will be printed with most of the theory detail elided, unless the -c option is given.

In the second form, with no list of theory names, pp_list lists the names of all the theories in the database one per line on its standard output channel in a sorted order. If any -1 options are given then only theories whose language is one of those listed will be noted.

The third form, with -a, is like the first but causes all of the theories in the database to be listed in a sorted order. If any -1 options are given then only theories whose language is one of those given will be listed, and they will be individually printed according to their own language.

In any of the three forms, the program will start a session as if by command pp with the supplied -d and -i arguments (if any), and it is in this environment that the theory listing is done. The output of this startup will be suppressed, including any indication of failure to load the initialisation scripts.

Each theory is, if possible, made current, or at least in scope, when it is listed.

In any form -v indicates the log of the preprocessing should also be output.

Errors pp_list prints a message and exits (with the value 1) if the database or any of the theories does not exist. The log of the failure is sent to the standard output, the message to the error output.

See Also zed_list, hol_list, pp, pp_make_database

```
 \begin{vmatrix} \mathbf{pp\_make\_database} \\ [-c][-v] \ [-f] \ [-p \ parent database [\#parent theory]] \ new database [\#cache theory] \\ \end{vmatrix}
```

Description pp_make_database makes a new child database to contain ProofPower theories. The new database initially contains a single theory, called the *cache theory* for the database, with name given by cachetheory (which is used by certain system functions to cache various definitions and theorems and which is used as the initial current theory when the database is used by the pp, hol and zed commands). If cachetheory is omitted then the database name, prefixed by "cache'" is taken to be the same as the name of the new cache theory.

The -p option may be used to indicate the database which is to be the parent of the new database and to indicate which theory in it is to be the parent of the theory cachetheory. The parent theory is taken to be the cache theory for the parent database if it is not given explicitly.

For portability, the parent database name should normally be given without any architecture- or compiler-specific prefixes or suffixes. Any such prefixes or suffixes will be added automatically by pp_make_database, If the resulting file name is an absolute path name (i.e., starts with a '/' character), then that is used as the parent database file name. If the resulting file name is not an absolute path name, pp_make_database looks for the parent database file first in the current directory and then in the user's search path (given in the environment variable \$PATH).

If the -p option is not supplied then the database hol supplied with the system is used as the parent database, and the parent theory is the theory *hol*. This is an appropriate default for a ProofPower-HOL child database. An appropriate value for ProofPower-Z might be the database zed supplied with the system.

In interactive use, pp_make_database will normally ask for confirmation before overwriting the database if it already exists. The -f (force) option may be used to suppress the request for confirmation before overwriting an existing database.

The -v option produces more output which may be useful for diagnostic purposes.

Under Poly/ML, databases are subject to an adjustable size limit. By default, pp_make_database will adjust the size limit of the parent database to the minimum possible and adjust the size limit of the child database to the maximum allowed. The -c option suppresses these adjustments.

The supplied child database name will be used to create the child database file name which is derived using an algorithm specific to the Standard ML compiler being used.

Errors pp_make_database prints a message and exits (with value 1) if the parent database or theory does not exist, if the new database cannot be created or if the name of the cache theory clashes with the name of a theory in the parent database.

Some systems impose a limit on the depth of nesting of the database hierarchy and the command will print an error message and exit (with value 1) if this limit would be exceeded.

The environment variable PPCOMPILER may be used to select between the Poly/ML or SML/NJ compiler if ProofPower has been installed for both compilers. If it is set, the value of this variable must be either "POLYML" or "SMLNJ".

See Also hol, zed, pp.

```
egin{array}{|pp-d|} |pp-d| & database[\#theoryname] & [-i & files] & [-f & files & [-n|-s] & [-v] \ | & [-ml\_flags] \
```

Description pp runs ProofPower on the indicated database. If no -d database is provided to pp, the function fails. For portability, the database name should be given without any architecture-or compiler-specific prefixes or suffixes. Any such prefixes or suffixes will be added automatically by pp, If the resulting file name is an absolute path name (i.e., starts with a '/' character), then that is used as the database file name. If the resulting file name is not an absolute path name, pp searches for the database file using the search path given in the environment variable \$PPDATABASEPATH, if set. If \$PPDATABASEPATH is not set, pp searches for the database in the current directory, then in the subdirectory db of the user's home directory and then in the subdirectory db of the ProofPower installation directory.

If specified, theoryname gives the name of a theory to be made the current theory at the start of the session. If theoryname is not specified, then current theory will be set to the theory current when the database was last saved by $save_and_quit$ or, if just created, to the cache theory for the database. The files identified by any [-i files] options are then executed in turn. files is a comma-separated list of files.

If -f files is provided, then the files specified in the list files are loaded in batch mode. Once loading is complete the database is saved and the batch session is terminated. The saving of the database can be suppress by providing the -n flag. The default action if any of the files fails to load is for the session to terminate at that point and the database is not saved. By providing the -s flag, the user can indicate to the system to save the database in batch mode upon failure. The -n and -s flags are mutually exclusive. If they are both provided, a warning message is issued and the -s flag is ignored.

By default, the production of subgoal package output in a batch load is as determined by the value of the flag $subgoal_package_quiet$ stored in the database. If the $\neg v$ flag is specified to pp, the subgoal package output is produced whereas if the $\neg q$ flag is specified, it is suppressed.

If -f files is not provided, then the system then issues a prompt for user input.

Flags which appear after -- are passed directly onto the Standard ML system for processing. This mechanism can be used to tailor the heap size under SML/NJ: e.g., pp -d hol -- -h 32000. The environment variable PPCOMPILER may be used to select between the Poly/ML or SML/NJ compiler if ProofPower has been installed for both compilers. If it is set, the value of this variable must be either "POLYML" or "SMLNJ".

The environment variable PPLINELENGTH, if set, determines the initial value of the string control line_length. This gives the line length used by various listing facilities, e.g., print_theory and output_theory. In interactive use, the xpp interface will set PPLINELENGTH automatically if it has not been set explicitly by the user.

Errors pp prints a message and exits (with status 1) if the database cannot be accessed or if the theory name specified as part of the -d argument does not exist in the database.

See Also pp_make_database, pp_list, pp_read, hol, zed

```
|\mathbf{xpp}| [Standard X Toolkit options] [xpp options]
```

Description The program xpp provides a convenient way to prepare, check and execute Proof-Power scripts under the X Windows System. xpp combines a general purpose text editor with a command interface for operating the ProofPower specification and proof facilities. Consult the xpp help menu or the xpp User Guide for information on how to use it.

'Standard X toolkit options' refers to common options which are automatically supported by most X Windows applications. An example is the option '-display', which may be used to specify the X server on which you wish xpp output to be displayed.

The xpp option -f file may be used to specify a file to be loaded into the editor when xpp starts. If you omit this option, xpp will start off editing an empty file.

If you specify the xpp option -d database, xpp will run an interactive command session working on the specified ProofPower database. If you omit this option, xpp will just run as an editor.

The command line options mentioned above are the most common ones. The program has a number of other options you may wish to use. Consult the xpp *User Guide* for further details.

See Also USR031: ProofPower - Xpp User Guide

Description zed_list is used to obtain selected information from a ProofPower-Z database. It functions in the same manner as hol_list except that it uses defaults appropriate to the ProofPower-Z, and a Z theory lister.

In the first form of use, where a list of one or more theory names is specified, zed_list uses ProofPower-Z to generate on its standard output listings (in the Z language using the function z_output_theory) of the indicated theories, in a form suitable for processing by doctex. Any cache theory (i.e. the theory name is in the list returned by $get_cache_theories$) will be printed with most of the theory detail elided, unless the -c option is given.

In the second form, with no list of theory names, zed_list lists the names of all the theories whose language is Z in the database one per line on its standard output channel, in a sorted order.

The third form, with -a, is like the first but causes all of the theories in the database whose language is "Z" to be listed in a sorted order.

In any of the three forms the program will start a session as if by command zed with the supplied -d and -i arguments (if any), and it is in this environment that the theory listing is done. The output of this startup will be suppressed, including any indication of failure to load the initialisation scripts.

Each theory is, if possible, made current, or at least in scope, when it is listed.

In any form -v indicates the log of the preprocessing should also be output.

Errors zed_list prints a message and exits (with the value 1) if the database or any of the theories does not exist. The log of the failure is sent to the standard output, the message to the error output.

See Also pp_list, hol_list, zed, pp_make_database

```
conv_ascii [-r] [-K] [-k keyword_file_name] <filename> ... | conv_extended [-r] [-K] [-k keyword_file_name] <filename> ...
```

Description conv_ascii converts ProofPower documents using the extended character set into ASCII keyword format. conv_extended performs the opposite conversion.

The filename arguments may be just the base-name, perhaps with a directory name prefix, or may include the .doc suffix. By default, the result of the conversion is checked by converting in the opposite direction and comparing with the input. If the check is successful, the .doc file is then replaced by the result of the conversion. If the conversion appears to be unsuccessful the output of the conversion is placed in a file with suffix .asc or .ext in the current directory, and the .doc file is left unchanged.

If -r is specified no check is made and the output of the conversion is placed in a file with suffix .asc or .ext.

Note that the check will always fail on a file containing a mixture of extended characters and ASCII keywords. Use -r and then, if all is well, overwrite the .doc file with the .asc or .ext file using mv(1) or cp(1) to convert a such file into a homogeneous one.

The check will also fail if the file is already in the desired format, in which case there is no need to run the conversion program.

The -K and -k options indicate the keyword files to be used as for *doctex* and *docsml* (and are only needed if fonts other than those supplied with ProofPower are being used.)

See Also docpr

```
\begin{vmatrix} \mathbf{docdvi} \ [-v] \ [-f \ view\_file\_name] \ [-K] \ [-k \ keyword\_file\_name] \\ [-e \ edit\_file\_name] \ [-p \ TeX\_program\_name] \ [-N] \ < filename > \dots \end{vmatrix}
```

Description Shell script that combines the actions of doctex, bibtex (which is part of the basic TeX distribution) and texdvi with the intention of fully processing a simple document from its .doc form to a printable .dvi file.

The option $-\mathcal{N}$ controls how many times LATEX should be invoked, the default is three (i.e., '-3'), the values of \mathcal{N} may be in the range one to four inclusive. The other options are as for doctex and texdvi.

LATEX and bibtex are run so that if they detect errors and prompt for input they will read an end of file and thus stop immediately.

In some cases an extra run of LATEX may be required. In these cases LATEX will output the message: 'LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.'

See Also doctex, texdvi

Description Shell script that prints out files that may contain extended characters in a verbatim-like manner. Lines may be numbered in the output by using the -n option. Lines are folded at at 80 characters wide, or at the width given by the -w width option. The output may be viewed on screen with the -s option, the default is to print the output. By default all intermediate files are deleted, with the -p option the .dvi file will be preserved. With the -v option details of the files processed are listed on the standard output.

See Also doctex, texdvi

Description Shell scripts that sieve each of their *filename* arguments to produce various output files. These arguments may be given just as the base-name, perhaps with a directory name prefix, or may include the .doc suffix. When the -v option is set details of the files read and written are shown on the standard output. The default steering files are named sieveview and sievekeyword and looked for first in the current directory, second on the callers execution path (from the UNIX environment variable \$PATH). The default viewfile may be changed with the -f option. The default keyword file may be suppressed with the -K option. Additional keyword files may be given with the -k option which may be used several times. The -e option identifies the name of a script of ex commands which are used to edit the .tex file.

The output file from doctex has suffix .tex and is intended for processing with texdvi. The output file from docsml has suffix .sml and is typically processed by loading it into a ProofPower database.

See Also texdvi, docdvi

Description Shell script that runs \LaTeX on each of the *filename* arguments to produce the corresponding .dvi file. These arguments may be just the base-name, perhaps with a directory name prefix, or may include the .tex suffix. When the -v option is set details of the .tex and .dvi files read and written are shown on the standard output. To support indexing this script ensures that a .sid file exists before \LaTeX is called; when \LaTeX completes any .idx file is sorted to create a.sid file ready for the next time texdvi is used. When initially producing a .dvi file texdvi will need to be run up to four times so that the derived information such as tables of contents and inter-page references stabilise.

The \LaTeX program is latex by default but a different program may be specified with the -p option.

If the -b option is specified, bibtex is run after running latex.

See Also texdvi, docdvi

Chapter 2 15

PROGRAMMING UTILITIES

2.1 Error Management

```
\begin{array}{c} ||signature| & \mathbf{BasicError} = sig \end{array}
```

Description This is the signature of the structure *BasicError*.

```
exception Fail of MESSAGE
exception Error of MESSAGE
```

Description These exception are raised to report error conditions. *Fail* is for errors which may be trapped (so that the associated message is suppressed). *Error* is intended to ensure that the message will be reported and, by convention, should not be trapped.

Uses Obscure debugging situations.

```
|type| MESSAGE
```

Description This type is used to pass error and other messages around in the system.

Uses Obscure debugging situations.

```
\begin{vmatrix} val & area\_of : exn -> string \end{vmatrix}
```

Description This returns the name of the function which raised an exception (provided the exception was raised with *fail* following the usual conventions). If the exception was not the one raised by *fail* then it is raised again.

Uses For use when coding new facilities to add to the system.

Description These functions support a style of error handling in which, if an error is reported during evaluation of an expression, the source of the error may be checked and the error report modified if needed to give a more meaningful report to the user. Sources of errors are identified by the string passed as the first argument to the function *fail* which is used to flag trappable errors. By convention, this string gives the name of the top level function which has raised the error.

In the call divert X from new new_msg inserters, X is the exception which has been raised and from identifies a possible source for an error report. inserters is a list of functions to be used to generate insertions for the error message (as with fail q.v.). If an error has been reported by from, the call will have the same effect as if fail new new_msg inserters had been called.

 $list_divert\ X\ new\ triples\$ handles the more general case in which errors from several sources are expected. X and new are as for divert. triples gives a list of triples giving possible sources of error and the corresponding new messages and insertion functions.

elaborate is similar to divert but makes it possible to expand on the information provided by the function that has raised the exception. In the call elaborate X old_msg new new_msg inserters, old_msg identifies an error message text. If X results from a call of fail (or equivalent) with that error message text, the effect is as if fail new new_msg (inserters'@inserters) had been called, with inserters' the list of string-valued functions associated with X.

Uses For use when coding new facilities to add to the system.

```
| val fail : string -> int -> (unit -> string) list -> 'a
| val error : string -> int -> (unit -> string) list -> 'a
```

Description These functions report a message of the corresponding class with text determined by an integer parameter and a list of string valued functions. The string parameter is intended to give the name of the top level function which has invoked the error message.

The error messages are stored in a database maintained by $new_error_message$ and the integer parameter gives the key for the desired entry in the database. The list of string-valued functions allow the messages to be parameterised. When the error is printed, the functions are evaluated to produce a list of strings. Substrings of the database entry of the form "?i" where i is a decimal digit are replaced by the corresponding entries in the list (with "? θ " corresponding to the head of the list). (If there are more than ten entries in the list, entries after the tenth are evaluated but the result of the evaluation is ignored).

fail is for unrecoverable errors which may, however, be trapped. It causes exception Fail to be raised.

error is for unrecoverable errors which must be reported to the user. It causes exception Error to be raised. As for set_flag etc.

Uses For use when coding new facilities to add to the system.

```
\begin{vmatrix} val & \mathbf{get\_error\_message} : int -> (string \ list) -> string \end{vmatrix}
```

Description This function returns the entry in the error message database associated with the given integer key. The second parameter gives a list of strings to be inserted into the text of the message. Substrings of the message text of the form "?i", where i is a decimal digit, indicate positions where these insertions are to be made. "? θ " identifies the string at the head of the list etc.

Errors

2002 The error number ?0 does not identify an entry in the error message database

```
| val get_error_messages : unit -> {id:int, text:string} list
| val set_error_messages : {id:int, text:string} list -> unit
```

Description get_error_messages returns the contents of the error message database as a list.

set_error_messages uses new_error_message to add any new error messages in a list of such into the database of error messages. It will issue a message on the standard output (and change nothing) for any messages that do not match those already present.

```
|val| get_message_text: MESSAGE \rightarrow string
```

Description This returns a printable form of an error message text. The message text is given without the header information which is inserted by $get_message$, q.v.

Uses In constructing extensions to the system.

The error message data structure includes functions passed as arguments to *fail* or *error* that are called to generate parts of the message. If any of these functions raises *Fail*, the exception is caught and the string returned is a report on the failure.

See Also fail, error, get_message

```
Errors | 2004 Failure detected formatting message: ?0 | 2005 * failure ?0.?1 reported *
```

```
\begin{vmatrix} val & \mathbf{get_message} \\ \end{vmatrix} \underbrace{MESSAGE}_{-} > string
```

Description This returns a printable form of an error message value. The message text is followed by a trailer of the form "<#nnnn area>", where #nnnn is the number of the message in the error database and area typically gives the name of the function which gave rise to the error message.

Uses In constructing extensions to the system.

See Also get_message_text

```
\begin{vmatrix} val & \mathbf{new\_error\_message} \end{vmatrix} : \{id:int, text:string\} \rightarrow unit
```

Description This function adds a new entry to the database of error messages. Note that substrings of the message of the form "?i" where i is a decimal digit have special significance (see fail for details). "??" may be used to insert a single "?" character in a message.

If the *id* and the *text* are identical to an existing entry, then *new_error_message* has no effect. If there is an existing entry with the same *id* but a different *text* then a message is reported on the standard output and the existing entry is left unchanged.

Errors

2001 The error number ?0 is already in use for a different message

Uses For use when adding facilities to the system.

```
\begin{vmatrix} val & \mathbf{pass\_on} : exn -> string -> 'a \end{vmatrix}
```

Description pass_on exn from to is similar to reraise, q.v., but the function name associated with the exception is only modified if it is equal to from, in which case it is changed to to.

```
|val| pending_reset_error_messages : unit \rightarrow unit \rightarrow unit
```

Description This function is intended for use in system initialisation and shutdown. The binding $val\ p = pending_reset_error_messages()$, defines p as a function which will set the internal state of the BasicError module to the value it had at the time the binding for prcs was made. This is used to remember the set-up for error messages introduced in a child database.

2.2. Data Types

```
SML
```

```
|val pp'change_error_message : {id:int, text:string} -> unit
```

Description This function changes an entry in the database of error messages. If the number does not identify an existing entry a new entry is made.

Uses ICL Use only.

```
SML
```

```
|val| pp'error_init : unit \rightarrow unit
```

Description This function is used to initialise certain aspects of the error reporting system. It is called automatically at the start of each session. It is harmless, but unnecessary, to call it within a session.

SMI

```
|val reraise : exn -> string -> 'a
```

Description This re-raises an exception. If the exception is the exception Fail (as raised by fail, q.v.) then the function name associated with the exception is changed to the name given by the second argument.

Uses For use when coding new facilities to add to the system.

2.2 Data Types

SML

 $|signature\ UtilitySharedTypes = sig$

Description Any new types in the Utility structures mentioned in more than one signature will be declared in this signature.

SMI

```
|datatype' a \ \mathbf{OPT} = \mathbf{Nil} \ | \ \mathbf{Value} \ of' a;
```

Description A type of "optional" values.

Uses A typical use for the datatype 'a OPT is in implementing partial functions for which raising an exception is not an appropriate action for undefined cases.

See Also force_value, is_Nil

SML

|type|'a **S_DICT**;

Description The type of simple dictionaries: (string * 'a) list.

See Also Signature SimpleDictionary.

2.3 Lists

SML

|signature ListUtilities = sig

Description Holds a variety of utility Standard ML list functions.

SML

 $|val \ all_different : "a \ list \rightarrow bool;$

Description all_different determines whether a list has any repeated entries.

See Also all_distinct

SMI

 $|val \ \mathbf{all_distinct} : ('a * 'a -> bool) -> 'a \ list -> bool;$

Description all_distinct eq list determines whether list has any repeated entries using eq to test for equality. Each member, x of the list is tested against all the subsequent members of the list, with x being the first argument to eq.

See Also all_different

SMI

 $|val \ \mathbf{all} : 'a \ list \rightarrow ('a \rightarrow bool) \rightarrow bool;$

Description all list cond is true iff. all elements of list satisfy cond.

SMI

 $|val \ \mathbf{any} : 'a \ list \rightarrow ('a \rightarrow bool) \rightarrow bool;$

Description any list cond is true iff. some element of list satisfies cond.

SMI

 $|val \mathbf{app} : ('a \rightarrow unit) \rightarrow 'a \ list \rightarrow unit;$

Description Apply a function to each element of a list in turn for the side-effect.

SMI

|val combine: 'a list -> 'b list -> ('a * 'b) list;

Description combine combines a pair of lists into a list of pairs. It is the left inverse of split.

Errors

1007 Cannot combine unequal length lists

See Also split, zip

SML

| val contains : "a list -> "a -> bool;

Description contains list x searches for a member of list equal to x and returns true iff. it finds one.

See Also present, mem

SML

 $|val \ \mathbf{cup} : "a \ list * "a \ list -> "a \ list;$

Description An infix binary union operation for lists, with Standard ML equality test. It has the same result ordering as union(q.v.).

See Also $list_cup$, union

2.3. Lists 21

```
| val diff: "a list * "a list -> "a list;

Description diff is the set difference operator for lists.
```

```
\begin{vmatrix} val & \mathbf{drop} : 'a & list * ('a -> bool) -> 'a & list; \end{vmatrix}
```

Description *list drop cond* is the list obtained by deleting all members of *list* for which the boolean function *cond* is true.

See Also less

```
\begin{vmatrix} val & filter : ('a -> bool) -> 'a & list -> 'a & list; \end{vmatrix}
```

Description filter pred list returns a list that is list, except that elements of the list that don't satisfy pred are dropped.

```
| Definition | filter pred [] = [] | | filter pred (a :: x) = (
| if pred a | then (a :: filter pred x) | else filter pred x);
```

```
\begin{vmatrix} val & find : 'a & list -> ('a -> bool) -> 'a; \end{vmatrix}
```

Description find list cond searches for the first member of list satisfying cond, and returns such a member if there is one.

Errors

1004 Element cannot be found in list

```
\begin{vmatrix} val & \text{flat} : 'a & list & list -> 'a & list; \end{vmatrix}
```

Description flat takes a list of lists and returns the result of concatenating them all.

```
| val fold : ('a * 'b -> 'b) -> 'a \ list -> 'b -> 'b;
| Description | Fold a list into a single value:

| Definition | fold f [x1, x2, ...., xk] | b = f(x1, f(x2, ... f (xk, b))...)
| See Also revfold
```

```
SML | val force_value : 'a OPT -> 'a;

Description Force an object of type 'a OPT (q.v) into one of type 'a:

Definition | force\_value (Value x) = x

Errors | 1001 Argument may not be Nil
```

```
\begin{vmatrix} val & \mathbf{from} : 'a & list * int -> 'a & list; \end{vmatrix}
```

Description list from n takes the trailing slice of list. It uses 0-based indexing. If n is 0 or negative then entire list is returned, and if n indexes past the other end of the list then the empty list is returned.

```
 \begin{array}{l} {}^{\text{Example}} \\ \left[ \left[ 0,1,2,3 \right] \text{ from } \ 2 \ = \ \left[ 2,3 \right] \end{array} \right]
```

See Also to

```
\begin{vmatrix} val & \mathbf{grab} : "a & list * "a -> "a & list; \end{vmatrix}
```

Description *list grab what* is the list obtained by inserting *what* at the head of *list* if it is not a member of it already, in which case *list* is returned.

See Also insert

```
\begin{vmatrix} val & \mathbf{hd} : 'a & list -> 'a; \\ val & \mathbf{tl} : 'a & list -> 'a & list; \end{vmatrix}
```

Description hd returns first element of a list, tl returns all but the first element of a list.

```
 \begin{aligned} & \text{Definition} \\ & hd \ (a :: x) = a \\ & tl \ (a :: x) = x \end{aligned}   \begin{aligned} & \text{Errors} \\ & 1002 \quad An \ empty \ list \ has \ no \ head} \\ & 1003 \quad An \ empty \ list \ has \ no \ tail \end{aligned}
```

```
|val| insert : ('a * 'a -> bool) -> 'a list -> 'a -> 'a list;
```

Description insert eq list what is the list obtained by inserting what at the head of list if it is not a member, by equality test eq, of it already, in which case list is returned.

See Also grab

```
\begin{vmatrix} val & \mathbf{interval} : int -> int -> int \ list; \end{vmatrix}
```

Description interval a b is the list [a, a+1, a+2..., b]. This is taken to be [] if a > b and to be [a] if a = b.

```
| val is_Nil : 'a OPT -> bool
| Description | Is the argument equal to Nil (q.v).

| val val
```

```
\begin{vmatrix} val & \mathbf{is_nil} : 'a & list -> bool; \end{vmatrix}
```

Description is_nil tests whether a list is empty([]). It can be used for lists of types which do not admit equality.

2.3. Lists 23

```
\begin{vmatrix} val \ val \ lassoc1 : ("a * "a) \ list -> "a -> "a; \end{vmatrix}
```

Description lassoc1 alist arg is x, where (arg, x) is the first element of alist with arg as its left item. The function is made total by taking arg as the result if there is no appropriate member of the list.

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

```
|val |  lassoc2 : ("a * 'b) |  list -> ("a -> 'b) | -> "a -> 'b;
```

Description lassoc2 alist f arg is x, where (arg, x) is the first element of alist with arg as its left item. The function is made total by returning f arg if there is no appropriate member of the list.

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

```
\begin{vmatrix} val \ val \ assoc3 : ("a * 'b) \ list -> "a -> 'b';
```

Description lassoc3 alist arg is x, where (arg, x) is the first element of alist with arg as its left item.

Errors

1005 No such value in association list

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

```
\begin{vmatrix} val \ lassoc4 : ("a * 'b) \ list -> 'b -> "a -> 'b; \end{vmatrix}
```

Description lassoc4 alist default arg is x, where (arg, x) is the first element of alist with arg as its left item. The function is made total by returning default if there is no appropriate member of the list.

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

```
\begin{vmatrix} val \ val \ lassoc5 : ("a * 'b) \ list -> "a -> 'b \ OPT; \end{vmatrix}
```

Description lassoc5 alist arg is Value x, where (arg, x) is the first element of alist with arg as its left item. The function is made total by returning Nil if there is no appropriate member of the list.

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

```
\begin{vmatrix} val \text{ length} : 'a \text{ list } -> int; \end{vmatrix}
```

Description length returns the length of a list. Note that the Standard ML function size can be used to find the length of strings.

```
\begin{vmatrix} val & \mathbf{less} : "a & list * "a -> "a & list; \end{vmatrix}
```

Description *list less what* is the list obtained by deleting all members of *list* which are equal to what.

See Also drop

```
| val list_cup : "a list list -> "a list;

Description A distributed union operation for lists, with Standard ML equality test.

| Definition | list_cup [list0, list1, ..., listn] = | list0 cup (list1 cup ...(listn cup [])...))

| See Also cup, list_union |
```

```
| val list_union : ('a * 'a -> bool) -> 'a list list -> 'a list;

| Description | A distributed union operation for lists, with parameterised equality test:

| Definition | list_union | eq [list0, list1, ..., listn] = | union | eq list0 (union | eq list1 (...(union | eq listn [])...))

| See Also | union, list_cup.
```

```
| val mapfilter : ('a -> 'b) -> 'a \ list -> 'b \ list;

| Description | Map a function over a list. If, when evaluating | mapfilter f(x_-1 :: ... x_-k - 1 :: x_-k :: x_-k + 1 :: ...)
| the evaluation of f(x_-k) raises a Fail exception, then the result will be | (f(x_-1) :: ... f(x_-k) - 1 :: f(x_-k) + 1 :: ...)
```

```
| val mem : "a * "a list -> bool;

| Description x mem list searches for a member of list equal to x and returns true iff. it finds one.

| See Also contains, present
```

2.3. Lists 25

SML

 $|val \ \mathbf{nth} : int \rightarrow 'a \ list \rightarrow 'a;$

Description Return the *n*-th element of a list. The head of the list is the θ -th element.

Errors

1009 Index past ends of list

SML

val overwrite : ("a * 'b) list * ("a * 'b) -> ("a * 'b) list;

Description alist overwrite (a, b) gives the list in which the first pair in alist that has the left item a is replaced with the pair (a, b). If no such pair is found in alist then it returns the list of (a, b) appended to the tail of alist.

See Also roverwrite, list_overwrite

SMI

|val| present : (('a * 'a) -> bool) -> 'a -> 'a list -> bool;

Description present eq x list searches for a member, y, of list that satisfies eq(x, y) and returns true iff. it finds one.

See Also contains, mem

SML

 $|val \ \mathbf{rassoc1}: ("a * "a) \ list -> "a -> "a;$

Description rassoc1 alist arg is x, where (x, arg) is the first element of alist with arg as its right item. The function is made total by taking arg as the result if there is no appropriate member of the list.

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

SMI

 $|val \ \mathbf{rassoc2} : ('a * "b) \ list -> ("b -> 'a) -> "b -> 'a;$

Description rassoc2 alist f arg is x, where (x, arg) is the first element of alist with arg as its left item. The function is made total by returning f arg if there is no appropriate member of the list.

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

SMI

 $|val \ \mathbf{rassoc3}: ('a * "b) \ list -> "b -> 'a;$

Description rassoc3 alist arg is x, where (x, arg) is the first element of alist with arg as its right item.

Errors

1005 No such value in association list

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

SMI

 $|val \ \mathbf{rassoc4} : ('a * "b) \ list -> 'a -> "b -> 'a;$

Description rassoc4 alist default arg is x, where (x, arg) is the first element of alist with arg as its right item. The function is made total by returning default if there is no appropriate member of the list.

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

```
\begin{vmatrix} val \ \mathbf{rassoc5} : ('a * "b) \ list -> "b -> 'a \ OPT; \end{vmatrix}
```

Description rassoc5 alist arg is Value x, where (x, arg) is the first element of alist with arg as its right item. The function is made total by returning Nil if there is no appropriate member of the list.

See Also lassoc \mathcal{N} and rassoc \mathcal{N} , where $\mathcal{N} = 1 \dots 5$.

```
\begin{vmatrix} val & \mathbf{revfold} : ('a * 'b -> 'b) -> 'a \ list -> 'b -> 'b; \end{vmatrix}
```

Description Fold a list into a single value:

```
 \begin{array}{l} \text{Definition} \\ | \textit{revfold} \ f \ [x1, \ x2, \ ...., \ xk] \ b = f(xk, \ ..., \ f(x2, \ f \ (x1, \ b))...) \end{array}
```

See Also fold

```
\begin{vmatrix} val \text{ roverwrite} : ('a * "b) \ list * ('a * "b) -> ('a * "b) \ list; \end{vmatrix}
```

Description alist roverwrite (a, b) gives the list that in which the first pair in alist that has the right item b is replaced with the pair (a, b). If no such pair is found in alist then it returns the list of (a, b) appended to the end of alist.

See Also overwrite, list_roverwrite

```
\begin{vmatrix} val \text{ split3} : ('a * 'b * 'c) \text{ list } -> 'a \text{ list } * 'b \text{ list } * 'c \text{ list}; \end{vmatrix}
```

Description Split a list of triples into a triple of lists. *split3* is the analogue of *split* for lists of triples.

See Also split

```
\begin{vmatrix} val \text{ split} : ('a * 'b) \text{ list} -> 'a \text{ list} * 'b \text{ list}; \end{vmatrix}
```

Description Split a list of pairs into a pair of lists.

```
\begin{array}{l} \text{Definition} \\ |split \; [(x0,\;y0),\; (x1,\;y1),\; ...\; (xk,\;yk)] \; = \; [x0,\;x1,\; ...\;,\;xk], \; \; [y0,\;y1,\; ...\;,\;yk] \end{array}
```

See Also split3, combine

```
|val \text{ subset}: "a \ list * "a \ list -> bool;
```

Description l1 subset l2 is true iff. all the elements of l1 are also elements of l2

See Also =

```
\begin{vmatrix} val & \mathbf{to} : 'a & list * int -> 'a & list; \end{vmatrix}
```

Description list to n takes the initial slice of list. It uses 0-based indexing. If n is 0 or negative an empty list is returned, and if n indexes past the other end of list then the entire list is returned.

```
 \begin{array}{l} {}^{\text{Example}} \\ \left[ [0,1,2,3] \text{ to } 2 \right. = \left. [0,1,2] \right. \end{array}
```

See Also from

2.3. Lists 27

```
\begin{vmatrix} val \text{ union} : ('a * 'a -> bool) -> 'a \ list -> 'a \ list -> 'a \ list; \end{vmatrix}
```

Synopsis A prefix binary union operation for lists, with parameterised equality test.

Description union is essentially a binary union operation for lists. Since we need it to work on types which are not equality types, it has a parameter giving the relation to be used to determine equality of members of the lists. In some cases it may be important for the order of members of the union to be known. The rule is that union eq list1 list2 is the list obtained by prepending those elements of list1 not already present in list2, to the list list2. Presence for x in the list being created being that there is a member, y, of the list being created with eq(x, y) = true. If list1 contains duplicates then all but the rightmost will be eliminated, but those in list2 will not be. Note also that if one of the lists is small it is better supplied as the first list argument if efficiency is of the essence.

```
Definition eq (list1 @ [a]) list2 = union eq list1 (
    if present eq a list2
    then list2
    else (a :: list2)

) | union eq [] list2 = list2
```

See Also cup, list_union

```
|val| which : (('a * 'a) -> bool) -> 'a -> 'a list -> int OPT;
```

Description which eq x list returns Value of the position of first element, y, in list for which eq x y is true. It uses 0-based indexing. If no such y is found, then it returns Nil.

```
\begin{vmatrix} val & \mathbf{zip} : ('a -> 'b) list -> 'a & list -> 'b & list; \end{vmatrix}
```

Description Given a list of functions, and a list of arguments, of the same length, apply each function to its corresponding argument. For the cases when the list of functions induce side effects, note that the functions are applied from the head of their list to the tail, and will be applied until there are insufficient elements of either list to continue. If there lists are not of equal length then at that point a failure will be raised.

See Also combine

 $\begin{bmatrix} 1008 & List \ lengths \ differ \end{bmatrix}$

```
 \begin{vmatrix} val \sim <=: "a \ list * "a \ list -> bool; \\ val \sim =: "a \ list * "a \ list -> bool; \\ \end{vmatrix}
```

Description l1 <= l2 is true iff. every member of l1 is also a member of l2. l1 = l2 is true iff. the set of members of l1 is equal to the set of members of l2.

See Also subset

2.4 Functions

```
|signature| FunctionUtilities = sig
```

Description Holds a variety of utility Standard ML functions concerned with functions.

```
|val ** : ('a -> 'b) * ('c -> 'd) -> 'a * 'c -> 'b * 'd;
```

Description The infix operator **, with precedence 4 (higher than "o"), applies the first of a pair of functions to the first of a pair, and the second of the pair of functions to the second of the pair, returning the pairing of the results.

```
 | (f ** g) x = (f x, g x)
```

```
\begin{vmatrix} val & \mathbf{curry} \end{vmatrix}: ('a * 'b -> 'c) -> 'a -> 'b -> 'c;

Description curry \ f \ a \ b \ \text{gives} \ f \ (a, b).

See Also uncurry
```

```
\begin{vmatrix} val & \mathbf{fst} : 'a * 'b -> 'a; \\ \mathbf{Description} & fst \text{ is the left projection function for pairs: } fst(a, b) = a. \\ \mathbf{See Also} & snd \end{vmatrix}
```

```
| val fun_and : (('a -> bool) * ('a -> bool)) -> 'a -> bool;
| val fun_or : (('a -> bool) * ('a -> bool)) -> 'a -> bool;
| val fun_not : ('a -> bool) -> 'a -> bool;
| val fun_true : 'a -> bool;
| val fun_false : 'a -> bool;
```

Description These functions allow a style of programming that handles predicates rather than booleans.

```
SML |val \; \mathbf{fun\_pow} \; : \; int \; -> \; ('a \; -> \; 'a) \; -> \; 'a \; -> \; 'a;

Description For non-negative n, \; fun\_pow \; n \; f \; \text{is} \; f^n, \; \text{i.e.} \; \text{the function}
\lambda x \bullet f(f(...f(fx)....)
where f \; \text{appears} \; n \; \text{times}.

Errors |1010 \; \; First \; argument \; must \; not \; be \; negative
```

2.4. Functions 29

```
\begin{vmatrix} val \text{ repeat} : (unit -> 'a) -> unit; \\ val \text{ iterate} : ('a -> 'a) -> 'a -> 'a; \end{vmatrix}
```

Description repeat applies its argument to () until it fails (with an error generated by fail, q.v.), whereupon it returns (). iterate f a applies f to a. If this causes no failure it then calls iterate f on the result. If it fails (with an error generated by fail, q.v.) it returns a. Failures other than those caused by fail are not handled.

```
\begin{vmatrix} val & snd : 'a * 'b -> 'b; \end{vmatrix}
```

Description snd is the right projection function for pairs: snd(a, b) = b.

See Also fst

```
\begin{vmatrix} val \text{ swap } : 'a * 'b -> 'b * 'a; \end{vmatrix}
Description swap interchanges the elements of a pair: swap(a, b) = (b, a).
```

```
\begin{vmatrix} val \text{ switch } : ('a -> 'b -> 'c) -> 'b -> 'a -> 'c; \end{vmatrix}
Description switch f a b gives f b a.
```

```
\begin{vmatrix} val & \mathbf{uncurry} : ('a -> 'b -> 'c) -> 'a * 'b -> 'c; \\ \mathbf{Description} & uncurry \ f \ (a,b) \ \text{gives} \ f \ a \ b. \\ \mathbf{See \ Also} & curry \end{vmatrix}
```

2.5 Combinators

 $\begin{vmatrix} s_{\text{ML}} \\ signature \ \mathbf{Combinators} = sig \end{vmatrix}$

Description Holds the three combinators S, K, I.

 $\begin{vmatrix} val & \mathbf{I} : 'a -> 'a \end{vmatrix}$

Description The identity combinator: I x = x.

 $\begin{vmatrix} val & \mathbf{K} : 'a -> 'b -> 'a \end{vmatrix}$

Description The deletion combinator: K x y is x.

 $\begin{vmatrix} val \ \mathbf{S} : ('a -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'c \end{vmatrix}$

Description The duplication combinator: S f g a is (f a)(g a).

2.6. Characters 31

2.6 Characters

 SML

 $|signature\ CharacterUtilities = sig$

Description Holds a variety of utility Standard ML functions concerned with character handling.

SML

 $|val is_all_decimal : string \rightarrow bool;$

Description *is_all_decimal* checks whether a string consists of one or more decimal digits.

SML

 $|val \ \mathbf{nat_of_string} : string \rightarrow int;$

Description nat_of_string converts a string into non-negative integer (using decimal notation).

See Also string_of_int

Errors

1012 ?0 is not a decimal string

1013 String is empty

SML

 $|val \ \mathbf{string_of_int}| : int -> string;$

Description *string_of_int* converts an integer into a decimal string.

See Also nat_of_string

2.7 Simple Dictionary

 $\begin{vmatrix} signature & \mathbf{SimpleDictionary} = sig \end{vmatrix}$

Description Holds a set of Standard ML functions concerned with a linear search dictionary.

Uses For handling small dictionaries.

See Also Efficient Dictionary.

 $\begin{vmatrix} val & \mathbf{initial_s_dict} \ \end{vmatrix} \cdot 'a \ S_DICT;$

Description The empty dictionary, which gives a starting point for the use of the simple dictionary functions. It does not associate a value with any name.

 $|val \ \mathbf{s}_\mathbf{delete} : string -> 'a \ S_DICT -> 'a \ S_DICT;$

Description s_delete deletes an element of the domain of a dictionary. If the element is not in the domain it returns the dictionary unchanged. s_delete name dict returns a dictionary that does not associate anything with name, but otherwise associates as dict.

 $|val \ \mathbf{s_-enter} : string \ -> \ 'a \ -> \ 'a \ S_DICT \ -> \ 'a \ S_DICT;$

Description s_enter implements overwriting by a singleton function. s_enter name value dict returns the dictionary that associates name with value, and otherwise associates as dict. Overwriting is done "in place", entries not previously present will be placed at the end of the dictionary viewed as a list.

 $\begin{vmatrix} val & \mathbf{s_-extend} : string -> 'a -> 'a S_DICT -> 'a S_DICT; \end{vmatrix}$

Description $s_{-}extend$ implements extension by a singleton function, that is to say it is like $s_{-}extend$ name value dict returns the dictionary that associates name with value, and otherwise associates as dict. It fails if name is already in the domain of dict. Entries not previously present will be placed at the head of the dictionary viewed as a list.

Errors

1014 ?0 is already in dictionary

 $\begin{vmatrix} val \ \mathbf{s_lookup} : string -> \ 'a \ S_DICT -> \ 'a \ OPT; \end{vmatrix}$

Description s_lookup implements application (of the dictionary viewed as a partial function). s_lookup name dict returns the value that dict associates with name.

 $|val \ \mathbf{s_merge} : 'a \ S_DICT -> 'a \ S_DICT -> 'a \ S_DICT;$

Description s_merge extends one dictionary by another. The dictionary s_merge dict1 dict2 will associate a name with the value that either dict1 or dict2 associates it with.

Failure Will get the s_extend failure message if any element is common to the domains of both dictionaries (dict1 and dict2). Duplicate keys in the first list will also cause an s_extend error, but will be replicated in the result if found in the second list.

2.8 Efficient Dictionary

```
|signature| Efficient Dictionary = sig
```

Description This is the signature of a structure implementing dictionaries (lookup-up tables) based on hash-search techniques.

Uses For handling large dictionaries.

See Also SimpleDictionary.

```
| type 'a E_DICT;

Description The type of efficient dictionaries.
```

```
type E_KEY;

val e_get_key: string -> E_KEY;

val e_key_lookup: E_KEY -> 'a E_DICT -> 'a OPT

val e_key_enter: E_KEY -> 'a -> 'a E_DICT -> 'a E_DICT;

val e_key_extend: E_KEY -> 'a -> 'a E_DICT -> 'a E_DICT;

val e_key_delete: E_KEY -> 'a E_DICT -> 'a E_DICT;

val e_key_delete: E_KEY -> 'a E_DICT -> 'a E_DICT;

val string_of_e_key: E_KEY -> string;
```

Description The abstract data type E_-KEY represents the hash-keys used in the internals of the efficient dictionary (E_-DICT) access functions. e_-get_-key computes the hash-key for a given string. This may then be used as an argument to the functions $e_-key_-lookup$, e_-key_-enter , $e_-key_-extend$ and $e_-key_-delete$ which perform the same functions as the corresponding functions without " key_- " in the name. This approach may be used if the same string is to be used to access several efficient dictionaries to avoid the computational cost of recalculating the hash-key. $string_-of_-key$ is the left inverse of e_-get_-key .

Failure The failures are exactly as for the corresponding string access functions. In particular, the area names in error messages are, e.g., "e_lookup" rather than "e_key_lookup" etc.

```
\begin{vmatrix} val & \mathbf{e}_{-}\mathbf{delete} : string & -> \ 'a & E_{-}DICT & -> \ 'a & E_{-}DICT; \end{vmatrix}
```

Description e_{-} delete deletes an element of the domain of a dictionary. If the element is not in the domain it returns the dictionary unchanged. e_{-} delete name dict returns a dictionary that does not associate anything with name, but otherwise associates as dict.

```
|val| e_enter : string \rightarrow 'a \rightarrow 'a E_DICT \rightarrow 'a E_DICT;
```

Description $e_{-}enter$ implements overwriting by a singleton function. $e_{-}enter$ name value dict returns the dictionary that associates name with value, and otherwise associates as dict.

```
\begin{vmatrix} val \ \mathbf{e}_{-}\mathbf{extend} : string \ -> \ 'a \ E_{-}DICT \ -> \ 'a \ E_{-}DICT; \end{vmatrix}
```

Description $e_{-}extend$ implements extension by a singleton function, that is to say it is like $e_{-}enter$. $e_{-}extend$ name value dict returns the dictionary that associates name with value, and otherwise associates as dict. It fails if name is already in the domain of dict.

```
Errors | 1014 ?0 is already in dictionary
```

```
|val| e_flatten : 'a E_-DICT -> 'a S_-DICT;
```

Description e_{-} flatten converts an efficient dictionary into a simple one. The result will contain no duplicates, but will be in no useful order.

```
\begin{vmatrix} val & \mathbf{e\_lookup} : string & -> \ 'a & E\_DICT & -> \ 'a & OPT \end{vmatrix}
```

Description e_lookup implements application (of the dictionary viewed as a partial function). e_lookup name dict returns the value that dict associates with name.

```
\begin{vmatrix} val \ \mathbf{e_{-}merge} \ : \ 'a \ E_{-}DICT \ -> \ 'a \ E_{-}DICT \ -> \ 'a \ E_{-}DICT; \end{vmatrix}
```

Description e_merge extends one efficient dictionary by another. The dictionary e_merge dict1 dict2 will associate a name with the value that either dict1 or dict2 associates it with.

Failure Will get the e_{-} extend failure message if an element is common to the domains of both dictionaries.

```
|val \ \mathbf{e\_stats}: 'a \ E\_DICT \rightarrow \{height: int, nentries: int, nnodes: int, sumweights: int\};
```

Description *e_stats dict* returns statistics about the internals of the efficient dictionary *dict*. Efficient dictionaries are currently represented as binary trees whose non-leaf nodes each carry a simple dictionary of entries (in case of collisiion of hash values). The statistics currently returned are the height of the tree, the number of entries, the number of nodes and the sum over all entries of the depth of the entries (i.e, the sum of the number of entries per node weighted by node-depth).

```
\begin{vmatrix} val & initial_e\_dict : 'a & E\_DICT; \end{vmatrix}
```

Description The empty dictionary, which gives a starting point for the use of the efficient dictionary functions. It does not associate a value with any name.

```
\begin{vmatrix} val & list_e_e = enter : 'a & E_DICT -> 'a & S_DICT -> 'a & E_DICT; \end{vmatrix}
```

Description $list_{-}e_{-}merge$ extends an efficient dictionary by overwriting with entries from a simple one. That is, for each association in the simple dictionary an $e_{-}enter$ is executed on the efficient dictionary.

```
\begin{vmatrix} val & list_e_merge : 'a & E_DICT -> 'a & S_DICT -> 'a & E_DICT ; \end{vmatrix}
```

Description $list_e_merge$ extends an efficient dictionary by merging with entries from a simple one. That is, for each association in the simple dictionary an e_extend is executed on the efficient dictionary.

Failure Will get the e_{-} extend failure message if an element is common to the domains of both dictionaries.

2.9. Sorting 35

2.9 Sorting

```
| signature Sort = sig | include Order;
```

Description This provides an efficient sort utility package. For historical reasons it includes the structure *Order*.

```
| val sort : 'a ORDER -> 'a list -> 'a list | val merge : 'a ORDER -> 'a list -> 'a list -> 'a list
```

Description sort sorts a list and merge merges two lists assumed already to be sorted. Both functions are parametrised by an ordering function of type 'a ORDER, i.e., 'a->' a->int. The integer, say n returned by an application of this function, say f a_-1 a_-2 , is interpreted as follows:

n < 0 $a_{-}2$ is to come after $a_{-}1$ (i.e. the arguments are in order).

n > 0 a₋₂ is to come before a₋₁ (i.e. the arguments are out of order).

n = 0 $a_{-}2$ is to be taken as equal to $a_{-}1$

Sorting eliminates duplicate elements in the sense of the equality test given by the ordering. Merging includes just one copy of an element that occurs once in each of its arguments in the result. The result of merging unsorted lists is unspecified; in particular, the result is unspecified if there is duplication within one of the lists.

Example

To sort a list of integers, ilist in ascending order:

```
sort (curry (op -)) ilist
```

or

 $sort int_order ilist$

See Also For convenient ways of constructing orderings, see, e.g. *string_order* and *list_order*.

2.10 Sparse Arrays

 $\left| signature \; \mathbf{SparseArray} \right| = sig$

Description This is the signature of a structure implementing sparse arrays (i.e. imperative data structures representing finite partial functions on the integers). The sparse arrays also give an efficient means for handling dense (i.e. contiguous) arrays whose size varies. To facilitate their use for such dynamically sized arrays, the sparse arrays have lower and upper bound attributes which gives the smallest and largest indices into the array which identify an occupied cell.

The design of the structure is an adaptation of the library structure Array implementing fixed length arrays.

type '_a SPARSE_ARRAY;

Description This is the type of a sparse array with entries of type $'_{-}a$.

 $\begin{vmatrix} val \ array \end{vmatrix}$: $int -> '_a \ SPARSE_ARRAY$;

Description This function creates an empty sparse array. The parameter indicates the length of an internal data structure used to represent the array. For a contiguous array or for a sparsely filled array with a random distribution of occupied cells, the average access time for an element will be proportional to n/l where n is the number of occupied cells and l is this length.

Errors

1102 The length parameter must be positive

 $\left| \begin{array}{ccc} val \ \mathbf{lindex} & : \ '_a \ SPARSE_ARRAY \ -> int \\ val \ \mathbf{uindex} & : \ '_a \ SPARSE_ARRAY \ -> int \end{array} \right|$

Description lbound(array) (resp. ubound(array)) returns the smallest (resp. largest) index of an occupied cell in the sparse array array. An exception is raised if the array is empty.

Errors

1103 the array is empty

val scratch : '_a SPARSE_ARRAY -> unit;

Description scratch array empties all cells in the sparse array array.

 $val \ \mathbf{sub_opt}$: $('_a \ SPARSE_ARRAY * int) -> '_a \ OPT$

Description sub(array, i) returns $Value\ a$, where a is the occupant of the i-th cell of the sparse array array. If the cell is unoccupied it returns Nil.

 $\begin{vmatrix} val & \mathbf{sub} \end{vmatrix}$: $('_a \ SPARSE_ARRAY * int) -> '_a$

Description sub(array, i) returns the occupant of the *i*-th cell of the sparse array array. An exception is raised if the cell is not occupied.

Errors | 1101 Cell with index ?0 is empty

```
val \ \mathbf{update} : ('\_a \ SPARSE\_ARRAY * int * '\_a) -> unit;
```

Description update(array, i, a) makes a the occupant of the *i*-th cell of the sparse array array. The cell need not previously have been occupied (indeed, update is the only means by which cells become occupied).

2.11 Dynamic Arrays

 $\begin{array}{c} \text{SML} \\ signature \ \mathbf{DynamicArray} = sig \end{array}$

Description This is the signature of a structure implementing dynamic arrays with 0-based indexing (i.e. imperative data structures representing finite partial functions on the integers, whose range is an interval $1 \dots n$). The implementation gives constant access time. The design of the structure is an adaptation of the library structure Array implementing fixed length arrays.

type '_a DYNAMIC_ARRAY;

Description This is the type of a dynamic array with entries of type $'_{-}a$.

Description This function creates an empty dynamic array. The parameter indicates the length of an internal data structure used to represent the initial size of the array. The average access time for an element will be constant — the underlying array structure is grown as necessary.

Errors

1301 The initial size parameter must be positive

Description scratch array empties all cells in the sparse array array and reduces the underlying data structure to the initial length specified when the array was first created.

 $val \ \mathbf{sub_opt}$: $('_a \ DYNAMIC_ARRAY * int) -> '_a \ OPT$

Description sub(array, i) returns $Value\ a$, where a is the occupant of the i-th cell of the dynamic array array. If the cell is unoccupied it returns Nil.

 $\begin{vmatrix} \text{SML} \\ & val \text{ sub} \end{vmatrix}$: $('_a \ DYNAMIC_ARRAY * int) -> '_a$

Description sub(array, i) returns the occupant of the *i*-th cell of the dynamic array array. An exception is raised if the cell is not occupied.

Errors

1101 Cell with index ?0 is empty

1303 Index ?0 is out of range

 $\begin{vmatrix} val & uindex \end{vmatrix}$: '_a $DYNAMIC_ARRAY -> int$

Description lbound(array) the largest index of an occupied cell in the dynamic array array or ~ 1 if no cells in the array are occupied.

 $| val \ \mathbf{update} | : ('_a \ DYNAMIC_ARRAY * int * '_a) -> unit;$

Description update(array, i, a) makes a the occupant of the i-th cell of the sparse array array. The cell need not previously have been occupied (indeed, update is the only means by which cells become occupied).

2.12 Arbitrary Magnitude Integer Arithmetic

```
SML
signature Integer = sig
       eqtype INTEGER;
      val \ \mathbf{idiv} : INTEGER * INTEGER -> INTEGER;
       val \ \mathbf{imod} : INTEGER * INTEGER -> INTEGER;
      val @*: INTEGER * INTEGER -> INTEGER;
       val @+ : INTEGER * INTEGER -> INTEGER;
       val @-: INTEGER * INTEGER -> INTEGER;
      val @\sim : INTEGER \longrightarrow INTEGER;
      val iabs : INTEGER \rightarrow INTEGER;
       val @<: INTEGER * INTEGER -> bool;
       val @> : INTEGER * INTEGER -> bool;
      val @<= : INTEGER * INTEGER -> bool;
      val @>= : INTEGER * INTEGER -> bool;
      val integer_of_string : string -> INTEGER;
       val @@: string \rightarrow INTEGER;
       val string_of_integer : INTEGER -> string;
      val int_of_integer : INTEGER -> int;
      val integer_of_int : int -> INTEGER;
      val natural_of_string : string -> INTEGER;
       val \ \mathbf{zero} : INTEGER;
       val one : INTEGER;
       val string_of_float : INTEGER * INTEGER * INTEGER -> string;
       val integer_order : INTEGER -> INTEGER -> int;
```

Description This is the signature of an open structure providing arithmetic on integers of arbitrary magnitude. It is used to support HOL natural numbers and other object language numeric types. The names of the usual arithmetic operators are decorated with an initial i or @ as appropriate. The string conversions work with signed decimal string representations. Either '-' or '~' may be used for unary negation and a leading '+' is also allowed. @@ is an abbreviation for $integer_of_string$. $natural_of_string$ is a converter for non-negative numbers (it has the same error cases as nat_of_string).

 $string_of_float$ interprets a triple (x, p, e) as a floating point number with value $x \times 10^{e-p}$ and converts the triple into its string representation.

integer_order implements the ordering of the integers in the form used by sort, q.v.

```
| 1201 the divisor is zero | 1202 an empty string is not a valid decimal number | 1203 the string '?0' is not a valid decimal number | 1204 the conversion would overflow
```

2.13 Order-preserving Efficient Dictionary

```
type 'a OE_DICT;

val initial_oe_dict : 'a OE_DICT;

val oe_lookup : string -> 'a OE_DICT -> 'a OPT

val oe_enter : string -> 'a OE_DICT -> 'a OE_DICT;

val oe_extend : string -> 'a OE_DICT -> 'a OE_DICT;

val oe_delete : string -> 'a OE_DICT -> 'a OE_DICT;

val oe_key_lookup : E_KEY -> 'a OE_DICT -> 'a OPT

val oe_key_enter : E_KEY -> 'a OE_DICT -> 'a OE_DICT;

val oe_key_extend : E_KEY -> 'a -> 'a OE_DICT -> 'a OE_DICT;

val oe_key_delete : E_KEY -> 'a OE_DICT -> 'a OE_DICT;

val oe_latten : 'a OE_DICT -> 'a OE_DICT;

val oe_key_flatten : 'a OE_DICT -> 'a E_KEY S_DICT;

val oe_key_flatten : 'a OE_DICT -> 'a E_DICT;

val oe_merge : 'a OE_DICT -> 'a S_DICT;

val oe_merge : 'a OE_DICT -> 'a OE_DICT -> 'a OE_DICT;
```

Description This type and associated access functions implement order-preserving efficient dictionaries. The functions have exactly the same effect as the corresponding functions e_lookup , e_enter etc., qv., for the type E_DICT except that $se_flatten$ returns a list which preserves the order in which entries were made (last-in, first-out). If an entry is updated (rather than added) by oe_key_enter or oe_enter , the updated entry appears in its original position.

list_oe_merge enters the list of items in the second argument into the dictionary given as its first argument in tail-first (right-to-left) order.

Failure The failures are exactly as for the corresponding $E_{-}DICT$ functions. In particular, the area names in error messages are, e.g., "e_lookup" rather than "oe_lookup" etc.

2.14 Compatibility with SML'90

```
SML
signature  BasicIO = sig
       type instream;
       type outstream;
        exception Io of {cause:exn, function:string, name:string}
       val close_in : instream -> unit
       val \ \mathbf{close\_out} : outstream \ -> \ unit
       val end_of_stream : instream -> bool
       val input : instream * int -> string
       val lookahead : instream \rightarrow string
       val open_in : string -> instream
       val open_out : string → outstream
       val output : outstream * string -> unit
       val \ \mathbf{std\_in} : instream
       val std_out : outstream
end:
signature ExtendedIO = sig
       type instream;
       type outstream;
       val \ \mathbf{can\_input} : instream * int -> bool
       val flush_out : outstream -> unit
       val open_append : string -> outstream
       val is_term_in : instream → bool
       val input_line : instream -> string
       val is_term_out : outstream -> bool
       val  system : string  ->  bool
       val get_env : string -> string
       val std_err : outstream
end;
```

Description These are the signatures of the structures that implement SML'90-style I/O. *BasicIO* is open. *ExtendedIO* is not.

ExtendedIO differs from the the original SML'90 in several respects:

- It provides *system* instead of *execute* (which cannot be implemented cleanly on UNIX implementation sof the SML'97 standard basis library, since the SML'90 signature does not give an interface for the caller to reap the executed process).
- It provides std_err , which was not in the SML'90 library at all (and is the same as Tex-tIO.stdErr in the SML'97 standard basis library).
- It provides get_env which is the UNIX get_env with non-existent environment variables returning an empty string.

```
signature PPArray = sig
exception Subscript
type 'a array
val arrayoflist: '_a list -> '_a array
val array : int * '_a -> '_a array
val length : 'a array -> int
val sub : 'a array * int -> 'a
val tabulate : int * (int -> '_a) -> '_a array
val update : 'a array * int * 'a -> unit
end;
```

Description This is the signature of a structure that provides an array datatype compatible with the ProofPower code (independent of the underlying compiler).

```
| signature PPString = sig
| val implode : string list -> string;
| val explode : string -> string list;
| exception Ord;
| val ord : string -> int;
| val chr : int -> string;
| val string_of_exn : exn -> string;
| end;
```

Description This is the signature of an open structure that provides string functions compatible with the ProofPower code (independent of the underlying compiler).

```
signature PPVector = sig

exception Subscript

exception Size

type '_a vector

val vector: '_a list -> '_a vector

val length : 'a vector -> int

val sub : 'a vector * int -> 'a

val tabulate : int * (int -> '_a) -> '_a vector

end;
```

Description This is the signature of a structure that provides a vector (read-only array) datatype compatible with the ProofPower code (independent of the underlying compiler).

```
(*
structure SML97BasisLibrary = struct
val explode : string -> char list; ...
structure Array = Array; ...
end;
*)
```

Description This is a structure containing the required structures of the Standard ML '97 Basis Library together with some functions from the '97 standard for the language that are redefined by ProofPower.

It is provided so that these structures can still be accessed when ProofPower defines a structure of the same name as a basis library structure (e.g., "Char").

The structure SML97BasicLibrary.Prelude contains the functions from the '97 standard for the language that are redefined by ProofPower. If you open this structure and later wish to revert to the ProofPower versions of explode, hd, etc., open the structures PPString and ListUtilities.

Chapter 3 45

SYSTEM FACILITIES

3.1 System Control

```
\begin{vmatrix} signature & SystemControl = sig \end{vmatrix}

Description This is the signature of the structure SystemControl.
```

```
| val get_flags : unit -> (string * bool) list
| val get_int_controls : unit -> (string * int) list
| val get_string_controls : unit -> (string * string) list
| val get_controls : unit ->
| ((string * bool) list * (string * int) list * (string * string) list)
```

Description These functions return the names and current values of the system flags or controls.

```
| val get_flag : string -> bool
| val get_int_control : string -> int
| val get_string_control : string -> string
```

Description These functions are used to get the values of named control variables of the corresponding types. The parameter gives the name of the control variable.

Errors

2011 The name ?0 is not in use as a control variable name

Uses This function is for use when adding new facilities to the HOL system which require global control variables.

```
| val new_flag :
| val new_flag :
| {name:string, control:bool ref, default:unit->bool, check:bool -> bool} -> unit
| val new_int_control :
| {name:string, control:int ref, default:unit->int, check:int -> bool} -> unit
| val new_string_control :
| {name:string, control:string ref, default:unit->string, check:string -> bool} -> unit
| val new_string, control:string ref, default:unit->string, check:string -> bool} -> unit
```

Description These functions are used to introduce new named control variables of the corresponding types. The *name* parameter gives the name of the new control variable. The *control* component of the parameter gives the variable itself. The *default* component of the parameter is a function which is used by *reset_flag*, *reset_int_control* or *reset_string_control* to reset the value.

After the introduction, users may update the control using one of set_flag , $set_int_control$ or $set_string_control$.

The *check* component of the parameter is a function to check the validity of the control values, and, if desired, to notify other code of the change in the value. When one of the control setting functions, is called, an error is reported if the *check* function for the control returns *false* when applied to the new value supplied by the caller.

The following message is raised as a warning if the control variable name is already in use. If the user elects to continue, the old control variable is renamed (by decorating it with one or more prime characters) and a new control variable is introduced with the specified name.

Errors

2010 The name ?0 is already in use as a control variable name

Uses This function is for use when adding new facilities to the HOL system which require global control variables.

```
\begin{vmatrix} val & \mathbf{pending\_reset\_control\_state} \end{vmatrix} : unit -> unit -> unit
```

Description This function is intended for use in system initialisation and shutdown. The binding $val\ pres = pending_reset_control_state()$, defines pres as a function which will set the internal state of the SystemControl module to the value it had at the time the binding for pres was made. This is used to remember the set-up for controls introduced in a child database. Note that, to avoid problems with stateful user-defined check functions, this function does not attempt to set the values of the controls. The values are, after all, not part of the SystemControl module's internal state.

```
| val reset_flags : unit -> unit | val reset_int_controls : unit -> unit | val reset_string_controls : unit -> unit | val reset_controls : unit -> unit | val reset_controls : unit -> unit |
```

Description These functions reset the current values of all the system flags or controls in the system, as by $reset_flag$, etc.

```
| val reset_flag : string -> bool
| val reset_int_control : string -> int
| val reset_string_control : string -> string
```

Description These functions are used to reset the values of named control variables of the corresponding types. The parameter gives the name of the control variable. They return the previous value of the control variable.

```
|2011| The name ?0 is not in use as a control variable name
```

Uses This function is for use when adding new facilities to the HOL system which require global control variables.

```
| val set_flags : (string * bool) list -> unit
| val set_int_controls : (string * int) list -> unit
| val set_string_controls : (string * string) list -> unit
| val set_controls : ((string * bool) list * (string * int) list * (string * string) list)
| -> unit
```

Description These functions set the current values of the system flags or controls named in the lists. Items that are not mentioned keep their previous values.

```
| val set_flag : (string * bool) -> bool
| val set_int_control : (string * int) -> int
| val set_string_control : (string * string) -> string
```

Description These functions are used to change the values of named control variables of the corresponding types. The first parameter gives the name of the control variable. The second parameter gives the desired new value. They return the previous value of the control variable.

Uses This function is the standard means of changing global control variables.

3.2 System Initialisation

```
\left| \begin{array}{l} 	ext{SML} \\ 	ext{signature} \end{array} \right| signature \hspace{0.1cm} 	ext{HOLSystem} \hspace{0.1cm} = \hspace{0.1cm} sig \hspace{0.1cm}
```

Description This is the signature of the structure *HOLSystem* which contains functions used to end a HOL session and to save the results of a HOL session, as well as two access routes to the UNIX environment to the Standard ML session.

Description This is the signature of the structure *HOLInitialisation* which contains functions which may be used to add and test new start of session functions. These functions are for use by those extending the system.

```
(* flag: gc_messages; default false *)
```

Description The flag $gc_messages$ can be used to turn the Standard ML compiler garbage collector messages on and off (true meaning on) providing that facility is supported by the compiler being used. By default, garbage collection messages are turned off.

```
type ICL'DATABASE_INFO_TYPE;
val pp'database_info : ICL'DATABASE_INFO_TYPE;
```

Description Private ProofPower database information, that neither contains information useful to the user, nor should be overwritten by the user. Note that it is not an assignable variable. It is set by $pp'set_database_info$.

```
| val get_init_funs : unit -> (unit -> unit) list;
| val get_save_funs : unit -> (unit -> unit) list;
```

Description These functions returns the list of functions that have been registered with new_init_fun and new_save_fun . They are made visible because they are needed to save the state in a child database.

```
\begin{vmatrix} val & \mathbf{get\_shell\_var} : string -> string; \end{vmatrix}
```

Description get_shell_var shvar will extract the value (as a string), if any, bound to shell environment variable shvar. If the variable is not set the empty string will be returned.

```
\begin{vmatrix} val & \mathbf{init} : unit -> unit; \end{vmatrix}
```

Description init causes the initialisation functions in the table maintained by new_init_fun to be executed, as they would be at the start of a session. The failure of any individual initialisation function will not affect the attempted execution of the others.

Uses Mainly for use in testing extensions to the system.

```
See Also new_init_fun.
```

Errors

36014 Exception caught by init: ?0 (?1)

```
\begin{vmatrix} val \ val \ load\_files : string \ list -> bool \end{vmatrix}
```

Description load_files takes a list of files and compiles each file (using use_file). A message indicating the success or failure is output as each file is processed and a summary is output when all files have been processed. If all the files loaded without any error, load_files returns true else it returns false.

```
\begin{vmatrix} val & \mathbf{new\_init\_fun} : (unit -> unit) -> unit; \end{vmatrix}
```

Description new_init_fun adds a new entry to a table of functions which are invoked at the start of each session. At the beginning of each session, these functions are executed in turn, with the function stored by the most recent use of new_init_fun executed last.

```
|val \text{ new\_save\_fun}: (unit -> unit) -> unit;
```

Description new_save_fun adds a new entry to a table of functions which are invoked when the state of a session is saved with save, $save_and_quit$ or $save_and_exit$. The functions are executed in turn, with the function stored by the most recent use of new_save_fun executed last.

```
| val pp'reset_database_info: bool -> ICL'DATABASE_INFO_TYPE -> unit;
```

Description This function resets the current system state to a given stored value (which will generally be given by the variable $pp'database_info$), optionally setting the current theory. It is not intended to be called other than in the system start-up code.

```
| val pp'set_banner : string OPT -> string;
| (* string control: system_banner; default - see below *)
| (* string control: user_banner; default - "" *)
```

Description $pp'set_banner$ ($Value\ banner$) will change the core part of the system banner to banner, returning the old value. $pp'set_banner\ Nil$ just returns the current value. (The value is held in the string control $system_banner$ and can also be changed using $set_string_control$ or read $get_string_control$).

The messages below gives the banner, which has elements which may be changed by setting the string controls $system_banner$ and $user_banner$. Message 36050 is printed first with $system_banner$ as the insertion (?0) followed by message 36051 with insertions giving the latest copyright year (?0) and the $user_banner$ (?1). If it is not empty, $user_banner$ should begin with a newline character.

Message 36000 gives the value for *system_banner* set in the HOL database, the insertion being the version string taken from the variable *system_version* defined by the make file.

```
 \begin{vmatrix} 36000 & ProofPower ?0 & [HOL\ Database] \\ 36050 & ===?0 \\ 36051 & === Copyright & (C) & Lemma 1 & Ltd. & 2000-?0?1 \end{vmatrix}
```

```
\begin{vmatrix} val & pp'set\_database\_info: unit -> unit; \end{vmatrix}
```

Description This function sets the value of $pp'database_info$ so that it describes the current system state. The function is used by $save_and_quit$, and elsewhere, but should not be directly invoked by the user.

```
| val pp'theory_hierarchy : pp'Kernel.pp'HIERARCHY OPT;
```

Description Private ProofPower database information, that neither contains information useful to the user, nor should be overwritten by the user. Note that it is not an assignable variable.

```
| val print_banner : unit -> unit;

Description Output the system startup banner.
```

```
| val print_status : unit -> unit;

Description This command will list:

1. Current theory name;

2. Current proof context name(s);
```

4. Current subgoal label;

```
 \begin{vmatrix} val & \mathbf{quit} : unit -> unit \\ val & \mathbf{exit} : int -> unit \end{vmatrix}
```

3. Number of distinct goals to be achieved;

Description quit() is used to end a session with the HOL system. In interactive use, the user is warned that the database will not be saved, and asked whether they still wish to quit. The session will be quit if the response is "y", and otherwise the user is returned to the HOL session. If it is used non-interactively, or $use_terminal$ (q.v.) is not active, then the session will end without the database being saved.

exit ends the current session of the HOL system with an exit status that is the argument to exit. The exit status is available to the calling environment (e.g., as documented in the UNIX manual page for sh(1)). This facility enables the user to flag errors to the outside environment from within ProofPower.

See Also save_and_quit, save_and_exit to save the database.

```
| val | save : unit -> unit;
| val | save_as : string -> unit;
| val | save_and_quit : unit -> unit;
| val | save_and_exit : int -> unit;
```

Description save() saves the user's current work to disk using the current database name (which is initially derived from the name supplied on the command line when ProofPower is invoked using the supplied shell scripts). $save_as$ name saves the user's current work to disk under a new name (which becomes the current name used in subsequent calls of save()).

save_and_quit() saves the user's current work to disk and then ends the current ProofPower session.

save_and_exit saves the user's current work and then ends the current ProofPower session with an exit status that is the argument to save_and_exit. The exit status is available to the calling environment (e.g., as documented in the UNIX manual page for sh(1)). This facility enables the user to flag errors to the outside environment from within ProofPower.

If these function are called from another function rather than at the top-level then the function should be the last side-effecting function call before returning to the top-level, otherwise the behaviour when a new session is started on the saved state will be compiler-dependent.

The state of subsystems such as the subgoal package is preserved between sessions by system-dependent means. The compactification cache is cleared at the end of each session in order to reduce the size of the saved database.

See Also quit, exit, clear_compactification_cache

```
Errors
```

```
36010 The database name has not been set
36017 STATE WAS FOUND TO BE INCONSISTENT: state should not be saved
```

Errors If the database cannot be saved then depending on the Standard ML compiler, the function may exit anyway, with a compiler-specific raised error message. The only warning of this is that the start of session text informs the user of the database is read-only at that point in time. This does not happen with Standard ML of New Jersey, which reports the error and then continues the session.

3.3 Warnings

```
\begin{vmatrix} s_{\text{ML}} \\ signature & \mathbf{Warning} \\ = sig \end{vmatrix}
```

Description This is the signature of the structure containing the function *warn* which is used to report recoverable error conditions. It also contains the function *comment* which is used to pass comments from the system to the user.

```
val \ \mathbf{comment} : string \rightarrow int \rightarrow (unit \rightarrow string) \ list \rightarrow unit
```

Description comment is used to report messages to the user. The parameters are exactly as for fail and error (q.v.).

Errors | 10010 *** COMMENT ?0 raised by ?1:

```
\begin{vmatrix} val & warn : string -> int -> (unit -> string) & list -> unit \end{vmatrix}
```

Description warn is used to report on recoverable error conditions. The parameters are exactly as for *fail* and *error* (q.v.). The behaviour of warn depends on the system control flag *ignore_warnings* and on whether or not the system is running interactively, as shown in the following table:

interactive	$ignore_warnings$	Effect
yes	false	the message is reported; the system asks the user whether to continue; if the answer is 'yes' then control returns to the caller of <i>warn</i> otherwise an exception is raised.
yes	true	the message is reported and control returns to the caller of warn
no	false	the message is reported and an exception is raised
no	true	the message is reported and control returns to the caller of warn

3.4. Profiling 53

3.4 Profiling

```
\left| signature \ \mathbf{Profiling} \right| = sig
```

Description The signature contains definitions that may be used to record statistics, e.g., on the number of times certain functions have been called.

```
| (* profiling – boolean flag declared by new_flag *)
```

Description Turns profiling on (if true) or off (if false). Default is false, but flag is true during build of ProofPower-HOL. This should be maintained via the functions of structure *SystemControl*.

```
| val prof : string -> unit;
| val counts : string -> int OPT;
| val get_stats : unit -> int S_DICT;
| val set_stats : int S_DICT -> unit;
| val print_stats : int S_DICT -> unit;
| val init_stats : unit -> unit;
```

Description These five functions provide a simple database facility, associating each name with a count. A call to *prof name* increments, if the flag "profiling" is true, the count for *name*. A call to *counts name* returns the value of the current count for *name*. A call to *get_stats* provides the counting database as an integer dictionary, in order of first name entry into database being first in the dictionary viewed as a list. The function *print_stats* will provide a one line - one entry display of an integer dictionary, in particular the kind of dictionary provided by *get_stats*. A call to *init_stats* initialises all the counts to 0 (which is also the state in which the database starts). A call to *set_stats* will restore a statistics database to a given set of values (such as those given by *get_stats*). The input list must contain no duplicated names.

It is likely that the output of get_stats would be best sorted before being printed by print_stats.

Uses The intended use of this database is to profile function calls, with the implementer making one call to *prof* per profiled function.

Errors

1020 Input list is ill-formed

3.5 Timing

```
\begin{vmatrix} s_{\text{ML}} \\ signature \ \mathbf{Timing} = sig \end{vmatrix}
```

Description The signature contains definitions that can be used to measure execution time of ML code.

```
| datatype TIMER_UNITS = Microseconds | Milliseconds | Seconds; | type 'b TIMED = {result : 'b, time : int, units : TIMER\_UNITS}; | val time_app : TIMER\_UNITS -> ('a -> 'b) -> 'a -> 'b TIMED; | val reset_stopwatch : unit -> unit ; | val read_stopwatch : TIMER\_UNITS -> int;
```

Description The function $time_app$ and the associated data types $TIMER_UNITS$ and 'a TIMED may be used to measure the execution time of a function.

In the call $time_app\ u\ f\ x$, u specifies the units in which the timing is to be measured, f is the function to be timed and x gives the argument to be passed to f. The return value gives the result of the application f x together with the time taken measured in the specified units and a reminder of what the units were.

 $reset_stopwatch_time$ and $read_stopwatch_time$ give a way of timing sequences of ML commands. $read_stopwatch_time$ u returns the elapsed time measured in the units specified by u since the last call of $reset_stopwatch_time$. $read_stopwatch_time$ will either return a meaningless value or result in arithmetic overflow if $reset_stopwatch_time$ has not been called in the current session.

The following points should be born in mind when using these functions:

- The times are "wall-clock" times. Garbage-collection and other overheads will be included.
- Depending on the underlying Standard ML compiler, arithmetic overflow may occur if the units are chosen inappropriately for the time period being measured.
- The functions will themselves introduce a time overhead, which may vary depending on system load and other system-dependent factors.

Errors

| 1021 Arithmetic overflow in time conversion

Chapter 4 55

INPUT AND OUTPUT

4.1 The Reader/Writer

```
|signature | HOLReaderWriter = sig
```

Description This structure holds the HOL specific reader writer code. All the errors that the basic reader writer may raise may also be raised by the HOL reader writer.

```
|signature| ReaderWriter = sig
Description File and terminal reading and writing functions.
5001
       End of file found in comment
5002
       End of file found in string
5003
       Unknown keyword '?0' after '?1'
       Unknown keyword '?0'
5004
       Unknown extended character '?0' (decimal ?1) after '?2'
5005
5006
       Unknown extended character '?0' (decimal ?1)
5007
       Unexpected symbol '?0' (a symbol of type $Invalid$ has been read)
5008
       Bracket mismatch, '?0' found after an opening '?1'
5010
       Unknown language requested by symbol '?0' with language name '?1'
5011
       Unknown language requested
       Newline found in string after '?0'
5014
5030
      End of file in quotation
       End of file found in Standard ML quotation
5032
5036
       Unknown language '?0' requested
```

Several error messages are provided to report faults in the user's textual input to the ICL HOL system, they may be produced from all of the routines use_file , use_string and $use_terminal$. Some error messages might be associated with particular routines in the ReaderWriterSupport structure but that is incidental to most users, so they are all gathered here.

```
\begin{vmatrix} signature & \mathbf{ReaderWriterSupport} = sig \end{vmatrix}
```

Description A set of declarations that allows the addition of new embedded languages. The HOL language is an example of a language embedded into a basic system that understands Standard ML with extended characters and percent keywords.

```
| (* prompt1 - boolean flag declared by new_flag, default: ":>" *)
| (* prompt2 - boolean flag declared by new_flag, default: ":#" *)
```

Description Prompt strings for use_terminal. String prompt1 is used when the reader writer is expecting the first line of a top-level expression, prompt2 is used for subsequent lines. The strings used here must comprise characters whose decimal codes are in the range 32 to 126 inclusive, but excluding the characters 'Q' (i.e., code 81) and '%' (37).

```
| (* RW_diagnostics - integer control declared by new_int_control, default: 0 *)
| Description | For reader writer diagnostic purposes.
```

```
| (* use_extended_chars - boolean flag declared by new_flag, default: true *)
```

Description Controls how the writer changes the text output from the PolyML compiler. When *true* extended characters are written, when *false* the corresponding keywords are written.

```
| (* use_file_non_stop_mode - boolean flag declared by new_flag, default: false *)
```

Description Makes use_file continue reading text (if the flag is true) or stop reading (if false) from the file after an error is reported by PolyML, this includes both syntax and execution errors. Default is to stop reading.

Description These detail the characteristics of a symbol. Simple is used for symbols that may be part of identifiers. Starting, Middle and Ending relate to the symbols position when embedding text of other languages. The function with Starting is the reader routine for the particular embedded language. Details of how this function should be written (and of it arguments) are given in the implementation document corresponding to this design. Ignore is used for characters that are completely ignored in the input, the extended characters for indexing come in this category. Invalid will cause an error message.

See Also Error 5007

```
| datatype \ \textbf{SYMBOL} | \\ = \ \textbf{SymKnown} & of \ string * bool \\ * \ PrettyNames.PRETTY\_NAME \\ | \ \textbf{SymUnknownChar} & of \ string \\ | \ \textbf{SymUnknownKw} & of \ string * bool \\ | \ \textbf{SymDoublePercent} \\ | \ \textbf{SymDoublePercent} \\ | \ \textbf{SymWhite} & of \ string \ list \\ | \ \textbf{SymCharacter} \ of \ string \\ | \ \textbf{SymEndOfInput} \\ | \ ;
```

Description SymKnown indicates a symbol declared via $add_new_symbols$, if a keyword was read the string hold the characters without the enclosing percents and the boolean is true. Otherwise, when an extended character is read the string holds the character and the boolean is false.

SymUnknownChar indicates an extended character not declared via add_new_symbols.

SymUnknownKw indicates a keyword not declared via $add_new_symbols$ or a badly formed keyword with no closing percent sign. The boolean is true for a well-formed keyword.

SymDoublePercent indicates an empty keyword, i.e., two adjacent percent signs.

SymWhite indicates a non-empty sequence of formatting characters (space, tab, newline, and formfeed) which are passed as individual characters in reverse order in the string list.

SymEndOfInput indicates an empty string was seen.

All other cases are passed back as a single character in SymCharacter.

```
| exception TooManyReadEmpties;
```

Description Associated with the reader functions is the exception *TooManyReadEmpties* which is raised when the parser has read the end of the file and has passed the end of file character at least 100 times to the compiler. Raising this exception signifies something has gone wrong in a reader.

```
| structure PrettyNames : sig
```

Description A structure within *ReaderWriterSupport* that gathers all the information relating the extended characters and percent keywords understood by the system, together with the interfaces for interrogating and extending the information.

```
type PRETTY_NAME (* = ( string list * string OPT * NAME_CLASS ) *);
```

Description Each symbol is defined in a three-element tuple of this type. Elements of the tuple are as follows. First, a non-empty list of the keywords that may be used for this symbol. These keywords exclude the enclosing percent signs. Second, an optional character for the symbol. Third, a value of datatype $NAME_CLASS$ indicating the characteristics of the symbol.

The extended character field, when used, contains a single character. It may be the letter "Q" or any character with decimal code greater than 127.

See Also Function add_new_symbols, for details of the validation of values of this type.

Description All of the parsing functions in the reader writer support use the functions provided in this record type to read characters from the current input stream. Attempting to read characters by any other method will have unpredictable results. The utility function $skip_and_look_at_next$ combines advance and $look_at_next$ discarding the result of advance. Some applications will want to use instances of this data type to count line numbers, so pushing back newlines that have not been read is not advisable.

```
type READER_ENV;
type READER_FUNCTION;
```

Description These types are used for reader functions for embedded languages, they are identical to the types of the same name in signature *ReaderWriterSupport*.

See Also Signature ReaderWriterSupport.

Description The type of the reader functions for embedded languages. The first string argument gives the symbol that started the quotation. For a keyword enclosing percent signs are omitted and the boolean is true. For an extended character the boolean is false. The second string holds the language name without the leading "%dntext%" or trailing "%cantext%", the default language and type are expanded to give their full names, namely "HOL" or "HOL:" for the colon form. The third string is text to be included at the start of the quoted text, in the case of a HOL quotation it is the first characters that are to be read by the HOL recogniser. The string list is the left hand context of the call and must be returned with the text of the quotation added to its head.

```
\begin{vmatrix} val & \mathbf{abandon\_reader\_writer} : unit -> unit; \end{vmatrix}
```

Description Only meaningfully used after *use_terminal* has been called, when it forces an exit from that routine.

```
| val add_error_code : int * string list -> string list; | val add_error_codes : int list * string list -> string list; |
| Description | For each error number "nn" given as the first argument an entry of the form
```

"LERROR_ $_nn_{\sqcup}$ " is added to the head of the second argument. (Note that " $_{\sqcup}$ " denotes aspace character.)

```
| val add_general_reader : string * string * string * READER_FUNCTION -> unit; val add_specific_reader : string * string * READER_FUNCTION -> unit; val add_named_reader : string * string * string * READER_FUNCTION -> unit;
```

Description Adds reader functions to the database of known readers. The first strings give the language name, the last string holds the name of a Standard ML constructor which is to be written before the quotation when it occurs in within languages other than Standard ML. Typical values of the last string are "Lex.Term" and "Lex.Type".

```
| 5033 | Reader already present for language '?0' | 5034 | Improper reader name '?0' | 5035 | Improper reader name '?0' and '?1'
```

```
val add_new_symbols : PRETTY_NAME list -> unit;
```

Description Adds details of new symbols to the data structures characterising all known symbols. There is some validation of the symbols added, the list of names should not be empty, the individual names should not contain two adjacent "Q"s and the character field should have a single character which is either a "Q" or has decimal code greater than 127.

```
Errors
| 5100 Keyword '?0' has adjacent 'Q's
| 5101 Empty keyword list
| 5102 Invalid extended character '?0' with keyword '?1'
| 5103 Keyword '?0' duplicated
| 5104 Character '?0' duplicated
```

Errors 5100, 5101 and 5102 are issued as warnings against particular parts of the argument value, they do not prevent the other parts from being added to the data structures.

```
\begin{vmatrix} val & \mathbf{ask\_at\_terminal} : string & -> string; \end{vmatrix}
```

Description Asks a question at the terminal by writing out the given string then reading a single line of text which is returned. Characters are read until a newline or end of file is reached, in the first case the the returned string will end with a newline.

Any characters in the type ahead buffer of the terminal input stream before $ask_at_terminal$ is called are read and saved (for later analysis by the normal reading functions) before the prompt is output and the response is read.

```
| 5012 Function 'use_terminal' is not active
| 5013 Input stream is not a terminal, nothing read
```

```
\begin{vmatrix} val & \mathbf{diag\_line} : string & -> unit; \end{vmatrix}
```

Description $diag_line$ outputs a string to the standard output stream followed by a new line, after translating it with $translate_for_output(q.v.)$. It is intended for use in printing formatted terms, theorems and the like (for which the pretty printer will have included new lines within the string if necessary).

See Also diag_string, raw_diag_line.

```
|val|  diag_string : string \rightarrow unit;
```

Description diag_string outputs a string on the standard output stream, after translating it with translate_for_output(q.v.). If the string exceeds the value of get_line_length it attempts to split the string into tokens, to fit within the line length. A token is taken to be an initial string of spaces, followed by exclusively non-space characters.

See Also list_diag_string, diag_line, raw_diag_string.

```
\begin{vmatrix} val & \mathbf{expand\_symbol} : SYMBOL -> string; \end{vmatrix}
```

Description A value of type SYMBOL is expanded into the corresponding character string.

```
val find_name : string -> PRETTY_NAME OPT
val find_char : string -> PRETTY_NAME OPT
```

Description Finds the characteristics of a symbol based on its keyword or character. Both functions return Nil if the symbol is not known. They return the tuple given to $add_new_symbols$ for known symbols.

```
SML
val general_quotation : READER\_ENV
       -> (string * bool)
                           (* Start of quotation symbol *)
                            (* Opening characters *)
       -> string
                            (* Context, true => in Standard ML *)
       -> bool
                            (* Left hand context *)
       -> string list
       -> string list;
|val| specific_quotation : READER\_ENV
       -> (string * bool) (* Start of quotation symbol *)
                            (* Opening characters *)
       -> string
                            (* Context, true => in Standard ML *)
       -> bool
       -> string list
                           (* Left hand context *)
       -> string list;
val named_quotation : READER\_ENV
       -> (string * bool)
                          (* Start of quotation symbol *)
                            (* Opening characters *)
       -> string
                            (* Context, true => in Standard ML *)
       -> bool
                            (* Left hand context *)
       -> string list
       -> string list;
```

Description Process the text of a quotation and add it to the left hand context given. The opening quotation symbol has been read and is passed as the first string argument, a keyword is passed without its enclosing percent signs and the boolean is true, for an extended character the boolean is false. For general and named quotations the next characters to be read denote the language of the quotation. The boolean argument indicates whether the left hand context is in Standard ML text or in a quotation of another language.

```
val get_box_braces : (READER_ENV -> string list -> string list)

-> READER_ENV -> string list -> string list;

val get_curly_braces : (READER_ENV -> string list -> string list)

-> READER_ENV -> string list -> string list;

val get_round_braces : (READER_ENV -> string list -> string list)

-> READER_ENV -> string list -> string list)

-> READER_ENV -> string list -> string list;
```

Description These functions assemble a section of bracketed text. The opening bracket has been read, the first unread character is the first character within the brackets. Each routine reads text upto and including the matching closing bracket. The first argument is the parsing routine for reading items of text within the brackets. The third argument is the left hand context, which is returned with the bracketed text read by these functions, and the enclosing braces. The three pairs of brackets: "[]", "{}" and "()" are handled by functions get_box_braces , get_curly_braces and get_round_braces respectively.

Errors

| 5008 Bracket mismatch, '?0' found after an opening '?1'

```
|val| get_HOL_any : READER\_ENV -> string list -> string list
```

Description Assemble a section of HOL text starting with the first unread character. Text is read up to and including the first unmatched symbol of value $Ending_{-}$. The second argument gives the left hand context, the new text read is added to that context and returned. All the errors that the basic reader writer may raise may also be raised by the HOL reader writer.

See Also Type $READER_ENV$.

```
|val| get_ML_any : READER\_ENV \rightarrow string \ list \rightarrow string \ list
```

Description Assemble a section of Standard ML text starting with the first unread character. Text is read up to the first semi colon ';', unmatched closing bracket or ending keyword. A semi colon will be read and added to the returned text, a closing bracket or ending keyword is left unread for the calling routine. The syntax error where too many closing bracket are presented must be resolved by the outermost routine that calls function. The second argument gives the left hand context, the new text read is added to that context and returned.

```
Errors
| 5003 Unknown keyword '?0' after '?1'
| 5005 Unknown extended character '?0' (decimal ?1) after '?2'
| 5007 Unexpected symbol '?0' (a symbol of type $Invalid$ has been read)
```

See Also Type $READER_ENV$.

```
| val get_ML_string : READER_ENV -> string list -> string list * int list; | val get_primed_string : READER_ENV -> string list -> string list * int list;
```

Description Assemble a string literal and add it to the left hand context given in the second argument. On entry the opening string quote has been read, exit when the closing string quote has been read. The goal of this routine is to form an equivalent string that can be read by a Standard ML compiler, and to defer as much validation of the string as possible to that compiler. Minimal validation is performed on escape sequences. Well-formed layout sequences (i.e., the sequence "f..f\") are removed, characters not recognised as formatting ones are retained and wrapped between "\" and "\" for later checking by the Standard ML compiler. Extended characters are translated to their three digit decimal form.

Function get_ML_string reads a Standard ML string.

Function get_primed_string reads a string enclosed with single left-hand primes ('). These are similar to Standard ML strings but with the meanings of the single (') and double (") prime characters interchanged.

An end of file found in the string indicates that there is no more input available, and so an immediate failure (error 5002) is raised. Error code 5014 is included to aid in understanding where errors occur, this error is not actually generated until the first non white-space character after the newline is processed. All other errors detected in strings are reported when found, additionally their numbers passed back in the result.

```
| 5002 | End of file found in string
| 5014 | Newline found in string after '?0'
```

See Also Type $READER_ENV$.

```
| val get_percent_name : READER_ENV | -> string * PrettyNames.PRETTY_NAME OPT * bool;
```

Description Assemble a percent keyword and look it up in the list of known keywords. On entry the opening percent (%) is the first unread character.

The tuple returned contains: (1) the keyword read, but without the percent characters; (2) the symbols entry as given to $add_new_symbols$ or Nil for an unknown keyword; (3) a flag set true if the keyword had a closing percent character, false otherwise, error reporting is left to the calling functions. Non-alphanumeric keywords may contain the characters "! & \$ # + - / : < = > ? @ \ ~ ' ^ | *"

See Also Type PRETTY_NAME. Type READER_ENV. Function is_special_char.

```
| val get_use_extended_chars_flag : unit -> bool;
| Description This function gives the value of the flag use_extended_chars.
```

```
\begin{vmatrix} val & HOL\_lab\_prod\_reader : READER\_FUNCTION; \end{vmatrix}
```

Description This is the reader function for HOL labeled products. It is provided to allow specialised versions of the HOL language to be read, it is not intended to be called directly called by any user code. All the errors that the basic reader writer may raise may also be raised by the HOL reader writer.

```
|val| HOL_reader : string \rightarrow bool \rightarrow READER\_FUNCTION;
```

Description This is the HOL reader function, its first argument is the name of the recogniser for the particular aspect of HOL to be recognised. Its second argument indicates whether this reader is considered to be used only at outermost (i.e., Standard ML's top-level): *true* is used for outermost usage, *false* for HOL text that may be used within other expresions. This function is provided to allow specialised versions of the HOL language to be read, it is not intended to be called directly called by any user code. All the errors that the basic reader writer may raise may also be raised by the HOL reader writer.

```
val is\_same\_symbol : (string * string) -> bool
```

Description Compare two symbols return true if they are identical, i.e., the same string. Otherwise, look up both with $find_char$ and $find_name$ then if they are the same symbol return true, if either is not a known symbol or they are not the same symbol return false.

```
\begin{vmatrix} val & \mathbf{is\_special\_char} : string -> bool; \end{vmatrix}
```

Description Checks whether the string contains a single non-alphanumeric character that is allowed in a keyword. Returns *true* if the argument contains exactly one of the characters listed in the description of function *get_percent_name*, otherwise *false* is returned.

See Also Function get_percent_name.

```
\begin{vmatrix} val & \mathbf{is_white} : string -> bool \end{vmatrix}
```

Description Returns *true* if the string is a single white-space character, *false* otherwise.

```
|val| list_diag_string : string list \rightarrow unit;
```

Description $list_diag_string$ outputs a list of strings onto the standard output stream, after translating them with $translate_for_output(q.v.)$. The strings in the list are concatenated (with spaces to separate them) and then output with $diag_string$ (q.v).

See Also diag_string, diag_line, list_raw_diag_string.

```
| val | local_error : string -> int -> (unit -> string) | list -> unit;
| val | local_warn : string -> int -> (unit -> string) | list -> unit;
```

Description An error or warning message is written to the standard output, then the function returns. The arguments are identical in form to functions *error* and *fail* of DS/FMU/IED/DTD002.

See Also Functions *error* and *fail*.

```
| val look_up_general_reader : string * string -> (READER_FUNCTION * string) OPT; | val look_up_specific_reader : string -> (READER_FUNCTION * string) OPT; | val look_up_named_reader : string * string -> (READER_FUNCTION * string) OPT;
```

Description Looks up readers in the database of known readers. The argument strings are matched against the first string given in the call of the $add_{-}\dots_{reader}$, if the reader is known then the corresponding constructor string and reader function are returned. The value Nil is returned for an unknown reader.

```
\begin{vmatrix} val \ val \ read\_symbol : READER\_ENV -> SYMBOL; \end{vmatrix}
```

Description Reads one or more characters and returns a value of type *SYMBOL*. No errors are reported by this routine. The routine reads as many characters as necessary to form a symbol. End of file is returned as a *SymEndOfInput*.

```
| val reset_use_terminal : unit -> unit;
```

Description Restores the state that controls *use_terminal* to its default values. N.b., this bypasses the check that *use_terminal* makes on recursive calls (and so could cause a small memory leak if not used with care).

```
\begin{vmatrix} val & skip\_comment : READER\_ENV -> unit; \end{vmatrix}
```

Description Skip over a comment which comprises a sequence of characters within which the comment braces '(*' and '*)' are properly balanced. This routine is entered when the opening round bracket of the comment has been read, the opening asterisk is the first unread character. Note that Standard ML comments separate lexical items thus the calling routine should not simply discard the comment, it might replace the comment with a space character to ensure the lexical items remain separated.

```
Errors
```

5001 End of file found in comment

See Also Type $READER_ENV$.

```
|val| SML_{recogniser} : string * string * 'a * string -> 'a;
```

Description This routine is not intended to be directly called by any user code, it is provided to allow the quotation of Standard ML text. The context of use of this routine is that the "macro processing" of the Standard ML quotation "%<%%dntext%SML%cantext% 42 %>%" yields the text "(ReaderWriterSupport.SML_recogniser ("%<%", "SML", 42 , "%>%"))" which is read by the Standard ML compiler.

```
Errors
```

```
5032 End of file found in Standard ML quotation
```

5050 Incorrect symbols starting or ending of Standard ML quotation: '?0', '?1', '?2'

```
|val| string\_of\_int3 : int -> string
```

Description The string representation of small positive integers is needed in various places, particularly within Standard ML strings where some characters are denoted by their decimal code in three digits, preceded by a backslash. Function $string_of_int3$ gives a three character with leading zeros representation of small positive numbers. In general the routine PolyML.makestring cannot be used, if the value last passed to $PolyML.print_depth$ is zero then PolyML.makestring converts numbers into three dots. The intended use of this function is in building reader writer extensions for other languages. In such places it is intended that the caller only supply suitable arguments, getting this wrong indicates something wrong in the design of the caller. The text of the message anticipates this usage.

```
Errors
```

5040 DESIGN ERROR: Number ?0 is too big or is negative

```
\begin{vmatrix} val & \mathbf{to\_ML\_string} : string & -> string \end{vmatrix}
```

Description Converts characters which are to form part of a string literal into another string which may be read by a Standard ML compiler and which has the same meaning. This is intended to form the string representation of extended characters for passing them through to a Standard ML compiler. Characters other than space, tab and newline which are outside the range 32 to 126 (decimal) inclusive are converted to their four character equivalent of a backslash followed by a three digit decimal number with leading zeroes.

```
\begin{vmatrix} val & translate\_for\_output : string -> string; \end{vmatrix}
```

Description Translates a string according to the macro processing rules used when outputting text. The output produced depends on the setting of the control flag *use_extended_chars*, when false the result will have no extended characters, the keyword forms will be used.

```
| val use_file : string -> unit;
| val use_file1 : string -> unit;
```

Description Both of these functions compile and execute ProofPower-ML (i.e., Standard ML extended to allow mathematical symbols) from the named file. If the file does not exist then the it will read the file with the given name and suffix ".ML", if that file does not exist it will try the suffix ".sml".

use_file passes the file name string through translate_for_output before using it as an operating system file name which is appropriate for file names given as ProofPower-ML strings. The variant use_file1 uses the string exactly as given.

See Also Error messages given with signature for ReaderWriter. Flag use_file_non_stop_mode.

Errors | 5009 Cannot read file '?0' or '?0.ML' or '?0.sml'

```
\begin{vmatrix} val & \mathbf{use\_string} : string -> unit; \end{vmatrix}
```

Description Read Standard ML with extended characters allowed, from the given string.

See Also Error messages given with signature for *ReaderWriter*.

```
\begin{vmatrix} val & use\_terminal : unit -> unit; \end{vmatrix}
```

Description Read Standard ML with extended characters allowed, from the terminal. This routine takes over the terminal, it handles all exceptions as the outermost level of the ML system. To return to the default PolyML terminal reader use *abandon_reader_writer*.

This routine prompts to the conventions of PolyML but uses the strings ":> " and ":# ", the PolyML prompts do not have the colon. These strings are held as the string controls 'prompt1' and 'prompt2' and thus may be altered.

Typing two control-D characters to the terminal prompt, or reading the end-of-file, causes the function PolyML.quit to be called.

See Also Error messages given with signature for *ReaderWriter*. Control strings' prompt1' and 'prompt2'.

4.2. Output 67

4.2 Output

```
\begin{vmatrix} s_{
m ML} \\ signature \ {f SimpleOutput} = sig \end{vmatrix}
```

Description Holds a variety of utility Standard ML functions concerned with simple output. Related facilities may be found in structure ReaderWriter. Function $ask_at_terminal$ (q.v) provides for prompted input of text from the terminal.

Strings containing extended characters and strings derived from HOL types and terms should be passed through the ReaderWriter function $translate_for_output$ (q.v) before being output. This allows the proper output of keywords and extended characters on both graphic and simple ASCII terminals.

```
| (* line_length - integer control declared by new_int_control *)
```

Description An integer control dictating the output's length of line available for printing.

See Also set_line_length, get_line_length

```
|val | val | val
```

Description format_list formatter items seperator is used to format a list of items for printing as a string, perhaps for printing. Given formatter, a function to format a single item, items, a list of items, and seperator, a string to separate elements of a multi-element list, the resulting string is the contatenation of the formatted items with interposed separators. The formatted head element of the list becomes the left hand end of the result string.

```
| val get_line_length : unit -> int

Description Returns current output line length.
```

See Also set_line_length

```
\begin{vmatrix} val & list\_raw\_diag\_string : string & list -> unit; \end{vmatrix}
```

Description $list_raw_diag_string$ outputs a list of strings onto the standard output stream. The strings in the list are concatenated (with spaces to separate them) and then output with raw_diag_string (q.v).

See Also raw_diag_string, raw_diag_line, list_diag_string.

```
\begin{vmatrix} val & raw\_diag\_line : string -> unit; \end{vmatrix}
```

Description raw_diag_line outputs a string to the standard output stream followed by a new line. It is intended for use in printing formatted terms, theorems and the like (for which the pretty printer will have included new lines within the string if necessary).

See Also raw_diag_string, diag_line.

 $|val \ raw_diag_string : string \rightarrow unit;$

Description raw_diag_string outputs a string on the standard output stream. If the string exceeds the value of get_line_length it attempts to split the string into tokens, to fit within the line length. A token is taken to be an initial string of spaces, followed by exclusively non-space characters.

See Also *list_raw_diag_string*, *raw_diag_line*, *diag_string*.

|val| set_line_length : int -> int

Description Set the output line length, returning the previous line length. Default length is 80, minimum length 20.

See Also get_line_length

Errors

1015 line length must be at least 20

4.3 HOL Lexical Analysis

```
\begin{vmatrix} s_{\text{ML}} \\ signature \ Lex = sig \end{vmatrix}
```

Description This is the signature of the structure which contains the lexical analyser for ICL HOL.

Uses For use by those who wish to extend the system to handle languages other than HOL which have a similar lexical structure.

```
| datatype ASSOC = LeftAssoc | RightAssoc; | datatype FIXITY = Nonfix | Binder | Infix of ASSOC * int | Prefix of int | Postfix of int;
```

Description These data types are used in the symbol table and elsewhere to give the syntactic status of a name. *Nonfix* means no special status. The integer components are the precedences for infix, prefix or postfix status.

```
datatype HOL_TOKEN
                              HTAqTm
                                           of TERM
                              HTAqTy
                                           of TYPE
                              HTName
                                           of string
                              HTNumLit of string
                              HTString of string
                              HTChar
                                           of string
                              HTBinder
                                           of string
                              HTInOp
                                           of \{name:string, is\_type\_op:bool,
                                                 is\_term\_op:bool, prec : ASSOC * int 
                              HTPostOp
                                           of {name:string, prec : int}
                                           of {name:string, prec : int}
                              HTPreOp
                              HTAnd
                              HTBlob
                              HTColon
                              HTElse
                              HTIf
                              HTIn
                              HTLbrace
                              HTLbrack
                              HTLet
                              HTLsqbrack
                              HTRbrace
                              HTRbrack
                              HTRsqbrack
                              HTSemi
                              HTThen
                              HTVert
                              HTEos;
```

Description This is the data type of the output from the HOL lexical analyser.

Uses For use by those who wish to extend the system to handle languages other than HOL which have a similar lexical structure.

```
SML
datatype INPUT
                            Text
                                         of string
                            String
                                         of string
                            Char
                                         of string
                            Type
                                         of TYPE
                            Term
                                         of TERM
                            Separator
                                         of string
                           Error
                                         of int;
```

Description This is the data type of the input to the HOL lexical analyser.

Uses For use by those who wish to extend the system to handle languages other than HOL which have a similar lexical structure.

```
val is_alnum : string -> bool
val is_copula : string -> bool
val is_digit : string -> bool
val is_macro : string -> bool
val is_punctuation : string -> bool
val is_space : string -> bool
val is_symbolic : string -> bool
```

Description These functions classify character strings according to their first character. They all return false if the argument is an empty string. The characters for which the various functions return true are shown in the following table.

is_alnum	a letter or a number or the prime character ','
is_copula	an underscore or the subscription, or superscription characters
is_digit	a decimal digit
is_macro	the character '%' which introduces preprocessor macros
is_punctuation	'(', ')', '{', }', '[', ']', ':', ';', ',', ' ', '•' or '\$'
is_space	a formatting character, i.e., space, tab, newline etc.
is_symbolic	any character which is not does not fall into any of the above classes

```
val lex : (string list list) -> (string -> FIXITY) ->
INPUT list -> HOL_TOKEN list
```

Description This is the HOL lexical analyser.

The first parameter is the list of (exploded) strings which are to be taken as terminator symbols. Terminators are recognised by looking for the first match in the list, so that if one terminator is a leading substring of another the longer one must come first. No punctuation symbol should appear in a terminator. For HOL this parameter is always obtained by calling the symbol table function $get_terminators$, which maintains the list of terminators sorted in order of decreasing length.

The second parameter is used to classify names as binder, infix, prefix, postfix or nonfix.

The third parameter is the input to be lexically analysed.

Uses For use by those who wish to extend the system to handle languages other than HOL which have a similar lexical structure.

```
| 15001 antiquotation not allowed after '$'
| 15002 '$' not allowed at end of quotation
| 15003 lexical analyser or reader/writer error detected (?0)
| 15004 ill-formed keyword symbol
| 15005 ?0 is not a valid character literal (must contain exactly one character)
| 15006 error code ?0 reported by reader/writer
```

The last of these error messages occurs, e.g., when a keyword symbol has been entered incorrectly and is preceded by a more comprehensive error message from the reader/writer.

val num_lit_of_string : string -> (INTEGER * (INTEGER * INTEGER) OPT) OPT;

Description The argument to this function should be a string representing a numeric literal (either a natural number, N, or a floating point number with optional, optionally signed, exponent part, X.Y or X.YeZ. The result value is Nil if the string cannot be interpreted as a numeric literal. Otherwise, the result value is N, or (XY, P, θ) or (XY, PZ), where XY stands for the natural number obtained by concatenating the digit sequences X and Y and P is the number of digits in Y.

4.4 Pretty Printing

```
| signature PrettyPrinter = sig
```

```
| (* Flag pp_top_level_depth : integer control, default -1 *) | (* Flag pp_format_depth : integer control, default -1 *)
```

Description These control the depth to which HOL types and terms are printed. Control $pp_top_level_depth$ applies to values printed as part of Standard ML top-level expressions. Control pp_format_depth applies to values printed by the " $format_\dots$ " routines. When these controls are negative, types and terms are fully printed, otherwise the value indicates how deeply the expression is printed where zero indicates suppressing the whole type or term. Suppressed types and terms, or parts thereof, are shown as three dots.

See Also Functions $format_term$, $format_term1$, $format_thm$, $format_type$ and $format_type1$.

```
| (* Flag pp_print_assumptions : boolean control, default true *)
```

Description This controls whether the assumptions of values of type *THM* are printed. The default is to print assumptions. If assumptions are not printed then each is shown as three dots.

See Also Functions format_thm and format_thm1.

```
end (* of signature PrettyPrinter *);
```

```
| val format_term : bool -> TERM -> string list;
| val format_term1 : bool -> int -> TERM -> string list;
```

Description Produce a number of lines, one string per line, containing a pretty printing of the given HOL Term. The text is suitable for directly outputting via the $diag_line$ and $diag_string$ routines BasicIO.output. If the boolean argument is set false then the strings produced from terms whose language is the same as that of the current theory will not include the term quotation symbols, in all other cases the term quotation symbols will be included. Line width is given by the integer in $format_term1$, or for $format_term$ the current line width (as maintained by set_line_length , q.v.) is used.

See Also Pretty printer controls: $pp_add_brackets$, $pp_show_HOL_types$, $pp_types_on_binders$ and $pp_let_as_lambda$.

```
| val format_thm : THM -> string list;
| val format_thm1 : int -> THM -> string list;
```

Description Produce a number of lines, one string per line, containing a pretty printing of the given HOL theorem. The text is suitable for directly outputting via the $diag_line$ and $diag_string$ routines. The theorem is printed with a comma separated list of terms for the assumptions, a turnstile and finally the term representing the conclusion. Assumptions in the same language as the conclusion are not enclosed with the term quotation symbols. Other assumptions have term quotation symbols. Line width is given by the integer in $format_term1$, or for $format_term$ the current line width (as maintained by set_line_length , q.v.) is used.

See Also Pretty printer controls: $pp_add_brackets$, $pp_show_HOL_types$, $pp_types_on_binders$ and $pp_let_as_lambda$.

```
| val format_type : bool -> TYPE -> string list;
| val format_type1 : bool -> int -> TYPE -> string list;
```

Description Produce a number of lines, one string per line, containing a pretty printing of the given HOL type. The text is suitable for directly outputting via the diag_line and diag_string routines If the boolean argument is set true then type quotation symbols will be included in the returned strings, when false they are excluded. Line width is given by the integer in format_term1, or for format_term the current line width (as maintained by set_line_length, q.v.) is used.

See Also Pretty printer control: $pp_add_brackets$.

```
\begin{vmatrix} val & \mathbf{pp\_init} : unit -> unit; \end{vmatrix}
```

Description Initialise the pretty printing system so that values of types *TERM*, *TYPE* and *THM* will be prettily printed out as "top level" Standard ML values.

```
| val show_type : bool -> int OPT -> OppenFormatting.OPPEN_FUNS -> TYPE -> unit; | val show_term : bool -> int OPT -> OppenFormatting.OPPEN_FUNS -> TERM -> unit; | val show_thm : int OPT -> OppenFormatting.OPPEN_FUNS -> THM -> unit;
```

Description These functions enable programming of Oppen-style pretty-printing for data types that contain embedded types, terms and theorems.

4.5 Theory Lister

```
\left| \begin{array}{l} 	ext{SML} \\ 	ext{signature } Lister = sig \end{array} \right|
```

Description This is the signature of the structure *Lister* which contains functions for listing theories.

```
signature ListerSupport = signature
datatype LISTER_SECTION =
      LSBanner
                           LSParents
                                                       LSChildren
      LSConsts
                           LSAliases
                                                       LSUndeclaredAliases
      LSTypes
                           LSTypeAbbrevs
                                                       LSUndeclaredTypeAbbrevs
                                                       LSUndeclaredTerminators
      LSFixity
                           LSTerminators
                           LSDefns
                                                       LSThms
      LSAxioms
      LSTrailer
      LSADString of string \rightarrow (string list * string)
      LSADStrings of string \rightarrow (string \ list * string \ list)
      LSADThms of string \rightarrow (string list * THM) list
      LSADTerms of string -> (string list * TERM) list
      LSADTypes of string \rightarrow (string list * TYPE) list
      LSADTables of string -> (string list * string list) list
      LSADSection of string -> string
      LSADNestedStructure of string \rightarrow (string * LISTER\_SECTION \ list);
```

Description ListerSupport is the signature of a structure containing a functions, gen_theory_lister and gen_theory_lister1 for creating variant theory listers, e.g. for languages other than ProofPower-HOL. The data type ListerSupport.LISTER_SECTION controls what is listed. Each constructor of this type determines an element of the listing. The first block of constructors for the type LISTER_SECTION cause sections of the listing like those produced by the HOL theory lister to be included (except that LSBanner uses the first argument to print, output, or output1 to compute the contents of the banner heading.) The second block of constructors are for creating application-defined sections of the listing and in each case the constructor takes as its operand a function which is passed the name of the theory being listed as argument. LSADSection produces a section header containing the result of applying the argument function to the theory name unless that result is an empty string, in which case it has no effect. The others are for printing (labelled) individual strings (LSADString) or columns of strings (LSADStrings), or (labelled) lists of theorems, terms, types or rows of strings (LSADTables). In each case the first component of (each element of) the result is used as a list of labels for the elements and is printed in the left margin and the second component is indented.

Description These two system control variables influence the behaviour of the functions $list_theory$ and $output_theory$ which are used to generate theory listings. If $sorted_listings$ is false (the default) then items are unsorted, otherwise they are sorted according to $string_order$ (q.v.). $listing_indent$ sets the indent level of the listings in terms of a number of tabstops, and its default is 2.

```
Errors | 33052 integer control '?0' must be greater than zero
See Also output_theory
```

Description The functions ListerSupport.gen_theory_lister and ListerSupport.gen_theory_lister1 are used to create customised theory listers and can also be used to create formatted listings of other kinds.

They return a triple of functions each of which has as its first argument a function to compute the contents of the banner line in the listing from the name of the theory name. Given such an argument, the three components, print, out, and out1 deliver results which behave very much like $print_theory$, $output_theory$ and $output_theory1$, respectively, as regards where they send the listing and whether or not they insert IATEX formatting controls in it, but what they put in the listing is determined by the argument to gen_theory_lister . This argument is a list of elements of type $LISTER_SECTION$, q.v.

The integer control *listing_indent* and the flag *sorted_listings* control the print of labelled lists of theorems, terms etc. *listing_indent* gives the number of spaces of indent from the left margin of the lists. If *sorted_listings* is true, the lists will be sorted using the concatenation of the labels as the sort key otherwise they are printed in the order supplied.

gen_theory_lister1 is just like gen_theory_lister except that it does not check whether the theory exists or whether it is in scope.

```
|val \ \mathbf{output\_theory1}: \{theory:string, \ out\_file:string\} \ -> \ unit
```

Description $output_theory1\{theory = thy, out_file = file\}$ causes a listing of the theory thy to be output to the file file. The listing is in a format suited for display on the screen or for viewing with a text editor. The theory must be in scope, i.e. it must be the current theory or one of its ancestors.

See Also output_theory print_theory

```
Errors

33050 The theory ?0 is not in scope

33051 There is no theory called ?0

33101 i/o failure on file ?0 (?1)

33102 the theory ?0 does not exist
```

 $|val \ \mathbf{output_theory} : \{theory:string, \ out_file:string\} \ -> \ unit$

Description $output_theory\{theory = thy, out_file = file\}$ causes a listing of the theory thy to be output to the file file. The listing is in a format suited for printing using the ICL HOL document preparation system. The theory must be in scope, i.e. it must be the current theory or one of its ancestors.

See Also output_theory1 print_theory

Errors

33050 The theory ?0 is not in scope 33051 There is no theory called ?0 33101 i/o failure on file ?0 (?1) 33102 the theory ?0 does not exist

SML

 $|val print_theory : string \rightarrow unit$

Description print_theory thy causes a listing of the theory thy to be written to the standard output. The listing is in a format suited for display on the screen. The theory must be in scope, i.e. it must be the current theory or one of its ancestors.

Errors

33050 The theory ?0 is not in scope 33051 There is no theory called ?0

See Also output_theory output_theory1

4.6 Z Theory Lister

```
\left| \begin{array}{l} _{\mathrm{SML}} \\ signature \ ZLister = sig \end{array} \right|
```

Description This is the signature of the structure *ZLister* which contains functions for listing ProofPower-Z theories.

```
|val \ \mathbf{z_{-output\_theory}}: \{theory:string, \ out\_file:string\} \ -> \ unit
```

Description $z_output_theory\{theory = thy, out_file = file\}$ causes a listing of the theory thy to be output to the file file. The listing is in a format suited for printing using the ProofPower document preparation system. The theory must be in scope, i.e. it must be the current theory or one of its ancestors.

See Also output_theory z_print_theory z_output_theory1

Errors As for *output_theory*.

```
\begin{vmatrix} val & \mathbf{z}_{-}\mathbf{output\_theory1} & : \{theory:string, out\_file:string\} -> unit \end{vmatrix}
```

Description $z_output_theory1\{theory = thy, out_file = file\}$ causes a listing of the theory thy to be output to the file file. The listing is in a format suited for display on the screen or for viewing with a text editor. The theory must be in scope, i.e. it must be the current theory or one of its ancestors.

 $\textbf{See Also} \quad output_theory1 \ z_print_theory \ z_output_theory$

Errors As for output_theory1.

```
| val z_print_fixity : string -> unit
```

Description If id has been defined as an infix operator, or other kind of fancy-fix symbol, z_print_fixity id prints out a Z fixity paragraph showing the template or templates in which id appears.

Errors

65100 there are no fixity paragraphs in scope containing ?0

```
|val \ \mathbf{z_-print\_theory}: string \ -> \ unit
```

Description z-print_theory thy causes a listing of the ProofPower-Z theory thy to be written to the standard output. The listing is in a format suited for display on the screen. The theory must be in scope, i.e. it must be the current theory or one of its ancestors.

Errors As for *print_theory*.

See Also print_theory z_output_theory z_output_theory1

Chapter 5 79

HOL TYPES AND TERMS

5.1 Syntactic Manipulations

It should be noted that the functions documented in this section are drawn from two signatures, TypesAndTerms and icl'TypesAndTerms.

Since the former includes the latter, an object available under the name xxx, say, or in full TypesAndTerms.xxx, is also available under the name icl'TypesAndTerms.xxx. It is the intention that users should not access objects by names of the form icl'TypesAndTerms.xxx. In practice, since the structure TypesAndTerms is open, the unqualified name xxx will do unless you have redefined the name xxx.

```
|signature pp'TypesAndTerms = sig
```

Description This provides the type of HOL types: TYPE, of HOL terms: TERM, and some functions upon them. A user should access all the elements of this signature through signature DerivedTerms (q.v).

```
\begin{vmatrix} signature & \mathbf{TypesAndTerms} = sig \end{vmatrix}
```

Description This provides various functions on derived TERMs, which are not considered necessary to create the abstract data type THM. It also contains, by inclusion, the types, and functions on the types TERM and TYPE from structure pp'TypesAndTerms(q.v.).

```
| datatype DEST_SIMPLE_TYPE = | Vartype of string | Ctype of (string * TYPE list);
```

Description This is the type of simple destroyed types, related to the type TYPE by $dest_simple_type(q.v)$ and $mk_simple_type(q.v.)$. The value constructors correspond to type variables and compound types.

```
| datatype DEST_SIMPLE_TERM = | Var of string * TYPE | Const of string * TYPE | App of TERM * TERM | Simple \( \lambda \) of TERM * TERM;
```

Description This is the simple type of destroyed terms, related to the type TERM by $dest_simple_term(q.v.)$ and $mk_simple_term(q.v.)$. The four value constructors represented destroyed variables, constants, applications and simple λ -abstractions respectively.

Uses In writing pattern-matching functions upon HOL terms.

See Also $DEST_TERM$.

```
datatype DEST_TERM = DVar of string * TYPE |
        DConst of string * TYPE
        DApp of TERM * TERM
        \mathbf{D}\lambda of TERM * TERM
       DEq of TERM * TERM
       \mathbf{D} \Rightarrow of \ TERM * TERM \mid
       \mathbf{DT}
        \mathbf{DF} \perp
        \mathbf{D} \neg \ of \ TERM
       DPair of TERM * TERM
       \mathbf{D} \wedge \ of \ TERM * TERM |
       \mathbf{D} \lor of \ TERM * TERM \mid
        \mathbf{D} \Leftrightarrow of \ TERM * TERM \mid
        DLet of ((TERM * TERM)list * TERM)
        DEnumSet of TERM list |
        \mathbf{D}\varnothing of TYPE |
        DSetComp of TERM * TERM
       DList of TERM list |
       DEmptyList of TYPE
       \mathbf{D} \forall of \ TERM * TERM
        \mathbf{D}\exists \ of \ TERM * TERM
        \mathbf{D}\exists_{\mathbf{1}} \ of \ TERM * TERM \mid
       \mathbf{D}\epsilon of TERM * TERM
       DIf of (TERM * TERM * TERM)
       \mathbf{D}\mathbb{N} of INTEGER
        DFloat of INTEGER * INTEGER * INTEGER
        DChar of string |
       DString of string;
```

Description This type is that of a term destroyed using the appropriate derived destructor functions (e.g. $dest_eq$) as well as the primitive ones. The type given to $D\varnothing$ and DEmptyList is the type of an element of the associated set or list. The type is related to TERM by mk_term (q.v.) and $dest_term$ (q.v)

See Also DEST_SIMPLE_TERM

```
|eqtype| TERM;
```

Description This is the type of well-formed HOL terms. Objects of this type are manipulated by term constructor, destructor and recogniser functions, such as $mk_{-}app$, $dest_{-}\lambda$ and $is_{-}var$.

```
|eqtype| TYPE;
```

Description All HOL terms will be "typed", by associating them with an object of type *TYPE*. A type may either be a type variable or a compound type.

This is not an equality type (i.e. = cannot be used in tests for equality - see =: instead.).

```
\begin{vmatrix} val = \$ : (TERM * TERM) -> bool; \end{vmatrix}
```

Description This is the (infix) equality test for HOL terms. It is retained for backwards compatibility — the type of HOL terms is now an equality type.

Instead of equality it is often preferable to test for α -convertibility, using $\sim=$ \$

```
\begin{vmatrix} val = : : (TYPE * TYPE) -> bool \end{vmatrix}
```

Description This is the (infix) equality test for HOL types. It is retained for backwards compatibility — the type of HOL types is now an equality type.

```
|val \ \mathbf{bin\_bool\_op} : string \rightarrow TYPE \rightarrow TYPE \rightarrow TERM;
```

Description Returns a constant with the given name, and type

```
\lceil :BOOL \rightarrow BOOL \rightarrow BOOL \rceil
```

The type arguments are dummies, present only to make the function have an acceptable signature for certain other functions.

```
|val| CHAR: TYPE;

Description This is the HOL type of single characters.

|val| CHAR = \lceil :CHAR \rceil;

See Also Theory "char".
```

```
| 3010 ?0 is not of form: \[ \tau t 1 \] t2 \]
```

Description A generic method of implementing binder destructor functions:

 $val \ \mathbf{dest_binder} : string \ -> \ int \ -> \ string \ -> \ TERM \ -> \ TERM;$

```
 \begin{vmatrix} dest\_binder & area & msg & binder\_nm & \ulcorner binder(\lambda & varstruct \bullet & body) \urcorner = \\ & (\ulcorner varstruct \urcorner, \ulcorner body \urcorner) \end{vmatrix}
```

where binder is a constant whose name is $binder_nm$. The varstruct may be any allowed variable structure.

See Also dest_simple_binder

Failure If the term cannot be destroyed, then the error will be from area, with a message indexed by msg.

```
|val \ \mathbf{dest\_bin\_op} : string \ -> \ int \ -> \ string \ -> \ TERM \ -> \ (TERM * TERM);
```

Description $dest_bin_op$ area msg $rator_nm$ term first assumes that term is of the form $\lceil rator \ t1 \ t2 \rceil$, where rator is a constant with name $rator_nm$, and attempts to return the pair (t1, t2).

If the function fails it will fail with message msg, area area and with the string form of term.

```
| val dest_char : TERM -> string;
| Description | Destroy a character literal.
| Example | dest_char | a' = "a" |
| Errors | 3024 | ?0 is not a character literal
```

```
|val \; \mathbf{dest\_const}: \; TERM \; -> \; (string * TYPE);

Description This destroys a constant into its name and type.

|solution | |sol
```

```
SML | val dest_ctype : TYPE -> string * TYPE list;

Description Extract the components of a compound type.

Definition | dest\_ctype \vdash : (ty1,ty2,...)tc \vdash = ("tc", [\vdash :ty1 \vdash, :ty2 \vdash, ...])
dest\_ctype \vdash :ty tc \vdash = ("tc", [\vdash :ty])
dest\_ctype \vdash :tc \vdash = ("tc", [])

Errors | 3001 ?0 is not a compound type
```

```
| val dest_empty_list : TERM -> TYPE;

| Description | A derived term destructor function for empty lists.

| dest_list | | (lest_list) | | (les
```

```
| val dest_enum_set : TERM -> (TERM list);

| Description | A derived term destructor function for enumerated sets.

| Definition | dest_enum_set \( \cap \{a; b; ...\} \) = [\( \cap a \cap \, \cap b \cap \, ...] \)

| Errors | 4011 | ?0 is not of form: \( \cap \{t1, ...\} \)
```

```
SML | val dest_eq : TERM -> (TERM * TERM);

Description A derived term destructor function for equations.

Definition | dest_eq \vdash a = b \vdash = (\vdash a \vdash, \vdash b \vdash) | dest_eq \vdash a \Leftrightarrow b \vdash = (\vdash a \vdash, \vdash b \vdash) |

Errors | 3014 ?0 is not of form: \vdash t = u \vdash
```

```
| val dest_float : TERM -> INTEGER * INTEGER * INTEGER;

Description Destroy a floating point literal.
```

where x is the natural number with decimal representation XXYY, p is the number of digits after the point in XX.YY and z is the integer represented by ZZ (with p=z=0 in the first case and z=0 in the second).

 $\begin{vmatrix} 4042 & ?0 \text{ is not a floating point literal} \end{vmatrix}$

```
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| \mathbf{Description} | This will return () if given the term \lceil F \rceil, and otherwise fail.
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf{f} : TERM \ -> unit;
| val \ \mathbf{dest}_{-}\mathbf
```

```
SML | val dest_if : TERM -> (TERM * TERM * TERM);

Description Destroy a conditional.

Definition | dest_if rif c then y else n^rift = (rift)^rift = (
```

```
|val \ \mathbf{dest\_let} : TERM \rightarrow ((TERM * TERM) list * TERM);
```

Description A derived term destructor function for let-terms. See mk_let for details of format. The distinction between a local function definition, and a variable structure bound to an abstraction is lost, with both being destroyed to the second form.

 $\begin{vmatrix} dest_let(mk_let([(\lceil f \ x \rceil, \lceil y \rceil)], \lceil bdy \rceil)) = \\ ([(\lceil f \rceil, \lceil \lambda \ x \bullet \ y \rceil)], \lceil bdy \rceil) \\ dest_let(mk_let([(\lceil f \rceil, \lceil \lambda \ x \bullet \ y \rceil)], \lceil bdy \rceil)) = \\ ([(\lceil f \rceil, \lceil \lambda \ x \bullet \ y \rceil)], \lceil bdy \rceil)$

Errors

|4009| ?0 is not of form: $\lceil let \dots in \dots \rceil$

 $dest_let\ (mk_let([], term))$ will actually fail (unless term is already a let-term), as apply mk_let to ([], term)) will just return term.

 $\begin{vmatrix} val & \mathbf{dest_list} : TERM & -> (TERM & list); \end{vmatrix}$

Description A derived term destructor function for list-terms.

 $\begin{vmatrix} dest_list & \lceil [a; b; \dots] \rceil = [\lceil a \rceil, \lceil b \rceil, \dots] \\ dest_list & \lceil [] \rceil = []$

Errors

|4015 ?0 is not of form: $\lceil [t1,...] \rceil$

 $|val \ \mathbf{dest_mon_op} : string \ -> \ int \ -> \ string \ -> \ TERM \ -> \ TERM;$

Description $dest_mon_op \ area \ msg \ rator_nm \ term$ assumes that term is of the form $\lceil rator \ t \rceil$, where rator is a constant with name $rator_nm$, and the function attempts to return t.

Example $|dest_mon_op "dest_\lnot" 4029 "\lnot" \lnot t \lnot = \lnot t \urcorner$

Failure The failure message for failing to destroy the term will be from area area, and will have the text indexed by msg, and will have as argument the string form of term.

 $|val \ \mathbf{dest_multi_\neg}: TERM \rightarrow (int * TERM);$

Description $dest_multi_{\neg} t$ will strip \neg from t, returning the number of times, as well as the result. It will return (θ, t) if t is either not boolean, or has no negations.

Example $|dest_multi_\neg \ulcorner \neg (\neg T) \urcorner = (2, \ulcorner T \urcorner)$

 $\begin{vmatrix} val & \mathbf{dest_pair} : TERM -> (TERM * TERM); \end{vmatrix}$

Description A derived term destructor function for pairs.

 $\begin{vmatrix} dest_pair & \lceil (t1, t2) \rceil = (\lceil t1 \rceil, \lceil t2 \rceil) \end{vmatrix}$

Errors

 $\begin{bmatrix} 4003 & ?0 \text{ is not of form: } \lceil (t1,t2) \rceil \end{bmatrix}$

```
|val \ \mathbf{dest\_set\_comp} : TERM \rightarrow (TERM * TERM);
```

Description A derived term destructor function for set comprehensions.

```
Example  \begin{vmatrix} dest\_set\_comp & \lceil \{ \ x \mid x > 5 \} \rceil = (\lceil x \rceil, \lceil x > 5 \rceil) \\ ext_set\_comp & \lceil \{ \ x \mid x > 5 \} \rceil = (\lceil x \rceil, \lceil x > 5 \rceil) \\ ext_set\_comp & \lceil \{ v \mid p \} \rceil
```

```
|val| dest_simple_binder : string \rightarrow int \rightarrow string \rightarrow TERM \rightarrow TERM * TERM;
```

Description Executing $dest_simple_binder$ area msg $binder_nm \vdash binder(\lambda \ var \bullet body) \lnot$, where binder is a constant with the name $binder_nm$, will give $(\lnot var \lnot, \lnot body \lnot)$.

```
Example  | dest\_simple\_binder "dest\_simple\_\forall" \ 3032 \ "\forall" \ \ulcorner \forall \ x \bullet t \urcorner = (\ulcorner x \urcorner, \ulcorner t \urcorner)
```

See Also dest_binder

Failure If the term cannot be destroyed, then the error will be from area, with a message indexed by msg, and argument the string form of term.

```
val \ \mathbf{dest\_simple\_term} : TERM \longrightarrow DEST\_SIMPLE\_TERM;
```

Description An injective function, that destroys a term, returning its top-level structure, and the associated constituent parts.

See Also DEST_SIMPLE_TERM

```
|val|  dest_simple_type : TYPE \rightarrow DEST\_SIMPLE\_TYPE;
```

Description This function destroys a HOL type into something of type SIMPLE_DEST_TYPE (q.v).

```
\begin{vmatrix} val \ \mathbf{dest\_simple\_} \forall : TERM -> (TERM * TERM); \end{vmatrix}
```

Description A derived term destructor function for \forall -terms. It cannot destroy paired abstraction \forall -terms, being the inverse of mk_simple_\forall .

See Also $dest_{-} \forall$

Errors |3032| ?0 is not of form: $\lceil \forall \ var \bullet \ body \rceil$

```
|val \text{ dest\_simple\_}\exists_1 : TERM \rightarrow (TERM * TERM);
```

Description A derived term destructor function for simply abstracted $\exists _1$ -terms. It may destroy only simple abstraction $\exists _1$ -terms, being the inverse of $mk_simple_\exists_1$.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030

```
|val \ \mathbf{dest\_simple\_} \exists : TERM \longrightarrow (TERM * TERM);
```

Description A derived term destructor function for \exists -terms. It cannot destroy paired abstraction \exists -terms, being the inverse of mk_simple_\exists .

Errors | 3034 ?0 is not of form: 「∃ var • body ¬

```
|val|  dest_simple_\lambda: TERM \rightarrow (TERM * TERM);
```

Description Destroys a simple λ -abstraction. It cannot destroy paired λ -abstractions, being a inverse of mk_simple_λ .

```
\begin{vmatrix} dest\_simple\_\lambda & \lceil \lambda & v & \bullet & t \rceil = (\lceil v \rceil, \lceil t \rceil) \end{vmatrix}
```

See Also $dest_{-}\lambda$

Errors |3011| ?0 is not of form: $\lceil \lambda \ var \bullet \ t \rceil$

```
| val dest_string : TERM -> string;
| Description Destroy a string literal.

| Example | dest_string \( \bar{a} \) abc \( \bar{a} \) = \( \bar{a} \) abc \( \bar{a} \)

| Errors | 3025 ?0 is not a string literal
```

```
\begin{vmatrix} val & \mathbf{dest\_term} : TERM -> DEST\_TERM \end{vmatrix}
```

Description This function returns the "best" interpretation of a term in the form of an object of type $DEST_TERM$. E.g. it will return $DEq(\ 1\ 2)$ rather than $DComb((\$ = \ 1), 2)$. It will also use the paired abstraction forms of functions in preference to the simple forms, e.g., it uses $dest_\lambda$ not $dest_simple_\lambda$.

The function assumes that the name of a constant is sufficient to identify it without checking the type, as with, e.g., $dest_bin_op(q.v)$.

See Also mk_term

```
| val dest_t : TERM -> unit;

Description This will return () if given the term  ^{ } T ^{ } , and otherwise fail.

|  ^{ } Errors  |  ^{ } 4036  |  ^{ } 20  is not:  ^{ } T ^{ }
```

```
| val dest_var: TERM -> (string * TYPE);

Description This destroys a term variable into its name and type.

| 3007 ?0 is not a term variable
```

```
| val dest_\Leftrightarrow: TERM -> (TERM * TERM);

Description A derived term destructor function for bi-implications. N.B. this may be successfully applied to boolean equalities.

| dest_{-}\Leftrightarrow \lceil t1 \Leftrightarrow t2 \rceil = (\lceil t1 \rceil, \lceil t2 \rceil)
| errors | erro
```

```
SML |val \ \mathbf{dest}_{-} \rightarrow_{-} \mathbf{type} : TYPE -> (TYPE * TYPE);

Description Extract the two constituent types of a function type.

Definition |dest_{-} \rightarrow_{-} type \ \lceil: ty1 \rightarrow ty2 \ \rceil = (\lceil: ty1 \ \rceil, \ \lceil: ty2 \ \rceil)

Errors |3022 \ ?0 \ is \ not \ of \ form: \ \lceil: ty1 \rightarrow ty2 \ \rceil
```

```
|val \; \mathbf{dest}_{-} \wedge : TERM \; -> (TERM * TERM);

Description A derived term destructor function for conjunctions.

|dest_{-} \wedge \; \lceil t1 \; \wedge \; t2 \; \rceil = (\lceil t1 \; \rceil, \lceil t2 \; \rceil)

|dest_{-} \wedge \; \lceil t1 \; \wedge \; t2 \; \rceil = (\lceil t1 \; \rceil, \lceil t2 \; \rceil)

|dest_{-} \wedge \; \lceil t1 \; \wedge \; t2 \; \rceil = (|dest_{-} \wedge \; \lceil t1 \; \wedge \; t2 \; \rceil)
```

```
| val dest_\vee: TERM -> (TERM * TERM);

| Description | A derived term destructor function for disjunctions.

| val dest_\vee val val | val val | val val | val val | val |
```

```
|val \; \mathbf{dest}\_\neg : TERM \; -> \; TERM;

Description A derived term destructor function for negations.

|dest\_\neg \; \vdash \tau \; \tau \; = \; \vdash \tau \; |

|dest\_\neg \; \vdash \tau \; \tau \; = \; \vdash \tau \; |

|dest\_\neg \; \vdash \tau \; \tau \; = \; \vdash \tau \; |

|dest\_\neg \; \vdash \tau \; \tau \; = \; \vdash \tau \; |

|dest\_\neg \; \vdash \tau \; \tau \; = \; \vdash \tau \; |

|dest\_\neg \; \vdash \tau \; \tau \; = \; \vdash \tau \; |
```

```
| val dest_\forall: TERM -> (TERM * TERM);

| Description | A derived term destructor function for \forall-terms. It may destroy a paired abstraction \forall-term, being the inverse of mk_{-}\forall.

| Definition | dest_{-}\forall \neg \forall varstruct \bullet body \neg = (\neg varstruct \neg, \neg body \neg)
| errors | errors
```

```
| val dest_\times_type : TYPE -> (TYPE * TYPE)
| Description | dest_{\times}_type | :ty_{-}1 \times ty_{-}2 | :ty_{-}1 |
```

```
SML |val \ \mathbf{dest}_{-\epsilon} : TERM \rightarrow (TERM * TERM);

Description A derived term destructor function for \epsilon-terms.

Definition |dest_{-\epsilon} \vdash \epsilon \ varstruct \bullet \ body \vdash = (\lceil varstruct \lnot, \lceil body \urcorner)

Errors |4023 \quad ?0 \ is \ not \ of \ form: \lceil \epsilon \ vs \bullet \ t \rceil
```

```
SML |val| dest_\lambda: TERM \rightarrow (TERM * TERM);

Description Destroys a \lambda-abstraction. It can destroy paired \lambda-abstractions, being an inverse of mk_{-}\lambda.

Definition |dest_{-}\lambda \upharpoonright \lambda vs \bullet t \urcorner = (\lceil vs \urcorner, \lceil t \urcorner)

See Also dest_{-}simple_{-}\lambda

Errors |4002| ?0 is not of form: \lceil \lambda vs \bullet t \rceil

Further details of the errors will be given, before the above exceptions are raised.
```

```
SML |val \ \mathbf{dest}_{-}\mathbb{N}: TERM -> INTEGER;

Description Destroy a numeric literal.

Example |dest_{-}\mathbb{N} \ \lceil 5 \rceil = 5;

Errors |3026| ?0 \ is \ not \ a \ numeric \ literal
```

```
\begin{vmatrix} val \text{ equality} : TYPE -> TYPE -> TERM; \end{vmatrix}
```

Description Returns the constant $\lceil \$ = \rceil$ upon terms with the first type argument. The second type is a dummy argument, present only to make the function have an acceptable signature for certain other functions.

```
|val| frees : TERM \rightarrow TERM list;
```

Description Extract the free term variables within the term argument. The resulting variables will be in reverse order of first occurrence (for a term viewed without fixity properties, such as infix variables).

See Also dest_frees

```
\begin{vmatrix} val \ \mathbf{gen\_vars} : TYPE \ list -> TERM \ list -> TERM \ list; \end{vmatrix}
```

Description $gen_{-}vars\ tyl\ tml$ generates a list of differently named term variables, with the types in tyl, whose names are not present within any of the terms in tml as variable names.

It will be much faster to make one call to this function with a list of types, than to make the equivalent number of individual calls.

```
\begin{vmatrix} val & \mathbf{get\_variant\_suffix} : unit -> string; \end{vmatrix}
```

Description Returns the string control $variant_suffix$ used to create variant names in $string_variant$ (q.v.) and its relatives. The string is set by $set_variant_suffix$ (q.v.).

```
|val | inst_type : ((TYPE * TYPE) | list) -> TYPE -> TYPE;
```

Description inst_type alist type recursively descends through type, replacing any type variables by whatever the association list alist associates with them. If the association list does not contain a type variable found in type, then that type variable will not be changed. Replaced types are **not** recursively processed by this function.

```
|val| inst : TERM list -> (TYPE * TYPE) list -> TERM -> TERM;
```

Description inst avlist slist term instantiates the type variables of term with the associated types found in slist. An element of slist will be (return, tv), where tv is a type variable that is to be instantiated to return. It will rename bound variables as necessary to prevent name capture problems. It will also not allow free variables to become the same as those in the avoidance list, avlist, or to become bound.

It partially evaluates with two arguments.

```
\begin{vmatrix} val & \mathbf{is\_app} : TERM -> bool; \end{vmatrix}
```

Description Return true only when the term is a function application (i.e. of form $\lceil f \ x \rceil$), and false otherwise: no exceptions can be raised. Note that many derived term constructs, e.g. all quantifications, are also applications. Thus $is_app \lceil \forall \ x \bullet t \rceil$ will return true.

 $|val | s_binder : string \rightarrow TERM \rightarrow bool;$

Description $is_binder_lnm tm$ is true only when ln s of the form $\lceil binder(\lambda vs \bullet body) \rceil$, where binder is a constant whose name is $binder_lnm$, and vs an allowed variable structure, and false otherwise. It cannot raise an exception.

See Also is_simple_binder

 $|val \ \mathbf{is_bin_op} : string \rightarrow TERM \rightarrow bool;$

Description $is_bin_op\ rator_nm\ term$ returns true iff. term is of the form $\lceil rator\ t1\ t2\rceil$, and rator is a constant with name $rator_nm$. It cannot raise an exception.

Example

 $\begin{vmatrix} val & \mathbf{is_char} : TERM & -> bool; \end{vmatrix}$

Description Return true only when the term is a character literal (e.g. $\lceil a \rceil$), and false otherwise: no exceptions can be raised.

|val| is_const : $TERM \rightarrow bool$;

Description Return true only when the term is a constant, and false otherwise: no exceptions can be raised. Note that even if the constant has not been declared, or has an inappropriate type it will still satisfy this predicate.

|val| **is_ctype** : $TYPE \rightarrow bool;$

Description Return true only when the type is a compound type, and false otherwise: no exceptions can be raised. If the argument isn't a compound type then it must be a type variable.

|val| is_empty_list : $TERM \rightarrow bool$;

Description Return true only when the term is an empty list-term, $\lceil [\rceil \rceil$, and false otherwise: no exceptions can be raised.

val is_enum_set : $TERM \rightarrow bool;$

Description Return true only when the term is an enumerated set (i.e. of form $\lceil \{a; b; ... \} \rceil$), and false otherwise: no exceptions can be raised.

|val| is_eq : $TERM \rightarrow bool$;

Description Return true only when the term is an equation (i.e. of form $\lceil a = b \rceil$ or $\lceil a \Leftrightarrow b \rceil$), and false otherwise: no exceptions can be raised.

|val| is_float : $TERM \rightarrow bool$;

Description Return true when the term is a floating point literal. and false otherwise: no exceptions are raised.

 $|val \text{ is_free_in}: TERM \rightarrow TERM \rightarrow bool;$

Description $is_free_in\ v\ term$ returns true iff. there is a free occurrence of v in term. It will raise an exception if the first argument is not a term variable.

Errors

3007 ?0 is not a term variable

|val | is_free_var_in : (string * TYPE) -> TERM -> bool;

Description Given a destroyed term variable, return true only when it is free within the term supplied as a second argument, and false otherwise: no exceptions can be raised.

 $\begin{vmatrix} val & \mathbf{is_f} : TERM -> bool; \end{vmatrix}$

Description Return true only when the term is $\lceil F : BOOL \rceil$, and false otherwise: no exceptions can be raised.

 $|val \ \mathbf{is_-if} : TERM \longrightarrow bool;$

Description Return true only when the term is a conditional (i.e. of form $\lceil if \ a \ then \ b \ else \ c \rceil$), and false otherwise: no exceptions can be raised.

|val| is_let : $TERM \rightarrow bool$;

Description Return true only when the term is a *let*-term (i.e. of form $\lceil let \ x = y \ in \ z \rceil$), and false otherwise: no exceptions can be raised.

 $|val | is_list : TERM -> bool;$

Description Return true only when the term is a list-term (i.e. of form $\lceil [a; b; ...] \rceil$), and false otherwise: no exceptions can be raised.

 $|val \ \mathbf{is} \mathbf{mon} \mathbf{op} : string \ -> \ TERM \ -> \ bool;$

Description $is_mon_op\ rator_nm\ term$ returns true iff. term is of the form $rator\ t$, where rator is a constant with name $rator_nm$. It cannot raise an exception.

|val| is_pair : $TERM \rightarrow bool$;

Description Return true only when the term is a pair (i.e. of the form $\lceil (a, b) \rceil$), and false otherwise: no exceptions can be raised.

|val| is_set_comp : $TERM \rightarrow bool$;

Description Return true only when the term is a set comprehension (i.e. of form $\lceil \{v \mid p\} \rceil$), and false otherwise: no exceptions can be raised.

|val | is_simple_binder : $string \rightarrow TERM \rightarrow bool;$

Description $is_simple_binder\ binder_nm\ term$ returns true iff. argument term is of the form $\lceil binder(\lambda\ var\ ullet\ binder)\rceil$, where binder is a constant with the name $binder_nm$.

See Also is_binder

 $|val \ \mathbf{is_simple_} \forall : TERM \longrightarrow bool;$

Description A derived term test for simple \forall -terms (i.e. of form $\ulcorner \forall \ x \bullet t \urcorner$), not formed with paired abstractions.

See Also $is_{-}\forall$

 $\begin{vmatrix} val & \mathbf{is_simple_} \exists_1 : TERM -> bool; \end{vmatrix}$

Description Return true only when the term is a $\exists \bot 1$ -term (i.e. of form $\ulcorner \exists_1 \ x \bullet t \urcorner$), formed only by simple abstraction, and false otherwise: no exceptions can be raised.

See Also $is_{-}\exists_{-}1$

 $|val \ \mathbf{is_simple_} \exists : TERM \longrightarrow bool;$

Description A derived term test for \exists -terms (i.e. of form $\ulcorner \exists \ x \bullet t \urcorner$), not formed with paired abstractions.

See Also is_∃

 $|val \text{ is_simple}_\lambda: TERM \rightarrow bool;$

Description Is the term a simple λ -abstraction (i.e. of form $\lceil \lambda \ x \bullet t \rceil$).

See Also is_{λ}

|val| is_string : $TERM \rightarrow bool$;

Description Return true only when the term is a string literal (e.g. $\lceil "abc" \rceil$), and false otherwise: no exceptions can be raised.

 $val is_{type_instance} : TYPE -> TYPE -> bool;$

Description $is_type_instance \ ty_1 \ ty_2$ returns true iff ty_1 is an instance of ty_2 . It cannot raise an exception.

 $|val \ \mathbf{is_-t} : TERM \rightarrow bool;$

Description Return true only when the term is $\lceil T : BOOL \rceil$, and false otherwise: no exceptions can be raised.

|val| is_vartype : $TYPE \rightarrow bool$;

Description Return true only when the type is a type variable, and false otherwise: no exceptions can be raised. If the argument isn't a type variable then it must be a compound type.

```
\begin{vmatrix} val & \mathbf{is\_var} : TERM -> bool; \end{vmatrix}
```

Description Return true only when the term is a variable, and false otherwise: no exceptions can be raised.

```
\begin{vmatrix} val & \mathbf{is}_{-}\varnothing : TERM -> bool; \end{vmatrix}
```

Description Return true only when the term is an empty enumerated set, $\lceil \varnothing \rceil$, and false otherwise: no exceptions can be raised.

```
|val| is_\Leftrightarrow: TERM -> bool;
```

Description Return true only when the term is a bi-implication (i.e. of form $\lceil a \Leftrightarrow b \rceil$), and false otherwise: no exceptions can be raised. N.B. this may be successfully applied to boolean equations.

```
\begin{vmatrix} val & \mathbf{is}_{-} \rightarrow_{-} \mathbf{type} : TYPE -> bool; \end{vmatrix}
```

Description Return true only when the type is a function type, i.e. of form $\lceil :ty1 \to ty2 \rceil$, and false otherwise: no exceptions can be raised.

```
\begin{vmatrix} val & \mathbf{is}_{-} \wedge : TERM & -> bool; \end{vmatrix}
```

Description Return true only when the term is a conjunction (i.e. of form $\lceil a \land b \rceil$), and false otherwise: no exceptions can be raised.

```
|val | \mathbf{is}_{-} \lor : TERM \longrightarrow bool;
```

Description Return true only when the term is a disjunction (i.e. of form $\lceil a \lor b \rceil$), and false otherwise: no exceptions can be raised.

```
\begin{vmatrix} val & \mathbf{is}_{\neg} : TERM -> bool; \end{vmatrix}
```

Description Return true only when the term is a negation (i.e. of form $\neg x \neg$), and false otherwise: no exceptions can be raised.

```
\begin{vmatrix} val & \mathbf{is}_{-} \Rightarrow : TERM -> bool; \end{vmatrix}
```

Description Return true only when the term is an implication (i.e. of form $\lceil a \Rightarrow b \rceil$), and false otherwise: no exceptions can be raised.

```
|val \ \mathbf{is}_{-} \forall : TERM \longrightarrow bool;
```

Description Return true only when the term is a \forall -term (i.e. of form $\ulcorner \forall \ vs \bullet t \urcorner$), possibly formed with paired abstraction, and false otherwise: no exceptions can be raised.

See Also is_simple_\forall

```
|val \ \mathbf{is}_{-}\exists_{1} : TERM \longrightarrow bool;
```

Description Return true only when the term is a \exists _1-term (i.e. of form $\ulcorner \exists_1 \ vs \bullet t \urcorner$), possibly formed with paired abstraction, and false otherwise: no exceptions can be raised.

```
See Also is\_simple\_\exists\_1
```

```
\begin{vmatrix} val & \mathbf{is}_{-} \exists : TERM \longrightarrow bool; \end{vmatrix}
```

Description Return true only when the term is a \exists -term (i.e. of form $\ulcorner \exists \ vs \bullet t \urcorner$), possibly formed with paired abstraction, and false otherwise: no exceptions can be raised.

See Also is_simple_∃

```
|val \ \mathbf{is}_{-} \times_{-} \mathbf{type} : TYPE \longrightarrow bool;
```

Description Return true only when the type is a pair type, i.e. of the form: $\lceil :ty_{-}1 \times ty_{-}2 \rceil$, and false otherwise: no exceptions can be raised.

```
\begin{vmatrix} val & \mathbf{is}_{-\epsilon} : TERM -> bool; \end{vmatrix}
```

Description Return true only when the term is a ϵ -term (i.e. of form $\lceil \epsilon \ vs \bullet t \rceil$), possibly formed with paired abstraction, and false otherwise: no exceptions can be raised.

```
\begin{vmatrix} val & \mathbf{is}_{-}\lambda : TERM -> bool; \end{vmatrix}
```

Description This function returns true iff. the term is of the form $\lceil \lambda \ vs \bullet t \rceil$. It cannot raise exceptions.

See Also is_simple_λ

```
|val|_{val}^{SML} | val|_{val}^{SML} | val|_{
```

Description Return true only when the term is a numeric literal (e.g. $\lceil 5 \rceil$), and false otherwise: no exceptions can be raised.

```
\begin{vmatrix} val & \mathbf{key\_mk\_const} : (E\_KEY * TYPE) -> TERM; \\ val & \mathbf{key\_dest\_const} : TERM -> E\_KEY * TYPE; \end{vmatrix}
```

Description Internally, the names of constants are represented using efficient dictionary keys. These functions allow the creation and destruction of constants by key rather than by name.

```
 \begin{vmatrix} val & \mathbf{key\_mk\_ctype} : E\_KEY * TYPE \ list -> TYPE; \\ val & \mathbf{key\_dest\_ctype} : TYPE -> E\_KEY * TYPE \ list; \end{vmatrix}
```

Description Internally, the names of type constructors are represented using efficient dictionary keys. These functions allow the creation and destruction of compound types by key rather than by name.

```
SML |val \  | st_mk_app : (TERM * TERM \  | st) -> TERM;

Description Applies a function to multiple arguments.

Definition |list_mk_app \  (\lceil t\rceil, \lceil t1\rceil, \lceil t2\rceil, \lceil t3\rceil, ...]) = \lceil t \ t1 \ t2 \ t3 \ ...\rceil

Failure May give rise to the error message from mk_app.
```

```
\begin{vmatrix} val \ \textbf{list\_mk\_binder} : (TERM * TERM -> TERM) -> (TERM \ list * TERM) \\ -> TERM; \end{vmatrix}
```

Description If maker $(\lceil vs \rceil, \lceil b \rceil)$ makes an abstraction $\lceil bind \ vs \bullet b \rceil$, then

```
|list\_mk\_binder\ maker\ ([\lceil vs\_1\rceil, \lceil vs\_2\rceil, ...], \lceil body\rceil)
```

returns $\lceil bind\ vs_1 \bullet\ bind\ vs_2 \bullet\ \dots \bullet\ body \rceil$ Notice that this can be used for implementing both simple and paired abstractions, with the vs_i being variable structures when so allowed, and otherwise variables.

```
\begin{vmatrix} val & \mathbf{list\_mk\_bin\_op} : string -> int -> int -> \\ & (TYPE -> TYPE -> TERM) -> TERM \ list -> TERM; \end{vmatrix}
```

Description This function combines a list of terms using the given operator, as if by mk_-bin_-op (q.v). Notice the bracketing in the example.

Example

$$\begin{vmatrix} list_mk_bin_op \ area \ msg \land _fun \ [\ulcorner a \urcorner, \ulcorner b \land c \urcorner, \ulcorner d \urcorner] = \\ \ulcorner a \land ((b \land c) \land d) \urcorner \end{vmatrix}$$

where $\land fun$ takes two (dummy) arguments and returns $\ulcorner \$ \land \urcorner$.

Errors

3017 An empty list argument is not allowed

Failure The failure message for failing to combine its arguments will be as mk_bin_op for the offending two arguments. If given an empty list the error will be from area area, but with message 3017.

```
\begin{vmatrix} val & \mathbf{list\_mk\_let} &: (((TERM * TERM)list)list * TERM) -> TERM \end{vmatrix}
```

Description This generates a nested *let*-term.

Example

```
\begin{vmatrix} list\_mk\_let \ ([[(\lceil x \rceil, \lceil 1 \rceil)], [(\lceil y \rceil, \lceil 2 \rceil)]], \lceil x+y \rceil) = \\ \lceil let \ x = 1 \ in \ let \ y = 2 \ in \ x+y \rceil \end{vmatrix}
```

```
SML
```

|val list_mk_simple_ λ : (TERM list * TERM) -> TERM;

Description λ -abstract a list of variables from a term.

Definition

This function will be implemented using $mk_simple_\lambda(q.v)$, not mk_λ .

See Also $list_mk_\lambda$

Failure May give rise to the error message from mk_simple_λ .

 $|val \ list_mk_simple_{-} \forall : TERM \ list * TERM -> TERM;$

Description Universally quantify a term with a list of variables.

Definition

```
|list\_mk\_simple\_ \forall ( [ \lceil x1 \rceil, \lceil x2 \rceil, ...], \lceil body \rceil ) = \lceil \forall x1 \ x2 \ ... \bullet body \rceil
```

This uses mk_simple_\forall (q.v) to generate its result. Note that giving an empty list paired with a non-boolean will return that term, rather than fail.

See Also $list_mk_\forall$

Failure This may give mk_simple_\forall error messages.

|val| list_mk_simple_ \exists : TERM list * TERM -> TERM;

Description Existentially quantify a term with a list of variables.

Definition

$$|list_mk_simple_\exists ([\lceil x1 \rceil, \lceil x2 \rceil, ...], \lceil body \rceil) = \lceil \exists x1 \ x2 \ ... \bullet body \rceil$$

This uses mk_simple_\exists (q.v) to generate its result. Note that giving an empty list paired with a non-boolean will return that term, rather than fail.

See Also $list_mk_{-}\exists$

Failure This may give mk_simple_\exists error messages.

|val| list_mk_ \rightarrow _type : TYPE list -> TYPE;

Description Create the type of a multi-argument function.

Definition

The supplied list may not be empty.

Errors

3017 An empty list argument is not allowed

SML

 $|val \ \mathbf{list_mk_} \wedge : TERM \ list \longrightarrow TERM;$

Description Conjoin a list of terms:

Definition

$$\left| \mathit{list_mk_} \wedge \; [\ulcorner a \urcorner, \; \ulcorner b \urcorner, \; \ulcorner c \urcorner, \ldots] \right| = \lceil a \; \wedge \; b \; \wedge \; c \; \ldots \urcorner$$

Errors

3017 An empty list argument is not allowed

3031 ?0 is not of type $\Box BOOL$

SML

 $|val \ \mathbf{list}_{-}\mathbf{mk}_{-} \lor : TERM \ list -> TERM;$

Description A function to make a disjunction of a list of terms.

Definition

$$|list_mk_ \lor [\ulcorner a \urcorner, \ulcorner b \urcorner, \ulcorner c \urcorner, \ldots] = \lceil a \lor b \lor c \ldots \rceil$$

Errors

3017 An empty list argument is not allowed

3031 ?0 is not of type $\lceil :BOOL \rceil$

3031

| val list_ $mk_{-} \Rightarrow : TERM$ list -> TERM;

| Description | Makes a multiple implication term, using $mk_{-} \Rightarrow (q.v.)$.

| $list_{-}mk_{-} \Rightarrow [\lceil t1 \rceil, \lceil t2 \rceil, ..., \lceil tn \rceil] = \lceil t1 \Rightarrow t2 \Rightarrow ... \Rightarrow tn \rceil$ | Note that giving a singleton list containing a non-boolean will return that term, rather than fail.

| Errors | 3015 | ?1 is not of type $\lceil :BOOL \rceil$ | 3017 | An empty list argument is not allowed

| SML | val list_ $mk_{-}\forall$: TERM list * TERM —> TERM;
| Description | Repeatedly universally quantify a term.
| Definition | $list_{-}mk_{-}\forall$ ([$\lceil a \rceil, \lceil b \rceil, \lceil c \rceil, ...$], $\lceil body \rceil$) = $\lceil \forall \ a \ b \ c \ ... \bullet \ body \rceil$ | This uses $mk_{-}\forall$ to generate its result.

Failure This may give the errors of $mk_{-}\forall$.

?0 is not of type $\lceil :BOOL \rceil$

SML |val| list_mk_ \exists : TERM list * TERM —> TERM;

Description Repeatedly existentially quantify a term.

Definition $|list_mk_\exists$ ($[\ulcorner a \urcorner, \ulcorner b \urcorner, \ulcorner c \urcorner, ...], \ulcorner body \urcorner$) = $\ulcorner \exists$ a b c ... • $body \urcorner$ This uses mk_\exists to generate its result.

Failure This may give the errors of mk_\exists .

| val list_ $mk_{-}\epsilon$: TERM list * TERM —> TERM;

Description Repeatedly apply ϵ to a term.

| $list_{-}mk_{-}\epsilon$ ([$\lceil a \rceil, \lceil b \rceil, \lceil c \rceil, ...$], $\lceil body \rceil$) = $\lceil \epsilon$ a b c ... \bullet $body \rceil$ | Failure This may give the errors of $mk_{-}\epsilon$.

SML |val| list_mk_ λ : $(TERM \ list * TERM) -> TERM$;

Description Repeatedly λ -abstract from a term. $|list_mk_\lambda| ([\lceil a \rceil, \lceil b \rceil, \lceil c \rceil, \ldots], \lceil body \rceil) = \lceil \lambda \ a \ b \ c \ \ldots \bullet \ body \rceil$ This function is implemented using mk_λ , not mk_simple_λ .

See Also $list_mk_simple_\lambda$ Failure May give rise to the error message from mk_λ .

```
|val| list_term_union : (TERM \ list \ list) -> TERM \ list;
```

Description Take the union of a number of lists of terms viewed as sets, removing any α -convertible duplicates.

See Also *list_union* for precise ordering of result.

```
|val list_variant : TERM list -> TERM list -> TERM list;
```

Description *list_variant stoplist vlist* returns a list of variants of the list of variables *vlist*, whose names are not present in the *stoplist*, which is also a list of term variables. No names are duplicated, the function returning one new variable for each member of *vlist*. The variants are generated by sufficient appending of the variant string (see *set_variant_string*).

```
\begin{vmatrix} val & \mathbf{mk\_app} : (TERM * TERM) -> TERM; \end{vmatrix}
```

Description This produces a function application.

```
 |mk\_app \ (\lceil f \rceil, \lceil t \rceil) = \lceil f \ t \rceil
```

Note that many derived term constructs, e.g. all quantifications, are also applications. Thus

```
 |mk\_app \ (\ulcorner\$\forall\urcorner, \, \ulcorner\lambda \ x \bullet t\urcorner) = \ulcorner\forall \ x \bullet t\urcorner )
```

Errors

3005 Cannot apply ?0 to ?1 as types are incompatible

3006 Type of ?0 not of form $\because ty1 \rightarrow ty2$

```
\begin{vmatrix} val & \mathbf{mk\_binder} : string -> int -> (TYPE -> TYPE -> TERM) -> \\ & (TERM * TERM) -> TERM; \end{vmatrix}
```

Description A generic method of implementing binder constructor functions:

```
 \begin{array}{c} \text{Definition} \\ mk\_binder \ area \ msg \ binder\_nm \ (\lceil varstruct \rceil, \lceil body \rceil) = \\ \lceil binder'(\lambda \ varstruct \bullet \ body) \rceil = \\ \lceil binder' \ varstruct \bullet \ body \rceil \end{array}
```

binder' is formed by applying binder to the types of the varstruct and body. varstruct may be any allowed variable structure.

See Also mk_simple_binder

Errors

4016 ?0 is not an allowed variable structure

Failure If the term cannot be made, then the error will be from *area*, with a message indexed by msg. If the first term argument is not an allowed variable structure then failure 4016 is raised from area area.

```
\begin{vmatrix} val & \mathbf{mk\_bin\_op} : string -> int -> int -> (TYPE -> TYPE -> TERM) -> \\ (TERM * TERM) -> TERM; \end{vmatrix}
```

Description mk_bin_op area msg1 msg2 $rator_fn$ (t_1, t_2) attempts to form $\lceil t_1 \text{ rator } t_2 \rceil$. rator' is gained by applying $rator_fn$ to the types of t_1 and t_2 .

```
Example  |mk\_bin\_op "mk\_\wedge" 3031 3015 (fn \_ => fn \_ => \lceil \$ \wedge \urcorner) (\lceil a \rceil, \lceil b \rceil) = \lceil a \wedge b \rceil
```

Failure The failure message for failing to apply rator to the first term will be from area area, and will have the text indexed by msg1, with the two terms as strings for arguments. If the failure is from applying the rators plus first term to the second term the error message will be from area area, and will have the text indexed by msg2, with the two terms as strings for arguments. It is not unusual for one of these strings of terms to be thrown away by the message msg2 provided by the caller of this function.

```
|val \; \mathbf{mk\_char} : string \; -> \; TERM;

Description Construct a character literal.

|mk\_char \; "a" = \lceil `a` \rceil

|mk\_char \; "a" = \lceil `a` \rceil

Errors
|3023 \; String \; ?0 \; is \; not \; a \; single \; character
```

```
\begin{vmatrix} val & \mathbf{mk\_const} : (string * TYPE) -> TERM; \end{vmatrix}
```

Description This produces a constant.

```
\begin{array}{l} \text{Definition} \\ mk\_const("c", \vdash: ty \urcorner) = \ulcorner c : ty \urcorner \end{array}
```

The function makes no checks against the declaration of the constant, the declaration of the type constructors of the type supplied, or the appropriateness of the type supplied: see get_const_info (q.v.). However it will not form constants whose types clash with those constants required by the implementation of the abstract data type THM (q.v.). These are =, \Rightarrow , \forall , and \exists .

```
Errors 3002 Type of constant with name "=" must be of form:  ty1 \rightarrow ty1 \rightarrow BOOL 3003 Type of constant with name "\Rightarrow" must be of form: BOOL \rightarrow BOOL \rightarrow BOOL 3004 Type of constant with name ?0 must be of form:  ty1 \rightarrow BOOL \rightarrow BOOL
```

```
\begin{vmatrix} val & \mathbf{mk\_ctype} : string * TYPE \ list -> TYPE; \end{vmatrix}
```

Description Create a compound type from a type constructor and sufficient arguments. The function makes no checks against the declaration or arity of the type constructor or the type arguments: see get_type_info (q.v.).

```
Definition

\begin{aligned}
mk\_ctype & ("tc", [ :ty1 \ , :ty2 \ , ...]) = : (ty1,ty2,...)tc \ \\
mk\_ctype & ("tc", [ :ty \ ]) = :ty tc \ \\
mk\_ctype & ("tc", []) = :tc \ \end{aligned}
```

```
\begin{vmatrix} val & \mathbf{mk\_empty\_list} : TYPE -> TERM \end{vmatrix}
```

Description A derived term constructor function for generating an empty list term with elements of a given type.

```
 \begin{array}{c|c} \text{Definition} \\ mk\_empty\_list & \vdash: ty \vdash = \vdash[]: ty \ LIST \\ \end{array}
```

See Also mk_list

3017

```
|val \text{ mk\_enum\_set}| : TERM \ list \rightarrow TERM
```

Description A derived term constructor function for generating enumerated sets. The argument is a list of the members of the set. The type of a set of elements of type $\lceil :TY \rceil$ is $\lceil :TY \ SET \rceil$. If the term list is empty the function will fail (see $mk_{-}\varnothing$). The set must be of terms with the same HOL type.

An empty list argument is not allowed

```
| val mk_float : INTEGER * INTEGER * INTEGER -> TERM;

Description Make a floating point literal.
```

```
 \begin{vmatrix} mk\_float & (\ulcorner x \urcorner, \theta, \ulcorner \theta \urcorner) = \ulcorner XX. \urcorner \\ mk\_float & (\ulcorner x \urcorner, \lceil p \urcorner, \lceil \theta \urcorner) = \lceil XX. YY \urcorner \\ mk\_float & (\ulcorner x \urcorner, \lceil p \urcorner, \lceil z \urcorner) = \lceil XX. YYeZZ \urcorner \end{aligned}
```

where XX.YY is the decimal representation of $x \times 10^{-p}$ and ZZ is the decimal representation of z (with p = z = 0 in the first case and z = 0 in the second).

```
val \ \mathbf{mk_{-}f} : TERM;
\mathbf{Description} \quad \text{The term } \ulcorner F : BOOL \urcorner.
```

```
SML |val \ \mathbf{mk\_if}| : (TERM * TERM * TERM) -> TERM;

Description Make a conditional.

Definition |mk\_if| (\lceil c \rceil, \lceil y \rceil, \lceil n \rceil) = \lceil if| c \ then \ y \ else \ n \rceil

Errors |3012| ?0 \ and ?1 \ do \ not \ have \ the \ same \ types
|3031| ?0 \ is \ not \ of \ type \ \lceil :BOOL \rceil
```

```
\begin{vmatrix} val & \mathbf{mk\_let} : ((\mathit{TERM} * \mathit{TERM})\mathit{list} * \mathit{TERM}) -> \mathit{TERM} \end{vmatrix}
```

Description A derived term constructor function for generating *let*-terms. The arguments may have any form allowed by ICL HOL Concrete Syntax. Thus they may be variable structures formed by pairing, or single clause, non-recursive functions, whose arguments may only be variable structures formed by pairing.

```
Example
|mk\_let([], \lceil x \rceil) = \lceil x \rceil
mk\_let([(\ulcorner x \urcorner, \lceil 1 \urcorner)], \lceil x+1 \urcorner) = \lceil let \ x = 1 \ in \ x + 1 \urcorner
mk_{-}let([(\lceil x \rceil, \lceil 1 \rceil), (\lceil y \rceil, \lceil 2 \rceil)], \lceil x+y \rceil) =
             \lceil let \ x = 1 \ and \ y = 2 \ in \ x + y \rceil
mk\_let([(\lceil (x,y)\rceil, \lceil (1,2)\rceil)], \lceil x+y\rceil) =
             \lceil let (x,y) = (1,2) \ in \ x + y \rceil
 mk_{-}let([(\lceil (x,y)\rceil, \lceil (1,2)\rceil)], \lceil x+y\rceil) =
              \lceil let (x,y) = (1,2) \ in \ x + y \rceil
mk_{-}let([(\lceil f(x,y)\rceil, \lceil (1,2)\rceil)], \lceil x+y\rceil) =
             \lceil let \ f = \lambda \ (x,y) \bullet \ (1,2) \ in \ x + y \rceil
Errors
3012
             ?0 and ?1 do not have the same types
4007
             ?0 is not a well-formed LHS for mk_let
```

```
\begin{vmatrix} val & \mathbf{mk\_list} : TERM & list -> TERM \end{vmatrix}
```

Description A derived term constructor function for generating list-terms. The argument is a list of the members of the list. If the term list is empty the function will fail (see mk_empty_list). The list must be of terms with the same HOL type.

```
\begin{vmatrix} val & \mathbf{mk\_mon\_op} : string -> int -> (TYPE -> TERM) -> \\ TERM -> TERM; \end{vmatrix}
```

Description mk_mon_op area msg $rator_fn$ $\lceil rand \rceil$ attempts to form the term $\lceil rator \ rand \rceil$. $\lceil rator \rceil$ is gained by applying $rator_fn$ to the type of $\lceil rand \rceil$.

```
Example |mk\_mon\_op "mk\_\neg" 3031 (fn \_ => \ulcorner\$\neg\urcorner) \ulcorner t:BOOL\urcorner = \ulcorner\neg t\urcorner
```

Failure The failure message for failing to apply rator to its arguments will be from area area, and will have the text indexed by msg.

```
SML |val \ \mathbf{mk\_multi\_}\neg: (int * TERM) -> TERM;

Description mk\_multi\_\neg (n,t) will apply the constructor mk\_\neg n times to t.

Example |mk\_multi\_\neg (2, \ulcorner T\urcorner) = \ulcorner \neg (\neg T)\urcorner

Errors |3031 \ ?0 \ is \ not \ of \ type \ \ulcorner :BOOL\urcorner
|4030 \ ?0 \ is \ negative
```

```
| val mk_pair : (TERM * TERM) -> TERM;

Description A derived term constructor function for generating pairs.

| mk_pair(\lceil t1 \rceil, \lceil t2 \rceil) = \lceil (t1, t2) \rceil
```

```
SML |val \ \mathbf{mk\_set\_comp}: (TERM * TERM) -> TERM

Description A derived term constructor function for generating set comprehensions.

Example |mk\_set\_comp| (\lceil x \rceil, \lceil x > 5 \rceil) = \lceil \{ |x| | |x| > 5 \} \rceil

Errors |3015| ?1 is not of type \lceil :BOOL \rceil |4016| ?0 is not an allowed variable structure
```

Description mk_simple_binder area msg $binder_fn$ (var, body) generates the term:

```
\lceil binder(\lambda var \bullet body) \rceil
```

where binder is binder_fn applied to the types of var and body. var must be a term variable.

See Also mk_binder

Errors | 3007 ?0 is not a term variable

Failure If the term cannot be made, then the error will be from *area*, with a message indexed by msg, and the two terms as string arguments. If the first of the pair of terms is not a variable then error 3007 will be given from area area.

3015

```
|val \ \mathbf{mk\_simple\_term} : DEST\_SIMPLE\_TERM \rightarrow TERM;
```

Description Create a well-formed TERM from a statement of a top-level structure, and the associated constituent parts.

It makes the same checks as mk_const , mk_app , etc(q.v.), and gives the same error messages as these if there is a failure.

See Also DEST_SIMPLE_TERM

```
Errors
         Cannot apply ?0 to ?1 as types are incompatible
3005
3006
         Type of ?0 not of form \lceil :ty1 \rightarrow ty2 \rceil
3007
        ?0 is not a term variable
```

```
|val \ \mathbf{mk\_simple\_type} : DEST\_SIMPLE\_TYPE \longrightarrow TYPE;
```

Description This function constructs a HOL type from something of type SIMPLE_DEST- $_{-}TYPE$ (q.v).

```
|val \ \mathbf{mk\_simple\_} \forall : (TERM * TERM) \rightarrow TERM;
Description A derived term constructor function for generating simple \forall-terms.
Definition
|mk\_simple\_\forall (\lceil var \rceil, \lceil body \rceil) = \lceil \forall var \bullet body \rceil
var must be a term variable.
See Also mk_{-}\forall
Errors
         ?0 is not a term variable
3007
        ?1 is not of type \lceil :BOOL \rceil
```

```
|val \ \mathbf{mk\_simple\_} \exists_1 : (TERM * TERM) \rightarrow TERM;
Description A derived term constructor function for generating simply abstracted ∃_1-terms.
|mk\_simple\_\exists_1 \ (\lceil var \rceil, \lceil body \rceil) =
          \lceil \exists_1 \ var \bullet \ body \rceil
var must be a variable.
3007
          ?0 is not a term variable
3015
        ?1 is not of type \lceil :BOOL \rceil
See Also mk_{-}\exists_{-}1
```

```
SML |val \ \mathbf{mk\_simple\_\exists}: (TERM * TERM) -> TERM;

Description A derived term constructor function for generating simple \exists-terms.

Definition |mk\_simple\_\exists \ (\lceil var \rceil, \lceil body \rceil) = \lceil \exists \ var \bullet \ body \rceil

var \ \mathbf{must} \ \mathbf{be} \ \mathbf{a} \ \mathbf{term} \ \mathbf{variable}.

See Also mk\_\exists

Errors |3007 \ ?0 \ is \ not \ a \ term \ variable
|3015 \ ?1 \ is \ not \ of \ type \ \lceil :BOOL \rceil
```

```
SML |val \ \mathbf{mk\_simple\_\lambda}: (TERM * TERM) -> TERM;

Description This produces a simple \lambda-abstraction. It may only abstract variables.

Definition |mk\_simple\_\lambda| (\lceil v \rceil, \lceil t \rceil) = \lceil \lambda| v \bullet t \rceil

See Also mk\_\lambda

Errors |3007| ?0 is not a term variable
```

```
| val mk_string : string -> TERM;

| Description | Construct a string literal.

| Example | mk_string "abc" = \lceil "abc" \rceil
```

```
\begin{vmatrix} val & \mathbf{mk\_term} : DEST\_TERM \rightarrow TERM \end{vmatrix}
```

Description Create a term from a derived term. It is an inverse to $dest_term$ (q.v), and therefore understands how to handle paired abstractions.

The function is implemented using the individual primitive and derived term constructors (e.g. mk_const and mk_\forall), with what checks they use.

Failure This function will fail with the same messages as the appropriate term constructor functions.

```
\begin{vmatrix} val & \mathbf{mk_-t} : TERM; \end{vmatrix}
Description The term \lceil T : BOOL \rceil.
```

```
| val mk_vartype : string -> TYPE;

Description | Create a HOL type variable from a string:

| mk_{-}vartype "'tv" = \lceil: 'tv\rceil
```

```
|val \ \mathbf{mk}_{-}\mathbf{var} : (string * TYPE) \rightarrow TERM;
```

Description This produces a term variable.

The function makes no checks against the declaration of the subtypes of the type supplied.

```
\begin{array}{l} {}^{\text{Definition}} \\ |mk\_var("v", \vdash : ty \urcorner) = \ulcorner v : ty \urcorner \end{array}
```

```
|val \ \mathbf{mk}_{-}\varnothing : TYPE -> TERM;
```

Description A derived term constructor function for generating an empty (enumerated) set with elements of a given type.

```
 \begin{array}{c|c} \text{Definition} \\ mk_{-}\varnothing & \ulcorner: ty \urcorner = \ulcorner\varnothing : ty \ SET \urcorner \end{array}
```

See Also mk_-enum_-set

```
\begin{vmatrix} val & \mathbf{mk}_{-} \Leftrightarrow : (TERM * TERM) -> TERM; \end{vmatrix}
```

Description A derived term constructor function for generating bi-implications.

```
\begin{vmatrix} val & \mathbf{mk}_{-} \rightarrow_{-} \mathbf{type} : (TYPE * TYPE) -> TYPE; \end{vmatrix}
```

Description Create a function type from two types. A function type is just a kind of compound type.

```
 \begin{array}{c|c} \operatorname{Definition} \\ mk_- \to_- type \ (\lceil :ty1 \rceil, \ \lceil :ty2 \rceil) = \\ mk_- ctype ("\to ", \lceil :ty1 \rceil, \lceil :ty2 \rceil]) = \lceil :ty1 \ \to \ ty2 \rceil
```

```
\begin{vmatrix} val & \mathbf{mk} \\ val & \mathbf{mk} \\ \end{vmatrix}  \sim : (TERM * TERM) -> TERM;
```

Description A derived term constructor function for generating conjunctions.

```
Definition  \begin{vmatrix} mk\_ \wedge & (\lceil t1 \rceil, \lceil t2 \rceil) = \lceil t1 \wedge t2 \rceil \end{vmatrix}  Errors  \begin{vmatrix} 3015 & ?1 \text{ is not of type } \lceil :BOOL \rceil \\ 3031 & ?0 \text{ is not of type } \lceil :BOOL \rceil \end{vmatrix}
```

```
\begin{vmatrix} val & \mathbf{mk}_{-} \lor : (TERM * TERM) -> TERM; \end{vmatrix}
```

Description A derived term constructor function for generating disjunctions.

```
Definition  |mk_{-} \lor (\lceil t1 \rceil, \lceil t2 \rceil) = \lceil t1 \lor t2 \rceil  Errors  |3015 \quad ?1 \text{ is not of type } \lceil :BOOL \rceil   |3031 \quad ?0 \text{ is not of type } \lceil :BOOL \rceil
```

SML

```
SML |val \ \mathbf{mk}_{-}\neg: TERM \rightarrow TERM;

Description A derived term constructor function for generating negations.

Definition |mk_{-}\neg \ulcorner t \urcorner = \ulcorner \neg t \urcorner

Errors |3031 \ ?0 \ is \ not \ of \ type \ \ulcorner :BOOL \urcorner
```

```
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| Description A derived term constructor function for generating implications. It takes two arguments: the antecedent and the consequent.

| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \Rightarrow : (
```

```
| val \ \mathbf{mk}_{-} \forall : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \forall : (TERM * TERM) -> TERM;
| val \ \mathbf{mk}_{-} \forall : (Term) = \neg \forall \cdot varstruct \Rightarrow \cdot body \neg
| varstruct \ \mathbf{may} \Rightarrow \mathbf{mk}_{-} \Rightarrow \mathbf{mk}_
```

```
| val mk_∃ : (TERM * TERM) -> TERM;

Description A derived term constructor function for generating ∃-terms.

| mk_∃ (\lceil varstruct \rceil, \lceil body \rceil) = \lceil \exists varstruct \bullet body \rceil
| varstruct may be any allowed variable structure.

| varstruct may be any allowed variable structure.
```

```
\begin{vmatrix} val & \mathbf{mk}_{-} \times_{-} \mathbf{type} : (TYPE * TYPE) -> TYPE \\ \mathbf{Description} & mk_{-} \times_{-} type \ (\ulcorner : ty_{-}1 \urcorner, \ulcorner : ty_{-}2 \urcorner) \ \text{returns a pair type: } \ulcorner : ty_{-}1 \times ty_{-}2 \urcorner. \end{vmatrix}
```

```
SML |val \ \mathbf{mk}_{-}\epsilon: (TERM * TERM) -> TERM;

Description A derived term constructor function for generating \epsilon-terms.

Definition |mk_{-}\epsilon| (\lceil varstruct \rceil, \lceil body \rceil) = \lceil \epsilon \ varstruct \bullet \ body \rceil

varstruct may be any allowed variable structure.

Errors |3015| ?1 is not of type \lceil :BOOL \rceil | 4016  ?0 is not an allowed variable structure
```

```
SML |val \ \mathbf{mk}_-\mathbb{N}: INTEGER -> TERM;

Description Construct a numeric literal: the argument may not be negative.

|mk_-\mathbb{N}| 5 = \lceil 5 \rceil

Errors |3021| ?0 should be 0 or positive
```

```
\begin{vmatrix} val \end{vmatrix} quantifier : string \rightarrow TYPE \rightarrow TYPE \rightarrow TERM;
```

Description quantifier name type dummy returns a constant, with the given name, and type $\lceil : (type \rightarrow BOOL) \rightarrow BOOL \rceil$, This is an appropriate type for binders. The dummy is present only to make the function have an acceptable signature for certain other functions.

```
|val| rename : (string * TYPE) \rightarrow string \rightarrow TERM \rightarrow TERM;
```

Description rename (oname, type) cname term returns a term based on term, but with any free variables with name oname, and type type renamed to cname.

```
\begin{vmatrix} val & \mathbf{set\_variant\_suffix} : string -> string; \end{vmatrix}
```

Description Sets the string control variant_suffix used to create variant names in string_variant (q.v.) and its relatives. The string is initially a single prime character. The function returns the previous setting of the control.

Errors

3028 string may not be empty

```
|val \ \mathbf{string\_of\_term} : TERM \ -> string;
```

Description This returns a display of a term in the form of a string, with no inserted new lines, suitable for use with $diaq_string$ and fail.

See Also format_term is a formatted string display of a term.

```
val \ string\_of\_type : TYPE \longrightarrow string;
```

Description This returns a display of a type in the form of a string, with no inserted new lines, suitable for use with $diag_string$ and fail.

See Also format_type is a formatted string display of a type.

```
|val \ \mathbf{string\_variant} : string \ list \rightarrow string \rightarrow string;
```

Description string_variant vlist name returns a string that is a different from any name in vlist. Variants are formed by repeatedly appending the variant string(see set_variant_string) to the name. Note that string_variant [] name gives name.

Uses Somewhat faster than *variant* if term variables are already destroyed, and their names and types are directly accessible.

See Also variant

```
\begin{vmatrix} val & \mathbf{STRING} : TYPE; \end{vmatrix}
```

Description This is the HOL type of strings, a type abbreviation for lists of objects of type *CHAR*.

```
 \begin{array}{c|c} & \text{Definition} \\ val & STRING = \ulcorner : CHAR \ LIST \urcorner; \end{array}
```

See Also Theory "char".

```
\begin{vmatrix} val & \mathbf{strip\_app} : TERM -> TERM * TERM \ list; \end{vmatrix}
```

Description Splits a term into a head term, that is not an application, and the list of argument terms, if any, to which that head term was applied.

```
 \begin{vmatrix} strip\_app & \ulcorner t & t1 & t2 & t3 & \dots \\ strip\_app & \ulcorner t & T & t2 & t3 & \dots \\ strip\_app & \ulcorner T & \lnot & (\ulcorner T & \urcorner, []) \\ \end{vmatrix}
```

 $|val \ \mathbf{strip_binder} : string \ -> \ TERM \ -> \ TERM \ list * \ TERM;$

Description strip_binder binder applied to

 $\lceil binder(\lambda vs_1 \bullet binder(\lambda vs_2 \bullet \ldots \bullet body) \ldots) \rceil$

will return

$$\lceil \lceil vs_1 \rceil, \lceil vs_2 \rceil, \ldots \rceil, \lceil body \rceil$$

where the vs_i are allowed variable structures. The function acts as $dest_binder$ (q.v), and will handle paired abstraction terms. It will return an empty list and the original term if the supplied term is not formed using the binder.

See Also strip_simple_binder

```
\begin{vmatrix} val & \mathbf{strip\_bin\_op} : string \ -> \ TERM \ -> \ TERM \ \ list
```

Description This function strips a binary operator, attempting to destroy its term argument, and recursively stripping to the right, as if by $dest_bin_op$. A term not formed from the operator is returned unchanged, as a singleton list.

Example

```
|strip\_bin\_op \ "\land" \ \ulcorner a \ \land \ (b \ \land \ c) \ \land \ d\urcorner = [\ulcorner a\urcorner, \ \ulcorner b \ \land \ c\urcorner, \ \ulcorner d\urcorner]
```

```
|val \text{ strip\_leaves}: ('a -> 'a * 'a) -> 'a -> 'a \text{ list};
```

Description Given a function that destroys an object into a pair of objects (and here we are thinking of, for example, $dest_{-}\wedge$), recursively descend the results of destruction down both branches, destroying until failure.

 $\begin{vmatrix} strip_leaves & dest_ \land \ulcorner (a \land b) \land c \land d \urcorner = \\ \lceil \ulcorner a \urcorner, \lceil b \urcorner, \lceil c \urcorner, \lceil d \urcorner \rceil \end{vmatrix}$

Description This destroys a sequence of nested *let* constructs.

Example $|strip_let \ \lceil let \ x = 1 \ in \ let \ y = 2 \ in \ x+y \rceil = ([[(\lceil x \rceil, \lceil 1 \rceil)], [(\lceil y \rceil, \lceil 2 \rceil)]], \lceil x+y \rceil)$

```
|val| strip_simple_binder : string \rightarrow TERM \rightarrow TERM | list * TERM;
```

Description strip_simple_binder binder applied to

```
\lceil binder(\lambda v_{-}1 \bullet binder(\lambda v_{-}2 \bullet \dots \bullet body) \dots) \rceil
```

will return

$$[\lceil v_- 1 \rceil, \lceil v_- 2 \rceil, \ldots], \lceil body \rceil$$

where the $v_{-}i$ are simple variables. The function acts as $dest_{-}simple_{-}binder$ (q.v), and will not handle paired abstraction terms. It will return an empty list and the original term if the supplied term is not formed using the binder.

See Also strip_binder

```
|val|  strip_simple_\forall : TERM \rightarrow (TERM \ list * TERM);
```

Description Strip a multiply universally simply quantified term.

Definition

```
SML
```

```
|val \ \mathbf{strip\_simple\_} \exists : TERM \rightarrow (TERM \ list * TERM);
```

Description Strip a repeatedly existentially simply quantified term.

Definition

```
SML
```

```
|val \ strip\_spine\_left : ('a \rightarrow 'a * 'a) \rightarrow 'a \rightarrow 'a \ list;
```

Description Given a function that destroys an object into a pair of objects (and here we are thinking of, for example, $dest_- \land$), recursively descend the left results of destruction, destroying until failure.

Example

$$\begin{vmatrix} strip_spine_left \ dest_ \land \ \lceil (a \land b) \land c \land d \rceil = \\ \lceil \lceil a \rceil, \lceil b \rceil, \lceil c \land d \rceil \end{vmatrix}$$

```
_{\rm SML}
```

```
|val \ strip\_spine\_right : ('a \rightarrow 'a * 'a) \rightarrow 'a \rightarrow 'a \ list;
```

Description Given a function that destroys an object into a pair of objects (and here we are thinking of, for example, $dest_{-}\wedge$), recursively descend the right results of destruction, destroying until failure.

See Also $strip_bin_op$ for stripping terms formed by binary (constant) term operators.

Example

```
\begin{vmatrix} strip\_spine\_left \ dest\_ \land \ \lceil (a \land b) \land c \land d \rceil = \\ strip\_ \land \ \lceil (a \land b) \land c \land d \rceil = \\ \lceil \lceil a \land b \rceil, \lceil c \rceil, \lceil d \rceil \end{vmatrix}
```

```
SML
```

```
|val \ \mathbf{strip}_- \rightarrow_- \mathbf{type} : TYPE \ -> TYPE \ list;
```

Description Strip the type of a multi-argument function into its constituent types, only descending into the right hand result of $dest_- \rightarrow_- type$.

Definition

$$\begin{vmatrix} strip_ \rightarrow_{_} type & \lceil :ty1 \rightarrow \dots \rightarrow tyn \rceil = \\ & & [\lceil :ty1\rceil, \dots, \lceil tyn\rceil] \end{vmatrix}$$

```
SMI
```

```
|val \ \mathbf{strip}_{-} \wedge : TERM \ -> TERM \ list
```

Description Break a term into its constituent conjuncts, descending recursively only to the right.

```
Example
```

```
|strip\_ \wedge \lceil a \wedge (b \wedge c) \wedge d \rceil = [\lceil a \rceil, \lceil b \wedge c \rceil, \lceil d \rceil]
```

 $|val| strip_{-} \lor : TERM -> TERM \ list$

Description Break a term into its constituent disjuncts, descending recursively only to the right.

Example

 $\begin{vmatrix} val & \mathbf{strip}_{-} \Rightarrow : TERM & -> TERM & list; \end{vmatrix}$

Description Strip a multiple implication into a list of antecedents appended to the singleton list of the innermost consequent.

Definition

 $|strip_\Rightarrow \lceil t1 \Rightarrow t2 \Rightarrow ... \Rightarrow tn \rceil = [\lceil t1 \rceil, \lceil t2 \rceil, ... \lceil tn \rceil]$

Note that stripping a non-boolean will result in a singleton list containing that term, not a fail.

 $|val \ \mathbf{strip}_{\neg} \forall : TERM \rightarrow (TERM \ list * TERM);$

Description Strip a multiply universally quantified term (perhaps with paired abstractions).

Definition

 $|val \ \mathbf{strip}_{\exists} : TERM \rightarrow (TERM \ list * TERM);$

Description Strip a repeatedly existentially quantified term, possibly formed with paired abstractions.

Definition

SML

 $|val \ \mathbf{strip}_{-}\epsilon : TERM \ -> (TERM \ list * TERM);$

Description Strip multiple ϵ 's.

Definition

 $|strip_{\epsilon} \in a \ b \ c \dots \bullet \ body = [\lceil a \rceil, \lceil b \rceil, \lceil c \rceil, \dots], \lceil body \rceil$

SML

 $|val \ \mathbf{strip}_{-}\lambda : TERM \ -> (TERM \ list * TERM);$

Description Strip a multiple λ -abstraction.

Definition

 $|strip_{\lambda} \cap \lambda \cap a \mid b \mid c \mid body \mid = [\neg a \neg, \neg b \neg, \neg c \neg, \dots], \neg body \mid$

This uses $dest_{\lambda}$ (q.v.) rather than $dest_{simple_{\lambda}}$.

```
\begin{vmatrix} val & \mathbf{subst} : (TERM * TERM) & list -> TERM -> TERM; \end{vmatrix}
```

Description subst $[(t_-1, u_-1), (t_-2, u_-2), \ldots]$ t returns the term formed from t by parallel substition of the t_-i for the u_-i . The u_-i can be variables or arbitrary terms but only "free" occurrences of a u_-i will be changed (i.e., only occurrences in which no free variable of u_-i becomes a bound variable in t). Bound variables in t are renamed as necessary to prevent bound variable capture.

If some u_{-i} appears more than once in the substitution list, say $u_{-i} = u_{-j}$ for i < j, then the later pair (t_{-j}, u_{-j}) is ignored.

subst does not perform type instantiation: each $t_{-}i$ must have the same type as the corresponding $u_{-}i$..

```
 \begin{vmatrix} \text{Definition} \\ \text{subst} \ \left[ (\ulcorner t_1 \urcorner, \ulcorner u_1 \urcorner), (\ulcorner t_2, \ulcorner u_2 \urcorner), \ \ldots \right] \ \ulcorner t \urcorner = \lceil t[t_1/u_1, \ t_2/u_2, \ \ldots] \rceil
```

See Also var_subst

Errors

3012 ?0 and ?1 do not have the same types

```
|val \text{ term\_any}: (TERM -> bool) -> TERM -> bool;
```

Description Given a predicate on terms, tests to see if any sub-term of some term (or the term itself) satisfies the predicate. The search ceases on the first satisfaction, rather than all the tests being done and the results combined.

```
\begin{vmatrix} val \ term\_consts : TERM -> (string * TYPE) \ list; \end{vmatrix}
```

Description This function extracts the subterms of a term which are constants, giving destroyed constants in each case (duplicates are eliminated)

```
|val \ \mathbf{term\_diff} : (TERM \ list * TERM \ list) -> TERM \ list;
```

Description Remove any terms in the first list that are α -convertible to any in the second. An infix function.

```
\begin{vmatrix} val & \mathbf{term\_fail} : string -> int -> TERM \ list -> 'a; \end{vmatrix}
```

Description $term_fail$ area msg tml first creates a list of functions from unit to string, using $string_of_term$ (q.v.) providing displays of the list of terms. It then calls fail with the area, msg and this list of functions. This allows terms to be presented in error messages.

```
|val \text{ term\_fold}: ((TERM \ list) -> (TERM * 'a) -> 'a) -> (TERM * 'a) -> 'a;
```

Description $term_-fold\ tmfun\ (tm,\ e)$ traverses $tm\ (depth\ first)$ and folds $tmfun\ on\ the\ subterms$ for which it does not fail. $term_-fold\ does\ not\ traverse\ a\ subterm\ on\ which\ tmfun\ did\ not\ fail.$ $tmfun\ has\ as\ its\ first\ argument\ a\ list\ giving\ the\ bound\ variables\ which\ are\ in\ scope\ at\ the\ point\ of\ use.$ It does not attempt to apply $tmfun\ to\ a\ bound\ variable\ of\ an\ abstraction.$

```
\begin{vmatrix} val \ \mathbf{term\_grab} : (TERM \ list * TERM) -> TERM \ list; \end{vmatrix}
```

Description If the given term is not α -convertible to any member of the list, then add it to the list. An infix function.

```
|val \ \mathbf{term\_less} : (TERM \ list * TERM) \rightarrow TERM \ list;
```

Description Remove any terms in the list that are α -convertible to the given term. An infix function.

```
\begin{vmatrix} val \ \mathbf{term}_{-}\mathbf{map} : ((\mathit{TERM}\ \mathit{list}) -> \mathit{TERM} -> \mathit{TERM}) -> \mathit{TERM} -> \mathit{TERM}; \end{vmatrix}
```

Description term_map tmfun tm traverses tm (breadth first) looking for subterms for which the application tmfun tm does not fail and replaces such subterms with tmfun tm. It does not traverse the resulting subterms. tmfun has as its first argument a list giving the bound variables which are in scope at the point of use. It does not attempt to apply tmfun to a bound variable of an abstraction.

Description $term_{-}match$ $tm_{-}1$ $tm_{-}2$ attempts to find if $tm_{-}1$ is an instance of $tm_{-}2$, up to α -convertibility. If so, then it returns two lists. The first gives the correspondence between types in $tm_{-}1$ with type variables in $tm_{-}2$. The second gives the correspondence between (type instantiated) terms in $tm_{-}1$ with free variables in $tm_{-}2$. Trivial (i.e. (x,x)) correspondences are not noted.

3054 ?0 is not a term instance of ?1

```
|val \ \mathbf{term\_mem} : (TERM * TERM \ list) \rightarrow bool;
```

Description Is the given term α -convertible to any term in the list? An infix function.

```
| val term_tycons : TERM -> (string * int) list;
```

Description Returns the set of type constructors and their arity present in types present within a term (represented as a list).

```
|val \text{ term\_types} : TERM \rightarrow TYPE \ list;
```

Description Gives a list of all the types of constants, variables or λ -abstraction variables within the term argument.

```
|val term_tyvars : TERM -> string list;
```

Description Returns the list of type variable names present in types present within a term.

```
|val term_union : (TERM list * TERM list) -> TERM list;
```

Description Take the union of two term lists viewed as sets, removing any α -convertible duplicates. An infix function.

See Also *union* for precise ordering of result.

```
|val \text{ term\_vars}: TERM \rightarrow (string * TYPE) \ list;
```

Description This function extracts the subterms of a term which are variables (including abstraction variables), giving destroyed variables in each case.

```
\begin{vmatrix} val & \mathbf{type\_any} : (TYPE -> bool) -> TYPE -> bool; \end{vmatrix}
```

Description Given a predicate on types, tests to see if any sub-type of some type (or the type itself) satisfies the predicate. The search ceases on the first satisfaction, rather than all the tests being done and the results combined.

```
|val| type_fail : string -> int -> TYPE \ list -> 'a;
```

Description type_fail area msg tyl first creates a list of functions from unit to string, using string_of_type (q.v.) providing displays of the list of types. It then calls fail with the area, msg and this list of functions. This allows types to be presented in error messages.

```
\begin{vmatrix} val & type\_map : (TYPE -> TYPE) -> TYPE -> TYPE; \end{vmatrix}
```

Description $type_map \ tyfun \ ty$ traverses ty (breadth first) looking for subtypes, st, for which the application $tyfun \ st$ does not fail and replaces such subtypes with $tyfun \ st$. It does not traverse the resulting subtypes.

```
\begin{vmatrix} val & \mathbf{type\_match1} \\ \end{vmatrix}: (TYPE * TYPE) & list -> TYPE -> TYPE -> (TYPE * TYPE) \\ list;
```

Description type_match1 is similar to type_match, q.v., but has an additional context parameter representing an instantiation; type_match1 will fail unless the supplied context can be extended to give the required match. For example, the first line below evaluates true, but the second fails.

```
 |type\_match1[(\ulcorner:'b\urcorner, \, \ulcorner:'b\urcorner)] \, \vdash: ('a \to \mathbb{N}) \to 'b\urcorner \, \vdash:'a \to 'b\urcorner = [(\vdash:'a \to \mathbb{N}\urcorner, \, \vdash:'a\urcorner), \, (\vdash:'b\urcorner, \, \vdash:'b\urcorner)]; \\ type\_match1[(\vdash:'b \to \mathbb{N}\urcorner, \, \vdash:'a\urcorner)] \, \vdash: ('a \to \mathbb{N}) \to 'b\urcorner \, \vdash:'a \to 'b\urcorner;
```

Trivial associations are included in the result so that they can be passed as the context in subsequent calls. The second element of each pair in the context must be a type variable.

See Also type_match

3055 ?0 is not a type instance of ?1 in the supplied context 3019 ?0 is not a type variable

```
\begin{vmatrix} val & \mathbf{type\_match} : TYPE -> TYPE -> (TYPE * TYPE) list; \end{vmatrix}
```

Description $type_match$ ty_1 ty_2 attempts to match ty_1 with ty_2 , i.e., to determine if ty_1 can be obtained from ty_2 by instantiating type variables. If so, it returns a representation of the type instantation as an association list suitable for use as an argument to $inst_type$ q.v. Trivial (i.e. (x,x)) associations are not included. For example:

```
|type\_match \ \Box ('a \rightarrow \mathbb{N}) \rightarrow 'b \ \Box \ \Box ('a \rightarrow \mathbb{N}) \ \Rightarrow 'b \ \Box \ = [(\Box 'a \rightarrow \mathbb{N}), \ \Box \ 'a \ ];
```

This gives the HOL type of a term.

See Also type_match1, inst_type

Errors | 3053 ?0 is not a type instance of ?1

```
\begin{vmatrix} val & \mathbf{type\_of} : TERM & -> TYPE; \end{vmatrix}
```

```
|val| type_tycons : TYPE \rightarrow (string * int) list;
```

Description This returns a list of names of type constructors, and the arity of their use, within a type.

```
| val type_tyvars : TYPE -> string list;
```

Description Returns the list of type variable names present in a type.

```
|val| variant : TERM list -> TERM -> TERM;
```

Description variant stoplist v returns a variant of variable v whose name is not used for any variable in stoplist (which must be only variables). The variants are generated by sufficient appending of the variant string (see $set_variant_string$).

```
Errors | 3007 ?0 is not a term variable
```

See Also string_variant, list_variant

```
\begin{vmatrix} val & var\_subst : (TERM * TERM) & list -> TERM -> TERM; \end{vmatrix}
```

Description var_subst alist term returns the term formed by, for each pair in alist, substituting in term all free instances of the term variable which is the second of the pair with the first of the pair. The pair of the first matching term variable in the list will be used, duplicates later in the list will be ignored. Renaming may occur to prevent bound variable capture.

Note that the term variables must have the same types as the terms that are to replace them.

```
\begin{vmatrix} var\_subst & [(\lceil t1\rceil, \lceil x1\rceil), (\lceil t2\rceil, \lceil x2\rceil), ...] & \lceil t\rceil = \\ & \lceil t[t1/x1, \ t2/x2, ...] \rceil \end{vmatrix}
```

Errors

3007 ?0 is not a term variable

3012 ?0 and ?1 do not have the same types

See Also subst

```
|val\rangle \sim = \$ : (TERM * TERM) \rightarrow bool;
```

Description An infix equality test that returns true only when its two term arguments are α -convertible, and false otherwise: no exceptions can be raised. Equality of terms is gained by using =\$

```
SML |val \ \mathbb{N}: TYPE;

Description This is the HOL type of the natural numbers, \theta, 1, \ldots

Definition |val \ \mathbb{N} = \lceil : \mathbb{N} \rceil;

See Also Theory "\mathbb{N}".
```

5.2 Discrimination Nets

```
\begin{vmatrix} s_{\text{ML}} \\ signature \ \mathbf{NetTools} = siq \end{vmatrix}
```

Description This provides the discrimination net tools that will be used to maintain and use databases of values indexed by term form.

```
|type|'a NET;
```

Description This is the type of a discrimination net, its type parameter being the type of values that are handled by the net.

```
\begin{vmatrix} val & \mathbf{empty\_net} : 'a & NET; \end{vmatrix}
```

Description This is the starting discrimination net, which returns an empty list of values, regardless of term form.

```
\begin{vmatrix} val & list\_net\_enter : (TERM * 'a) & list -> ('a & NET) -> ('a & NET); \end{vmatrix}
```

Description This enters a list of values and indexing terms into a discrimination net, returning the resulting net.

```
\begin{vmatrix} val & \mathbf{make\_net} : (TERM * 'a) \ list -> ('a \ NET); \end{vmatrix}
```

Description This enters a list of values and indexing terms into an empty discrimination net, returning the resulting net.

```
\begin{vmatrix} val & \mathbf{net\_enter} : (TERM * 'a) -> ('a & NET) -> ('a & NET); \end{vmatrix}
```

Description This enters a value and its indexing term into a discrimination net, returning the resulting net.

```
\begin{vmatrix} val & \mathbf{net\_lookup} : ('a \ NET) -> TERM -> ('a \ list); \end{vmatrix}
```

Description net_lookup net term will return a list of at least all the values entered into net that were indexed by terms which can be matched (by term_match, q.v.) to term. I.e. term can be produced by type and term variable instantiation from the indexing term.

A principal purpose of net_lookup is to make the process of rewriting a term using a list of equations and conversions more efficient by quickly filtering out items which are not applicable. Consequently speed is more important than accuracy: to use the wrong metaphor, it is not important if some inapplicable equations "slip through the net" provided all the applicable ones do as well.

The discrimination net actually returns all values whose indexing terms have the same structure as the term matched, ignoring types and variables. Thus only the pattern of constant names, combinations and abstractions will be considered, with variables in the indexing term being presumed to match any term form, regardless of type.

If net_lookup returns more than one value, then the only ordering on the resulting values specified is that if two entries are made into the net with the same index term, then if the net_lookup term matches the index term then the second entered value will be returned before the first in the list of matches.

Chapter 6 119

THE MANAGEMENT OF THEORIES AND THEOREMS

6.1 Standard ML Type Definitions

Description Objects of this datatype indicate the status of a theory within a hierarchy, being:

Constructor	Description	
TSNormal	Theory is present and may be written to.	
TSLocked	Theory is present, and cannot be written to as it is locked.	
TSAncestor	Theory is present, and cannot be written to as it is in an ancestor for some	
	hierarchy.	
TSDeleted	Theory has been deleted: the theory name may be reused for a new theory.	

```
| datatype USER_DATUM =
| UD_Term of TERM * (USER_DATUM list)
| UD_Type of TYPE * (USER_DATUM list)
| UD_String of string * (USER_DATUM list)
| UD_Int of int * (USER_DATUM list);
```

Description This provides a monomorphic type of trees whose nodes are labelled by terms, types, strings or integers.

Uses This type is used in the type *USER_DATA*, and may be used elsewhere, as a means of storing data that may be represented in a "reasonably general" structure for **ProofPower** related purposes, which also is not polymorphic.

```
|type| CONV;
```

Description This is the type name conventionally used for conversions, that is, inference rules whose last argument is a term, and whose result is an equation whose LHS is precisely that term (no α -conversion). Though it would be type correct, we conventionally do not use this type name for other functions of type ... - > TERM - > THM.

```
\begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \\ & \end{array} & \end{array} & \begin{array}{lll} & \\ & \end{array} & \begin{array}{lll} & \\ & \end{array} & \begin{array}{lll} & \\ & \end{array} & \end{array} & \begin{array}{lll} & \\ & \end{array} & \begin{array}{lll} & \\ & \end{array} & \begin{array}{lll} & \\ & \end{array} & \end{array} & \begin{array}{lll} & \\ & \end{array} & \end{array} & \begin{array}{lll} & \\ & \end{array} & \begin{array}{lll} & \\ & \end{array} & \end{array} & \begin{array}{lll} & \\ & \end{array} & \begin{array}{lll} & \\ & \end{array} & \end{array} & \begin{array}{lll} & \\ & \end{array} & \begin{array}{lll} & \\ & \end{array} & \end{array} & \begin{array}{lll} & \\ & \end{array} & \begin{array}{lll} & \\ & \end{array} & \end{array} & \begin{array}{l
```

```
|type| SEQ;
```

Description This is the type of sequents, consisting of a list of assumptions and a conclusion.

```
\begin{array}{l} {}^{\text{Definition}} \\ | \, type \, \, SEQ \, = \, (\, TERM \, \, list) \, * \, TERM; \end{array}
```

=#provides a strict equality test on sequents, \sim =#provides an equality test on the sequents up to α -convertibility and order of assumptions.

| type THEORY_INFO;

Description This is a labelled record type containing certain information associated with a theory.

Label	Type	Description	
status	$THEORY_STATUS$	Current status of the theory.	
inscope	bool	True if the theory is currently in scope (i.e. can its	
		theorems, types and constants be usefully referred to).	
contents	THEORY	The theory contents.	
children	int list	List of the immediate children of the theory.	
name	string	The name of the theory, as a string.	

|type| **THEORY**;

Description A theory is a named collection of type names, constant names, axioms, definitions and theorems. In the abstract data type of theorems, the "names" of theories are represented as integers. For each type name the arity of the type is recorded and for each constant name its type is recorded. In order to allow deletion of types, constants, axioms and definitions. So-called level numbers are used to enables theorems that may depend on deleted material to be identified and rejected. In order for non-critical information such as operator fixity to be stored, a theory also includes a user-data slot which may be used to encode such information.

A theory is represented as a labelled record type, as follows:

Label	Type	Description
name	$\mid int \mid$	Internal representation of theory name.
tyenv	$\{arity: int, level: int\}\ OE_DICT$	A dictionary indexed by type construc-
		tor names, returning arity, and definition
		level.
con_env	$\{ty: TYPE, level: int\}\ OE_DICT$	A dictionary indexed by constant name,
		returning the type and definition level.
parents	int list	Internal representations of names of par-
		ents of theory.
del_levels	$\int (int*int) list$	A list of ranges of deleted definition lev-
		els — if empty then no levels have been
		deleted.
axiom_ dict	THM OE_DICT	A dictionary of axioms.
$defn_dict$	$THM OE_DICT$	A dictionary of definitions.
thmdict	THM OE_DICT	A dictionary of theorems.
$current_{-}$ $level$	$\mid int \mid$	The current definition level.
$user_data$	USER_DATA ref	The user data stored in the theory.

type**THM**;

Description This is the abstract data type of theorems in ProofPower, whose primitive constructors are the inference rules and extensional mechanisms of the abstract data type. =|-provides| a strict equality test on the conclusion and assumptions of theorems, $\sim =|-\text{provides}|$ an equality test on the conclusion and assumptions of theorems up to α -convertibility and order of assumptions.

SML

|type| USER_DATA;

Description This is the type of a store for objects of type *USER_DATUM*. It is implemented as:

 $_{
m ML}$

 $|type\ USER_DATA = USER_DATUM\ S_DICT;$

Uses Within the type *THEORY* it is used to include such details as the fixity of types and constants.

6.2 Symbol Table

```
\left| \begin{array}{l} 	ext{SML} \\ 	ext{signature } 	ext{ } 	ext{SymbolTable} = sig \end{array} \right|
```

Description This is the signature for the structure which contains the symbol table and its access functions. This structure contains private functions which are invoked as one navigates around the theory database. These private functions may give rise to error 20001 if the theory database user data has been corrupted (e.g. by explicit and incorrect use of the lower level interfaces).

Any of the functions in the structure which update the current theory may give rise to error 20002

Errors

```
20001 A symbol table entry in theory ?0 is corrupt (use restore_defaults to clear)
```

20002 The current theory, ?0, is not open for writing

20003 Internal error: ?0

```
\begin{vmatrix} val \ \mathbf{declare\_alias} : (string * TERM) -> unit; \end{vmatrix}
```

Description $declare_alias(s, c)$ declares s as an alias for the constant c. s must comply with the HOL lexical rules for an identifier.

Errors

```
20301 The term ?0 is not a constant
```

20302 The string ?0 is already in use as an alias for ?1

20305 The constant ?0 is not in scope

20306 The string ?0 is not an identifier

```
val \ \mathbf{declare\_binder} : string \rightarrow unit;
```

Description $declare_binder s$ declares s to have the syntactic status of a binder in the current context. s must comply with the HOL lexical rules for an identifier and must not be the string ",".

See Also undeclare_fixity

Errors

20201 A fixity declaration is not allowed for ?0 (which is not an identifier)

20202 Cannot change the fixity of ','

```
val \ \mathbf{declare\_const\_language} : string * string -> unit;
```

Description $declare_const_language(s, l)$ adds the language indicator l to those associated with the name s when used as a constant in the current context.

Errors

20501 There is no constant called ?0 in the current context

```
val declare_left_infix : (int * string)-> unit;
val declare_right_infix : (int * string)-> unit;
val declare_infix : (int * string)-> unit;
```

Description $declare_left_infix(p, s)$ declares s to have the syntactic status of an left associative infix operator with precedence p in the current context. s must comply with the HOL lexical rules for an identifier.

Similarly, $declare_right_infix$ is used to declare right associative operators. $declare_infix$ is provided for compatibility with earlier versions of the system and is the same as $declare_right_infix$.

```
See Also undeclare_fixity
```

Errors

20201 A fixity declaration is not allowed for ?0 (which is not an identifier)

```
\begin{vmatrix} val & declare\_nonfix : string -> unit; \end{vmatrix}
```

Description $declare_nonfix s$ undoes the effect of a declaration of s to have special syntactic status (using $declare_binder$, $declare_infix$, $declare_prefix$ or $declare_postfix$).

The effect of $declare_nonfix\ s$ depends on the theory in which the special status for s was declared: if it was declared in the current theory, then the declaration is just removed; if in an ancestor theory then a declaration for s as a nonfix is inserted in the current theory. (Thus in the first case, the syntactic status for s reverts to what it was before the earlier declaration, whereas in the second case the syntactic status will be suppressed.)

s must must not be the string ",".

```
See Also undeclare_fixity
```

```
Errors
```

20201 A fixity declaration is not allowed for ?0 (which is not an identifier)

20202 Cannot change the fixity of ','

20203 There is no fixity declaration for ?0 in the current context

```
val declare_postfix : (int * string) -> unit;
```

Description $declare_postfix(p, s)$ declares s to have the syntactic status of a postfix operator with precedence p in the current context. s must comply with the HOL lexical rules for an identifier and must not be the string ",".

```
See Also undeclare_fixity
```

```
Errors
```

```
20201 A fixity declaration is not allowed for ?0 (which is not an identifier)
```

20202 Cannot change the fixity of ','

```
| val declare_prefix : (int * string) -> unit;
```

Description $declare_prefix(p, s)$ declares s to have the syntactic status of a prefix operator with precedence p in the current context. s must comply with the HOL lexical rules for an identifier and must not be the string ",".

See Also undeclare_fixity

Errors

20201 A fixity declaration is not allowed for ?0 (which is not an identifier)

20202 Cannot change the fixity of ','

SML

val declare_terminator : string -> unit

Description $declare_terminator s$ checks that s is a valid terminator, and if so declares that s is to be used as a lexical terminator in the current context.

Errors

20101 The string ?0 is not a valid terminator. Terminators must start with a symbolic character, must not contain spaces, and must not end with underscore, \curlywedge or \curlyvee

20102 The string ?0 is already declared as a terminator

```
val \ \mathbf{declare\_type\_abbrev} : (string * string \ list * TYPE) -> unit;
```

Description $declare_type_abbrev (s, [\alpha_1, ..., \alpha_k], \tau)$ declares $(\alpha_1, ..., \alpha_k)s$ as a type abbreviation for the type τ . The identifier s may not already have been declared as a type abbreviation or be the name of a type constructor defined in the present context, in which cases a warning message is issued. s must comply with the HOL lexical rules for an identifier.

Errors

```
20401 The identifier ?0 is already declared as a type abbreviation
```

20402 The identifier ?0 is already declared as a type constructor

20407 The formal parameter list ?0 contains duplicate type variable names

20408 The string ?0 is not an identifier

```
val expand_type_abbrev : (string * TYPE list) -> TYPE;
```

Description $expand_type_abbrev\ s, [\tau_1, \ldots, \tau_k]$ is the expansion of the type abbreviation s with respect to the arguments $[\tau_1, \ldots, \tau_k]$.

Errors

```
20404 The identifier ?0 is not declared as a type abbreviation
```

20405 The type abbreviation ?0 should have ?1 argument not ?2

20406 The type abbreviation ?0 should have ?1 arguments not ?2

```
val \ \mathbf{get\_aliases} : string \rightarrow (string * TERM) \ list;
```

Description get_aliases thy returns information about identifiers which have been declared as aliases in the theory thy. The return value is a list of pairs. Each pair contains a name and a constant for which that name is an alias. The same name may be used as an alias for several different constants, and if this happens there will be multiple entries for that alias in the list.

Errors

20601 There is no theory called ?0

```
val \ \mathbf{get\_alias\_info} : string \rightarrow (string * TYPE) list \ OPT;
```

Description $get_alias_info\ c$ returns the list of aliases for the constant with name c, or Nil if c is not the name of a constant. For each pair (a, τ) in the result, a is an alias for c at instances of the type τ .

```
val \ \mathbf{get\_alias} : (string * TYPE) \longrightarrow string;
```

Description $get_alias(c, \tau)$ returns the most appropriate alias for the constant with name c at the type τ . If no aliases for the name c have been declared then c is returned otherwise the most recent alias s associated with a type τ' which can be instantiated to τ is returned.

```
val get_binders : string -> string list;
```

Description $get_binders thy$ returns the list of identifiers which have been declared as binders in the theory thy.

Errors

20601 There is no theory called ?0

```
val \ \mathbf{get\_const\_info} : string \rightarrow (TYPE * ((string * TYPE)list)) \ OPT;
```

Description $get_const_info\ a$ returns the information, (τ, cs) , associated with the name a used as a constant name or an alias for a constant, if any. cs is the list of names and types of constants to which a might refer (as an alias or as the actual constant name). τ is the type to use for this name during type inference, namely, the antiunifier of the types in cs.

```
val get_const_language : string -> string list;
```

Description $get_const_language\ s$ returns the language indicators associated with the name s when used as a constant in the current context. If there is no constant called s, then $get_const_language\ s$ returns the language indicator associated with the current theory. The language indicator is "HOL" for all identifiers supplied as part of the ICL HOL system. The head element of the list returned is the language indicator associated with the constant's declaring theory.

```
val get_current_language : unit -> string;
```

Description $get_current_language$ () returns the language indicator associated with the current theory.

```
val get_current_terminators : unit -> string list list;
```

Description $get_current_terminators()$ returns the list of identifiers which have been declared as terminators in the current context using $new_terminator$. The names are returned in exploded form, i.e. as a list of strings each containing one character.

```
val get_fixity : string -> Lex.FIXITY;
```

Description $get_-fixity s$ returns the syntactic status of s in the current context.

val get_language : string -> string;

Description get_language thy returns the language indicator associated with the theory thy.

Errors

20601 There is no theory called ?0

val get_left_infixes : string -> (int * string) list; val get_right_infixes : string -> (int * string) list;

Description get_left_infixes thy (resp. get_right_infixes thy) returns the list of identifiers (and associated precedences) which have been declared as left (resp. right) associative infix operators in the theory thy.

Errors

20601 There is no theory called ?0

SML

val **get_nonfixes** : string -> string list;

Description get_nonfixes thy returns the list of identifiers which are declared as binder, infix, prefix or postfix in an ancestor of the theory thy, but have had that special status suppressed (using declare_nonfix) in the theory thy itself.

Errors

20601 There is no theory called ?0

 $val \ \mathbf{get_postfixes} : string \ -> (int * string) \ list;$

Description get_postfixes thy returns the list of identifiers (and associated precedences) which have been declared as postfix operators in the theory thy.

Errors

20601 There is no theory called ?0

 $|val\ \mathbf{get_prefixes}: string \rightarrow (int * string) \ list;$

Description get_prefixes thy returns the list of identifiers (and associated precedences) which have been declared as prefix operators in the theory thy.

Errors

20601 There is no theory called ?0

 $_{\mathrm{SML}}$

val **get_terminators**: string -> string list;

Description get_terminators thy returns the list of identifiers which have been declared as terminators in the theory thy.

Errors

20601 There is no theory called ?0

SML

val get_type_abbrev : string -> (string list * TYPE);

Description $get_type_abbrev s$ returns the formal argument list and type associated with the type abbreviation s.

Errors

20404 The identifier ?0 is not declared as a type abbreviation

```
val\ \mathbf{get\_type\_abbrevs}: string\ ->\ (string\ *\ (string\ list\ *\ TYPE)) list;
```

Description get_type_abbrevs thy returns information about the type abbreviation declarations which have been made in the theory thy. The return value is a list of pairs. Each pair contains the name of the corresponding type abbreviation together with its formal arguments and the type for which it is an abbreviation.

Errors

20601 There is no theory called ?0

```
val \ \mathbf{get\_type\_info} : string \ -> (int * (string \ list * TYPE) \ OPT) \ OPT;
```

Description get_type_infos returns the type information, if any, associated with s. See DS/FMU/IED/DTD020 for more information.

```
val get_undeclared_terminators : string -> string list;
```

Description get_undeclared_terminators thy returns the list of identifiers whose status as terminators has been suppressed (with undeclare_terminator) in the theory thy.

Errors

20601 There is no theory called ?0

```
val get_undeclared_type_abbrevs : string -> string list;
```

Description get_undeclared_type_abbrevs thy returns the list of identifiers which have had their status as type abbreviations suppressed in the theory thy.

Errors

20601 There is no theory called ?0

```
val \ \mathbf{get\_undeclared\_aliases} : string \rightarrow (string * TERM) \ list;
```

Description get_undeclared_aliases thy returns information about aliases which have been suppressed (with undeclare_alias) in the theory thy. The return value is a list of pairs. Each pair contains a name and a constant for which that name is no longer to be used as an alias. There may be more than one entry for a given name in the list (since several undeclare_alias commands may apply to one name).

Errors

20601 There is no theory called ?0

```
| val is_type_abbrev : string -> bool;
```

Description $is_type_abbrev\ s$ returns true iff. s is declared as a type abbreviation

```
val \ \mathbf{resolve\_alias} : (string * TYPE) -> TERM;
```

Description $resolve_alias(s,\tau)$ returns a term of the form $mk_const(c,\tau)$ where c is the "best' resolution for the identifier s. This best resolution will be s if s has been introduced as a constant of type τ' where τ' is an instance of τ . If s is an alias then c is taken from the alias declaration for s in which the aliased constant has a type τ' which can be instantiated to τ . If more than one such declaration is applicable the most recent one is used.

```
Errors
```

20304 The identifier ?0 is not a valid constant name (or alias) at this type

```
val restore\_defaults : unit -> unit;
```

Description restore_defaults() may be used to clear corrupted symbol table information in the current theory. It does this by restoring the theory to the state it would have if no terminator, fixity, alias, type abbreviations or language declarations had been performed. A warning message is issued (and the interactive user is prompted as to whether to continue) before the operation is performed.

Errors

20703 This operation will delete all symbol table information from theory ?0

```
val set_current_language : string -> unit;
```

Description $set_current_language s$ sets the language indicator associated with the current theory to s.

```
val \ \mathbf{undeclare\_alias} : (string * TERM) \rightarrow unit;
```

Description $undeclare_alias(s, c)$ reverses the effect of a declaration of s as an alias for the constant c in the current context. This includes the possibility that s is the name of c itself.

The precise effect depends on the theory in which the alias was declared: if it was declared in the current theory, then the declaration is just removed (so that if s is declared as an alias for c in an ancestor theory, s will still act as an alias for c in the current theory); if in an ancestor theory then arrangements are made in the current theory to prevent s acting as an alias for c.

If s is the name of c itself, the type inferrer will no longer recognise s as a reference to c. In this case, c may be accessed either via an alias or via an ML quotation. This gives a work-around for the potential problem when a theory contains a constant whose name is needed as a variable name in some application using the theory.

```
Errors
| 20301 The term ?0 is not a constant
| 20303 The identifier ?0 is not declared as an alias for ?1
```

```
\begin{vmatrix} val & val & undeclare\_terminator : string & -> unit \end{vmatrix}
```

Description $undeclare_terminator s$ removes s from the list of identifiers which act as terminators for parsing purposes in the current context.

Errors

20103 ?0 is not in the list of terminators in the current context

```
val undeclare_type_abbrev : string -> unit;
```

Description $undeclare_type_abbrev\left(s, [\alpha_1, \ldots, \alpha_k], \tau\right)$ reverses the effect of a declaration of s as a type abbreviation.

The precise effect depends on the theory in which the type abbreviation was declared: if it was declared in the current theory, then the declaration is just removed (so that if s is declared as a type abbreviation in an ancestor theory, s will revert to whatever that declaration said); if in an ancestor theory then arrangements are made in the current theory to prevent s being treated as a type abbreviation.

Errors

20403 The identifier ?0 is not declared as a type abbreviation

6.3 The Kernel Interface

```
|signature | KernelInterface = sig
```

Description This is the signature of the structure that gives the standard interface to the logical kernel. This interface adds a layer of additional services to the kernel functionality. E.g., it is used to notify the parser and type-inferrer so that they operate correctly when the current theory changes. The functions in the structure *KernrlInterface* should always be used in preference to direct use of the functions in the structure *pp'Kernel* except in coding extensions to the system that need to bypass these services.

```
Errors
| 6013 ?0 is ill-formed in current theory: type name ?1 is not declared
| 6014 ?0 is ill-formed in current theory: type name ?1 does not have arity used
| 6015 ?0 is ill-formed in current theory: constant name ?1 not declared
| 6038 ?0 is ill-formed in current theory: constant name ?1 cannot have type used
```

The above are error messages various kinds of well-formedness check failures. A well-formedness check occurs on any types, terms and theorems saved in a theory, and thus these errors may occur for any function in this signature which saves types, terms or theorems in a theory.

```
datatype KERNEL_INFERENCE =
            KISubstRule of (THM * TERM) list * TERM * THM * THM
            KISimple \lambda EqRule of TERM * THM * THM
            KIInstTypeRule of (TYPE * TYPE) list * THM * THM
            KI \Rightarrow Intro \ of \ TERM * THM * THM
            KI \Rightarrow Elim \ of \ THM * THM * THM
            KIAsmRule of TERM * THM
            KIReflConv of TERM * THM
            KISimple\betaConv of TERM * THM
            KISucConv of TERM * THM
            KIStringConv \ of \ TERM * THM
            KICharConv of TERM * THM
            KIEqSymRule of THM * THM
            KIListSimple \forall Elim \ of \ TERM \ list * THM * THM
            KIEqTransRule of THM * THM * THM
            KIMkAppRule of THM * THM * THM
            KI \Leftrightarrow MPRule \ of \ THM * THM * THM
            KISimple\forallIntro of TERM * THM * THM
            KIInstTermRule of (TERM * TERM) list * THM * THM
            KIPlusConv of TERM * THM;
```

Description The call $on_kernel_inference f$ registers the function f to be called whenever a kernel inference rule is called successfully. Several functions may be registered and they will be called in order of registration.

 $|val \ \mathbf{on_kernel_inference} : (KERNEL_INFERENCE -> unit) -> unit;$

A value of type *KERNEL_INFERENCE* is passed to represent the instance of the rule that has been called. The tuple forming the argument to each constructor of the type gives the arguments and result of the corresponding rule.

```
(* compactification_mask : integer control: default: compiler-dependent *)

val get_compactification_cache : unit -> TYPE list;

val set_compactification_cache : TYPE list -> unit;

val clear_compactification_cache : unit -> unit;
```

Description These functions and associated control value support compactification of objects stored in the theory database.

set_compactification_cache and get_compactification_cache may be used at the beginning and end of a ProofPower session to preserve the contents of the cache of type information which is used to implement compactification. Internally, the cache is held as a rather more complex, and much larger, data structure than a simple list of types and so clear_compactification_cache is used automatically to empty the cache at the end of a session, thereby avoiding saving the data structure in the database file. Restoring the cache from the list returned by get_compactification_cache using set_compactification_cache is time-consuming and is not done automatically; however, doing this using, e.g., the following lines of ML, may improve the space-saving in applications which are built up in several sessions:

```
SML Example - End of Every Session

| val saved_compactification_cache = get_compactification_cache();

SML Example - Beginning of Second and Later Sessions

| set_compactification_cache saved_compactification_cache;
```

ML functions which compute terms can often be coded so as to produce terms in which common subterms are shared. The compactification algorithm may actually increase the space occupied by such terms. Producers of such functions may therefore wish to suppress the compactification when the computed terms are stored in the theory database.

 $compactification_mask$ is an integer control which is treated as a bit-mask and may used to suppress selected aspects of the compactification algorithm. The default value of θ should be correct for most normal specification and proof work. The significance of the bits in the mask is as follows:

1	Suppress compactification in new_axiom
2	Suppress compactification in new_const
4	Suppress compactification in new_type_defn
8	Suppress compactification in new_spec
16	Suppress compactification in save_thm
32	Suppress compactification in $simple_new_defn$

So, for example, if the mask is set to 47 = 1 + 2 + 4 + 8 + 32, then compactification will only be performed when $save_thm$ is called. The default value depends on the Standard ML compiler: 63 (i.e., no compactification) for Poly/ML and 0 (i.e., full compactification) for Standard ML of New Jersey.

```
datatype \ \mathbf{KERNEL\_STATE\_CHANGE}
                   OpenTheory of string * ((string list) * (string list))
                   DeleteTheory of string
                   NewTheory of string
                   NewParent of string * (string list)
                   LockTheory of string
                   UnlockTheory of string
                   DuplicateTheory of string * string
                   SaveThm of string * THM
                   ListSaveThm of string list * THM
                   DeleteConst of TERM
                   DeleteType of string
                   DeleteAxiom of string
                   DeleteThm of string
                   NewAxiom of (string\ list * TERM)*THM
                   NewConst of string * TYPE
                   NewType of string * int
                   SimpleNewDefn of (string\ list*string*TERM)*THM
                   NewTypeDefn of (string\ list*string*(string\ list)*THM)*THM
                   NewSpec of (string\ list*int*THM)*THM
                   SetUserDatum of string * USER\_DATUM;
```

Description This is an encoding of the arguments of the functions of signature KernelInterface which change the state of the theory database. When used to notify the system of a change that has been made certain additional information is also included. If used to notify the system before a change is made the slots will be given "null" default values ("", [], $asm_rule\ mk_t$).

Operation	Value	Description
$open_theory$	(thy, (inthys, outthys))	thy names the theory which has been
		opened. <i>inthys</i> names the theories which
		have come into scope. <i>outthys</i> names the
		theories which have gone out of scope.
new_parent	(thy, inthys)	thy names the new parent theory. inthys
		names the theories which have come into
		scope.
SimpleNewDefn	(arg, thm)	arg gives the argument to the operation.
NewTypeDefn		thm is the new defining theorem.
NewSpec		
NewAxiom		

SEE ALSO on_kernel_state_change, before_kernel_state_change

```
| type CHECKPOINT;
| val checkpoint : string -> CHECKPOINT;
| val rollback : CHECKPOINT -> unit;
```

Description This opaque type and its associated functions implement a system for checkpointing and restoring the state of the theory hierarchy. It is intended primarily for programmatic use in applications that may need to undo multiple extensions to the logical contents of the theory and changes to user data. The check-pointing scheme is unable to keep track of theories, theorems, definitions etc. that have been deleted. Applications that may delete such objects must make their own arrangements for restoring the deleted objects.

The parameter to *checkpoint* is a theory name. The checkpoint returned contains the information required by *rollback* to roll the indicated theory and all its descendants back to the state it had when the checkpoint was taken. The theory becomes the current theory after the rollback.

Rolling back is done using *delete_const* etc. and so rolling back the state of definitions and axioms is restricted to changes made in theories which did not have children when the checkpoint was taken. For uniformity, *rollback* does not attempt to restore the state of the theorems and the user data in theories which had children when the checkpoint was taken. A theory that has been introduced and has become a parent of a theory that existed when the checkpoint was taken will not be deleted (otherwise the child theory would also have to be deleted).

Messages 12015 to 12017 are reported by rollback as comments. In general, rollback will just report on the problem and continue trying to restore other theories. For example, if rollback is unable to delete a theory, it continues to attempt to restore the state of the definitions, etc. in the theories that are to be retained. This is an unlikely situation, since rollback unlocks a theory if necessary before trying to delete it, so it will only happen if the application using rollback has created a new theory hierarchy and a theory to be deleted has obtained ancestor status. Message 12020 is reported by rollback as a failure.

```
Errors

| 12015 it was not possible to delete theory ?0

| 12016 the theory ?0 has been deleted since the checkpoint was taken; this change cannot be rolled back

| 12017 a failure was reported while trying to restore theory ?0 (?1)

| 12020 the theory ?0 has been deleted since this checkpoint was taken and a new theory of the same name has been created. Rolling back to this checkpoint is not possible.
```

```
 \begin{vmatrix} val = | -: THM * THM -> bool; \\ val \sim = | -: THM * THM -> bool; \\ val = \# : SEQ * SEQ -> bool; \\ val \sim = \# : SEQ * SEQ -> bool;
```

Description =|- provides a strict equality test on the conclusion and assumptions of theorems, $\sim =|-$ provides an equality test on the conclusion and assumptions of theorems up to α -convertibility and order of assumptions. =# provides a strict equality test on sequents, $\sim =\#$ provides an equality test on the sequents up to α -convertibility and order of assumptions.

```
| val asms : THM -> TERM list;

Description This returns the assumptions(hypotheses) of a theorem.

See Also dest_thm
```

```
|val| before_kernel_state_change : (KERNEL\_STATE\_CHANGE -> unit) -> unit
```

Description before_kernel_state_change f nominates f to be called before the theory database is to be modified by functions from the signature KernelInterface. The argument to f encodes the operation which caused the modification together with its arguments and certain other additional information (usually sets to null defaults for this function). A list of such functions is maintained, and the new function is put at the end of the list, which means it may, if desired undo or overwrite the effects of a function nominated by an earlier call of $before_kernel_state_change$.

Functions handled by $before_kernel_state_change$ might be used to raise errors to prevent the state change occurring. This will prevent further checks or actions being made. Thus a careful choice between $before_$ or $on_$ is called for.

See Also KERNEL_STATE_CHANGE, on_kernel_state_change

```
val compact_type : TYPE -> TYPE;
val compact_term : TERM -> TERM;
val compact_thm : THM -> THM;
```

Description These functions compactify type, term and theorem values, currently by commoning up type information so that only one ML instance of any type is used in the compactified value. Depending on the value of the integer control variable *compactification_mask*, q.v., these interfaces are invoked automatically as values are stored in the theory database.

The $compactify_{\mathcal{X}}\mathcal{X}\mathcal{X}$ interfaces act as identify functions: $compactify_{\mathcal{X}}\mathcal{X}\mathcal{X}$ x returns a value which is equal to x (in the sense of =:, = \$ or = |- as appropriate), but which usually occupies significantly less space than x.

```
| val concl : THM -> TERM;

| Description | This returns the conclusion of a theorem.

| See Also | dest_thm |
```

```
\begin{vmatrix} val & \mathbf{delete\_axiom} : string \rightarrow unit \end{vmatrix}
```

Description delete_axiom key deletes the axiom stored under key key and any other object which depends on it from the current theory. If any objects do depend on the axiom, the interactive user will be notified and asked whether to proceed with the deletion.

After the deletion any theorems which have been proven since the introduction of the axiom will no longer be usable for further proof.

Note that the deletion will attempt to delete all necessary theorems before deleting constants, types, and axioms in single steps, and thus may fail with a partially modified theory. This is because checks in the interface may not be as definitive as those of the kernel. The "on kernel state change" functions will be notified as if all necessary single step deletions, of theorems, constants, types and axioms to achieve the goal had been done, but after all the actual changes have been made. The "before kernel state change" functions will be notified of all the changes, as if single steps, before any are made.

```
6037 Theory ?0 is locked
6071 Theory ?0 is a read—only ancestor
6076 Theory ?0 has child theories
12003 Theory ?0 does not contain an axiom under key ?1
12012 Deletion of ?0 would require the deletion of ?1
```

```
\begin{vmatrix} val & \mathbf{delete\_const} : TERM -> unit \end{vmatrix}
```

Description $delete_const c$ deletes the constant c (or the constant with the same type, up to renaming of type variables) and any other object which depends on c from the current theory. If c is the application of a constant to some arguments then that constant is the one deleted. If any saved objects other than c and its defining theorem do depend on c, the interactive user will be notified and asked whether to proceed with the deletion.

After the deletion any theorems which have been proven since the definition of c will no longer be usable for further proof.

Note that the deletion will attempt to delete all necessary theorems before deleting constants, types, and axioms in single steps, and thus may fail with a partially modified theory. This is because checks in the interface may not be as definitive as those of the kernel. The "on kernel state change" functions will be notified as if all necessary single step deletions, of theorems, constants, types and axioms to achieve the goal had been done, but after all the actual changes have been made. The "before kernel state change" functions will be notified of all the changes, as if single steps, before any are made.

```
6037 Theory ?0 is locked
6071 Theory ?0 is a read—only ancestor
6076 Theory ?0 has child theories
12001 Theory ?0 does not contain the constant ?1 with the supplied type
12012 Deletion of ?0 would require the deletion of ?1
12014 ?0 is not a constant or a constant applied to some arguments
```

```
|val|  delete_theory : string \rightarrow unit;
```

Description delete_theory thy removes the theory thy from the theory database. This means, for instance, that all theorems that were proven with the deleted theory as the current theory, and all constants and types declared within the theory, will become out of scope.

```
12035 Theory ?0 is not present in the current hierarchy
6037 Theory ?0 is locked
6069 Theory ?0 is in scope
6071 Theory ?0 is a read—only ancestor
6076 Theory ?0 has child theories
```

```
| val delete_thm: string -> THM;

| Description | delete_thm key | deletes the theorem stored under key | key | from the current theory.

| It returns the deleted theorem.

| Errors | 6037 | Theory ?0 | is locked | 6046 | Key ?0 | is not used | for a theorem in theory ?1 | 6071 | Theory ?0 | is a read-only | ancestor
```

```
| val delete_to_level :
| {do_warn : bool,
| caller : string,
| target : string,
| level : int} -> (string * int) list * (string * TYPE) list;
| val thm_level : THM -> int;
```

Description delete_to_level deletes constants, types and axioms (and any theorems that may depend on them) down to a specified level number. do_warn specifies whether or not the user should be warned before doing this. caller is the name of the calling function for use in error messages. target is the name of the target being deleted for use in the warning message. level is the level of the constant, type or axiom which is the target to be deleted. The returned value comprises the lists of types and constants that have been deleted (with their arities and types).

The level numbers for constants and types may be retrieved using the data structure returned by qet_theory . thm_level returns the level number associated with a theorem or axiom.

```
\begin{vmatrix} val & \mathbf{delete\_type} : string -> unit \end{vmatrix}
```

Description delete_type t deletes the type constructor t and any other object which depends on t from the current theory. If any objects other than t and its defining theorem do depend on t, the interactive user will be notified and asked whether to proceed with the deletion.

After the deletion ny theorems which have been proven since the definition of ty will no longer be usable for further proof.

Note that the deletion will attempt to delete all necessary theorems before deleting constants, types, and axioms in single steps, and thus may fail with a partially modified theory. This is because checks in the interface may not be as definitive as those of the kernel. The "on kernel state change" functions will be notified as if all necessary single step deletions, of theorems, constants, types and axioms to achieve the goal had been done, but after all the actual changes have been made. The "before kernel state change" functions will be notified of all the changes, as if single steps, before any are made.

```
Errors
| 6037 | Theory ?0 is locked
| 6071 | Theory ?0 is a read—only ancestor
| 6076 | Theory ?0 has child theories
| 12002 | Theory ?0 does not contain the type constructor ?1
| 12012 | Deletion of ?0 would require the deletion of ?1
```

```
|val|  dest_thm : THM -> SEQ;
```

Description This returns the representation of a theorem as a sequent, i.e. as a list of assumptions and a conclusion.

See Also asms, concl

```
\begin{vmatrix} val & \mathbf{do_{-in_-theory}} : string -> ('a -> 'b) -> 'a -> 'b; \end{vmatrix}
```

Description $do_in_theory thy f a$ will change to the named theory thy, apply f to a, and return to the theory in which it was called. It will not notify the kernel state change functions (e.g. $on_kernel_state_change$) when it changes to the named theory, nor will it notify them on its return. Thus for instance the symbol table mechanism, and so term parsing, will behave as if no theory change had taken place before the application of f to a. This refusal to notify causes this function to be faster than the appropriate two uses of $open_theory$.

The function prevents the application of f from once more changing the current theory to another, or functions that may delete the original theory. The block will provoke error 12011. These functions are:

```
open_theory new_theory delete_theory
```

It will also discard any changes made by $before_kernel_state_change$ during the application of f at its end.

The function will intercept any exceptions (including keyboard interrupts), and will attempt to remove the block on changing the current theory, and then return to the original theory. However, in certain circumstances (such as multiple keyboard interrupts, or use of pp' functions) the exception handler itself may be interrupted or be otherwise unable to complete its work. In these cases $open_theory$ must be used by hand to notify the proof system of the correct theory and its context. If this raises the error 12011 then repeat the use of $open_theory$, as each raising of the error involves the removal of one block put in place by do_in_theory before the message is generated.

```
Errors
```

- 12011 Blocked from changing the current theory.

 This particular block has now been removed.

 Exceptionally, further blocks, giving the same
 error message, may still be in place. These blocks
 should be cleared now by repeatedly trying open_theory
 until this error message is not provoked
- 12013 An internal error has corrupted the current theory data. Immediately make a call of open_theory to clear this internal error
- 12203 The kernel interface tables were in an inconsistent state.

 The tables are now being rebuilt.

```
|val|  duplicate_theory : (string * string) -> unit;
```

Description duplicate_theory oldthy newthy creates a new theory, called newthy with the same contents and parents as oldthy, but without any children. The current theory remains unchanged.

Uses To allow the user to modify and experiment with a theory that has child theories that are not involved in the experiment, and would perhaps clash with the experiment.

```
Errors

| 6026 | Theory ?0 may not be duplicated (it must always be in the scope of any opened theory)
| 6042 | Theory ?0 may not be duplicated (the duplicate would not be a descendant of ?1)
| 12035 | Theory ?0 is not present in the current hierarchy
| 6040 | Theory ?0 is already present in current theory hierarchy
```

To ensure that the duplicate theory can be opened by open_theory (q.v.) the system will prevent the duplication of theories which would give rise to error 6017 of open_theory if opened, and attempts to create such duplicates will give rise to error 6026 or 6042.

```
| val get_ancestors : string -> string list;
```

Description This returns all the ancestors of the named theory, including the theory itself. The named theory is the last name in the list returned. The name of the parent first added to the named theory is next to last, preceded by its ancestors. All these are preceded by the second parent theory and its ancestors, apart from those already added. These are preceded by any unnoted ancestors of the third, fourth, etc parents of the named theory. The order in the list of the ancestors of the parent theories is determined recursively by this ordering.

Errors

12035 Theory ?0 is not present in the current hierarchy

```
| val get_axioms : string -> (string list * THM) list;
| val get_axiom_dict : string -> THM OE_DICT;
```

Description *get_axioms* returns all the axioms stored in the indicated theory together with the keys under which they are stored.

 get_axiom_dict returns the mapping of keys to axioms represented as an order-preserving efficient dictionary.

Errors

12035 Theory ?0 is not present in the current hierarchy

```
|val \ \mathbf{get\_axiom} : string \ -> \ string \ -> \ THM;
```

Description get_axiom theory key returns the axiom with key key, found in theory theory.

To improve performance, this function uses a cache containing the values of previous calls. This cache is rebuilt when *open_theory* is called, by removing entries that have gone out of scope. Opening a theory such as *basic_hol* that is low down in the theory hierarchy will reclaim the memory occupied by the cache.

```
Errors
| 12035 Theory ?0 is not present in the current hierarchy
| 12005 Theory ?0 does not have an axiom with key ?1
| 12010 Theory ?0 is not in scope
```

SML

 $|val \ \mathbf{get_children} : string \ -> string \ list;$

Description This returns the immediate children of the named theory, (not including the theory itself).

Errors

12035 Theory ?0 is not present in the current hierarchy

SMI

|val get_consts : string -> TERM list;

Description This returns (most general instances of) all the constants stored in a theory.

Errors

12035 Theory ?0 is not present in the current hierarchy

SMI

 $|val\ \mathbf{get_const_keys}: string \rightarrow E_KEY\ list;$

Description This returns the efficient dictionary keys that represent the names of the constants stored in a theory.

Errors

12035 Theory ?0 is not present in the current hierarchy

SMI

val **get_const_theory** : *string* -> *string*;

Description $get_const_theory\ c$ returns the name of the theory in which the constant c is defined.

Errors

| 12201 There is no constant called ?0 in the current context

SMI

 $|val \ \mathbf{get_const_type} : string \rightarrow TYPE \ OPT;$

Description If a constant with the given name is in scope, then its type is returned, otherwise *Nil*.

Uses This is likely to be often used just as a rapid test for a constant being in scope.

See Also get_const_info

SML

|val| **get_current_theory_name** : $unit \rightarrow string$;

Description Returns the name of the current theory.

SML

|val get_current_theory_status : unit -> THEORY_STATUS;

Description This returns the current theory's status.

```
| val get_defns : string -> (string list * THM) list;
| val get_defn_dict : string -> THM OE_DICT;
```

Description get_defns returns all the defining theorems stored in the indicated theory together with the keys under which they are stored.

 get_defn_dict returns the mapping of keys to defining theorems represented as an order-preserving efficient dictionary.

Errors

12035 Theory ?0 is not present in the current hierarchy

```
\begin{vmatrix} val \ \mathbf{get\_defn} : strinq -> strinq -> THM; \end{vmatrix}
```

Description get_defn theory key returns the definition with key key, found in theory theory.

To improve performance, this function uses a cache containing the values of previous calls. This cache is rebuilt when *open_theory* is called, by removing entries that have gone out of scope. Opening a theory such as *basic_hol* that is low down in the theory hierarchy will reclaim the memory occupied by the cache.

```
Errors
```

```
12035 Theory ?0 is not present in the current hierarchy
12004 Theory ?0 does not have a definition with key ?1
12010 Theory ?0 is not in scope
```

```
|val| get_descendants : string \rightarrow string list;
```

Description This returns all the descendants of the named theory, including itself.

Errors

12035 Theory ?0 is not present in the current hierarchy

```
|val| get_parents : string \rightarrow string list:
```

Description This returns the immediate parents of the named theory, (not including the theory itself).

Errors

12035 Theory ?0 is not present in the current hierarchy

```
| val get_theory_names : unit -> string list;
| val theory_names : unit -> string list;
```

Description These return the list of undeleted theories in the current hierarchy, whether in scope or not. *theory_names* is an alias for *get_theory_names*.

```
\begin{vmatrix} val \ \mathbf{get\_theory\_status} : string -> THEORY\_STATUS; \end{vmatrix}
```

Description This returns the status of the indicated theory.

Errors

12035 Theory ?0 is not present in the current hierarchy

```
| val get_theory : string -> THEORY;
| val get_theory_info : string -> THEORY_INFO;
```

Description These functions return the data structures associated with a theory in the logical kernel.

Errors

| 12035 Theory ?0 is not present in the current hierarchy

```
|val get_thms : string -> (string list * THM) list;
|val get_thm_dict : string -> THM OE_DICT;
```

Description *get_thms* returns all the theorems stored in the indicated theory together with the keys under which they are stored.

 get_thm_dict returns the mapping of keys to theorems represented as an order-preserving efficient dictionary.

Errors

| 12035 Theory ?0 is not present in the current hierarchy

```
|val \ \mathbf{get\_thm} : string \ -> string \ -> THM;
```

Description get_thm theory key returns the theorem with key key, found in theory theory.

To improve performance, this function uses a cache containing the values of previous calls. This cache is rebuilt when *open_theory* is called, by removing entries that have gone out of scope. Opening a theory such as *basic_hol* that is low down in the theory hierarchy will reclaim the memory occupied by the cache.

```
Errors
```

```
12035 Theory ?0 is not present in the current hierarchy
12006 Theory ?0 does not have a theorem with key ?1
12010 Theory ?0 is not in scope
```

```
val \ \mathbf{get\_types} : string \rightarrow TYPE \ list;
```

Description This returns (canonical applications of) all the type constructors stored on a theory.

Errors

12035 Theory ?0 is not present in the current hierarchy

```
|val| get_type_arity : string \rightarrow int OPT;
```

Description If a type with the given name is in scope, then its arity is returned, otherwise Nil.

Uses This is likely to be often used just as a rapid test for a type being in scope.

See Also qet_type_info

```
|val| get_type_keys : string \rightarrow E_KEY list;
```

Description This returns the efficient dictionary keys that represent the names of the type constructors stored in a theory.

```
Errors
```

12035 Theory ?0 is not present in the current hierarchy

```
val get_type_theory : string -> string;
```

Description get_type_theory ty returns the name of the theory in which the type constructor ty is defined.

Errors

12202 There is no type constructor called ?0 in the current context

```
| val get_user_datum: string -> string -> USER_DATUM;

Description get_user_datum thy key returns the value stored in the user data slot allocated to key in the theory thy, if any.

| 12035 Theory ?0 is not present in the current hierarchy | 12009 No user data stored under key ?0 in theory ?1
```

```
|val | is_theory_ancestor : string \rightarrow string \rightarrow bool;
```

Description $is_theory_ancestor\ thy1\ thy2$ returns true if thy1 is an ancestor of thy2 within the current hierarchy.

Errors

| 12035 Theory ?0 is not present in the current hierarchy

This failure arises if either theory name is not present in the current hierarchy.

```
val \ \mathbf{kernel\_interface\_diagnostics} : bool \ -> \{
clean\_flag : bool,
const\_thys : int \ list \ E\_DICT \ list,
type\_thys : int \ list \ E\_DICT \ list,
int\_thy\_names : int \ E\_DICT,
in\_scope : int \ list\};
```

Description This function can be used to examine and optionally reset internal state used by the kernel interface module. It is intended for diagnostic purposes. If the argument is *false*, it just returns a representation of the state; if *true*, it also sets the internal state so that the next call on any operation such as *get_const_theory* will cause the state to be recalculated.

```
|val| list_save_thm : (string \ list * THM) -> THM
```

Description $list_save_thm(keys, thm)$ causes thm to be save under the keys keys in the current theory. The saved theorem is returned as the function's result. If there is a conjecture stored under any of the keys in the current theory, the theorem must prove each such conjecture, i.e., its conclusion must be the same as the conjecture and it must have an empty assumption list.

See Also new_conjecture, is_proved_conjecture

```
| val lock_theory : string -> unit;

| Description lock_theory thy causes thy to be locked. The contents of a locked theory are protected from further changes. A locked theory may be unlocked using unlock_theory(q.v.).

| Errors | 12035 | Theory ?0 is not present in the current hierarchy | 6037 | Theory ?0 is locked | 6071 | Theory ?0 is a read-only ancestor
```

```
| val new_const : (string * TYPE) -> TERM;

| Description new_const (name, type) introduces a new constant (with no defining theorem) called name, with most general type type, into the current theory.

| Errors | 6037 Theory ?0 is locked | 6049 There is a constant called ?0 already in scope | 6063 There is a constant called ?0 in the descendants of the current theory | 6071 Theory ?0 is a read-only ancestor
```

```
| val new_parent : string -> unit;
```

Description Adds the given parent theory to the list of parents of the current theory, considered as a set. It will fail if the parent theory does not exist; is already a parent of the current theory; or if making it a parent would cause a clash by bringing a new theory into scope (perhaps the new parent itself) that declares a new type or constant that is already in scope, or is declared in the descendants of the current theory.

```
12035 Theory ?0 is not present in the current hierarchy
6037 Theory ?0 is locked
6067 Making ?0 a parent would cause a clash
6071 Theory ?0 is a read—only ancestor
6082 Theory ?0 is already a parent
6084 Suggested parent ?0 is a child of the current theory
```

```
|val \text{ new\_spec}: (string \ list * int * THM) \rightarrow THM;
```

Description new_spec (keylist, ndef, ' $\vdash \exists x_1, \ldots, x_n \bullet p[x_1, \ldots, x_n]'$) will introduce ndef new constants named and typed from the x_i . It will also save a defining theorem under each of the keys in keylist in the current theory of the form ' $\vdash p[c_1, \ldots, c_n]$ ' where c_i is the constant with the name and type of x_i . If either the constant or theorem introduction fails then the function will not change the current theory.

```
6016
       Existentially bound variable ?0 is repeated in theorem ?1
6031
       Key list may not be empty
6037
       Theory ?0 is locked
6044
       Must define at least one constant
6049
       There is a constant called ?0 already in scope
6051
       Key ?0 has already been used for a definition in theory ?1
6053
       ?0 must not have assumptions
6056
      ?0 is a free variable in ?1
       ?0 are free variables in ?1
6062
       ?0 is not of the form: '\vdash \exists x1 \dots xn \bullet p[x1,...,xn]'
6060
       where the \lceil xi \rceil are variables, and n(=?1) is the number of
       constants to be defined
6061
       the body of ?0 contains type variables not found in type
       of constants to be defined, the variables being: ?1
       There is a constant called ?0 in the descendants of the
6063
       current theory
6071
       Theory ?0 is a read-only ancestor
6081
       Sets of type variables in ?0 and ?1 differ
```

```
|val\ \mathbf{new\_theory}: string \rightarrow unit;
```

Description $new_theory thy$ adds a new, empty, theory called thy to the theory database. The empty theory has no declarations within it, but does have the current theory as its sole parent. The new theory then becomes the current theory.

Errors

6040 Theory ?0 is already present in current theory hierarchy

```
| val new_type_defn:
| (string list * string * string list * THM) -> THM;
```

Description new_type_defn (keys, name, typars, defthm) declares a new type with name name, and arity the length of typars. It creates a defining theorem for the type, saves it in the current theory under the keys keys. It returns the defining theorem. defthm must be a valid well-formed theorem of the form:

```
\vdash \exists x : type \bullet p x
```

with no assumptions. The defining theorem will then be of the form:

```
 |\vdash \exists \ f : typars \ name \rightarrow type \bullet 
 TypeDefn \ (p: type \rightarrow BOOL) \ f
```

where TypeDefn asserts that its predicate argument p is non-empty, and its function argument f is a bijection between the new type and the subset of type delineated by p.

```
Key list may not be empty
6031
6034
        There is a type called ?0 in the descendants of the current theory
6037
        Theory ?0 is locked
       There is a type called ?0 already in scope
6045
6052
        Key ?0 has already been used for an type definition theorem in theory ?1
6053
       ?0 must not have assumptions
6054
       ?0 is not of the form: '\vdash \exists x \bullet px'
       ?0 is not of the form: '\vdash \exists x \bullet p y' where \ulcorner x \urcorner is a variable
6055
6056
       ?0 is a free variable in ?1
6062
       ?0 are free variables in ?1
6057
       ?0 contains type variables not found in type variable parameter list,
        type variables being: ?1
        Theory ?0 is a read-only ancestor
6071
6079
       ?0 repeated in type parameter list
6080
       ?0 is not of the form: '\vdash \exists x \bullet p y' where \ulcorner x \urcorner equals \ulcorner y \urcorner
```

```
\begin{vmatrix} val & \mathbf{new\_type} : (string * int) -> TYPE; \end{vmatrix}
```

Description new_type (name, arity) introduces a new type constructor (with no defining theorem) called name with arity arity into the current theory. The function returns the new type with sufficient arguments '1,'2,... to provide a well-formed type.

```
Errors 6034 There is a type called ?0 in the descendants of the current theory 6037 Theory ?0 is locked 6045 There is a type called ?0 already in scope 6071 Theory ?0 is a read—only ancestor 6088 The arity of a type must be \geq 0
```

```
\begin{vmatrix} val & \mathbf{on_kernel\_state\_change} \end{vmatrix} : (\mathit{KERNEL\_STATE\_CHANGE} \rightarrow \mathit{unit}) \rightarrow \mathit{unit}
```

Description $on_kernel_state_change f$ nominates f to be called whenever the theory database is modified by a function from the signature KernelInterface. The argument to f encodes the operation which caused the modification together with its arguments and certain other additional information. A list of such functions is maintained, and the new function is put at the end of the list, which means it may, if desired undo or overwrite the effects of a function nominated by an earlier call of $on_kernel_state_change$.

Functions handled by $on_kernel_state_change$ should not be coded to raise errors that are not handled by themselves, as the handler will not catch such errors either. If the function is to prevent a change from happening $before_kernel_state_change$ should be used instead.

See Also KERNEL_STATE_CHANGE, before_kernel_state_change

```
|val|  open_theory : string -> unit;
```

Description All specification and proof work is carried out in the context of some theory, referred to as the current theory. *open_theory thy* makes an existing theory *thy* the current theory.

Errors

6017 Theory ?0 may not be opened (it is not a descendant of ?1 which must be in scope) 12035 Theory ?0 is not present in the current hierarchy

Certain theories created when the system is constructed may not be subsequently opened, and attempts to open them give rise to error 6017.

```
|val| pending_reset_kernel_interface : unit \rightarrow unit \rightarrow unit;
```

Description This function, applied to () takes a "snapshot" of the current state of the kernel interface module (comprising the "On Kernel State Change", "Before Kernel State Change" and "On Kernel Inference" functions). The resulting snapshot, when applied to () will restore these functions to their state at the time of making the snap shot.

Uses To assist in saving the overall system state.

```
|val \text{ save\_thm}: (string * THM) \rightarrow THM|
```

Description $save_thm(key, thm)$ causes thm to be save under the key key in the current theory. The saved theorem is returned as the function's result. If there is a conjecture stored under the same key in the current theory, the theorem must prove the conjecture, i.e., its conclusion must be the same as the conjecture and it must have an empty assumption list.

See Also new_conjecture, is_proved_conjecture

```
Errors
```

```
6037 Theory ?0 is locked
```

6039 Key ?0 has already been used for a theorem in theory ?1

6071 Theory ?0 is a read-only ancestor

103101 This theorem does not prove the conjecture stored under key ?0

```
|val| set_user_datum : (string * USER_DATUM) \rightarrow unit;
```

Description $set_user_datum(key, ud)$ assigns the new value ud to the user data slot allocated to key in the current theory. If an old value was present it will be overwritten.

```
\begin{vmatrix} val & \mathbf{simple\_new\_defn} : (string & list * string * TERM) -> THM; \end{vmatrix}
```

Description $simple_new_defn$ (keys, name, value) declares a new constant with name name, and with most general type being the type of value in the current theory. It creates an equational theorem (i.e. of the form ' $\vdash name = value$ '), and saves it as a definition under keys keys in the current theory, provided the theorem is well-formed. If either the constant or theorem introduction fails then the function does not change the current theory. The body of value may not contain type variables that are not in the type of value itself.

```
Errors
6031
       Key list may not be empty
6037
       Theory ?0 is locked
       There is a constant called ?0 already in scope
6049
6051
       Key ?0 has already been used for a definition in theory ?1
6058
       the body of ?0 contains type variables not found in type of term itself,
       the variables being: ?1
       ?0 contains the following free variables: ?1
6059
6063
       There is a constant called ?0 in the descendants of the
        current theory
        Theory ?0 is a read-only ancestor
6071
```

```
|val \ \mathbf{string\_of\_thm} : THM \longrightarrow string;
```

Description This returns a display of a theorem in the form of a string, with no inserted new lines, suitable for use with $diag_string$ and fail.

See Also format_thm, a formatted string display of a theorem.

```
\begin{vmatrix} val & \mathbf{thm_fail} : string -> int -> THM \ list -> 'a; \end{vmatrix}
```

Description thm_fail area msg thml first creates a list of functions from unit to string, providing displays of the list of theorems. It then calls fail with the area, msg and this list of functions. This allows theorems to be presented in error messages.

```
| val thm_theory : THM -> string;
```

Description $thm_-theory thm$ returns the name of the theory which was current when thm was proven. This will succeed even if the theory is out of scope, but not if the theory has been deleted.

```
12007 ?0 proven in theory with internal name ?1, which is not present in current hierarchy
```

SML

 $|val \ unlock_theory : string \rightarrow unit;$

Description unlock_theory thy causes the locked theory thy to be unlocked, so that the contents of thy may be changed.

Errors

12035 Theory ?0 is not present in the current hierarchy

6068 Theory ?0 has not been locked

SML

 $|val\ valid_thm: THM \rightarrow bool;$

Description This function uses the check for the validity of theorems: returning true if valid and false otherwise: it cannot raise exceptions.

Uses To preempt errors caused by the primitive inference rules, which raise uncatchable errors when given invalid theorems, and so return more helpful error messages.

6.4 Conjectures Database

```
| val is_proved_conjecture: string -> string -> bool; | val get_proved_conjectures: string -> string list; | val get_unproved_conjectures: string -> string list;
```

Description *is_proved_conjecture thy key* returns true if the conjecture with key *key* in theory *thy* has been proved (i.e., there is a theorem stored under the same key in the theory which has the conjecture as its conclusion and has no assumptions).

get_proved_conjectures thy (resp. get_unproved_conjectures thy) returns the list of conjectures in theory thy which have (resp. have not) been proved in the sense described above.

See Also save_thm, list_save_thm, new_conjecture

```
20601 There is no theory called ?0
103101 This theorem does not prove the conjecture stored under key ?0
103102 The theorem with key ?0 does not prove this conjecture
103103 Theory ?0 is not in scope
103802 There is no conjecture called ?0 in theory ?1
103803 The conjectures database in theory ?0 is corrupt
(use delete_all_conjectures to clear).
```

```
| val new_conjecture : (string list * TERM) -> unit;
| val get_conjecture: string -> string -> TERM;
| val get_conjectures: string -> (string list * (int * TERM)) list;
| val delete_conjecture: string -> TERM;
| val delete_all_conjectures: unit -> unit;
```

Description $new_conjecture(keys, tm)$ stores the boolean term tm as a conjecture in the current theory under keys keys. If any of the keys is also the key of a theorem saved in the current theory, then each such theorem must prove the conjecture, i.e., its conclusion must be the same as tm and it must have an empty assumption list.

 $delete_conjecture\ key\ deletes$ the conjecture stored in the current theory under key key. It returns the deleted conjecture.

delete_all_conjectures() deletes all the conjectures stored in the current theory. This may be used if, for some reason, the data structure used to store the conjectures becomes corrupted.

Note, when a constants or a type is deleted from a theory, conjectures that contain the deleted constant or type are automatically deleted from the current theory. Message 103804 is used as a comment to inform the user when this happens.

See Also save_thm, list_save_thm, is_proved_conjecture

```
Brooks

3031 ?0 is not of type 「:BOOL  
6031 Key list may not be empty
20601 There is no theory called ?0
103101 The theorem ?0 does not prove the conjecture with key ?1
103801 Key ?0 has already been used for a conjecture in the current theory
103802 There is no conjecture called ?0 in theory ?1
103803 The conjectures database in theory ?0 is corrupt
(use delete_all_conjectures to clear).
103804 Deletion of ?0 has caused deletion of conjecture?1: ?2
```

6.5. Theorem Finder

6.5 Theorem Finder

```
| datatype 'a TEST =
| TFun of 'a -> bool
| TAll of 'a TEST list
| TAny of 'a TEST list
| TNone of 'a TEST list;
| type THM_INFO_TEST = THM_INFO TEST;
```

Description The type THM_INFO_TEST is used for the parameters of general theorem finder functions, gen_find_thm and $gen_find_thm_in_theories$ that represent search criteria. The constructor TFun is used to represent a basic criterion. TAll, TAny and TNone construct new criteria from old by conjunction, disjunction and negated disjunction respectively.

See Also any_substring_tt etc. (for ways of constructing basic criteria).

```
| datatype THM_TYPE = TTAxiom | TTDefn | TTSaved;
| type THM_INFO = {
| theory | : string,
| names | : string list,
| thm_type | : THM_TYPE,
| thm | : THM};
```

Description The types *THM_TYPE* and *THM_INFO* are used by the theorem finder functions, find_thm etc., to represent information about a theorem stored in a theory. The representation gives: the name of the theory; the name or names under which the theorem is stored; an indicator of whether the theorem is an axiom, a definition or a theorem that has been proved and saved; and the actual theorem.

```
| val find_thm : TERM list -> THM_INFO list;
```

Description This is a simple interface for finding theorems. *find_thm pats* searches for any theorems in the current theory and its ancestors that contains subterms matching each of the pattern terms *tms*.

The return value is a list of records containing the conclusion of the theorem and other useful information, see the description of the type $THM_{-}INFO$ for more details.

For example, if the theory \mathbb{R} of real numbers is in scope, the following will find all theorems containing both real number addition and real number multiplication.

```
|find\_thm\ [\lceil x+y:\mathbb{R}\rceil,\lceil x*y:\mathbb{R}\rceil];
See Also gen\_find\_thm
```

```
| val gen_find_thm_in_theories : THM_INFO_TEST -> string list -> THM_INFO list; | val gen_find_thm : THM_INFO_TEST -> THM_INFO list; | val any_substring_tt : string list -> THM_INFO TEST; | val all_substring_tt : string list -> THM_INFO TEST; | val no_substring_tt : string list -> THM_INFO TEST; | val any_subterm_tt : TERM list -> THM_INFO TEST; | val all_subterm_tt : TERM list -> THM_INFO TEST; | val no_subterm_tt : TERM list -> THM_INFO TEST; | val any_submatch_tt : TERM list -> THM_INFO TEST; | val any_submatch_tt : TERM list -> THM_INFO TEST; | val all_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM list -> THM_INFO TEST | val no_submatch_tt : TERM_INFO TEST | val no_submatch_tt : TERM_INFO TEST | val no_submatc
```

Description gen_find_thm_in_theories is the general theorem finder function. Its first parameter specifies the search criteria and its second parameter specifies the names of the theories to be searched. It returns a list representing the theorems satisfying the criteria. See the definitions of the parameter and return data types for more details.

gen_find_thm calls gen_find_thm_in_theories with the specified search criteria and the list of all ancestors of the current theory as the list of theories to search (this include the current theory). Thus it finds all the theorems that are currently in scope that match the specified criteria.

The remaining functions give convenient ways of specifying typical search criteria. These functions support three kinds of basic criterion: substring search criteria test for a specified string appearing as a substring of the name of the theorem; subterm search criteria test for the presence (up to α -equivalence) in the conclusion of the theorem of a specified subterm; submatch search criteria test for the presence in the conclusition of the theorem of a subterm that is an instance of a specified pattern term. Given a list of strings or terms giving basic criteria, the functions test for theorems satisfying all of the criteria ($all_-...$), at least one of the criteria ($any_-...$) or none of the criteria ($no_-...$). The constructors of the data type THM_-INFO_-TEST , q.v., allow more complex logical combinations of criteria to be built up from these.

For example, the following will find all theorems in scope that have names containing "plus" or "minus" as a substring and that have a conclusion that does not contain any natural number additions.

```
\big| gen\_find\_thm(\mathit{TAll}[any\_substring\_tt["plus", "minus"], \; no\_subterm\_tt[\ulcorner\$+:\mathbb{N} \;\rightarrow\; \mathbb{N} \;\rightarrow\; \mathbb{N} \urcorner]]);
```

See Also find_thm

Chapter 7 153

PROOF IN HOL

7.1 General Inference Rules

SML

 $|signature \ \mathbf{DerivedRules1}| = sig$

Description This provides the derived rules of inference in Release 001 of ICL HOL. Though other rules of inference may be introduced, this document's signature should provide a core set, at least covering the common rules of natural deduction. It subsumes the inference rules of the abstract data type *THM*.

SML

|signature| **DerivedRules2** = sig

Description This provides the further derived rules of inference for ICL HOL. They are primarily concerned with handling paired abstractions.

SML

|signature | **Rewriting** = sig

Description This provides the derived rewriting rule, conversions and tactics for ICL HOL.

SML

|(* "illformed_rewrite_warning" *)

Description This flag modifies the behaviour of $REWRITE_MAP_C$ and $ONCE_MAP_WARN_C$. When false (its default) it will not warn of illformed rewriting in subterms, with message 26002, though if no other rewriting occurs then error message 26003 will still be used. If true, then the warning will be given if some rewriting is successful, but elsewhere it is illformed.

SML

 $|type \ CANON| (* = THM \rightarrow (THM \ list) *);$

Description This is the type abbreviation for a canonicalisation function; such functions are typically used to derive consequences of a theorem meeting some desired criteria. An example is the rewriting canonicalisations which are used to transform theorems into lists of equational theorems for use in the rewriting conversions, rules and tactics.

Combinators are available to assist in the construction of new canonicalisation functions from old.

See Also $THEN_CAN$, $ORELSE_CAN$, $REPEAT_CAN$, $FIRST_CAN$, $EVERY_CAN$ as combinators, $fail_can$ and id_can as building blocks for the combinators.

SML

 $|val \ ALL_SIMPLE_\forall_C : CONV \longrightarrow CONV;$

Description This conversional applies its conversion argument to the body of a repeated simple universal quantification.

Errors As the failure of the conversion argument.

 $|val \text{ all_simple_}\forall \text{_elim} : THM \rightarrow THM;$

Description Specialises all the simple universally quantified variables in a theorem:

where $x1', \ldots, xn'$ are renamed from $x1, \ldots, xn$ as necessary to avoid clashes with free variables in the assumption list, or duplicated names in the list of specialisations.

 $|val \text{ ALL_SIMPLE_} \exists \text{_C} : CONV \rightarrow CONV;$

Description This conversional applies its conversion argument to the body of a repeated simple existential quantification.

Errors As the failure of the conversion argument.

|val| all_simple_ β _conv : CONV;

Description A conversion to eliminate all instances of simple β redexes in a term, regardless of nesting, or even that the β redex was created as the result of an earlier reduction in the conversion's evaluation.

t' is t with all simple β redexes reduced.

Uses This uses an optimised term traversal algorithm, superior in speed to the general term traversal algorithms used with conversions, and should be used in preference to them and β _conv.

Errors

7020 ?0 contains no β -redexes

 $\begin{vmatrix} val & all_simple_\beta_rule : THM -> THM; \end{vmatrix}$

Description Eliminate all instances of simple β redexes in a theorem, regardless of nesting, or even that the β redex was created as the result of an earlier reduction in the rule's evaluation.

t' is t with all β -redexes reduced.

Errors

7020 ?0 contains no β -redexes

 $\begin{vmatrix} val & \mathbf{ALL}_{-} \wedge_{-} \mathbf{C} : CONV -> CONV; \\ val & \mathbf{ALL}_{-} \vee_{-} \mathbf{C} : CONV -> CONV; \end{vmatrix}$

Description These respectively apply their conversion argument to:

- All the conjuncts of a structure of conjuncts (including a term that is not a conjunct at all) failing only if the conversion fails for all the conjuncts.
- All the disjuncts of a structure of disjuncts (including a term that is not a disjunct at all) failing only if the conversion fails for all the disjuncts.

The result is simplified at any conjunct or disjunct where at least one branch had a successful application of the conversion and matches the appropriate theorems of:

$$\mid \vdash \forall \ t \bullet \ (T \land t \Leftrightarrow t) \land (t \land T \Leftrightarrow t) \land \neg (F \land t) \land \neg (t \land F) \land (t \land t \Leftrightarrow t)$$

$$\vdash \forall t \bullet (T \lor t) \land (t \lor T) \land (F \lor t \Leftrightarrow t) \land (t \lor F \Leftrightarrow t) \land (t \lor t \Leftrightarrow t)$$

Errors As the failure of the conversion argument.

 $\begin{vmatrix} val & \mathbf{all} \\ \end{vmatrix} \Rightarrow \mathbf{intro} : THM \rightarrow THM;$

Description Discharge all members of assumption list using \Rightarrow -intro.

 $\begin{array}{|c|c|c|c|c|c|}\hline & & & \{t1, \, ..., \, tn\} \vdash t \\ \hline & \vdash t1 \Rightarrow ... \Rightarrow tn \Rightarrow t \\ \hline \end{array} \quad all_ \Rightarrow _intro$

 $\begin{vmatrix} val & \mathbf{all}_{\neg} \forall_{\neg} \mathbf{arb}_{\neg} \mathbf{elim} : THM -> THM; \end{vmatrix}$

Description Specialise all the quantifiers of a possibly universally quantified theorem with a machine generated variables or variable structures.

 $\begin{array}{c|c} \Gamma \vdash \forall \ vs1[x1,y1,\ldots] \ vs2[x2,y2,\ldots] \ \ldots \bullet \\ \hline p[x1,y1,\ldots.x2,y2,\ldots] \\ \hline \Gamma \vdash p[x1',y1',\ldots.x2',y2',\ldots] \end{array} \quad \forall_{-}arb_{-}elim \\ \end{array}$

where $x_{-}i'$, $y_{-}i'$, etc, are not variables (free or bound) in p or Γ , created by $gen_{-}vars(q.v)$.

See Also all_∀_elim

 $|val \text{ all}_\forall_\text{elim}: THM \rightarrow THM;$

Description Specialises all the outer universal quantifications in a theorem:

 $\frac{\Gamma \vdash \forall \ x1 \ ... \ xn \bullet \ t[x1, \ ..., \ xn]}{\Gamma \vdash t[x1', \ ..., \ xn']} \quad all \ \neg \forall \ elim$

where $x1', \ldots, xn'$ are renamed from $x1, \ldots, xn$ as necessary to avoid name clashes with free variables in the assumption list.

See Also $all_ \forall_ arb_ elim$ which is faster, though the results are slightly opaque. $list_ \forall_ elim$.

 $|val \text{ all}_\forall_\text{intro}: THM \rightarrow THM;$

Description Generalises all the free variables (other than those in the assumption list) in a theorem:

where x1, ..., xn are all the free variables of t. The function introduces variables in their order of occurrence, so:

Example

 $|all_\forall_intro\ (\vdash a \lor b) = \vdash \forall a b \bullet a \lor b$

|val| all $_{-}$ \forall_{-} uncurry $_{-}$ conv : CONV;

Description Apply \forall _uncurry_conv (q.v) to the outer universal quantifications of a term, flattening those binders.

$$\begin{array}{c} & all_ \forall_uncurry_conv \\ \hline & & \\ \hline & \Gamma \vdash (\forall \ vs1[x,y,\ldots] \ vs2[x,y,\ldots] \ldots \bullet \\ & & f[x1,y1,\ldots,x2,y2,\ldots]) \\ & = (\forall \ x1 \ y1 \ \ldots \ x2 \ y2 \ \ldots \bullet \\ & & f[x1,y1,\ldots,x2,y2,\ldots]) \\ \end{array}$$

where the $vs_{-}i[x_{-}i, y_{-}i, ...]$ are variable structures at least one of which must not be a simple variable, built from variables $x_{-}i, y_{-}i, ...,$

Errors

|27041|?0 is not of the form: $\neg \forall \dots (x,y) \dots \bullet f \neg$

 $\begin{vmatrix} val & \mathbf{all}_{-} \exists_{-} \mathbf{uncurry}_{-} \mathbf{conv} : CONV; \end{vmatrix}$

Description Apply \exists _uncurry_conv (q.v) to the outer existential quantifications of a term, flattening those binders.

 $\begin{array}{c} & all_\exists_uncurry_conv \\ \hline & & \\$

where the vs[x, y, ...] are variable structures with variables x, y, ..., at least one of which must not be a simple variable.

See Also $all_\forall_uncurry_conv$

Errors

27048 ?0 is not of the form: $\exists \dots (x,y) \dots \bullet f$

 $|val \text{ all}_\beta_{conv}: CONV;$

Description A conversion to eliminate all instances of β redexes, including paired abstraction redexes, in a term, regardless of nesting, or even that the β redex was created as the result of an earlier reduction in the conversion's evaluation.

t' is t with all β redexes reduced.

Uses This uses an optimised term traversal algorithm, superior in speed to the general term traversal algorithms used with conversions, and should be used in preference to them and β -conv.

See Also $all_simple_\beta_conv$ which only handles simple β -redexes, but does a faster traversal if that is required. all_β_rule .

Errors

|27049 ?0 contains no β -redexes

 $\begin{vmatrix} val & \mathbf{all}_\beta_\mathbf{rule} : THM -> THM; \end{vmatrix}$

Description Eliminate all instances of β redexes, including paired abstraction redexes, in the conclusion of a theorem, regardless of nesting, or even that the β redex was created as the result of an earlier reduction in the rule's evaluation.

t' is t with all β -redexes reduced.

See Also $all_{-}\beta_{-}conv$ for the conversion. $all_{-}simple_{-}\beta_{-}rule$ which only handles simple β -redexes, but does a faster traversal if that is all that is required.

Errors

|27049| ?0 contains no β -redexes

 $\begin{vmatrix} val & \mathbf{AND_OR_C} \end{vmatrix} : (CONV * CONV) \longrightarrow CONV;$

Description c1 AND_-OR_-C c2 will succeed if it can apply one or both of c1 or c2. If it cannot compose the results of applying both conversions successfully (indicating an ill-formed conversion result) it will return the result of the first conversion application.

See Also THEN_TRY_C, ORELSE_C, THEN_C

Errors As the failure message of the second conversion (implying that neither conversion was successfully applied).

 $\begin{vmatrix} val & app_arg_rule : TERM -> THM -> THM; \end{vmatrix}$

Description Apply both sides of an equational theorem to an argument.

Errors

|6020>>>>?0>>> is not of the form: ' $\Gamma\vdash t1=t2$ '

7025 Sides of equation may not be applied to term

 $|val| \mathbf{APP_-C} : (CONV * CONV) \rightarrow CONV;$

Description Apply one conversion to the operator of a combination, and a second to the operand.

$$\begin{array}{c|c} & APP_C \\ \hline & \vdash f \ a = f' \ a' \end{array} \begin{array}{c} & APP_C \\ & (c1:CONV, \\ c2:CONV) \\ & \vdash f \ a \\ \end{array}$$

where c1 f gives ' $\vdash f = f'$ ', and c2 f gives ' $\vdash a = a'$ '.

Errors

3010 ?0 is not of form: $\lceil t1 \ t2 \rceil$

7110 Results of conversions, ?0 and ?1, ill-formed or cannot be combined

Also as the failure of the conversions.

 $\begin{vmatrix} val & \mathbf{app_fun_rule} : TERM -> THM -> THM \end{vmatrix}$;

Description Apply a function to both sides of an equational theorem.

Errors

| 6020 ?0 is not of the form: ' $\Gamma \vdash t1 = t2$ '

7024 ?0 may not be applied to each side of equation

|val| app_if_conv : CONV;

Description Move a function application into a conditional.

Errors

7098 ?0 is not of the form: $\lceil f(if \ a \ then \ b \ else \ c) \rceil$

 $|val \text{ asm_elim}: TERM \rightarrow THM \rightarrow THM \rightarrow THM;$

Description Eliminate an assumption with reference to contradictory assumption lists.

where a, a' and a'', as well as t and t' are α -convertible. Actually, the assumptions don't have to be present for the function to succeed.

Berrors 3031 ?0 is not of type $\lceil :BOOL \rceil$ 7029 ?0 and ?1 are not of the form: ' $\Gamma 1$, $aa \vdash t$ ' and ' $\Gamma 2$, $\neg aaa \vdash ta$ ' where $\lceil t \rceil$ and $\lceil ta \rceil$ are α -convertible

 $|val \ \mathbf{asm_inst_term_rule}: (\mathit{TERM} * \mathit{TERM}) \ \mathit{list} -> \mathit{THM} -> \mathit{THM};$

Description Parallel instantiation of term variables within a theorem's conclusion and assumptions to some other values.

See Also inst_term_rule

Errors

3007 ?0 is not a term variable

6027 Types of element (?0, ?1) in term association list differ

 $\begin{vmatrix} val & asm_inst_type_rule : (TYPE * TYPE) & list -> THM -> THM; \end{vmatrix}$

Description Parallel instantiation of some of the type variables of both the conclusion and assumptions of a theorem.

$$\begin{array}{c|c} & \Gamma \vdash t[tv1,...tvn] & asm_inst_type_rule \\ \hline & \Gamma' \vdash t[\sigma1,...\sigma n] & [(\sigma1,\ tv1),\ ...,\ (\sigma n,tvn)] \end{array}$$

 $asm_inst_type_rule\ talist\ thm$ will instantiate each type variable in talist with its associated type. It will decorate free variables that would become identified with other variables by their types becoming the same and the names originally being the same. α -convertible duplicate assumptions will be eliminated.

See Also inst_type_rule

Errors

3019 ?0 is not a type variable

 $\begin{vmatrix} val & asm_i & TERM -> THM -> THM \end{vmatrix}$

Description Introduce a new assumption to an existing theorem.

Errors | 3031 ?0 is

|3031| ?0 is not of type $\lceil :BOOL \rceil$

```
\begin{vmatrix} val & \mathbf{CHANGED_C} & : & CONV & -> & CONV; \end{vmatrix}
```

Description Applies a conversion, and fails if either the conversion fails, has ill-formed results in certain ways, or it causes no change. Even α -convertible changes count as a change for this purpose.

Errors

7032 Conversion failed to cause a change 7104 Result of conversion, ?0, ill-formed

It may also fail with the error message of the conversion argument.

```
val \ \mathbf{char\_conv} : CONV;
```

Description This function defines the character literal constants, by giving a relationship between character literal constants and their ASCII code (derived by the Standard ML function ord). A character literal is indicated by the constant's name starting with single backquote ('), being a single other character, as well as being of type CHAR.

```
 \begin{array}{c|c} & char\_conv \\ \hline & \vdash_{\operatorname{ML}}(mk\_char("c"))^{\neg} = \\ & AbsChar \underset{\operatorname{ML}}{\operatorname{ord}} "c"^{\neg} \end{array}
```

A primitive inference rule(axiom schemata).

See Also mk_char

3024 ?0 is not a character literal

 $\begin{vmatrix} val & \mathbf{COND_-C} \end{vmatrix}$: $(TERM \rightarrow bool) \rightarrow CONV \rightarrow CONV \rightarrow CONV$;

Description $COND_{-}C$ pred cnv1 cnv2 tm will be, if the term predicate pred applied to tm is true, then cnv1 tm and otherwise the cnv2 tm.

Errors As the failure of the predicate or either conversion.

 $|val \text{ cond_thm}: THM;$

Description A convenient variant of the definition of the conditional.

 $|val| contr_rule : TERM -> THM -> THM;$

Description Intuitionistic contradiction rule:

Errors

7001 ?0 is not of form: ' $\Gamma \vdash F$ ' 3031 ?0 is not of type $\lceil BOOL \rceil$

 $\begin{vmatrix} val & conv_rule : CONV -> THM -> THM; \end{vmatrix}$

Description Apply a conversion to the conclusion of a theorem, and do \Leftrightarrow modus ponens between the original theorem and the result of the conversion

where c t gives $\Gamma 2 \vdash t \Leftrightarrow t'$.

Errors

7104 Result of conversion, ?0, ill-formed

Also as the failure of the conversion upon the conclusion of the theorem.

 $|val \ \mathbf{cthm_eqn_cxt} : CANON \rightarrow THM \rightarrow EQN_CXT;$

Description This function applies a canonicalisation (see CANON) to a theorem, and then attempts to convert each of the list of resulting theorems into an equational context entry using thm_-eqn_-cxt (q.v.). The results are composed into an equational context (which is only a Standard ML list of equational context entries). Canoncalised theorems that cannot be converted by thm_-eqn_-cxt will be discarded.

 $|val \ \mathbf{c_{-contr_{rule}}}| \ THM \ -> \ THM;$

Description Classical contradiction rule:

$$\begin{array}{c|c} & & & \Gamma, \ \neg t' \vdash F & & & c_contr_rule \\ \hline & & & \Gamma \vdash t & & & & & & & & & \\ \hline \end{array}$$

Note that the argument is the unnegated form of what must be present in the assumption list for success. Works up to α -conversion.

7001 ?0 is not of form: $\Gamma \vdash F$ 3031 ?0 is not of type $\vdash BOOL$

7003 Negation of ?0 is not in assumption list

 $|val \ \mathbf{disch_rule} : TERM \rightarrow THM \rightarrow THM;$

Description Prove an implicative theorem, removing, if α -convertibly present, the antecedent of the implication from the assumption list, and failing if it is not present.

See Also \Rightarrow *intro* (which does not fail if term not in assumption list)

Errors

| 7031 | ?0 not α -convertibly present in assumption list

```
|val|  eq_match_conv1 : THM \rightarrow CONV ;
```

Description This matches the LHS of an universally quantified (simple or by varstruct) equational theorem to a term, instantiating the RHS accordingly. The conversion will only instantiate its universal quantifications, and type variables not found within the assumptions, not its free term variables.

$$\begin{array}{c|c} & eq_match_conv1 \\ \hline & & (\Gamma \vdash \forall \ x1 \ ... \ xn \bullet \ u[x1,...,xn] = \\ \hline & & v[x1,...,xn]) \\ \hline \end{array}$$

where $\lceil \mathbf{u}[\mathbf{t}1,...,\mathbf{t}n] \rceil$ is α -convertible to $\lceil \mathbf{t} \rceil$. If there are free variables on the RHS of the supplied equational theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid identification with any variables in t.

This conversion may be partially evaluated with only its theorem argument.

Uses In producing a limited rewriting facility, that only instantiates explicitly identified variables.

Errors

```
27003 ?0 is not of the form '\Gamma \vdash \forall x1 \dots xn \bullet u = v'

where \lceil xi \rceil are varstructs

7076 Could not match term ?0 to LHS of theorem ?1
```

 $\begin{vmatrix} val \ eq_match_conv : THM -> CONV \end{vmatrix}$;

Description This matches the LHS of an equational theorem to a term, instantiating the RHS accordingly. The equational theorem may be partially or fully universally quantified (simple or by varstruct), without affecting the result of the conversion.

Conversion
$$\begin{array}{c|c} eq_match_conv \\ \hline & & (\Gamma \vdash \forall \dots \bullet u = v) \end{array}$$

where v' is the result of applying to v the instantiation rules required to match u to t (including both term and type instantiation). If there are free variables on the RHS of the supplied equational theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid identification with any variables in t.

This conversion may be partially evaluated with only its theorem argument.

See Also eq_match_conv1

Errors

7044 Cannot match ?0 and ?1

```
SML
val eq_rewrite_thm : THM
|val \Leftrightarrow _{\mathbf{rewrite\_thm}} : THM
val \neg \mathbf{rewrite\_thm} : THM
val \land \mathbf{rewrite\_thm} : THM
|val \lor \_rewrite\_thm : THM
val \Rightarrow \mathbf{rewrite\_thm} : THM
val if_rewrite_thm : THM
val \ \forall \mathbf{rewrite\_thm} : THM
|val \; \exists \texttt{\_rewrite\_thm} : THM
val \ eta_{	extbf{rewrite_thm}}: THM
```

Description These are some of the default list of theorems used by those rewriting rules, conversions and tactics whose names do not begin with 'pure_':

```
|eq_rewrite_thm \vdash \forall x \bullet (x = x) \Leftrightarrow T
\Leftrightarrow_rewrite_thm \vdash \forall t \bullet ((T \Leftrightarrow t) = t) \land ((t \Leftrightarrow T) = t) \land
                         ((F \Leftrightarrow t) = (\neg t)) \land (t \Leftrightarrow F) = (\neg t)
 \neg rewrite\_thm \vdash \forall t \bullet (\neg \neg t) = t \land ((\neg T) = F) \land (\neg F) = T
 \wedge-rewrite_thm \vdash \forall t \bullet ((T \land t) = t) \land ((t \land T) = t) \land
                         (\neg (F \land t)) \land (\neg (t \land F)) \land (t \land t) = t
 \vee_rewrite_thm \vdash \forall t \bullet (T \lor t) \land (t \lor T) \land ((F \lor t) = t) \land ((t \lor F) = t) \land (t \lor t) = t
 \Rightarrow_rewrite_thm \vdash \forall t \bullet ((T \Rightarrow t) = t) \land ((F \Rightarrow t) = T) \land ((t \Rightarrow T) = T) \land ((t \Rightarrow t) = T)
   \wedge (t \Rightarrow F) = (\neg t)
if\_rewrite\_thm \vdash \forall t1 \ t2:'a\bullet((if \ T \ then \ t1 \ else \ t2) = t1) \land (if \ F \ then \ t1 \ else \ t2) = t2
|\forall \_rewrite\_thm \vdash \forall \ t \bullet (\forall \ x \bullet t) = t
\exists rewrite\_thm \vdash \forall t \bullet (\exists x \bullet t) = t
|\beta_{-}rewrite_{-}thm \vdash \forall t1:'a; t2:'b\bullet((\lambda x \bullet t1)t2) = t1
The theorems are saved in the theory "misc", and given their design in the design for that theory.
```

See Also fst_rewrite_thm, snd_rewrite_thm, fst_snd_rewrite_thm.

```
SML
|val| eq_sym_conv : CONV;
Description Symmetry of equality:
Rule
                                                             eq_sym_conv
               \vdash (t1 = t2) \Leftrightarrow (t2 = t1)
                                                             \lceil t1 = t2 \rceil
See Also eq_sym_rule
Errors
         ?0 is not of form: \lceil t = u \rceil
3014
```

SML

 $|val \ \mathbf{eq_sym_rule} : THM \longrightarrow THM;$

Description Symmetry of equality:

Rule

$$\frac{\Gamma \vdash t1 = t2}{\Gamma \vdash t2 = t1} \qquad eq_sym_rule$$

A built-in inference rule.

See Also eq_sym_conv

Errors

| 6020 ?0 is not of the form: ' $\Gamma \vdash t1 = t2$ '

SML

 $|val \ \mathbf{eq_trans_rule} : THM \rightarrow THM \rightarrow THM;$

Description Transitivity of equality:

Rule

$$\frac{\Gamma 1 \vdash t1 = t2; \ \Gamma 2 \vdash t2' = t3}{\Gamma 1 \cup \Gamma 2 \vdash t1 = t3} \qquad eq_trans_rule$$

where t2 and t2' are α convertible. A built-in inference rule.

Errors

|6020>>>>?0>>> is not of the form: ' $\Gamma\vdash t1=t2$ '

6022 ?0 and ?1 are not of the form: ' Γ 1 \vdash t1 = t2' and ' Γ 2 \vdash t2a = t3' where $\lceil t2 \rceil$ and $\lceil t2a \rceil$ are α -convertible

SMI

 $|val \; \mathbf{EVERY_CAN} : CANON \; list \; -> \; CANON$

Description $EVERY_CAN$ is a canonicalisation function combinator which combines the elements of its argument using $THEN_CAN$:

| EVERY_CAN [can1, can2, ...] = can1 THEN_CAN can2 THEN_CAN ...

See Also CANON

SML

 $|val \ EVERY_C : CONV \ list \rightarrow CONV;$

Description Apply each conversion in the list, in the sequence given.

See Also $THEN_{-}C$ (which this function iterates)

Errors

7103 List may not be empty

or as the failure of any constituent conversion, or as $THEN_{-}C$.

SML

 $|val \ \mathbf{ext_rule} : THM \rightarrow THM;$

Description Extensionality of functions in ICL HOL.

Rule

$$\frac{\Gamma \vdash f = g}{\Gamma \vdash \forall x \bullet f \ x = g \ x} ext_rule$$

where x is a machine-generated variable of appropriate type, not found free in the equational theorem.

Errors

6020 ?0 is not of the form: $\Gamma \vdash t1 = t2$

7026 ?0 is not an equation of functions

SML

 $|val \ fail_canon|$: CANON

Description This is a canonicalisation function which always fails. It is the identity for $ORELSE_CAN$.

See Also CANON

Errors

26201 Failed as requested

SMI

 $|val\ \mathbf{fail_conv}: CONV;$

Description This conversion always fails.

Errors

7061 Failed as requested

SMI

 $|val fail_with_canon:$ $string \rightarrow int \rightarrow (unit \rightarrow string) list \rightarrow CANON$

Description This is a canonicalisation function which always fails by passing its arguments to fail (q.v.).

See Also fail_can

SML

 $|val\ fail_with_conv: string \rightarrow CONV;$

Description This conversion always fails, with the error message being its string argument.

Errors

7075 ?0

SML

 $|val \; \mathbf{FIRST_CAN} : CANON \; list -> CANON$

Description $FIRST_CAN$ is a canonicalisation function combinator which combines the elements of its argument using $ORELSE_CAN$:

|FIRST_CAN [can1, can2, ...] = can1 ORELSE_CAN can2 ORELSE_CAN ...

See Also CANON

Errors

26202 the list of canonicalisation functions is empty

 $|val \ \mathbf{FIRST_C} : CONV \ list \rightarrow CONV;$

Description Attempt to apply each conversion in the list, in the sequence given, until one succeeds, or all fail.

See Also $ORELSE_{-}C$ (which this function iterates)

Errors

7103 List may not be empty

or as the failure of the last conversion.

|val FORWARD_CHAIN_CAN : CANON list -> CANON; |val FC_CAN : CANON list -> CANON;

Description $FORWARD_CHAIN_CAN$, which has the alias FC_CAN , is a parameterised variant of fc_canon . Given a list of canonicalisation functions cans, FC_CAN cans behaves as fc_canon would do if the line

 $\vdash A \longrightarrow FIRST_CAN \ cans \ A$

were inserted at the beginning of the table of transformations given in the description of fc_canon .

For example, fc-canon1, q.v., is the same as:

 $FC_{-}CAN \ ((fn \ (x, \ y) \Longrightarrow [x,y]) \ o \Leftrightarrow_{-}elim);$

Uses In tactic programming, or, occasionally interactively, typically in circumstances where neither fc_canon nor fc_canon1 is able to generate enough implications.

```
| val forward_chain_canon : THM -> THM list;
| val fc_canon : THM -> THM list;
| val forward_chain_canon1 : THM -> THM list;
| val fc_canon1 : THM -> THM list;
```

Description forward_chain_canon is a canonicalisation function which uses a theorem to generate a list of implications. (fc_canon is an alias for $forward_chain_canon$.) It may be used for constructing rules and tactics in conjunction with $forward_chain_rule$. An example of such a tactic is $forward_chain_tac$. $forward_chain_canon1$, which has alias fc_canon1 , is just like fc_canon except for its treatment of bi-implications. The effects of fc_canon and fc_canon1 are shown schematically in the following table (which only shows assumptions relevant to the process):

```
\vdash A \land B
                                                         \vdash A : \vdash B
\vdash \forall x \bullet A
                                                         \vdash A[x'/x]
\vdash A \land B \Rightarrow C
                                                         map \ (\Rightarrow intro \ (st \vdash A \urcorner)) \ (xf (st \vdash A \urcorner \vdash B \Rightarrow C))
\vdash A \lor B \Rightarrow C
                                                        xf(\vdash (A \Rightarrow C) \land (B \Rightarrow C))
\vdash (\exists x \bullet A) \Rightarrow C
                                                        map\ (\forall \_intro\ \ulcorner x'\urcorner)\ (xf(\vdash A[x'/x] \Rightarrow B\ ))
A \vdash A \Rightarrow B
                                                        A \vdash B
                                                        \vdash B
\vdash T \Rightarrow B
 A \vdash \neg A \Rightarrow B
                                                      (* discarded *)
\vdash F \Rightarrow B
                                                      (* discarded *)
\vdash A \Rightarrow B
                                                        map \ (\Rightarrow \_intro \ (st \vdash A \urcorner)) \ (xf (st \vdash A \urcorner \vdash B))
\vdash A \Leftrightarrow B
                                                        \vdash A \Rightarrow B
                                                                                                             (* fc\_canon *)
                                                        \vdash A \Rightarrow B; \vdash B \Rightarrow A
                                                                                                        (* fc\_canon1 *)
\vdash A \Leftrightarrow B
\vdash T
                                                         (* discarded *)
\vdash A
                                                        \vdash sc \vdash A \urcorner
\vdash A
                                                         \vdash \neg A \Rightarrow F
```

The intention here is that is that the first applicable transformation is applied repeatedly until no further change is possible. The resulting theorems are then universally quantified over all of the free variables in their conclusions which were not free in the original theorem. In the table, st and sc stand for attempts to apply the theorem and conclusion stripping conversions in the current proof context (as returned by $current_ad_st_conv$ and $current_ad_sc_conv$). If the stripping conversions fail then st and sc have no effect. st denotes a variable name derived from st and chosen to avoid variable capture problems. st stands for a nested recursive application of the transformation process.

In the transformations involving \Rightarrow _intro the implication is only introduced if the antecedent is in the assumptions. So, for example, $A \Rightarrow B \Rightarrow A \Rightarrow C$ is transformed into $B \Rightarrow A \Rightarrow C$. The transformation for $A \Rightarrow B$ is only applied if it changes the theorem, and the last of the transformations is only applied if A is neither an implication nor F.

The asymmetry in the rules is deliberate. E.g., they derive $A \Rightarrow B \Rightarrow C$ from $A \land B \Rightarrow C$, but not $B \Rightarrow A \Rightarrow C$. This is intended to give slightly finer control and to result in less duplication of results in the intended application in $forward_chain_tac(q.v.)$.

See Also forward_chain_rule, forward_chain_tac, FC_CAN

```
 \begin{vmatrix} val & \mathbf{forward\_chain\_rule} : THM & list -> THM & list -> THM & list; \\ val & \mathbf{fc\_rule} : THM & list -> THM & list -> THM & list; \\ \end{vmatrix}
```

Description This is a rule which uses a list of possibly universally quantified implications and a list of other theorems to infer new theorems, using the matching modus ponens rule from the proof context, if present, or \Rightarrow _match_mp_rule2if current_ad_mmp_rule() returns Nil. (fc_rule is an alias for forward_chain_rule.) fc_rule imps ants returns the list of all theorems which may be derived by applying the matching modus ponens rule to a theorem from imps and one from ants. As a special case, if any theorem to be returned is determined to have $\lceil F \rceil$ as its conclusion, the first such found will be returned as a singleton list. In order to work well in conjunction with fc_canon and fc_tac the theorems returned by the matching modus ponens rule are transformed as follows:

- 1. Theorems of the form: $\vdash \forall x_1 \dots \bullet t_1 \Rightarrow t_2 \Rightarrow \dots \Rightarrow \neg t_k \Rightarrow F$ have their final implication changed to t_k .
- 2. Theorems of the form: $\vdash \forall x_1 \dots \bullet t_1 \Rightarrow t_2 \Rightarrow \dots \Rightarrow t_k \Rightarrow F$ have their final implication changed to $\Rightarrow \backslash \neg t_k$.
- 3. All theorems are universally quantified over all the variables which appear free in their conclusions but not in their assumptions (using all_\forall_intro).

Note that when the matching modus ponens rule is either $\Rightarrow match_mp_rule2$ or $\Rightarrow match_mp_rule1$, there is some control over the number of results generated, since variables which appear free in imps are not considered as candidates for instantiation.

The rule does not check that the theorems in its first argument are (possible universally) quantified implications.

See Also forward_chain_tac, forward_chain_canon.

```
|val \ \mathbf{FORWARD\_CHAIN\_} \Leftrightarrow \mathbf{CAN} : CANON \ list \longrightarrow CANON;
|val \ \mathbf{FC\_} \Leftrightarrow \mathbf{CAN} : CANON \ list \longrightarrow CANON;
```

Description These are just like $FORWARD_CHAIN_CAN$, q.v., except that they do *not* break up bi-implications. Thus, given a list of canonicalisation functions cans, FC_\Leftrightarrow_CAN cans behaves as fc_canon would do if the line

```
\vdash A \longrightarrow FIRST\_CAN \ cans \ A
```

were inserted at the beginning of the table of transformations given in the description of fc-canonand all transformations (including those coming from the proof context) that eliminate bi-implications were suppressed.

Uses In tactic programming, or, occasionally interactively, typically in circumstances where $fc \Leftrightarrow canon$ is not able to generate enough implications.

 $|val | forward_chain_\Leftrightarrow_canon : THM -> THM | list;$ $|val | fc_\Leftrightarrow_canon : THM -> THM | list;$

Description $forward_chain_\Leftrightarrow_canon$ is a canonicalisation function very similar to $forward_chain_canon$, q.v. The difference is that $forward_chain_\Leftrightarrow_canon$ suppresses all transformations which break up bi-implications. It is intended for use in situations where a bi-implication is to be used as a conditional rewrite rule.

For example, the tactic $ALL_ASM_FC_T1$ $fc_\Leftrightarrow_canon\ rewrite_tac\ []$ can instantiate an assumption of the form $\forall x1\ x2\ ...\bullet\ A\Rightarrow B\Rightarrow (C\Leftrightarrow D)$ and use the result to rewrite instances of C.

See Also $FC_{-}T1$, $ALL_{-}FC_{-}T1$ etc.

 $\begin{vmatrix} val & \mathbf{id_canon} & : & CANON \end{vmatrix}$

Description This is the identity for the canonicalisation function combinator *THEN_CAN*:

 $|id_canon| thm = [thm]$

See Also CANON

 $\begin{bmatrix} val & \mathbf{id_conv} : CONV; \end{bmatrix}$

Description This is an alias for $refl_conv$, reflecting the fact that $refl_conv$ is the identity for the conversional $THEN_C$.

Errors

7061 Failed as requested

 $\begin{vmatrix} val & \mathbf{if}_{-}\mathbf{app}_{-}\mathbf{conv} : CONV; \end{vmatrix}$

Description Move a function application out of a conditional.

where f and f' are α -convertible, and f is used on the RHS of the resulting equational theorem

Errors

```
7037 ?0 is not of the form: \lceil if a then (f\ b) else (g\ c)\rceil 7038 ?0 is not of the form: \lceil if a then (f\ b) else (fa\ c)\rceil where \lceil f\rceil and \lceil fa\rceil are \alpha-convertible
```

 $\begin{vmatrix} val & \mathbf{if_else_elim} : THM -> THM; \end{vmatrix}$

Description Give the dependence of the *else* branch of a conditional upon the condition.

Errors

7012 ?0 is not of the form: ' $\Gamma \vdash if$ to then tt else te'

|val| if_intro : $TERM \rightarrow THM \rightarrow THM \rightarrow THM$;

Description Introduce a conditional, based on the assumptions of two theorems.

where a and a' are α -convertible. Actually, the assumptions may be missing, and the rule still works.

Example $|(\vdash x = tt), (\vdash x = te)|$ (* hypothesis *) $\vdash if \ a \ then \ (x = tt) \ else \ (x = te)$ (* $if_intro \ \ulcorner a \urcorner *$) $|\vdash x = if \ a \ then \ tt \ else \ te$ (* $if_fun_rule \ *$)

Errors

3031 ?0 is not of type $\Box BOOL$

 $\begin{vmatrix} val & \mathbf{if_-then_-elim} : THM -> THM; \end{vmatrix}$

Description Give the dependence of the *then* branch of a conditional upon the condition.

Errors

7012 ?0 is not of the form: ' $\Gamma \vdash$ if to then tt else te'

 $\begin{vmatrix} val & \mathbf{initial_rw_canon} : CANON; \end{vmatrix}$

Description This is the initial rewrite canonicalisation function, defined as

```
 | val \ initial\_rw\_canon = \\ REWRITE\_CAN \\ (REPEAT\_CAN(FIRST\_CAN \ [ \\ simple\_\forall\_rewrite\_canon, \\ \land\_rewrite\_canon, \\ simple\_\lnot\_rewrite\_canon, \\ f\_rewrite\_canon, \\ \Leftrightarrow\_t\_rewrite\_canon \ ]));
```

This is the repeated application of the first applicable operation in the following list:

- 1. stripping universal quantifiers;
- 2. dividing conjunctive theorems into their conjuncts;
- 3. changing $\vdash \neg(t1 \lor t2)$ to $\neg t1 \land \neg t2$;
- 4. changing $\vdash \neg \exists x \bullet t \text{ to } \forall x \bullet \neg t;$
- 5. changing $\vdash \neg \neg t$ to t;
- 6. changing $\vdash \neg t$ to $t \Leftrightarrow F$;
- 7. changing $\vdash F$ to $\vdash \forall x \bullet x$;
- 8. if none of the above apply, changing $\vdash t$ to $\vdash t = T$.

Finally, after all this canonicalisation we then universally quantify the resulting theorems in all free variables other than those that were free in the original.

```
|val inst_term_rule : (TERM * TERM) list -> THM -> THM;
```

Description Parallel instantiation of term variables within a theorem's conclusion to some other values.

$$\begin{array}{c|c} \Gamma \vdash t[x1, \, ..., \, xn] & inst_term_rule \\ \hline \Gamma \vdash t[t1, \, ..., \, tn] & [..., \, (\ulcorner ti \urcorner, \, \ulcorner xi \urcorner), \, ...] \\ \end{array}$$

A built-in inference rule.

See Also $asm_inst_term_rule$

```
Errors
```

3007 ?0 is not a term variable

6027 Types of element (?0, ?1) in term association list differ

6028 Instantiation variable ?0 free in assumption list

 $|val | inst_type_rule : (TYPE * TYPE) | list -> THM -> THM;$

Description Parallel instantiation of some of the type variables of the conclusion of a theorem.

$$\begin{array}{c|c} & \Gamma \vdash t[tyv1,...tyvn] & inst_type_rule \\ \hline & \Gamma \vdash t[\sigma1,...\sigma n] & [(\sigma1,\ tyv1),\ ...,\ (\sigma n,tyvn)] \end{array}$$

inst_type_rule talist thm will instantiate each type variable in talist with its associated type. It will decorate free variables that would become identified with other variables (both in conclusion and assumptions) by their types becoming the same and the names originally being the same. To instantiate types in the assumption list, see asm_inst_type_rule.

A primitive inference rule.

See Also $asm_inst_type_rule$ for something that also works on type variables in the assumption list.

Errors

3019 ?0 is not a type variable

6006 Trying to instantiate type variable ?0, which occurs in assumption list

 $|val \ \mathbf{LEFT_C} : CONV \rightarrow CONV;$

Description Apply a conversion to the first operand of a binary operator:

where c a gives $\vdash a = a'$. f may itself be a function application.

Errors

|3013| ?0 is not of form: $\lceil f \ a \ b \rceil$

7104 Result of conversion, ?0, ill-formed

Also as the failure of the conversion.

|val| let_conv : CONV;

Description Eliminate an outermost $let \dots and \dots in \dots$ construct.

Where the $t_{-}ix$ is the component of $t_{-}i$ matching $x_{-}i$ when $t_{-}i$ matches $vs_{-}i[x_{-}i, y_{-}i, ..]$.

Errors

|4009| ?0 is not of form: $\lceil let \dots in \dots \rceil$

|val| list_simple_ \forall _elim : TERM list -> THM -> THM;

Description Generalised \forall elimination.

A built-in inference rule. The instantiation is done simultaneously, rather than by iteration of a single instantiation, which may affect renaming.

See Also ∀_elim

Begin in Errors 3012 ?0 and ?1 do not have the same types 6018 ?0 is not of the form: ' $\Gamma \vdash \forall \dots xi \dots \bullet t$ ' where the $\lceil xi \rceil$ are ?1 variables

|val| list_simple_ \forall _intro : TERM list -> THM -> THM;

Description Generalised simple \forall introduction.

See Also ∀_intro

Errors Same messages as $simple_\forall_intro$.

|val| list_simple_ \exists _intro : TERM list -> TERM -> THM ;

Description Introduce an iterated existential quantifier by providing a list of witnesses and a theorem asserting that the desired property holds of these witnesses.

Errors

7047 ?0 cannot be matched to conclusion of theorem ?1

 $\begin{vmatrix} val & list_ \land_intro : THM & list -> THM \end{vmatrix}$;

Description Conjoin a list of theorems.

 $\frac{ [\Gamma 1 \vdash t1, ..., \Gamma n \vdash tn]}{\Gamma 1 \cup ... \Gamma n \vdash t1 \wedge ... tn} list_ \land _intro$

Errors

7107 List may not be empty

 $|val | list_{-} \forall_{-} elim : TERM | list_{-} \Rightarrow THM \rightarrow THM;$

Description Generalised \forall elimination. Specialise a universally quantified theorem with given values, instantiating the types of the theorem as necessary.

where t' is renamed from t to prevent bound variable capture and type instantiated as necessary, the $x_{-}i$ are varstructs, instantiable to the structures of $t_{-}i$. The values will be expanded using Fst and Snd as necessary to match the structure of $\lceil x \rceil$.

Note that due to the type instantiation this function is somewhat more that a fold of \forall -elim.

See Also $\forall elim, all \forall elim.$

Errors 27014 ?0 is not of the form: ' $\Gamma \vdash \forall \ vs1 \dots vsi \bullet t$ ' where $i \geq ?1$ 27015 ?0 is not of the form: ' $\Gamma \vdash \forall \ vs1 \dots vsi \bullet t$ ' where the types of the vsi are instantiable to the types of ?1 27016 ?0 is not of the form: ' $\Gamma \vdash \forall \ vs1 \dots vsi \bullet t$ ' where the types of the vsi are instantiable to the types of ?1 without instantiating type variables in the assumptions

 $\begin{vmatrix} val & list_{\forall_{-}}intro : TERM & list -> THM -> THM; \end{vmatrix}$

Description Generalised \forall introduction.

Rule

$$\frac{ \Gamma \vdash t[x1, \, ..., \, xn]}{\Gamma \vdash \forall \, x1 \, ... \, xn \bullet \, t[x1, \, ..., \, xn]} \qquad \frac{list_ \forall _intro}{[\ulcorner x1 \urcorner, \, ..., \, \ulcorner xn \urcorner]}$$

See Also \forall _intro, all_ \forall _intro.

Errors Same messages as \forall _intro.

 $\begin{vmatrix} val & \mathbf{MAP_-C} : CONV -> CONV; \end{vmatrix}$

Description This traverses a term from its leaves to its root node. It will repeat the application of its conversion argument, until failure, on each subterm encountered en route. At each node the conversion is applied to the sub-term that results from the application of the preceding traversal, not the original. It traverses from left to right, though this should only matter for conversions that work by side-effect. It fails if the conversion applies nowhere within the tree.

Errors

7005 Conversion fails on term and all its subterms

 $\begin{vmatrix} val & \mathbf{mk_app_rule} : THM -> THM -> THM; \end{vmatrix}$

Description Given two equational theorems, one being between two functions, apply the two functions to the LHS and RHS of the other equation.

The second input theorem or the result may be expressed using \Leftrightarrow .

A built-in inference rule.

Errors | 6020 | ?0 is not of the form: ' $\Gamma \vdash t1 = t2$ ' | 6023 | ?0 and ?1 are not of the form :' $\Gamma 1 \vdash u1 = u2$ ' and ' $\Gamma 2 \vdash v1 = v2$ ' where $\lceil u1 \rceil$ can be functionally applied to $\lceil v1 \rceil$

|val| modus_tollens_rule : $THM \rightarrow THM \rightarrow THM;$

Description If the consequent of an implicative theorem is false, then so must be the antecedent (modus tollens).

where t2 and t2' are α -convertible.

Ferrors 7040 ?0 is not of the form: ' $\Gamma \vdash t1 \Rightarrow t2$ ' 7051 ?0 and ?1 are not of the form: ' $\Gamma 1 \vdash t1 \Rightarrow t2$ ' and ' $\Gamma 2 \vdash \neg t2a$ ' where $\lceil t2 \rceil$ and $\lceil t2a \rceil$ are α -convertible

 $|val \ \mathbf{ONCE_MAP_C} : CONV \rightarrow CONV;$

Description This traverses a term from the root node to its leaves, attempting to apply its conversion argument. If it successfully applies the conversion to any subterm then it will not further traverse that subterm, but will still continue on other branches. If it fails to apply its conversion to a leaf, its functionality is equivalent to then applying $refl_conv$. It traverses from left to right, though this should only matter for conversions that work by side-effect. It will fail if the conversion succeeds nowhere in the tree, or if the results of certain conversion applications are ill-formed.

Errors

7005 Conversion fails on term and all its subterms

 $|val \ \mathbf{ONCE_MAP_WARN_C}| : string \ -> \ CONV \ -> \ CONV;$

Description This is an equivalent to $ONCE_MAP_C$ (q.v.) except that it warns the user if it failed to recompose the theorems from the term it just traversed.

This traverses a term from the root node to its leaves, attempting to apply its conversion argument. If it successfully applies the conversion to any subterm then it will not further traverse that subterm, but will still continue on other branches. If it fails to apply its conversion to a leaf, its functionality is equivalent to then applying $refl_-conv$. It traverses from left to right, though this should only matter for conversions that work by side-effect. It will fail if the conversion succeeds nowhere in the tree, or if the results of certain conversion applications are ill-formed.

Errors

26001 no rewriting occurred

26003 no successful rewriting occurred, rewriting gave ill-formed results on some subterms

It issues the following warning message if at any point it fails to recompose the theorems from the subterm it just traversed, some successful rewriting occurs, and the flag "illformed_rewrite_warning" is true.

Errors

26002 rewriting gave ill-formed results on some subterms

Errors and warnings are from the area indicated by the string argument.

 $\begin{vmatrix} val & \mathbf{ORELSE_CAN} \end{vmatrix} : (CANON * CANON) -> CANON$

Description ORELSE_CAN is a canonicalisation function combinator written as an infix operator. (can1 ORELSE_CAN can2)thm is the same can1 thm unless evaluation of can1 thm fails in which case it is the same as can2 thm.

See Also CANON

 $|val \ \mathbf{ORELSE_C} : (CONV * CONV) \rightarrow CONV;$

Description Attempt to apply one conversion, and if that fails, try the second one.

where c1 t returns $\Gamma \vdash t = t'$, or c1 fails, and c2 t returns $\Gamma \vdash t = t'$.

See Also $FIRST_{-}C$ (the iterated version of this function), $THEN_{-}C$, $AND_{-}OR_{-}C$, and $THEN_{-}TRY_{-}C$

Errors As the failure of second conversion, should both conversions fail.

 $\begin{vmatrix} val & \mathbf{plus_conv} : CONV; \end{vmatrix}$

Description Provides the value of the addition of two numeric literals.

Uses For doing fast arithmetic proofs.

Errors

6085 ?0 is not of the form: $\lceil M_L m k_- N m \rceil + M_L m k_- N n \rceil$

 $\begin{vmatrix} val & \mathbf{prim_rewrite_conv} : CONV & NET -> CANON -> (THM -> TERM * CONV) & OPT \\ (CONV -> CONV) & -> EQN_CXT -> THM & list -> CONV; \end{vmatrix} ->$

Description The primitive rewrite conversion.

```
Conversion  \begin{array}{c} prim\_rewrite\_conv \\ (initial\_net:\ CONV\ NET) \\ (canon:\ CANON) \\ (eqm\_rule:\ (THM\ ->\ TERM\ *\ CONV)\ OPT) \\ (traverse:\ CONV\ ->\ CONV) \\ (with\_eqn\_cxt:\ EQN\_CXT) \\ (with\_thms:\ THM\ list)\ \ulcorner t\urcorner \end{array}
```

where $\lceil t' \rceil$ is $\lceil t \rceil$, rewritten according to the parameters of the conversion, and Γ are the assumptions required to allow the rewriting. The failure of the conversion constructed by $prim_rewrite_conv$ will not be caught by $prim_rewrite_conv$.

The arguments have the following effects:

initial_net This is a pre-calculated conversion net, that will serve as the initial rewriting that may be done.

canon This canonicalisation function will be applied to all of the *with_thms* theorems, to produce a list of theorems to be rewritten with from these inputs. This will generally involve producing canonical or simplified forms of the original theorems.

The resulting theorems are intended to be simply universally quantified equations, and theorems which are not of this form are discarded. Rewriting attempts to instantiate some or all of the universally quantified variables, or any type variables (which do not appear in the assumptions), so as to to match the left-hand side of an equation to the term being rewritten. N.b. free variables are not instantiated. An equation whose left-hand side matches the term being rewritten in such a way that rewriting would not change the term is treated as if it did not match the term.

eqm_rule This equation matcher is mapped over the theorems resulting from the canonicalisation to convert them into an equation context. thm_-eqn_-cxt is used if Nil is supplied.

traverse This is a conversional, which defines the traversal of term t by the rewriting conversion derived from $prim_rewrite_conv$'s other arguments.

with_eqn_cxt This is additional equational context to be added directly into the rewriting conversion net.

with_thms This is an additional set of theorems to be processed by *canon* and the results used in added directly into the rewriting conversion net.

Uses This is the basis of the primary rewriting tools, by varying the first four parameters.

prim_rewrite_conv preprocesses its arguments in various ways. The preprocessing for an argument takes place as soon as that argument is supplied, so, for example, the overhead of preprocessing with_eqn_cxt need not be incurred in calls with the same with_eqn_cxt but different with_thms.

 $\begin{vmatrix} val \ \mathbf{prim_rewrite_rule} : CONV \ NET \ -> \ CANON \ -> \ (THM \ -> \ TERM * CONV) \ OPT \ -> \\ (CONV \ -> \ CONV) \ -> \ EQN_CXT \ -> \ THM \ list \ -> \ THM \ ;$

Description This is the inference rule based on $prim_rewrite_conv$ (q.v.), with the same parameters as that function, except for the last argument:

$$\frac{\Gamma \vdash t}{\Gamma \cup \Gamma 1 \vdash t'} = \frac{prim_rewrite_rule}{(initial_net: CONV \ NET)} \\ (canon: CANON) \\ (epp: (THM \rightarrow TERM * CONV) \ OPT) \\ (traverse: CONV \rightarrow CONV) \\ (with_eqn_cxt: EQN_CXT) \\ (with_thms: THM \ list)$$

where $\lceil t \rceil$ is the result of rewriting $\lceil t \rceil$ in the manner prescribed by the arguments, and $\Gamma 1$ are the assumptions required to allow this rewriting.

 $val \ \mathbf{prim_suc_conv} : CONV;$

Description This conversion gives the definition schema for all natural number literals.

Errors

3026 ?0 is not a numeric literal

See Also $mk_{-}\mathbb{N}$, $suc_{-}conv$

|val| prove_asm_rule : $THM \rightarrow THM \rightarrow THM$;

Description Eliminate an assumption with reference to a the assumption being a conclusion of a theorem.

This will in fact work even if the assumption is not present.

 $|val| \mathbf{RANDS_C} : CONV \rightarrow CONV;$

Description Apply a conversion to each of the arguments of a a function

where c a gives $\vdash a = a'$, etc. The function f may have no arguments in which case $refl_conv$ f is returned.

Errors

7104 Result of conversion, ?0, ill-formed

Also as the failure of the conversion.

 $|val \ \mathbf{RAND_C} : CONV \rightarrow CONV;$

Description Apply a conversion to the operand of a combination:

where c a gives $\vdash a = a'$.

Errors

3010 ?0 is not of form: $\lceil t1 \ t2 \rceil$

7104 Result of conversion, ?0, ill-formed

Also as the failure of the conversion.

 $\begin{vmatrix} val & RATOR_C : CONV -> CONV; \end{vmatrix}$

Description Apply a conversion to the operator of a combination:

where c f gives ' $\vdash f = f'$ '.

Error

3010 ?0 is not of form: $\lceil t1 \ t2 \rceil$

7104 Result of conversion, ?0, ill-formed

Also as the failure of the conversion.

 $val refl_{-}conv : CONV;$

Description The reflexivity of equality implemented as a conversion.

 $\begin{array}{c|c}
 & refl_conv \\
\hline
 & \vdash t = t
\end{array}$

A primitive inference rule.

```
|val| REPEAT_C1 : CONV \rightarrow CONV;
```

Description Repeatedly apply a conversion to a term, failing if not successfully applied at least once. To be more precise, the functionality is equivalent that of the following definition:

```
|fun\ REPEAT\_C1\ (c:CONV) = (c\ THEN\_TRY\_C\ REPEAT\_C1\ c)
```

Errors As the error of the conversion if it cannot be applied at least once.

```
\begin{vmatrix} val & \mathbf{REPEAT\_CAN} : CANON \longrightarrow CANON \end{vmatrix}
```

Description $REPEAT_{-}CAN$ is a canonicalisation function combinator which repeatedly applies its argument until it fails:

```
REPEAT\_CAN \ can \ thm = \\ ((can \ THEN\_CAN \ REPEAT\_CAN \ can) \ ORELSE\_CAN \ id\_can) \ thm
```

See Also CANON

```
\begin{vmatrix} val & \mathbf{REPEAT_C} : CONV -> CONV; \end{vmatrix}
```

Description Repeatedly apply a conversion to a term. To be more precise, the functionality is equivalent that of the following definition:

```
\begin{aligned}
fun & REPEAT_C & (c:CONV) = \\
& (c & THEN_C & (REPEAT_C & c)) & ORELSE_C & refl\_conv
\end{aligned}
```

See Also REPEAT_C1

```
|val| \mathbf{REPEAT\_MAP\_C} : CONV \rightarrow CONV;
```

Description This traverses a term from its leaves to its root node. It will attempt the application of its conversion argument on each subterm encountered en route. If the conversion is successfully applied to a given sub-term, then the resulting sub-term from the conversion is re-traversed by the function. It traverses from left to right, though this should only matter for conversions that work by side-effect. It fails if the conversion is not applicable anywhere within the term, or if certain applications of the conversion have ill-formed results.

Errors

7005 Conversion fails on term and all its subterms

```
|val| REWRITE_CAN : CANON \rightarrow CANON;
```

Description For rewriting, after all other canonicalisation we will usually wish to then universally quantify the resulting theorems in all free variables that are only in in the conclusion, other than those that were free anywhere in the original theorem, before any canonicalisation. A canonicalisation is transformed to work this way by $REWRITE_CAN$.

When evaluating proof contexts (see, e.g., $commit_pc$) the list of rewrite canonicalisations in the argument (see get_rw_canons), arg, will be converted to a single canonicalisation in the result by:

```
 \begin{array}{c|c} REWRITE\_CAN \\ (REPEAT\_CAN(FIRST\_CAN \ (arg \ @ \\ [\Leftrightarrow\_t\_rewrite\_canon]))); \end{array}
```

```
| val rewrite_conv : THM list -> CONV;
| val pure_rewrite_conv : THM list -> CONV;
| val once_rewrite_conv : THM list -> CONV;
| val pure_once_rewrite_conv : THM list -> CONV;
```

Description These are the standard rewriting conversions. They use the canonicalisation rule held by the proof context (see, e.g, $push_{-}pc$) preprocess the theorem list. The context is accessed at the point when the rules are given a list of theorems.

If a conversion is "pure" then there is no default rewriting, otherwise the default rewriting conversion net held by the proof context will be used in addition to user supplied material.

If a conversion is "once" then rewriting will proceed from the root of the of the conclusion of the theorem to be rewritten, towards the leaves, and will not descend through any rewritten subterm, using $ONCE_MAP_WARN_C$. If not, rewriting will continue, moving from the root to the leaves, repeating if any rewriting is successful, until there is no rewriting redex anywhere within the rewritten conclusion, using $REWRITE_MAP_C$. This may cause non-terminating looping.

```
Errors | 26001 no rewriting occurred
```

Also as error 26003 and warning 26002 of REWRITE_MAP_C (q.v.).

```
|val| REWRITE_MAP_C : string -> CONV -> CONV;
```

Description This conversional is an equivalent to TOP_MAP_C (q.v.) except that it warns the user if it failed to recompose the theorems from the term it just traversed.

 $REWRITE_MAP_C$ conv tm traverses tm from its root node to its leaves. It will repeat the application of conv, until failure, on each subterm encountered en route. It then descends through the sub-term that results from the repeated application of conv. If the descent causes any change, on "coming back out" to the sub-term the conversional will attempt to reapply conv, and if successful will then (recursively) reapply $REWRITE_MAP_C$ conv once more. If conv cannot be reapplied then the conversional continues to ascend back to the root.

It traverses from left to right, though this should only matter for conversions that work by side-effect. It fails if the conversion is applied nowhere within the term.

```
|26001 no rewriting occurred
```

26003 no successful rewriting occurred, rewriting gave ill-formed results on some subterms

It issues the following warning message if at any point it fails to recompose the theorems from the subterm it just traversed, some successful rewriting occurs, and the flag "illformed_rewrite_warning" is true.

```
Errors
```

26002 rewriting gave ill-formed results on some subterms

Errors and warnings are from the area indicated by the string argument.

```
val rewrite_rule: THM list -> THM -> THM;
val pure_rewrite_rule: THM list -> THM -> THM;
val once_rewrite_rule: THM list -> THM -> THM;
val pure_once_rewrite_rule: THM list -> THM -> THM;
val asm_rewrite_rule: THM list -> THM -> THM;
val pure_asm_rewrite_rule: THM list -> THM -> THM;
val once_asm_rewrite_rule: THM list -> THM -> THM;
val once_asm_rewrite_rule: THM list -> THM -> THM;
val pure_once_asm_rewrite_rule: THM list -> THM -> THM;
```

Description These are the standard rewriting rules. They use the canonicalisation rule held by the proof context (see, e.g, $push_{-}pc$) to preprocess the theorem list. The context is accessed at the point when the rules are given a list of theorems.

If a rule is "pure" then there is no default rewriting, otherwise the default rewriting conversion net held by the proof context will be used in addition to user supplied material.

If a rule is "once" then rewriting will proceed from the root of the of the conclusion of the theorem to be rewritten, towards the leaves, and will not descend through any rewritten subterm, using $ONCE_MAP_WARN_C$. If not, rewriting will continue, moving from the root to the leaves, repeating if any rewriting is successful, until there is no rewriting redex anywhere within the rewritten conclusion, using $REWRITE_MAP_C$. This may cause non-terminating looping.

If a rule is "asm" then the theorems rewritten with will include the canonicalised asm_ruled assumptions of the theorem being rewritten.

See Also prim_rewrite_rule

Errors

26001 no rewriting occurred

Also as error 26003 and warning 26002 of $REWRITE_MAP_C(q.v.)$.

```
|val| \mathbf{RIGHT_C} : CONV \rightarrow CONV;
```

Description Apply a conversion to the second operand of a binary operator:

where c b gives ' $\vdash b = b'$ '. f may itself be a function application.

Errors

```
|3013| ?0 is not of form: \lceil f \mid a \mid b \rceil
```

7104 Result of conversion, ?0, ill-formed

Also as the failure of the conversion.

|val| SIMPLE_BINDER_C : $CONV \rightarrow CONV$;

Description Apply a conversion to the body of a simple binder term:

 $\begin{array}{c|c} & SIMPLE_BINDER_C \\ \hline & \vdash (B \ x \bullet p[x]) = (B \ x \bullet p'[x]) \end{array} \quad \begin{array}{c} c: CONV) \\ \vdash B \ x \bullet p \end{array}$

where c p[x] gives ' $\vdash p[x] = p'[x]$ ', and B is a binder.

Errors

7059 ?0 is not of the form: $\lceil B \ x \bullet p[x] \rceil$ where $\lceil B \rceil$ is a binder and $\lceil x \rceil$ a variable

|7104 Result of conversion, ?0, ill-formed

Also as the failure of the conversion.

 $|val \text{ simple_eq_match_conv}: THM -> CONV;$

Description This matches the LHS of an equational theorem to a term, instantiating the RHS accordingly. In fact the equation may be partially or fully universally quantified (simple quantification only), without affecting the result of the conversion.

where v' is the result of applying to v the instantiation rules required to match u to t (including both term and type instantiation). If there are free variables on the RHS of the supplied equational theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid identification with any variables in t.

Errors

7044 Cannot match ?0 and ?1

 $|val \text{ simple_eq_match_conv1}: THM -> CONV;$

Description This matches the LHS of an universally quantified (simple quantifiers only) equational theorem to a term, instantiating the RHS accordingly. The conversion will only instantiate its universal quantifications, and type variables not present in the assumptions, and not its free term variables.

where $\lceil u[t1,...,tn] \rceil$ is α -convertible to $\lceil t \rceil$. If there are free variables on the RHS of the supplied equational theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid identification with any variables in t.

This conversion may be partially evaluated with only its theorem argument.

Uses In producing a limited rewriting facility, that only instantiates explicitly identified variables.

Errors

7095 ?0 is not of the form ' $\Gamma \vdash \forall x1 \dots xn \bullet u = v$ ' where $\lceil xi \rceil$ are variables 7076 Could not match term ?0 to LHS of theorem ?1

```
|val | simple\_ho\_eq\_match\_conv: THM -> CONV
```

Description This conversion is like $simple_eq_match_conv$ but uses higher-order matching. It uses ho_match (q.v.) to match the LHS of an equational theorem to a term t. It then instantiates the theorem (including both term and type instantiation) and carries out any $\beta\eta$ -reductions required to give a theorem of the form t=v'. The equation may be partially or fully universally quantified (simple quantification only, not quantification over pairs).

where v' is the result of applying to v the instantiations required to match u to t (including term and type instantiation). If there are free variables on the RHS of the supplied equational theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid identification with any variables in t.

```
Figure 8 [7095] ?0 is not of the form '\Gamma \vdash \forall x1 \dots xn \bullet u = v' where \lceil xi \rceil are variables 17076 Could not match term ?0 to LHS of theorem ?1
```

 $\begin{vmatrix} val & simple_ho_eq_match_conv1 : THM -> CONV \end{vmatrix}$

Description This conversion is like $simple_eq_match_conv1$ but uses higher-order matching. It uses ho_match (q.v.) to match the LHS of an equational theorem to a term t. The equation may be partially or fully universally quantified (simple quantification only, not quantification over pairs). It instantiates the theorem (including both term and type instantiation) and carries out any $\beta\eta$ -reductions required to give a theorem of the form t=v'. Only type variables that do not appear in the assumptions of the theorem and universally quantified term variables will be instantiated.

where v' is the result of applying to v the instantiation rules required to match u to t (including term and type instantiation). If there are free variables on the RHS of the supplied equational theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid identification with any variables in t.

Errors

7095 ?0 is not of the form ' $\Gamma \vdash \forall x1 \dots xn \bullet u = v$ ' where $\lceil xi \rceil$ are variables 7076 Could not match term ?0 to LHS of theorem ?1

 $|val \text{ simple_} \Leftrightarrow \text{_match_mp_rule} : THM -> THM -> THM;$

Description A matching Modus Ponens for \Leftrightarrow .

 $\begin{array}{c|c} Rule & \\ \hline & \Gamma1 \vdash \forall \ x1 \ ... \bullet \ t1 \Leftrightarrow t2; \ \Gamma2 \vdash t1' \\ \hline & \Gamma1' \cup \Gamma2 \vdash t2' \end{array} \quad simple_\Leftrightarrow_match_mp_rule$

where t1' is an instance of t1 under type instantiation and substitution for the x_i and the free variables of the first theorem, and where t2' is the corresponding instance of t2. No type instantiation or substitution will occur in the assumptions of either theorem.

See Also \Rightarrow *elim* (Modus Ponens on \Rightarrow), $simple_\Leftrightarrow_match_mp_rule$

Errors

7044 Cannot match ?0 and ?1

7046 ?0 is not of the form ' $\Gamma \vdash \forall x1 \dots xn \bullet u \Leftrightarrow v$ '

 $|val \ \mathbf{simple}_\Leftrightarrow_{-}\mathbf{match}_\mathbf{mp}_\mathbf{rule1}: THM -> THM -> THM;$

Description A matching Modus Ponens for \Leftrightarrow that doesn't affect assumption lists.

where t1' is an instance of t1 under type instantiation and substitution for the x_i (but not free variables), and where t2' is the corresponding instance of t2. Types in the assumptions of the theorems will not be instantiated.

See Also \Rightarrow *elim* (Modus Ponens on \Rightarrow), $simple_\Leftrightarrow_match_mp_rule1$

Errors

7044 Cannot match ?0 and ?1

7046 ?0 is not of the form $\Gamma \vdash \forall x1 \dots xn \bullet u \Leftrightarrow v$

 $|val \ \mathbf{simple}_\Rightarrow_\mathbf{match}_\mathbf{mp_rule}: THM -> THM -> THM ;$

Description A matching Modus Ponens rule for an implicative theorem.

where t1' is an instance of t1 under type instantiation and substitution for the x_i and the free variables of the first theorem, and where t2' is the corresponding instance of t2. No type instantiation or substitution will occur in the assumptions of either theorem.

See Also $simple_\Rightarrow_match_mp_rule1$, $simple_\Rightarrow_match_mp_rule2$

From From From Section 2.1 The section of the form ' $\Gamma \vdash \forall x1 \dots xn \bullet u \Rightarrow v$ '

```
\begin{vmatrix} val & simple_{-} \Rightarrow _{-}match_{-}mp_{-}rule1 : THM -> THM -> THM ; \\ val & simple_{-} \Rightarrow _{-}match_{-}mp_{-}rule2 : THM -> THM -> THM ; \end{vmatrix}
```

Description Two variants on a matching Modus Ponens rule for an implicative theorem.

where t1' is an instance of t1 under type instantiation and substitution for the x_i (but not free variables), and where t2' is the corresponding instance of t2.

 $simple_\Rightarrow_match_mp_rule2$ is just like $simple_\Rightarrow_match_mp_rule1$ except that the instantiations and substitutions returned by $term_match$ are extended to replace type variables that do not occur in t1 or in $\Gamma 1$ and x_i that do not occur free in t1 by fresh variables to avoid clashes with each other and with the type variables and free variables of $\Gamma 1$ and $\Gamma 2$.

Types in the assumptions of the theorems will not be instantiated.

See Also $simple \Rightarrow match mp rule$

Errors

7044 Cannot match ?0 and ?1 7045 ?0 is not of the form ' $\Gamma \vdash \forall x1 \dots xn \bullet u \Rightarrow v$ '

```
|val \text{ simple}\_\forall\_\text{elim}: TERM -> THM -> THM;
```

Description Instantiate a universally quantified variable to a given value.

where t2' is renamed from t2 to prevent bound variable capture, and x is a variable.

```
Errors 3012 ?0 and ?1 do not have the same types 7039 ?0 is not of the form: '\Gamma \vdash \forall x \bullet t' where \lceil x \rceil is a variable
```

 $|val \text{ simple_} \forall \text{_intro} : TERM \rightarrow THM \rightarrow THM;$

Description Introduce a simple universally quantified theorem.

A built-in inference rule.

See Also ∀_intro

Errors

3007 ?0 is not a term variable

6005 ?0 occurs free in assumption list

 $|val \text{ simple}_\forall_\exists_\text{conv}: CONV;$

Description Swap the order of a simple \forall and \exists :

$$\begin{array}{c|c} & simple_ \forall _ \exists _conv \\ \hline & \vdash (\forall \ x \bullet \ \exists \ y \bullet \ P[x,y]) \Leftrightarrow \\ & (\exists \ y' \bullet \ \forall \ x \bullet \ P[x,\ y' \ x]) \end{array}$$

where y' is renamed to distinguish it from y (for the types differ) and every other term variable in the argument.

Errors

27031 ?0 is not of the form: $\forall x \bullet \exists y \bullet P[x,y]$

 $|val \text{ simple_}\exists \text{_elim}: TERM \rightarrow THM \rightarrow THM > THM ;$

Description Eliminate an existential quantifier.

where y must be variable which is not present elsewhere in the second theorem, nor in the conclusion of the first. t1[y] need not actually be present in the assumptions of the second theorem.

Errors

3007 ?0 is not a term variable

7014 ?0 has the wrong type

7109 ?0 is not of the form ' $\Gamma \vdash \exists x \bullet t[x]$ '

7120 ?0 occurs free in conclusion of ?1

7121 ?0 occurs free in hypotheses of ?1 other than ?2

 $|val \text{ simple_} \exists \text{_intro} : TERM \rightarrow THM \rightarrow THM ;$

Description Introduce an existential quantifier by reference to a witness.

where $\lceil x \rceil$ is a variable.

Errors

3034 ?0 is not of form: \Box var • body

7047 ?0 cannot be matched to conclusion of theorem ?1

 $\begin{vmatrix} val & \mathbf{simple} \\ \end{vmatrix} = \exists \forall \mathbf{conv} : CONV;$

Description Swap the order of a simple \exists and \forall :

$$\begin{array}{c|c}
\text{Conversion} \\
 & \downarrow \\
\hline
 & \vdash (\exists x \bullet \forall y \bullet P[x,y]) \Leftrightarrow \\
 & (\forall y' \bullet \exists x \bullet P[x, y' x])
\end{array}$$

$$\begin{array}{c|c}
\text{simple} \exists \forall conv \\
 & \exists x \bullet \forall y \bullet P[x,y] \\
\hline
\end{array}$$

where y' is renamed to distinguish it from y (for the types differ) and every other term variable in the argument.

Errors

27032 ?0 is not of the form: $\exists x \bullet \forall y \bullet P[x,y]$

 $|val \text{ simple}_\exists_\forall_\text{conv1}: CONV;$

Description Swap the order of a simple \exists and \forall , where the first variable is always applied to the second:

where f' is renamed to distinguish it from f (for the types differ) and every other term variable in the argument.

Errors

|27033| ?0 is not of the form: $\exists f \bullet \forall x \bullet P[f \ x,x] \exists$

|val| simple $\exists -\epsilon$ conv : CONV;

Description Give that ϵ of a predicate satisfies the predicate by reference to an \exists construct.

 $\begin{array}{c|c} & simple \exists \underline{-\epsilon_conv} \\ \hline & \Gamma \vdash (\exists \ x \bullet \ p[x]) \Leftrightarrow p[\epsilon \ x \bullet \ p \ [x]] \end{array} \end{array}$

See Also $\exists_{-}\epsilon_{-}rule$

Errors

3034 ?0 is not of form: \Box var • body

 $|val \text{ simple}_\exists_\epsilon_\text{rule}: THM -> THM;$

Description Give that ϵ of a predicate satisfies the predicate by reference to an \exists construct. It can properly handle paired existence.

See Also $\exists_{-\epsilon} conv$

Errors

7092 ?0 is not of the form: $\Gamma \vdash \exists x \bullet p[x]$

 $|val \text{ simple}_\exists_1_\text{elim}: THM \longrightarrow THM;$

Description Express a \exists_1 in terms of \exists and a uniqueness property.

 $\begin{array}{c|c} \Gamma \vdash \exists_1 \ x \bullet P[x] \\ \hline \Gamma \vdash \exists \ x \bullet P[x] \land \forall \ y \bullet P[y] \Rightarrow y = x \end{array} simple \exists_1 _elim$

Errors

| 7015 ?0 is not of the form: ' $\Gamma \vdash \exists_1 \ x \bullet P[x]$ '

 $|val \text{ simple_}\exists_{1}\text{-intro}: THM \rightarrow THM;$

Description Introduce \exists_1 by reference to a witness, and a uniqueness theorem.

 $\begin{array}{c|c} \Gamma1 \vdash P'[t'] \\ \hline \Gamma2 \vdash \forall \ x \bullet P[x] \Rightarrow x = t \\ \hline \Gamma1 \cup \Gamma2 \vdash \exists_1 \ x \bullet P[x] \end{array} \qquad simple_\exists_{1_intro}$

Where P' is α -convertible to P, and t' is α -convertible to t. Notice that for the resulting theorem we take the bound variable name, x, and the form of the predicate, P, from the second theorem.

Errors

7066 ?0 not of the form: ' $\Gamma \vdash \forall x \bullet P[x] \Rightarrow x = t$ '
7067 ?0 and ?1 are not of the form: ' $\Gamma 1 \vdash Pa[ta]$ ' and ' $\Gamma 2 \vdash \forall x \bullet P[x] \Rightarrow x = t$ '
where $\lceil Pa \rceil$ and $\lceil P \rceil$, $\lceil ta \rceil$ and $\lceil t \rceil$ are α -convertible

|val| simple_ α _conv : $string \rightarrow CONV$;

Description Rename a bound variable name, as a conversion. This only works with simple abstractions.

Errors

|3011 ?0 is not of form: $\lceil \lambda \ var \bullet t \rceil$

7035 Cannot rename bound variable ?0 to ?1 as this would cause variable capture

 $\begin{vmatrix} val & \mathbf{simple}_{-\beta}\mathbf{conv} : CONV; \end{vmatrix}$

Description Apply a β -reduction to a simple abstraction.

$$\begin{array}{c|c} \text{Conversion} \\ \hline & & simple_\beta_conv \\ \hline & \vdash (\lambda \ x \bullet t1[x]) \ t2 = t1[t2] \end{array}$$

A primitive inference rule.

See Also β -conv

Errors

| 6012 ?0 is not of the form: $\lceil (\lambda x \bullet t1[x])t2 \rceil$ where $\lceil x \rceil$ is a variable

```
\begin{vmatrix} val & \mathbf{simple}_{-}\beta_{-}\eta_{-}\mathbf{conv} : TERM -> CONV; \end{vmatrix}
```

Description If t is any term, $simple_{-}\beta_{-}\eta_{-}conv$ t is a conversion which will prove all theorems of the form $\vdash t = s$ where t and s are simply $\alpha\beta\eta$ -equivalent, i.e., can be reduced to α -equivalent normal forms by β - and η -reduction involving only simple (rather than paired) λ -abstractions.

Errors

7131 ?0 and ?1 are not simply $\alpha\beta\eta$ -equivalent

```
\begin{vmatrix} val & \mathbf{simple} - \beta_- \eta_- \mathbf{norm} - \mathbf{conv} : CONV; \end{vmatrix}
```

Description This conversion eliminates all simple β - and η -redexes from a term giving the $\beta\eta$ normal form. It does not eliminate β - and η -redexes involving abstraction over pairs. It fails if
the term is already in normal form.

Errors

7130 ?0 contains no simple β - or η -redexes

```
|val \text{ simple}_{-\epsilon}\text{-elim\_rule}: TERM -> THM -> THM;
```

Description Given that ϵ of a predicate satisfies that predicate, then in a different theorem we may eliminate an assumption that claims an otherwise unused variable satisfies the predicate.

```
 \begin{array}{c|c} & \Gamma 1 \vdash t' \ (\$\epsilon \ t''); \\ \hline \Gamma 2, \ t \ x \vdash s \\ \hline \hline \Gamma 1 \cup \Gamma 2 \vdash s \\ \end{array} \quad \begin{array}{c|c} simple\_\epsilon\_elim\_rule \\ \hline \end{array}
```

where t, t' and t'' are α -convertible, and x is a free variable whose only free occurrence in the second theorem is the one shown and which does not appear free in the conclusion of the first theorem. In fact, ($\$\epsilon\ t''$) here can be any term, it is not constrained to be an application of the choice function.

```
Errors 3007 ?0 is not a term variable 7019 ?0 is not of the form: '\Gamma \vdash t1(\$\epsilon\ t1)' 7054 ?0 is not of same type as choice sub-term of first theorem 7108 Arguments not of the form \lceil ?0 \rceil, '\Gamma 1 \vdash t (\$\epsilon\ t)' and '\Gamma 2, (t\ ?0) \vdash s' 7120 ?0 occurs free in conclusion of ?1 7121 ?0 occurs free in hypotheses of ?1 other than ?2 7122 ?0 occurs free in operator of the conclusion of ?1
```

 $|val \ \mathbf{SIMPLE}_{-}\lambda_{-}\mathbf{C} : CONV \rightarrow CONV;$

Description Apply a conversion to the body of a simple abstraction:

where c p[x] gives ' $\vdash p[x] = p'[x]$ '.

See Also SIMPLE_BINDER_C

Errors

| 3011 ?0 is not of form: $\lceil \lambda \ var \bullet t \rceil$

7104 Result of conversion, ?0, ill-formed

Also as the failure of the conversion.

SML

 $|val \ \mathbf{simple}_{-}\lambda_{-}\mathbf{eq}_{-}\mathbf{rule} : TERM -> THM -> THM;$

Description Given an equational theorem, return the equation formed by abstracting the term argument (which must be a variable) from both sides.

 $\begin{array}{c|c} \Gamma \vdash t1[x] = t2[x] & simple_\lambda_eq_rule \\ \hline \Gamma \vdash (\lambda \ x \bullet t1[x]) = (\lambda \ x \bullet t2[x]) & \ulcorner x \urcorner \end{array}$

A primitive inference rule.

See Also $\lambda_{-}eq_{-}rule$

Errors

3007 ?0 is not a term variable

|6005| ?0 occurs free in assumption list

6020 ?0 is not of the form: $\Gamma \vdash t1 = t2$

 $\begin{vmatrix} val & \mathbf{string_conv} : CONV; \end{vmatrix}$

Description This function defines the constants with names starting with ", and type CHAR LIST (an abbreviation of CHAR LIST). A string literal constant is indicated by the constant name starting with a double quote("), as well as being of type CHAR LIST. This is equivalent to a list of character literal constants, one for each but the first (") character of the string constant's name. This conversion defines this relationship, by returning the head and unexploded tail of the list of characters. A character literal is indicated by the constant's name starting with single backquote ('), as well as being of type CHAR.

$$\frac{string_conv}{Cons_{ML}(mk_string("c..."))^{\neg} = (mk_string("c..."))}$$

$$\frac{Cons_{ML}(mk_char("c"))^{\neg}}{ML(mk_string("..."))^{\neg}}$$

Or:

 $\begin{array}{c|c} & string_conv \\ \hline & \vdash_{\text{ML}}(mk_string(""))^{\neg} = Nil & (mk_string"") \end{array}$

A primitive inference rule(axiom schemata).

See Also mk_string

Errors

3025 ?0 is not a string literal

 $\begin{vmatrix} val & \mathbf{strip}_{\sim} \land_{\mathbf{rule}} : THM -> THM \ list; \end{vmatrix}$

Description Break a theorem into conjuncts as far as possible.

where t can be formed from the $t_{-}i$ by \land _intro alone, with no duplication, exception or reordering.

Example $|strip_ \land_rule `\vdash (a \land b) \land (a \land c \land d)`$ = $[`\vdash a`, `\vdash b`, `\vdash a`, `\vdash c`, `\vdash d`]$

|val| **strip** $_{-} \Rightarrow_{-}$ **rule** : THM -> THM;

Description Repeatedly apply undisch_rule:

```
|val \ \mathbf{subst\_conv}|: (THM * TERM) \ list -> TERM -> CONV;
```

Description Substitution of equational theorems according to a template.

```
 \frac{subst\_conv}{\Gamma 1 \cup \dots \Gamma n \vdash t[\dots,ti,\dots] = t[\dots,ti',\dots]} \quad \frac{subst\_conv}{[\dots,(`\Gamma i \vdash ti=ti'`,\ulcorner xi\urcorner),\ \dots]}
```

 $subst_conv$ [$(thm_1, x_1), \ldots, (thm_n, x_n)$] template term returns a theorem in which template determines where in term the thm_i are substituted, when forming the RHS of the equation. The x_i must be variables. The template is of the form $t[x_1, \ldots, x_n]$, and wherever the x_i are free in template their associated equational theorem, thm_i , is substituted into thm. The rule will rename as necessary to avoid bound variable capture. The assumption list of the resulting theorem will be the union of all substitution theorems, regardless of use.

The RHS of the resulting theorem will take its bound variable names from template, not term, as shown in the following example. This provides an α -conversion facility.

This function may be partially evaluated with only one argument.

```
\begin{bmatrix} subst\_conv \ [(`\vdash p = q`, \ulcorner x1\urcorner), (`\vdash r = s`, \ulcorner x2\urcorner)] \\ (\ulcorner \forall \ y \bullet f \ x1 \ r \ y + g \ x2 \ p = h \ y\urcorner) \\ (\ulcorner \forall \ x \bullet f \ p \ r \ x + g \ r \ p = h \ x\urcorner) \\ = \\ `\vdash (\forall \ x \bullet f \ p \ r \ x + g \ r \ p = h \ x) \Leftrightarrow \\ \forall \ y \bullet f \ q \ r \ y + g \ s \ p = h \ y` \end{cases}
```

See Also subst_rule

```
Substitution list contains entry (?0,?1) where the type of the variable substitute to the type of the theorem
Substitution theorem ?0 is not of the form: 'Γ ⊢ t1 = t2'
Substitution list contains entry (?0,?1) where the type of the variable differs from the type of the LHS of the theorem
```

```
|val \ \mathbf{subst\_rule} : (THM * TERM) \ list -> TERM -> THM -> THM;
```

Description Substitution of equational theorems according to a template.

 $subst_rule\ [(thm_1,x_1),\ldots,(thm_n,x_n)]\ template\ thm$ returns a theorem in which template determines where in thm the thm_i are substituted. The x_i must be variables. The template is of the form $t[x_1,\ldots,x_n]$, and wherever the x_i are free in template their associated equational theorem, thm_i , is substituted into thm. The rule will rename as necessary to avoid bound variable capture. The assumption list of the resulting theorem will be the union of all substitution theorems, regardless of use.

The conclusion of the resulting theorem will take its bound variable names from template, not thm, as shown in the following example. This provides an α -conversion facility.

The function may be usefully partially evaluated with one or two arguments.

A primitive inference rule.

```
subst_rule [('\vdash p = q', \lceil x1 \rceil), ('\vdash r = s', \lceil x2 \rceil)]
( \lceil \forall y \bullet f \ x1 \ r \ y + g \ x2 \ p = h \ y \rceil )
( \vdash \vdash \forall x \bullet f \ p \ r \ x + g \ r \ p = h \ x' )
=
 \vdash \vdash \forall y \bullet f \ q \ r \ y + g \ s \ p = h \ y'
```

See Also subst_conv

```
|val \ SUB_C1 : CONV \rightarrow CONV;
```

Description Apply a conversion to each of the constituents of a term, failing if the term cannot be broken up, or the conversion fails on all constituents (if only one of the two constituents of a mk_app have failures, then the offending term will be $refl_conved$ instead). Thus:

```
SUB_{-}C1 \ cnv \ var = fail_{-}conv \ var
SUB_{-}C1 \ cnv \ const = fail_{-}conv \ const
SUB_{-}C1 \ cnv \ (f \ x) = \Gamma \vdash f \ x = f' \ x'
           where cnv f = \Gamma 1 \vdash f = f'
           and cnv \ x = \Gamma 2 \vdash x = x'
           and \Gamma = \Gamma 1 \cup \Gamma 2
SUB_{-}C1 \ cnv \ (\lambda \ x \bullet t) = \Gamma \vdash (\lambda \ x \bullet t) = (\lambda \ x \bullet t')
           where cnv \ t = \Gamma \vdash t = t'
```

Result of conversion, ?0, ill-formed 7104

7105 ?0 has no constituents

There may be failure messages from the conversions.

```
|val \ SUB_C : CONV \rightarrow CONV;
```

See Also SUB_C1

Description Apply a conversion to each of the constituents of a term, however that term might be constructed, and recombine the results. Thus:

```
|SUB\_C| cnv var = refl\_conv var
SUB\_C \ cnv \ const = refl\_conv \ const
SUB_{-}C \ cnv \ (f \ x) = \Gamma \vdash f \ x = f' \ x'
          where cnv f = \Gamma 1 \vdash f = f'
          and cnv \ x = \Gamma 2 \vdash x = x'
          and \Gamma = \Gamma 1 \cup \Gamma 2
|SUB_{-}C| cnv (\lambda x \bullet t) = \Gamma \vdash (\lambda x \bullet t) = (\lambda x \bullet t')
          where cnv \ t = \Gamma \vdash t = t'
```

|val| suc_conv : CONV;

Description This conversion gives the definition schema for non-zero natural number literals.

 $\begin{array}{c|c} & suc_conv \\ \hline & \vdash_{\mathsf{ML}}(mk_{-}\mathbb{N}(m+1))^{\lnot} = \\ & Suc__{\mathsf{ML}}mk_{-}\mathbb{N} \ m^{\lnot} \end{array}$

The conversion fails if given θ .

Errors

3026 ?0 is not a numeric literal

|7100 ?0 must be numeric literal > 0

See Also $mk_-\mathbb{N}$, $prim_-suc_-conv$

 $|val \ \mathbf{THEN_CAN}| : (CANON * CANON) -> CANON$

Description THEN_CAN is a canonicalisation function combinator written as an infix operator. (can1 THEN_CAN can2)thm is the result of applying can2 to each of the theorems in the list can1 thm and then flattening the resulting list of lists.

See Also CANON

 $\begin{vmatrix} val \ \mathbf{THEN_{-}C} : (CONV * CONV) -> CONV; \end{vmatrix}$

Description Combine the effect of two successful conversions.

where c1 t returns ' $\Gamma1\vdash t=t'$ ', c2 t' returns ' $\Gamma2\vdash t''=t'''$ ', t' and t'' are α -convertible and Γ equals $\Gamma1\cup\Gamma2$.

See Also $EVERY_C$ (the iterated version of this function), as well as $THEN_TRY_C$, AND_OR_C , and $ORELSE_C$

Errors

7101 Result of first conversion, ?0, not an equational theorem

7102 LHS (if any) of result of second conversion, ?0, not α -convertible to RHS of first, ?1

Errors If any, as the failures of c1 and c2 applied to t and t' respectively.

 $\begin{vmatrix} val \ \mathbf{THEN_LIST_CAN} \end{vmatrix} : (CANON * CANON \ list) \longrightarrow CANON$

Description $THEN_LIST_CAN$ is a canonicalisation function combinator written as an infix operator. $(can1\ THEN_LIST_CAN\ cans)thm$ is the result of applying each element of the list cans to the corresponding element of the list $can1\ thm$ and then flattening the resulting list of lists.

See Also CANON

Errors

26204 wrong number of canonicalisation functions in the list

 $|val \ \mathbf{THEN_TRY_C} : (CONV * CONV) \rightarrow CONV;$

Description Combine the effect of two conversions, ignoring the failure of the second if necessary. That is, if the first conversion results in an equational theorem whose RHS can have the second conversion applied, and the two resulting theorems composed, then that composition; otherwise the result of the first conversion alone is returned.

See Also THEN_C, AND_OR_C, ORELSE_C

Errors As the failure of c1.

 $|val\ \mathbf{TOP_MAP_C}: CONV \rightarrow CONV;$

Description TOP_-MAP_-C conv tm traverses tm from its root node to its leaves. It will repeat the application of conv, until failure, on each subterm encountered en route. It then descends through the sub-term that results from the repeated application of the conversion. If the descent causes any change, on "coming back out" to the sub-term the conversional will attempt to reapply conv, and if successful will then (recursively) reapply TOP_-MAP_-C conv once more. If conv cannot be reapplied then the conversional continues to ascend back to the root.

It traverses from left to right, though this should only matter for conversions that work by side-effect. It fails if the conversion is applied nowhere within the term.

Errors

7005 Conversion fails on term and all its subterms

 $|val \ \mathbf{TRY_{-}C} : CONV \rightarrow CONV;$

Description Attempt to apply a conversion, and if it fails, apply $refl_{-}conv$.

 $\begin{vmatrix} val & \mathbf{n} \mathbf{d} \mathbf{s} \mathbf{ch} \mathbf{r} \mathbf{u} \mathbf{l} \mathbf{e} : THM -> THM \end{vmatrix}$;

Description Undischarge the antecedent of an implicative theorem into the assumption list.

From |7011| ?0 is not of the form: ' $\Gamma \vdash a \Rightarrow b$ '

|val| varstruct_variant : TERM list -> TERM -> TERM;

Description varstruct_variant avoid vs will recreate the variable structure vs using only names that are not found in the avoid list of variables, and also renaming to avoid duplicate variable names in the structure. Variant names are found using string_variant (q.v.). If there are duplicates to be renamed, then the original name will be the rightmost in the variable structure.

Errors

3007 ?0 is not a term variable

4016 ?0 is not an allowed variable structure

Message 3007 applies to the avoid list, 27060 to the variable structure.

 $\begin{vmatrix} val & \mathbf{v}_{-} \exists_{-}\mathbf{intro} : TERM -> THM -> THM \end{vmatrix}$;

Description Introduce an existential quantified variable structure into a theorem.

where $\lceil vs[x,y,...] \rceil$ is a varstruct built from variables $\lceil x \rceil$, $\lceil y \rceil$, etc, which may contain duplicates.

Uses If the functionality is sufficient, this is superior in efficiency to both $\exists _intro$ and $simple_\exists _intro$ (q.v.).

Errors

4016 ?0 is not an allowed variable structure

 $|val \Leftrightarrow_{-}\mathbf{elim} : THM \longrightarrow (THM * THM);$

Description Split a bi-implicative theorem into two implicative theorems.

 $\frac{\Gamma \vdash t1 \Leftrightarrow t2}{\Gamma \vdash t1 \Rightarrow t2 \colon \Gamma \vdash t2 \Rightarrow t1} \Leftrightarrow_{-}elim$

Errors

|7062| ?0 is not of the form: ' $\Gamma \vdash t1 \Leftrightarrow t2$ '

 $|val \Leftrightarrow intro: THM -> THM -> THM;$

Description Join two implicative theorems into an bi-implicative theorem.

where t1 and t1' are α -convertible, as are t2 and t2'.

Errors

7040 ?0 is not of the form: $\Gamma \vdash t1 \Rightarrow t2$

7064 ?0 and ?1 are not of the form: ' $\Gamma \vdash t1 \Rightarrow t2$; $\Gamma \vdash t2a \Rightarrow t1a$ ' where $\lceil t1 \rceil$ and $\lceil t1a \rceil$, $\lceil t2 \rceil$ and $\lceil t2a \rceil$, are α -convertible

 $|val \Leftrightarrow \mathbf{match}_{\mathbf{mp}_{\mathbf{rule}}} : THM -> THM :$

Description A matching Modus Ponens for \Leftrightarrow .

where we type instantiate, generalise and specialise both conclusion and assumptions to get the first theorem's LHS to match the conclusion of the second theorem. Universal quantification, or the lack of it, in the first theorem makes no difference to the matching.

This may be partially evaluated with only first argument.

See Also \Rightarrow _elim (Modus Ponens on \Rightarrow), $simple_\Leftrightarrow_match_mp_rule \Leftrightarrow_mp_rule \Leftrightarrow_match_mp_rule1$

Errors

| 7044 Cannot match ?0 and ?1

```
|val \Leftrightarrow \mathbf{match\_mp\_rule1} : THM -> THM -> THM;
```

Description A matching Modus Ponens for ⇔ that doesn't affect assumption lists.

where t1' is an instance of t1 under type instantiation and substitution for the x_i and the free variables of the first theorem, and where t2' is the corresponding instance of t2. No type instantiation or substitution will occur in the assumptions of either theorem.

This may be partially evaluated with only first argument.

See Also \Rightarrow _elim (Modus Ponens on \Rightarrow), simple_ \Leftrightarrow _match_mp_rule1

Errors

7044 Cannot match ?0 and ?1

7046 ?0 is not of the form ' $\Gamma \vdash \forall x1 \dots xn \bullet u \Leftrightarrow v$ '

```
|val \Leftrightarrow_{-}\mathbf{mp\_rule}: THM -> THM > THM;
```

Description This is reminiscent of Modus Ponens, but upon bi-implicative theorems.

where t1 and t1' must be α -convertible.

A built-in inference rule.

See Also \Rightarrow _elim (true Modus Ponens, on \Rightarrow), \Leftrightarrow _match_mp_rule (a "matching" version of \Leftrightarrow _mp_rule)

```
Errors |6024| ?0 and ?1 are not of the form: '\Gamma1 \vdash t1 \Leftrightarrow t2' and '\Gamma2 \vdash t1'' where \lceil t1 \rceil and \lceil t1' \rceil are \alpha-convertible |6030| ?0 is not of the form: '\Gamma \vdash t1 \Leftrightarrow t2'
```

 $\begin{vmatrix} val \Leftrightarrow_{-}\mathbf{t_{-}elim} : THM -> THM; \end{vmatrix}$

Description We can always eliminate $... \Leftrightarrow T$.

Rule

$$\frac{\Gamma \vdash t \Leftrightarrow T}{\Gamma \vdash t} \Leftrightarrow -t_elim$$

Errors

|7106 ?0 not of the form ' $\Gamma \vdash t \Leftrightarrow T$ '

 $|val \Leftrightarrow_{\mathbf{t}}\mathbf{intro}: THM -> THM;$

Description The conclusion of a theorem is equal to T.

Rule

$$\frac{\Gamma \vdash t}{\Gamma \vdash t \Leftrightarrow T} \Leftrightarrow t_intro$$

SML

 $|val \wedge_{-intro} : THM \rightarrow THM \rightarrow THM;$

Description Conjoin two theorems.

Rule

SML

 $|val \wedge_{-} \mathbf{left}_{-} \mathbf{elim} : THM -> THM;$

Description Give the left conjunct of a conjunction.

Rule

$$\frac{\Gamma \vdash t1 \land t2}{\Gamma \vdash t1} \land \land left_elim$$

Errors

7007 ?0 is not of the form: ' $\Gamma \vdash t1 \land t2$ '

SML $val \land \mathbf{rewrite_canon} : THM \rightarrow THM \ list$ $|val \ \mathbf{simple_\neg_rewrite_canon}: THM \ -> THM \ list$ $val \Leftrightarrow _{\mathbf{t}}\mathbf{rewrite}\mathbf{_canon}: THM \rightarrow THM \ list$ val f_rewrite_canon : THM -> THM list $|val \ simple \ \forall \ rewrite \ canon : THM \ -> THM \ list$

Description These are some of the standard canonicalisation functions used for breaking theorems up into lists of equations for use in rewriting. They perform the following transformations:

```
= \Gamma \vdash t1 ; \Gamma \vdash t2
                                                                                           (\Gamma \vdash t1 \land t2)
\land \_rewrite\_canon
                                                                                           (\Gamma \vdash \neg(t1 \lor t2)) = (\Gamma \vdash \neg t1 \land \neg t2)
simple\_\lnot\_rewrite\_canon
                                                                                        (\Gamma \vdash \neg \exists x \bullet t) \qquad = (\Gamma \vdash \forall x \bullet \neg t) 
 (\Gamma \vdash \neg \neg t) \qquad = (\Gamma \vdash t) 
 (\Gamma \vdash \neg t) \qquad = (\Gamma \vdash t \Leftrightarrow F)
|simple\_\neg\_rewrite\_canon|
                                                                    (\Gamma \vdash \neg t) = (I \vdash t)
(\Gamma \vdash t1 = t2) = \langle failure \rangle
(\Gamma \vdash t) = (\Gamma \vdash t \Leftrightarrow T)
(\Gamma \vdash F) = (\Gamma \vdash t)
(\Gamma \vdash \forall x \bullet t) = \Gamma \vdash t
(\Gamma \vdash \forall x \bullet t) = \Gamma \vdash t
|simple\_\neg\_rewrite\_canon|
|simple\_\neg\_rewrite\_canon|
 \Leftrightarrow _-t_-rewrite_-canon
\Leftrightarrow _-t_-rewrite_-canon
|f\_rewrite\_canon|
                                                                                                                                                       = (\Gamma \vdash \forall x \bullet x)
|simple\_\forall\_rewrite\_canon|
```

Note that the functions whose names begin with *simple* do not handle paired quantifiers. Versions which do handle these quantifiers are also available.

See Also \neg _rewrite_canon, \forall _rewrite_canon.

26203 the conclusion of the theorem is already an equation

```
|val \wedge_{\mathbf{right\_elim}} : THM \longrightarrow THM;
```

Description Give the right conjunct of a conjunction.

?0 is not of the form: $\Gamma \vdash t1 \land t2$ 7007

```
|val \wedge_{\mathbf{thm}} : THM;
```

Description Expanded form of definition of \wedge

```
|val \wedge \Rightarrow_{\mathbf{rule}} : THM \longrightarrow THM;
```

Description A theorem whose conclusion is an implication from a conjunction is an equivalent to one whose conclusion is an implication of an implication.

$$\begin{array}{c|c} \Gamma \vdash (a \land b) \Rightarrow c \\ \hline \Gamma \vdash a \Rightarrow b \Rightarrow c \end{array} \land \neg \Rightarrow \neg rule$$

Errors ?0 is not of the form: $\Gamma \vdash (a \land b) \Rightarrow c$ 7009

 $|val \lor _cancel_rule : THM -> THM -> THM;$

Description If we know a disjunction is true, and one of its disjuncts is false, then the other must be true. If the second theorem is the negation of both disjuncts, then the second disjunct will be eliminated. (modus tollendo ponens)

$$\frac{\Gamma 1 \vdash t1 \lor t2; \ \Gamma 2 \vdash \neg t1'}{\Gamma 1 \cup \Gamma 2 \vdash t2} \lor_{-}cancel_rule$$

And:

$$\frac{\Gamma 1 \vdash t1 \lor t2; \ \Gamma 2 \vdash \neg t2'}{\Gamma 1 \cup \Gamma 2 \vdash t1} \lor_cancel_rule$$

where t1' and t1 are α -convertible, as are t2 and t2'.

From [7010] ?0 is not of the form: ' $\Gamma \vdash t1 \lor t2$ ' [7050] ?0 and ?1 are not of the form: ' $\Gamma 1 \vdash t1 \lor t2$ ' and ' $\Gamma 2 \vdash \neg t3$ ' where $\lceil t3 \rceil$ is α -convertible to $\lceil t1 \rceil$ or $\lceil t2 \rceil$

 $\begin{vmatrix} val \lor _\mathbf{elim} : THM -> THM -> THM : \end{vmatrix}$

Description Given a disjunctive theorem, and two further theorems, each containing one of the disjuncts in their assumptions, but with the same conclusion, we may eliminate the disjunct assumption from the second of the theorems.

$$\begin{array}{c|c} \Gamma1 \vdash t1 \lor t2 \\ \Gamma2, \ t1' \vdash t \\ \hline \Gamma3, \ t2' \vdash t' \\ \hline \Gamma1 \cup \Gamma2 \cup \Gamma3 \vdash t \end{array} \lor _elim$$

where t1 and t1' are α -convertible, as are t2 and t2', and t and t'. Actually, t1' and t2' do not have to be present in the assumption lists for this function to work.

7010 ?0 is not of the form: ' $\Gamma \vdash t1 \lor t2$ '
7083 ?0, ?1 and ?2 are not of the form: ' $\Gamma 1 \vdash t1 \lor t2$ ', ' $\Gamma 2$, $t1a \vdash t3$ '
and ' $\Gamma 3$, $t2a \vdash t3a$ ', where $\lceil t1 \rceil$ and $\lceil t1a \rceil$, $\lceil t2 \rceil$ and $\lceil t2a \rceil$, $\lceil t3 \rceil$ and $\lceil t3a \rceil$ are each α -convertible

 $|val \lor _left_intro : TERM -> THM -> THM;$

Description Introduce a disjunct to the left of a theorem's conclusion.

 $|val \lor _right_intro : TERM \longrightarrow THM \longrightarrow THM;$

Description Introduce a disjunct to the right of a theorem's conclusion.

Errors

3031 ?0 is not of type $\Box BOOL$

 $|val \lor_{-}\mathbf{thm} : THM;$

Description Expanded form of definition of \vee

 $\begin{vmatrix} val & \neg_\mathbf{elim} : TERM & -> THM & -> THM : \end{vmatrix}$

Description Given two contradictory theorems with the same assumptions, conclude any other fact from the assumptions: input theorems may be in either order.

Errors

3031 ?0 is not of type $\neg BOOL$

7004 ?0 and ?1 are not of the form: ' $\Gamma 1 \vdash a$ ' and ' $\Gamma 2 \vdash \neg a$ '

 $|val \neg_{\mathbf{eq_sym_rule}}: THM \rightarrow THM ;$

Description If a is not equal to b then b is not equal to a.

 $\begin{array}{c|c} \Gamma \vdash \neg(a=b) & \neg_eq_sym_rule \\ \hline \Gamma \vdash \neg(b=a) & \hline \end{array}$

Errors

7091 ?0 is not of form: ' $\Gamma \vdash \neg (a = b)$ '

 $\begin{vmatrix} val & \neg_intro : TERM & -> THM & -> THM & >> THM; \end{vmatrix}$

Description Given two theorems with contradictory conclusions (up to α -convertibility), their assumptions must be inconsistent, and thus any member of the lists (or indeed, anything else) may be proven false on the assumption of the remainder (reductio ad absurdum).

Works up to α -conversion, and input theorems may be in either order.

Errors

|3031| ?0 is not of type $\lceil :BOOL \rceil$

7004 ?0 and ?1 are not of the form: ' Γ 1 \vdash a' and ' Γ 2 \vdash \neg a'

```
SML |val \neg = simple \exists = conv : CONV;

Description Move \neg into an \exists construct.

Rule \neg = simple \exists = conv
\neg = simple \exists = conv
\neg = (\exists x \bullet t[x]) \neg = (\exists
```

```
SML |val \neg_{-}\mathbf{thm} : THM;

Description Expanded form of definition of \neg:

\frac{\mathsf{Theorem}}{\forall t \bullet (\neg t) \Leftrightarrow (t \Rightarrow F)} \qquad \neg_{-}thm
```

 $\begin{vmatrix} val & \neg_{-}\neg_{-}\mathbf{elim} : THM & -> THM; \end{vmatrix}$

Description A double negation is redundant.

Errors

7006 ?0 is not of the form: $\Gamma \vdash \neg (\neg t)$

 $|val \neg \neg \text{intro} : THM \rightarrow THM;$

Description We may always introduce a double negation.

 $\begin{vmatrix} val & \neg_\forall_\mathbf{conv} : CONV; \end{vmatrix}$

Description Move \neg into a \forall construct.

See Also $\neg_simple_\forall_conv$ which only works with simple \forall -abstractions, \neg_\exists_conv

 $\begin{vmatrix} val & \neg_\forall_\mathbf{thm} : THM; \end{vmatrix}$

Description Used in pushing negations through simple universal quantifications.

 $\begin{array}{c|c}
 & \neg \\
 & \vdash \forall \ p \bullet \neg \$ \forall \ p \Leftrightarrow (\exists \ x \bullet \neg p \ x)
\end{array}$

 $|val \neg \exists \mathbf{conv} : CONV;$

Description Move \neg into an \exists construct.

See Also \neg -simple_ \exists -conv which only works with simple \exists -abstractions, \neg - \forall -conv

 $\begin{bmatrix} 27020 & ?0 \text{ is not of the form: } \neg (\exists x \bullet t[x]) \neg \\ where \neg x \neg \text{ is a varstruct} \end{bmatrix}$

 $\begin{vmatrix} val & \neg_\exists_\mathbf{thm} : THM; \end{vmatrix}$

Description Used in pushing negations through simple existential quantifications.

 $\begin{vmatrix} val \Rightarrow_{-}\mathbf{elim} : THM -> THM -> THM; \\ val \Rightarrow_{-}\mathbf{mp_rule} : THM -> THM -> THM; \end{vmatrix}$

Description Modus Ponens (which is why we introduce the alias $\Rightarrow mp_rule$, though $\Rightarrow elim$ is shorter, conventional, and the preferred name).

$$\begin{array}{c|c} \Gamma^{\text{Rule}} & & \Gamma 1 \vdash t1 \Rightarrow t2; \ \Gamma 2 \vdash t1' \\ \hline & \Gamma 1 \cup \Gamma 2 \vdash t2 \end{array} \Rightarrow_{-elim} elimates$$

where t1 and t1' must be α -convertible. A primitive inference rule.

See Also $\Leftrightarrow mp_rule(Modus Ponens on \Leftrightarrow), \Rightarrow match_mp_rule (a "matching" version of this function).$

 $\begin{vmatrix} val \Rightarrow_{\mathbf{intro}} : TERM -> THM -> THM; \end{vmatrix}$

Description Prove an implicative theorem, removing, if α -convertibly present, the antecedent of the implication from the assumption list.

$$\begin{array}{c|c} \Gamma & \Gamma & \Gamma & \Gamma & \rightarrow intro \\ \hline & \Gamma - \{t1\} \vdash t1 \Rightarrow t2 & & & \\ \hline \end{array}$$

A primitive inference rule.

See Also disch_rule (which fails if term not in assumption list)

3031 ?0 is not of type :BOOL

 $|val \Rightarrow_{-} \mathbf{match}_{-} \mathbf{mp}_{-} \mathbf{rule} : THM -> THM -> THM ;$

Description A matching Modus Ponens rule for an implicative theorem.

where we type instantiate, generalise and specialise to get the first theorem's antecedent to match the conclusion of the second theorem. Universal quantification, or the lack of it, in the first theorem makes no difference to the matching.

This may be partially evaluated with only the first argument.

See Also \Rightarrow _match_mp_rule1, \Rightarrow _elim

Errors

|7044 Cannot match ?0 and ?1

```
\begin{vmatrix} val \Rightarrow_{\mathbf{match\_mp\_rule1}} : THM -> THM -> THM ; \\ val \Rightarrow_{\mathbf{match\_mp\_rule2}} : THM -> THM -> THM ; \end{vmatrix}
```

Description Two variants of a matching Modus Ponens rule for an implicative theorem.

where t1' is an instance of t1 under type instantiation and substitution for the x_i and the free variables of the first theorem, and where t2' is the corresponding instance of t2. The type instantiations and substitutions are obtained by matching t1 and t1' using $term_match$.

 \Rightarrow _match_mp_rule2 is just like \Rightarrow _match_mp_rule1 except that the instantiations and substitutions returned by $term_match$ are extended to replace type variables that do not occur in t1 or in $\Gamma 1$ and x_i that do not occur free in t1 by fresh variables to avoid clashes with each other and with the type variables and free variables of $\Gamma 1$ and $\Gamma 2$.

Types in the assumptions of the theorems will not be instantiated.

Both rules may be partially evaluated with only the first argument.

```
Errors | 7044 Cannot match ?0 and ?1
```

```
7045 ?0 is not of the form '\Gamma \vdash \forall x1 \dots xn \bullet u \Rightarrow v'
```

 $\begin{vmatrix} val \Rightarrow _ \land _\mathbf{rule} : THM -> THM; \end{vmatrix}$

Description A theorem whose conclusion is an implication of an implication is equivalent to one whose conclusion is a conjunction and an implication.

Rule

$$\begin{array}{ccc} \Gamma \vdash a \Rightarrow b \Rightarrow c \\ \hline \Gamma \vdash (a \land b) \Rightarrow c \end{array} \Rightarrow _ \land _rule$$

Errors

7008 ?0 is not of the form: $\Gamma \vdash a \Rightarrow b \Rightarrow c$

SML

 $|val \forall_{-}arb_{-}elim : THM \rightarrow THM;$

Description Specialise a universally quantified theorem with a machine generated variable or variable structure.

Rule

$$\frac{\Gamma \vdash \forall \ vs[x,y,...] \bullet \ p[x,y,...]}{\Gamma \vdash p[x',y',...]} \quad \forall_{-}arb_{-}elim$$

where x', y', etc, are not variables (free or bound) in p or Γ , created by $gen_{-}vars(q.v)$.

See Also ∀_elim

Errors

|27011 ?0 is not of the form: ' $\Gamma \vdash \forall x \bullet t$ ' where $\lceil x \rceil$ is a varstruct

SML

 $|val \forall_{-asm_rule} : TERM \rightarrow TERM \rightarrow THM \rightarrow THM;$

Description Generalise an assumption (Left \forall introduction).

Rule

$$\frac{\Gamma, \ p'[x] \vdash q[x]}{\Gamma, \ \forall \ x \bullet \ p'[x] \vdash q[x]} \qquad \qquad \begin{array}{c} \forall_{-} asm_{-} rule \\ \vdash_{x} \neg \\ \vdash_{p[x]} \neg \end{array}$$

where p and p' are α -convertible. x may be free in Γ . The function will work even if p'[x] is not present in the assumption list.

Errors

4016 ?0 is not an allowed variable structure

 $\begin{vmatrix} val \ \forall_{-}\mathbf{elim} : TERM -> THM -> THM; \end{vmatrix}$

Description Specialise a universally quantified theorem with a given value, instantiating the type of the theorem as necessary.

$$\frac{\Gamma \vdash \forall \ x \bullet \ t2[x]}{\Gamma \vdash t2'[t1]} \quad \forall_{-elim}$$

where t2' is renamed from t2 to prevent bound variable capture and possibly type instantiated, and x is a varstruct, instantiable to the structure of t1. The value t1 will be expanded using Fst and Snd as necessary to match the structure of $\lceil x \rceil$.

See Also $list_\forall_elim, all_\forall_elim.$

27011 ?0 is not of the form: 'Γ ⊢ ∀ x• t' where ¬¬ is a varstruct
27012 ?0 is not of the form: 'Γ ⊢ ∀ x• t' where the type of ¬¬¬ is instantiable to the type of ?1
27013 ?0 is not of the form: 'Γ ⊢ ∀ x• t' where the type of ¬¬¬ is instantiable to the type of ?1 without instantiating type variables in the assumptions

 $|val \ \forall_{-intro} : TERM \rightarrow THM \rightarrow THM;$

Description Introduce a universally quantified theorem.

Where $\lceil x' \rceil$ is an allowed variable structure based on $\lceil x \rceil$, but with duplicate variables renamed, the original name being rightmost in the resulting variable structure.

See Also $list_\forall_intro, all_\forall_intro.$

Errors

4016 ?0 is not an allowed variable structure

6005 ?0 occurs free in assumption list

 $|val \ \forall_{\mathbf{reorder_conv}}: TERM \longrightarrow CONV;$

Description Reorder universal quantifications.

where the $x_{-}i$ and $y_{-}i$ are varstructs, and the reordering, restructuring (by pairing) and renaming requested is provable by this function. The presence of redundant quantifiers, including duplicates, is also handled.

Example

|:> \forall _reorder_conv $\neg \forall$ (x,q) $z \bullet x \land z \neg \neg \forall$ (z,z,y) $x \bullet x \land z \neg$; | val $it = \vdash (\forall (z, z, y) x \bullet x \land z) \Leftrightarrow (\forall (x, q) z \bullet x \land z) : THM$ | Note that before more sophisticated attempts, the conversion | will try $\alpha \subset v$ on the two term arguments.

See Also $\exists reorder_conv$

Errors

27050 Cannot prove equality of ?0 and ?1

 $|val| \forall_{\mathbf{uncurry_conv}} : CONV;$

Description Convert a paired universally quantified term into simple universal quantifications of the same term.

 $\begin{array}{c|c} & \forall_{-uncurry_conv} \\ \hline & \Gamma \vdash \forall \ vs[x,y,\ldots] \bullet \ f[x,y,\ldots] = \\ & \forall \ x \ y \ \ldots \bullet \ f[x,y,\ldots] \end{array}$

where vs[x, y, ...] is an allowed variable structure with variables x, y, ... It may not be a simple variable.

See Also $\lambda_{-}varstruct_{-}conv$, $all_{-}\forall_{-}uncurry_{-}conv$.

Errors

|27038 ?0 is not of the form: $\lceil \forall (x,y) \bullet f \rceil$

 $|val \ \forall _ \Leftrightarrow _\mathbf{rule} : TERM \longrightarrow THM \longrightarrow THM;$

Description Universally quantify a variable on both sides of an equivalence.

where x is a varstruct.

Errors

|6005> ?0 occurs free in assumption list

|6020>>>?0>>is>>not>>of>>the>>form: ' $\Gamma\vdash t1=t2$ '

7062 ?0 is not of the form: $\Gamma \vdash t1 \Leftrightarrow t2$

4016 ?0 is not an allowed variable structure

 $\begin{vmatrix} val \ \exists_{-}asm_{-}rule : TERM -> TERM -> THM -> THM; \end{vmatrix}$

Description Existentially quantify an assumption (Left \exists introduction).

$$\begin{array}{c|c} & & \exists _asm_rule \\ \hline & \Gamma, \ p'[x] \vdash q \\ \hline & \Gamma, \ \exists \ x \bullet \ p'[x] \vdash q \\ \hline \end{array}$$

where p and p' are α -convertible. where the variables of the varstruct x are not free in Γ or q. The assumption need not be present for the rule to apply.

Errors

|3015| ?1 is not of type $\lceil :BOOL \rceil$

4016 ?0 is not an allowed variable structure

6005 ?0 occurs free in assumption list

27052 ?0 has members appearing free in ?1 other than in assumption ?2

Message 3015 is just passed on from low level functions, which is why it has "?1" not "?0".

 $|val \; \exists_{-}\mathbf{elim} : TERM \; -> \; THM \; -> \; THM \; -> \; THM;$

Description Eliminate an existential quantifier by reference to an arbitrary varstruct satisfying the predicate.

$$\begin{array}{c|c} \Gamma^{\text{Rule}} \\ & \Gamma 1 \vdash \exists \ vs[x1, x2, \ldots] \bullet \ t1[x1, x2, \ldots]; \\ & \Gamma 2, \ t1[y1, y2, \ldots] \vdash \ t2 \\ \hline & \Gamma 1 \cup \Gamma 2 \vdash t2 \\ \end{array} \quad \begin{array}{c} \exists_{-} elim \\ \neg vs[y1, y2, \ldots] \neg \end{array}$$

t1[y1, y2, ...] need not actually be present in the assumptions of the second theorem. The $y_{-}i$ must be free variables, none of whom are present elsewhere in the second theorem, or in the conclusion of the first. The $y_{-}i$ may contain duplicates as long as the end pattern matches the $x_{-}i$ in required duplicates. The term argument may be a less complex variable structure than the bound variable structure of the theorem, as Fst and Snd are used to make them match. For example, the following rule holds true:

 $\begin{array}{c|c} & \Gamma 1 \vdash \exists \ (p,q) \bullet \ t1[p,q]; \\ \hline & \Gamma 2, \ t1[Fst \ x, \ Snd \ x] \vdash t2 \\ \hline & \Gamma 1 \cup \Gamma 2 \vdash t2 \\ \end{array} \quad \begin{array}{c} \exists _elim \\ \vdash x \\ \hline \end{array}$

Errors

27042 ?0 does not match the bound varstruct of ?1

|27046|?0 is not of the form ' $\Gamma \vdash \exists \ vs \bullet \ t$ '

27051 ?0 has members appearing free in conclusion of ?1

27052 ?0 has members appearing free in ?1 other than in assumption ?2

SML

 $val \exists _intro_thm : THM;$

Description Introduction of existential quantification.

 $|val \; \exists$ _intro : $TERM \; -> \; THM \; -> \; THM \; ;$

Description Introduce an existential quantifier by reference to a witness.

$$\begin{array}{c|c} \Gamma \vdash t[t1,t2,\ldots] & \exists_intro \\ \hline \Gamma \vdash \exists \ vs[x',y',\ldots] \bullet \ t[x,y,\ldots] & \vdash \exists \ vs[x,y,\ldots] \bullet \ t[x,y,\ldots] \\ \end{array}$$

where $\lceil vs[x,y,...] \rceil$ is varstruct built from variables $\lceil x \rceil$, $\lceil y \rceil$, etc, and the $\lceil x' \rceil$ are renamed if duplicated inside the varstruct, all but the rightmost being so renamed.

Errors

 $|4020 \quad ?0 \text{ is not of form: } \exists vs \bullet t \rceil$

| 7047 ?0 cannot be matched to conclusion of theorem ?1

 $|val \; \exists \text{reorder_conv} : TERM \; -> \; CONV;$

Description Reorder existential quantifications.

where the $x_{-}i$ and $y_{-}i$ are varstructs, and the reordering, restructuring (by pairing) and renaming requested is provable by this function. The presence of redundant quantifiers, including duplicates, is also handled.

Example

 $|:> \exists_reorder_conv \ \ulcorner \exists \ (x,q) \ z \bullet x \land z \urcorner \ \ulcorner \exists \ (z,z,y) \ x \bullet x \land z \urcorner;$ $val \ it = \vdash (\exists \ (z, z, y) \ x \bullet x \land z) \Leftrightarrow (\exists \ (x, q) \ z \bullet x \land z) : THM$ $Note \ that \ before \ more \ sophisticated \ attempts, \ the \ conversion$ $will \ try \ \$\alpha \setminus conv\$ \ on \ the \ two \ term \ arguments.$

See Also $\forall reorder_conv$

Errors

27050 Cannot prove equality of ?0 and ?1

 $\begin{vmatrix} val & \exists_{-uncurry_conv} : CONV; \end{vmatrix}$

Description Convert a paired existentially quantified term into simple universal quantifications of the same term.

where vs[x, y, ...] is an allowed variable structure with variables x, y, ... It may not be a simple variable.

See Also $\lambda_{-}varstruct_{-}conv$, $all_{-}\exists_{-}uncurry_{-}conv$, $\forall_{-}uncurry_{-}conv$.

Errors

|27047|?0 is not of the form: \Box $(x,y) \bullet f \Box$

 $|val \exists_{-\epsilon} \mathbf{conv} : CONV;$

Description Give that ϵ of a predicate satisfies the predicate by reference to an \exists construct. It can properly handle paired existence.

```
\frac{\exists_{-\epsilon\_conv}}{\Gamma \vdash (\exists x \bullet p[x]) = p(\epsilon x \bullet p x)} \qquad \exists_{x \bullet p[x]} \neg
```

If x is formed by paired then the Fst and Snd are used to extract the appropriate bits of the ϵ -term for distribution in $p[\epsilon \ x \bullet \ p \ x]$.

See Also $\exists \epsilon_rule$

 $\begin{bmatrix} 27024 & ?0 \text{ is not of the form: } `\Gamma \vdash \exists x \bullet p[x] `where \ulcorner x \urcorner \text{ is a varstruct} \end{bmatrix}$

 $|val \ \exists_{-}\epsilon_{-}\mathbf{rule} : THM -> THM;$

Description Give that ϵ of a predicate satisfies the predicate by reference to an \exists construct. It can properly handle paired existence.

$$\begin{array}{c|c} \Gamma \vdash \exists \ x \bullet \ p[x] \\ \hline \Gamma \vdash p[\epsilon \ x \bullet \ p \ x] \end{array} \qquad \exists \epsilon rule$$

If x is formed by paired then the Fst and Snd are used to extract the appropriate bits of the ϵ -term for distribution in $p[\epsilon \ x \bullet \ p \ x]$.

See Also $\exists_{-\epsilon} conv$

 $\begin{bmatrix} 27024 & ?0 \text{ is not of the form: } `\Gamma \vdash \exists x \bullet p[x] ` where \ulcorner x \urcorner \text{ is a varstruct} \end{bmatrix}$

 $\begin{vmatrix} val & \exists_{1}\text{-conv} : CONV; \end{vmatrix}$

Description This is a conversion which turns a unique existential quantifier into an equivalent existential quantifier

Uses Tactic and conversion programming.

See Also $strip_tac$, $simple_∃_1_conv$

Errors |27053|?0 is not of the form: $\lceil \exists_1 vs \bullet t \rceil$

 $\begin{vmatrix} val \ \exists_{1}\text{-elim} : THM -> THM; \end{vmatrix}$

Description Express a $\exists 1$ in terms of \exists and a uniqueness property.

where the a', etc, are variants of the a.

 $\begin{bmatrix} 27022 & ?0 \text{ is not of the form: } `\Gamma \vdash \exists_1 \ x \bullet \ P[x]`$ $\text{where } \ulcorner x \urcorner \text{ is a varstruct}$

Description Introduce $\exists 1$ by reference to a witness, and a uniqueness theorem.

 $\begin{array}{c|c}
\Gamma1 \vdash P'[t'] \\
\hline
\Gamma2 \vdash \forall x \bullet P[x] \Rightarrow x = t \\
\hline
\Gamma1 \cup \Gamma2 \vdash \exists_1 x \bullet P[x]
\end{array}$ $\exists_{1-intro}$

Where P' is α -convertible to P, and t' is α -convertible to t. Notice that for the resulting theorem we take the varstruct, x, and the form of the predicate, P, from the second theorem.

27021 ?0 and ?1 are not of the form: ' $\Gamma 1 \vdash Pa[ta]$ ' and ' $\Gamma 2 \vdash \forall vs[x,y,..] \bullet P[x,y...] \Rightarrow vs[x,y,..] = t$ ' where $\lceil Pa \rceil$ and $\lceil P \rceil$, $\lceil ta \rceil$ and $\lceil t \rceil$ are α -convertible and $\lceil x \rceil$ is a varstruct 27054 ?0 not of the form: ' $\Gamma \vdash \forall vs[x,y,..] \bullet P[x,y...] \Rightarrow vs[x,y,..] = t$ '

 $|val \exists_{1-}$ thm : THM; **Description** Expanded form of definition of \exists_{I}

Theorem $\begin{array}{c|c}
 & & \exists_{1} \text{-}thm \\
 & & (\exists t \bullet (P t) \land \\
 & (\forall x \bullet (P x) \Rightarrow x = t))
\end{array}$

 $\begin{vmatrix} val & \alpha_{-}\mathbf{conv} & : TERM & -> CONV; \end{vmatrix}$

Description Returns a theorem that two terms are equal, should they be α -convertible.

Rule $\frac{\alpha_{conv}}{\vdash t1 = t2} \qquad \frac{r_{t2}}{\vdash t1}$

Errors

3012 ?0 and ?1 do not have the same types

|7034| ?0 and ?1 are not α -convertible

 $\begin{vmatrix} val & \beta_{-}\mathbf{conv} &: & CONV \end{vmatrix}$;

Description Apply a β -reduction to an abstraction.

where x may be any varstruct allowed by the ICL HOL syntax, y is an instance of this structure, and t' is α -convertible to t, changed to avoid variable capture.

When the bound variable structure has a pair, where the value applied to does not, then Fst and Snd are introduced as necessary, e.g.:

 $\beta_{-}rule$

Example

$$\begin{vmatrix} \beta _ conv \ \lceil (\lambda \ (x,y) \bullet f \ x \ y) \ p \rceil = \\ \vdash (\lambda \ (x,y) \bullet f \ x \ y) \ p = f \ (Fst \ p) \ (Snd \ p) \end{vmatrix}$$

See Also $simple_\beta_conv$, β_rule

Errors

27008 ?0 is not of the form: $\lceil (\lambda x \bullet t1[x])t2 \rceil$ where $\lceil x \rceil$ is a varstruct

 $\begin{vmatrix} val & \beta_{\mathbf{rule}} : THM -> THM; \end{vmatrix}$

Description An elimination rule for λ , which can handle paired abstractions.

 $\begin{array}{c|c} & & \Gamma \vdash (\lambda \ x \bullet \ t[x]) \ y \\ \hline & \Gamma \vdash t[y] \end{array}$

See Also β -conv

Errors

27007 ?0 is not of the form: ' $\Gamma \vdash (\lambda x \bullet t[x]) y$ '

where $\lceil x \rceil$ is a varstruct

 $|val \epsilon_{-}elim_{-}rule: TERM \rightarrow THM \rightarrow THM:$

Description Given that ϵ of a predicate satisfies that predicate, then in a different theorem we may eliminate an assumption that claims an otherwise unused variable structure satisfies the predicate.

where t, t' and t'' are α -convertible, and vs is a varstruct, with no duplicates, and with its free variables occurring nowhere else in the second theorem, or in the conclusion of the first. In fact, (se t'') here can be any term, it is not constrained to be an application of the choice function.

From 4016 ?0 is not an allowed variable structure 7019 ?0 is not of the form: 'Γ ⊢ t1(ϵ t1)' 7054 ?0 is not of same type as choice sub−term of first theorem 27043 ?0 is repeated in the varstruct ?1 27045 Arguments ?0; ?1 and ?2 not of the form ¬vs¬; 'Γ1 ⊢ t (ϵ t)' and 'Γ2, (t vs) ⊢ s' 27051 ?0 has members appearing free in conclusion of ?1 27052 ?0 has members appearing free in ?1 other than in assumption ?2

 $|val \epsilon_{-}intro_{-}rule : THM -> THM;$

Description Given a theorem whose conclusion is a function application, we know that the "function" is a predicate, and the rule states that ϵ of this predicate will satisfy the predicate.

Errors

7016 ?0 is not of the form: ' $\Gamma \vdash t1 \ t2$ '

 $val \ \eta_{-}conv : CONV;$

Description The rule for η conversion.

where t contains no free instances of the variables of varstruct vs.

 $\begin{bmatrix} 27018 & ?0 \text{ is not of the form: } \Gamma \lambda \text{ } vs \bullet \text{ } t \text{ } vs' \rceil \\ where \lceil vs \rceil \text{ is a } varstruct \end{bmatrix}$

27023 ?0 is not of the form: $\lceil \lambda \ vs \bullet \ t \ vs \rceil$ where $\lceil t \rceil$ should not contain $\lceil vs \rceil$

 $\begin{vmatrix} val & \lambda_{-}\mathbf{C} &: CONV & -> CONV \end{vmatrix}$;

Description Apply a conversion to the body of an abstraction:

$$\begin{array}{c|c} & \lambda_{-}C \\ \hline & \vdash (\lambda \ x \bullet \ p[x]) = (\lambda \ x \bullet \ pa[x]) \end{array} \qquad \begin{array}{c} \lambda_{-}C \\ (c:CONV) \\ \hline & \vdash \lambda \ x \bullet \ p \end{array}$$

where c p[x] gives ' $\vdash p[x] = pa[x]$ '.

Errors

|4002| ?0 is not of form: $\lceil \lambda \ vs \bullet \ t \rceil$

7104 Result of conversion, ?0, ill-formed

Also as the failure of the conversion.

 $\begin{vmatrix} val & \lambda_{-}eq_{-}rule : TERM -> THM -> THM; \end{vmatrix}$

Description Given an equational theorem, return the equation formed by abstracting the term argument (which must be an allowed variable structure) from both sides.

$$\begin{array}{c|c} \Gamma \vdash t1[x] = t2[x] & \lambda_{-}eq_{-}rule \\ \hline \Gamma \vdash (\lambda \ x \bullet \ t1[x]) = (\lambda \ x \bullet \ t2[x]) & \Gamma_{x} \end{array}$$

Errors

4016 ?0 is not an allowed variable structure

6005 ?0 occurs free in assumption list

6020 ?0 is not of the form: $\Gamma \vdash t1 = t2$

 $\begin{vmatrix} val & \lambda_{\mathbf{pair}} & conv : CONV; \end{vmatrix}$

Description This conversion eliminates abstraction over pairs in favour of abstraction over elements of pairs. The bound variables of the resulting λ -abstraction do not have pair types.

$$\frac{\lambda_{pair_conv}}{(\lambda \ (v1, \ v2) \bullet \ t'[(v1, \ v2)/v])} \qquad \frac{\lambda_{pair_conv}}{\lambda \ v:'a \times 'b \bullet \ t^{\neg}}$$

$$\frac{\lambda_{pair_conv}}{(\lambda ((v1, v2), (w1, w2)) \bullet t[(v1, v2)/v, (w1, w2)/v])}$$

$$\frac{\lambda_{pair_conv}}{(\lambda ((v, w):('a \times 'b) \times ('c \times 'd) \bullet t]}$$

and so on.

Errors

|27055 The type of ?0 is not of the form $\sigma \times \tau$

 $|val \lambda_{-}rule : TERM \rightarrow THM \rightarrow THM;$

Description An introduction rule for λ :

$$\begin{array}{c|c} \Gamma & \Gamma \vdash s[t] & \lambda_{-}rule \\ \hline \Gamma \vdash (\lambda \ x \bullet s[x]) \ t & \Gamma t \end{array}$$

where x is a machine generated variable.

 $|val| \lambda_{\text{varstruct_conv}} : TERM -> CONV;$

Description This conversion is a generalisation of α -conv allowing one to convert a λ -abstraction into an equivalent λ -abstraction that differs only in the form of the varstruct and the corresponding use of Fst in the Snd in the body of the abstraction.

$$\frac{\lambda_{\text{-}} varstruct_{\text{-}} conv}{ \vdash (\lambda \ vs2[x2,y2,...] \bullet \ t[x2,y2,...]) = \\ (\lambda \ vs1[x1,y1,...] \bullet \ t'[x1,y1,...])}$$

Where the types of vs1[x1, y1, ...] and vs2[x2, y2, ...] are the same, and t' and t differ only in applications of Fst and Snd to the bound variables.

For example,

See Also α -conv for a more limited form of renaming.

Errors

27050 Cannot prove equality of ?0 and ?1

7.2 Subgoal Package

|signature| SubgoalPackage = sig

Description This provides the subgoal package, which provides an interactive backward proof mechanism, based on the application of tactics.

```
30009 There are no goals to prove
30017 Label ?0 has no corresponding goal
30023 ?0 cannot be interpreted as a goal
30028 Label may not contain ?0, as less than 1
30041 Label ?0 has been superseded
30042 Label may not contain 0
30043 Label ?0 has been achieved
30045 Label cannot be empty
30055 The last change to the subgoal package state was made in
       a context which is no longer valid
30056 The current goal contains distinct free variables
       with the same names but different types, the names being ?0,
       and a typing context is being maintained.
       These free variables have not been put in the typing context
30059 The current goal contains two or more distinct free variables
       with the same name but different types, the name being ?0,
       and a typing context is being maintained.
       These free variables have not been put in the typing context
30061 The tactic generated an invalid proof (?0). The goal state has not been changed
```

These messages are common to various functions in this document. Message 30055 indicates that the goal state theorem failed the $valid_thm$ test: this could be a theory out of scope, a deletion of a definition, etc. Messages 30056 and 30057 are just for the user's information, though they should give cause to worry.

```
|(*\mathbf{pp'TS} *)
```

Description The theory will contain a constant named pp'TS, defined by a definition with key "pp'TS".

```
\vdash \forall x \bullet (pp'TS \ x) \Leftrightarrow x
```

This is used in creating a term form goal. Using this constant explicitly within the subgoal package may cause unexpected behaviour.

Uses THe definition may be used when analysing goal state theorems, or using $modify_goal_state_thm$ (q.v.) - both operations are only for the advanced user or extender of the system.

```
|(* subgoal\_package\_quiet : bool *)|
```

Description This is a system control, handled by set_-flag . If set to false (the default) then the package narrates its progress as described in the design of its components. If set to true then the package will cause no output other than the actual results of functions. This includes, e.g., $print_-goal$ and $apply_-tactic$.

Uses For running the package offline.

```
|(* \mathbf{subgoal\_package\_ti\_context} : bool *)|
```

Description subgoal_package_ti_context is a system control flag, as handled by set_flag, etc. If set to true (the default) then the type context will be set and maintained, via set_ti_context(q.v.), to be just the free variables of the current goal, each time the current goal changes. If false, then the type context will be cleared and left unchanged by goal state changes. If the current goal has free variables with the same name and differing types this will cause set_ti_context to ignore those variables, raising the comment message 30056.

```
|(* tactic\_subgoal\_warning : integer \ control \ *)|
```

Description Warning 30018 will be issued by *apply_tactic* (and *a*) if the tactic requests more subgoals than the number set by this control. This allows the user to avoid processing and printing large numbers of subgoals when these are probably unwanted. The default value is 20. If the value is less than zero then the warning will never be issued.

```
|(* \text{ undo\_buffer\_length} : int *)|
```

Description This is a system control, handled by $set_int_control$, etc, which sets the maximum number of entries that can be held on the undo buffer for each main goal: i.e. how many tactic applications, etc, may be undone. It is initially set to 12, and cannot be made negative. Any changes to this parameter will take immediate effect upon the undo buffers stored for all the main goals, i.e. if necessary they will be shortened at the point of changing the value, rather than at the point of, e.g., applying a new tactic.

```
| type GOAL_STATE;
```

Description This is an abstract data type that embodies a goal state, in particular it contains which goals are yet to be achieved and a theorem embedding the inference work so far. The subgoal package has a current goal state, a stack of goal states for different main goals, and a buffer of goal states to allow some operations to be undone.

See Also print_goal_state

```
| val apply_tactic : TACTIC -> unit;
| val a : TACTIC -> unit;
```

Description apply_tactic applies a tactic to the current goal, and a is an alias for it. If successful, the previous goal state will be put in the undo buffer, and the new goal state, current goal, etc, will be based on the tactic's application. If the tactic returns some subgoals then the "first" of these will become the new current goal. If there is only one subgoal it will inherit the label of the previous current goal, otherwise if the old label was "label" then it will be considered in the goal state as superseded, and the new subgoals will be labeled "label.1", "label.2", etc. If it produces a theorem that achieves the current goal (i.e. the list of subgoals is empty), then the "next" goal will become the current one, and the previous goal's label will be noted as achieved.

The subgoals created, or if none, the "next" goal, will be displayed, using the format of $print_goal(q.v)$, but with goal labels also given. Following the display of the new goals the subgoal package will issue warning messages about these goals if they are somehow "suspicious": for example it will warn if the goal state is not changed by applying the tactic.

Warning 30018 will be issued if the tactic requests more subgoals than the number set by control $tactic_subgoal_warning$. This allows the user to avoid processing and printing large numbers of subgoals when these are probably unwanted.

See Also *print_goal* for the display format of the goals.

```
Errors
| 30007 There is no current goal
| 30008 Result of tactic, ?0, did not match the current goal
| 30018 Tactic has requested ?0 subgoals, which exceeds the threshold
| set by tactic_subgoal_warning
```

```
\begin{vmatrix} val & drop_main_goal : unit -> GOAL; \end{vmatrix}
```

Description Pop the current goal state from the main goal stack throwing away it and any work upon it, and making the previous entry on the stack the new current goal state, displaying the current top goal, if appropriate. The function returns the main goal dropped.

```
|val| get_asm: int \rightarrow TERM;

Description get_asm n returns the nth assumption of the current goal.

|30026| There is no current goal
|30027| There is no assumption ?0 in the current goal
```

 $|val \text{ modify_goal_state_thm}: (THM \rightarrow THM) \rightarrow ((string \ list * GOAL)list) \rightarrow unit;$

Description $modify_goal_state_thm\ rule\ label$ is a powerful hook into the subgoal package that works as follows:

- 1. Extract the goal state theorem
- 2. Apply a user-supplied inference rule *rule* to the theorem.
- 3. Make a new goal state, in which the goal state theorem is this new theorem.
- 4. In the new goal state any goals found (up to α -conversion) in the association list *label* will be labelled with their corresponding labels in the association list. Multiple entries for the same goal in the list will cause the labels to be accumulated, resulting in duplicated goals in the new goal state. If $top_goals()$ (q.v.) is used for this association list then all unchanged goals will gain their original labels.
- 5. Label otherwise unlabelled goals with unused single natural number labels (the first available ones from the list "1", "2",...)
- 6. Treat this new goal state as if it had been created by a tactics application, e.g. it becomes the current goal state, the previous goal state is put on the undo list, the user is told the next goal to prove, etc.

This will issue a warning on its use should the main goal have changed, and on attempting to extract an achieved, or goal state, theorem from a goal state that is derived from the modified one. This is so that the user is warned that the result of an apparently successful $pop_{-}thm$ is not an achievement of the initially set main goal.

Uses This function is intended for system builders wishing to write extensions to the package that change the overall proof tree, not an individual goal.

```
| 30039 Two labels clash: ?0 and ?1
| 30040 Duplicate labels ?0 given for different terms
| 30051 Inference rule returned '?0' which is not a goal state theorem
```

```
|val| pending_reset_subgoal_package : unit \rightarrow unit \rightarrow unit;
```

Description This function, applied to () takes a snapshot of the current subgoal package state - its stack of goal states, undo and redo buffers, and implicitly the current goal label, etc. This snapshot, if then applied to () will overwrite the then current subgoal package state with the snapshot. This does not reset, e.g., the current theory to the one at the time of taking the snapshot, so care must be taken in using this function.

Uses Primarily in saving the subgoal package state between sessions of ProofPower, via save-and-quit.

```
|val| pop_thm : unit \rightarrow THM;
```

Description If the top achieved theorem is available (i.e. the theorem whose sequent is the main goal has been achieved), this function returns it, and then pops the previous goal state (if any) off the main goal stack, restoring its current goal and labelling. If present, the new current top goal will be displayed in the format used by $print_goal$. If the current proof is incomplete the function fails, having no effect.

If the user wishes to examine the top achieved theorem without popping the main goal stack, then they should use $top_{-}thm$ (q.v.).

The user will be informed if main goal has changed from the initially set main goal, by using $modify_goal_state_thm(q.v)$.

See Also save_pop_thm, top_thm

Errors

30010 The subgoal package is not in use

30011 The current proof is incomplete

```
|val| print_current_goal : unit \rightarrow unit;
```

Description Displays, with its label, the current goal of the current goal state: the goal to which a tactic will be applied.

Errors

30026 There is no current goal

```
|val| print_goal_state : GOAL\_STATE \rightarrow unit;
```

Description Display the given goal state. This displays the main goal, the goals yet to be proven, and the current goal.

```
|val| print_goal : GOAL \rightarrow unit;
```

Description Display a goal (i.e. a conclusion and a list of assumptions) in the manner of the other subgoal package functions. This presents the list of assumptions in the goal first, numbered by their position, and in reverse order, and then the conclusion, distinguished from the assumptions by a turnstile.

where $\neg b \Rightarrow a \neg$ is the first assumption, and the second assumption is too long to fit on one line. Then with no assumptions:

```
\begin{vmatrix} (* & ? \vdash *) & \lceil a \lor b \rceil \end{vmatrix}
```

```
|val| push_goal_state_thm : THM \rightarrow unit;
```

Description Given a theorem that is of the form of a goal state theorem (e.g. gained by $top_goal_state_thm$, q.v.), set a new current main goal to be the conclusion of the input theorem (viewed as a term form goal). The current goal in the new goal state will be the first assumption of the input theorem, viewed as a term form goal. If it is the only assumption of the theorem argument then the corresponding goal will have label ""; otherwise label "1", and the other assumptions of the theorem will become subsequent goals with labels "2", "3",... This new goal state is pushed onto the main goal stack. The current undo buffer will also be stacked, and a new empty one made current.

Uses For the advanced user, interested in partial proof.

Errors

30005 ?0 cannot be viewed as a goal state theorem

30058 Two distinct variables with name ?0 occur free in the goal

```
|val| push_goal_state : GOAL\_STATE \rightarrow unit;
```

Description If the value given is "well-formed", then this function pushes the current goal state onto the main goal stack, and sets the given value as the current goal state. The most likely reason that a goal state value is ill-formed is that it is not being pushed in the same context as it was formed, e.g. it was formed in a theory that is now out of scope, e.g. because the user has changed theory since the states creation. The current undo buffer will also be stacked, and a new empty one made current.

See Also top_goal_state

```
\begin{vmatrix} val & \mathbf{push\_goal} \\ \end{vmatrix} : GOAL -> unit;
```

Description Sets a new current main goal, creating an appropriate goal state and pushing it onto the main goal stack. The current (and only) goal in the new goal state will be the main goal, with label "". The current goal will be displayed. The current undo buffer will also be stacked, and a new empty one made current.

See Also set_goal

```
Errors
```

30002 The conclusion of the goal, ?0, is not of type BOOL

30003 An assumption of the goal, ?0, is not of type BOOL

30004 Two assumption of the goal (?0 and ?1) are α -convertible

30058 Two distinct variables with name ?0 occur free in the goal

```
\begin{vmatrix} val & \mathbf{redo} : unit -> unit; \end{vmatrix}
```

Description If the last command to affect the goal state was an undo(q.v) then this command will undo its effect (including leaving the undo buffer in its previous form, without mention of the undo or redo).

Errors

30014 The last command to affect the goal state was not an undo

```
|val \text{ save\_pop\_thm}: string \rightarrow THM;
```

Description If the top achieved theorem is available (i.e. the theorem whose sequent is the main goal has been achieved), this function returns it, as well as saving it under the given string key on the current theory, and then pops the previous goal state (if any) of the main goal stack, restoring its current goal and labelling. If present, the new current top goal will be displayed in the format used by $print_goal$. If the current proof is incomplete, or the key is already used in the current theory, the function fails, having no effect.

The user will be informed if main goal has changed from the initially set main goal, by using $modify_goal_state_thm(q.v)$.

The user will be informed if main goal has changed from the initially set main goal, by using $modify_goal_state_thm(q.v)$.

See Also pop_thm, top_thm

```
Errors
30010 The subgoal package is not in use
30011 The current proof is incomplete
```

Failures also as *save_thm*, but given as originating from this function.

```
|val \text{ set\_goal}: GOAL \rightarrow unit;
```

Description This first discards, if it exists, the current main goal (but not any previously pushed main goals). It then sets a new current main goal, creating an appropriate goal state and pushing it onto the main goal stack. The current (and only) goal in the new goal state will be the main goal, with label "". The current goal will be displayed. The current undo buffer will also be stacked, and a new empty one made current.

```
\begin{vmatrix} set\_goal & gl = (drop\_main\_goal() & handle & (Fail \_) => (); \\ push\_goal & gl); \end{vmatrix}
```

Uses In restarting a proof that has "gone wrong", perhaps by

```
|set\_goal(top\_main\_goal());
```

See Also push_goal

```
Errors
```

```
30002 The conclusion of the goal, ?0, is not of type BOOL
```

```
30003 An assumption of the goal, ?0, is not of type BOOL
```

```
30004 Two assumption of the goal (?0 and ?1) are \alpha-convertible
```

30058 Two distinct variables with name ?0 occur free in the goal

```
|val \text{ set\_labelled\_goal} : string \rightarrow unit;
```

Description If the string is a valid label in the current goal state, then set the corresponding goal as the current goal, and then display it.

```
Errors
30010 The subgoal package is not in use
30016 ?0 is not of the form "n1.n2....nm"
```

```
|val \text{ simplify\_goal\_state\_thm}: THM \rightarrow THM;
```

Description This will simplify a goal state theorem (e.g from $top_goal_state_thm$, q.v.), stripping off assumptions from the conclusion of the theorem up to the turnstile place marker, then removing the place marker itself in both conclusion and assumptions.

Uses For the advanced user, interested in partial proofs.

Errors

30005 ?0 cannot be viewed as a goal state theorem

```
|val|  subgoal_package_size : unit \rightarrow int;
```

Description This returns the size of the subgoal package's storage, in words - where one word is four bytes.

This facility is not available in all versions of ProofPower. The function will produce the following warning message and return -1 in this case

Errors

30060 This function is not supported in this version of ProofPower

```
|val \ \mathbf{top\_current\_label} : unit \rightarrow string;
```

Description Returns the label of the current goal: the goal to which a tactic will be applied.

Errors

30026 There is no current goal

```
\begin{vmatrix} val & \mathbf{top\_goals} : unit -> (string \ list * GOAL) list; \end{vmatrix}
```

Description Returns all the goals yet to be achieved, and their associated labels (they may have more than one), in the current goal state.

Uses To determine what goals are left to achieve.

Errors

30010 The subgoal package is not in use

```
|val| top\_goal\_state\_thm : unit -> THM;
```

Description This returns the goal state theorem of the current goal state. It is a partial proof of the main goal, though in a somewhat unwieldy form, as it encodes the main goal, and its other goals in a term form. It may be simplified by using $simplify_goal_state_thm(q.v)$. The theorem is suitable for setting a new main goal, by using $push_goal_state_thm(q.v)$. The user is informed if the goal state has achieved its theorem The user will also be informed if main goal has changed from the initially set main goal, by using $modify_goal_state_thm(q.v)$.

Uses For the advanced user, interested in partial proofs.

Errors

30010 The subgoal package is not in use

 $|val \ \mathbf{top_goal_state} : unit \rightarrow GOAL_STATE;$

Description This provides the current goal state as a value: note that a goal state does not contain an undo buffer, and thus function does not return the current undo buffer.

See Also push_goal_state

Errors

30010 The subgoal package is not in use

 $|val \ \mathbf{top_goal} : unit \rightarrow GOAL;$

Description Returns the current goal of the current goal state: the goal to which a tactic will be applied.

Errors

30026 There is no current goal

 $|val \ top_labelled_goal : string \rightarrow GOAL;$

Description Returns the goal with the given label, should it exist in the current goal state. Note that superseded and achieved goals are not available from the goal state.

Errors

| 30016 ?0 is not of the form "n1.n2....nm"

 $\begin{vmatrix} val & top_main_goal : unit -> GOAL; \end{vmatrix}$

Description Return the current main goal: the objective of the current proof attempt.

Errors

30025 There is no current main goal

 $|val \ \mathbf{top_-thm} : unit \rightarrow THM;$

Description If the top achieved theorem (i.e. the theorem whose sequent is the main goal has been achieved) is available, this function returns it, without affecting the current goal state. If the current proof is incomplete the function fails.

The user will be informed if main goal has changed from the initially set main goal, by using $modify_goal_state_thm(q.v)$.

See Also pop_thm, save_pop_thm

Errors

30010 The subgoal package is not in use

30011 The current proof is incomplete

```
|val| undo : int -> unit;
```

Description undo n will take the nth entry from the undo buffer, if there are sufficient, as the current goal state. Attempting to go past the end of the buffer will cause a failure, rather than a partial undoing. A single undo command can itself be undone by redo(q.v), but otherwise entries on the undo buffer between its start and the nth entry will be discarded.

Note that the undo buffer is stacked on starting a new main goal (e.g. with $push_goal$), and unstacked on popping the current main goal (e.g. with pop_thm or $drop_main_goal$).

Errors

30010 The subgoal package is not in use

30012 Attempted to undo ?0 time?1 with only ?2 entr?3 in the undo buffer

30013 Must undo a positive number of times

7.3 General Tactics and Tacticals

 $\begin{vmatrix} s_{\text{ML}} \\ signature \ \mathbf{Tactics1} = sig \end{vmatrix}$

Description This provides the first group of tactics and tacticals in ICL HOL.

 $|signature \ \mathbf{Tactics2}| = sig$

Description This provides the second group of tactics and tacticals in ICL HOL. These are mainly concerned with the predicate calculus.

 $\begin{vmatrix} s_{\text{ML}} \\ signature \ \mathbf{Tactics3} = sig \end{vmatrix}$

Description This provides a third group of tactics. They are primarily concerned with adding handling for paired abstractions.

Description TACTIC is the type of tactics. The types GOAL and PROOF help to abbreviate its definition.

Description These are the types of theorem tactics and theorem tacticals.

|val| accept_tac : $THM \rightarrow TACTIC$;

Description Prove a goal by a theorem which is α -convertible to it.

where t1 and t2 are α -convertible.

Errors

9102 ?0 is not α -convertible to the goals conclusion ?1

|val| all_asm_ante_tac : TACTIC;

Description Apply asm_ante_tac to every assumption in turn:

 α -equivalent assumptions will only appear once in the resulting goal. Notice that the first assumption becomes the rightmost antecedent.

See Also asm_ante_tac , $list_asm_ante_tac$

Errors

28055 The conclusion or an assumption of goal does not have type \(\text{:}BOOL \)

```
| val all_var_elim_asm_tac : TACTIC;
| val all_var_elim_asm_tac1 : TACTIC;
| val ALL_VAR_ELIM_ASM_T : (THM -> TACTIC) -> TACTIC;
| val ALL_VAR_ELIM_ASM_T1 : (THM -> TACTIC) -> TACTIC;
```

Description These tactics and tacticals do variable elimination with all the appropriate assumptions of the goal. They process one or more assumptions of the form: $\lceil var = value \rceil$ or $\lceil value = var \rceil$, where var is a variable and the subterm value satisfies a tactic-specific requirement, eliminating the variable var in favour of the value.

If an assumption is an equation of variables, which all of the listed tactics accept, then the tactic will strip digits and the current variant suffix from the right of the two variable names, and will choose to eliminate the variable with the shortest remaining name string, taking eliminating the left hand side variable if the strings are of equal length (this is a heuristic). If the variables are the same then the assumption is just discarded with no further effect.

 $all_var_elim_asm_tac$ will first extract all the goal's assumptions, holding them in a "pool". It will examine each assumption of the required form in turn, starting at the assumptions from the head of the assumption list. To eliminate a variable var using an assumption it requires that the value to which it is equated is also a variable, or an isolated constant (this is more restrictive than $var_elim_asm_tac$). All the occurrences of the variable will be eliminated from the rest of the assumptions in the pool, and from the conclusion of the goal, and the assumption discarded from the pool. Each of the assumptions in the pool will be examined once, as the process described so far will only exceptionally introduce new equations that can be used for variable elimination.

Finally, the remaining assumptions in the pool will be returned to the goal's assumption list - if an individual assumption is unchanged then it will be returned by $check_asm_tac$, otherwise it will be stripped back into the assumption list by $strip_asm_tac$. This stripping may result in further possible variable eliminations being enabled, and indeed certain fairly unlikely combinations of assumptions and proof contexts may result in REPEAT $all_var_elim_asm_tac$ not halting. $ALL_VAR_ELIM_ASM_T$ allows the users choice of function to be applied to the modified assumptions, rather than $strip_asm_tac$.

all_var_elim_asm_tac1 works as all_var_elim_asm_tac, except that an assumption will be used to eliminate a variable var if the value to which it is equated does not contain var free (i.e. its requirement is as var_elim_asm_tac). ALL_VAR_ELIM_ASM_T1 allows the users choice of function to be applied to the modified assumptions.

All the functions fail if they find no assumptions that can be used to eliminate variables.

Uses General purpose, and in basic_prove_tac.

See Also prop_eq_prove_tac for more sophisticated approach to these kinds of problems.

Errors

29028 This tactic is unable to eliminate any variable

 $|val| \mathbf{all}_{-\beta_{-}}\mathbf{tac} : TACTIC;$

Description This tactic will β -reduce all β -redexes in the goal's conclusion, including those redexes introduced by preceding β -reductions in the same tactic application.

Uses In most proof contexts β -reduction will be a side effect of rewriting: this tactic is intended for cases where rewriting would do "too much".

See Also $all_{-}\beta_{-}rule$, $all_{-}\beta_{-}conv$

Errors

|27049 ?0 contains no β -redexes

 $\begin{vmatrix} val & \mathbf{all}_{-}\epsilon_{-}\mathbf{tac} : \mathit{TACTIC}; \\ val & \mathbf{ALL}_{-}\epsilon_{-}\mathbf{T} : (\mathit{THM} \ -> \ \mathit{TACTIC}) \ -> \ \mathit{TACTIC}; \end{vmatrix}$

Description $all_{-}\epsilon_{-}tac$ applies $\epsilon_{-}tac$ to all subterms of the conclusion of the goal of the form $\epsilon x \bullet t$. $ALL_{-}\epsilon_{-}T$ is similar but uses $\epsilon_{-}T$ rather than $\epsilon_{-}tac$. The effect is to set the corresponding terms of the form $\exists x \bullet t$ as lemmas, and to derive new assumptions of the form $t[\epsilon x \bullet t/x]$.

 $\frac{\{ \Gamma \} t[\epsilon x_1 \bullet t_1/y_1, ..., \epsilon x_k \bullet t_k/y_k]}{\{ \Gamma \} \exists x_1 \bullet t_1; ...; \{ \Gamma \} \exists x_k \bullet t_k; \\ \{ strip \ t_1[\epsilon x_1 \bullet t_1/x_1], ..., \\ strip \ t_k[\epsilon x_k \bullet t_k/x_k], \Gamma \} t}$

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable. This occurs when the use of the choice function is in some sense irrelevant to the truth of the goal, e.g., $(\epsilon x \bullet T) = (\epsilon x \bullet T)$.

|val| ante_tac : $THM \rightarrow TACTIC$;

Description Replace a goal with conclusion t2 by $t1 \Rightarrow t2$, where the antecedent, t1, of the implication is the conclusion of a theorem:

 $\frac{ \left\{ \begin{array}{c} \Gamma 2 \end{array} \right\} \ t2}{ \left\{ \begin{array}{c} \Gamma 2 \end{array} \right\} \ t1 \Rightarrow t2} \qquad ante_tac \ (\Gamma 1 \vdash t1)$

where the assumptions, $\Gamma 1$, of the theorem are contained in the assumptions, $\Gamma 2$ of the goal.

Uses This is often useful if one needs to transform the conclusion of theorem e.g. by rewriting with the assumptions.

See Also asm_tac, strip_asm_tac

Errors

28027 Conclusion of goal does not have type :BOOL

|val| asm_ante_tac : $TERM \rightarrow TACTIC$;

Description Bring a term out of the assumption list into the goal as the antecedent of an implication.

Rule

$$\frac{ \{ \Gamma, t1' \} t2}{\{ \Gamma \} \vdash t1 \Rightarrow t2} \qquad asm_ante_tac$$

where t1 and t1' are α -convertible. Note that all assumptions α -convertible with t1 are removed.

Uses Typically to make the assumption amenable to manipulation, e.g. by a rewriting tactic.

See Also list_asm_ante_tac, all_asm_ante_tac, swap_asm_concl_tac, DROP_ASM_T.

Errors

28052 Term ?0 is not in the assumptions

28055 The conclusion or an assumption of goal does not have type $\lceil :BOOL \rceil$

SMI

 $|val \ \mathbf{asm_tac} : THM \ -> TACTIC;$

Description $asm_{-}tac\ thm$ is a tactic which adds the conclusion of the theorem, thm, into the assumptions of a goal:

Tactic

| val back_chain_tac : THM list -> TACTIC; | val bc_tac : THM list -> TACTIC;

Description $back_chain_tac$ is a tactic which uses theorems whose conclusions are possibly universally quantified implications or bi-implications, to reason backwards from the conclusion of a goal. $(bc_tac$ is an alias for $back_chain_tac$.) The tactic repeatedly performs the following steps:

- 1. Scan the list of theorems looking for an implication, $t1 \Rightarrow t2$, or a bi-implication $t1 \Leftrightarrow t2$ for which the conclusion of the goal is a substitution instance, t2' say, of t2. If no such theorem is found then stop.
- 2. If in step 1, an applicable theorem, say thm, has been found reduce the goal to the corresponding instance of t1 (or an existentially quantified version thereof) using bc_-thm_-tac , q.v.
- 3. Repeatedly apply $\forall tac$ or $\land tac$ until neither of these is applicable.
- 4. Delete thm from the list of theorems and return to step 1.

In step 4, only the first appearance of thm is removed from the list, so that one can arrange for a theorem to be used more than once by the tactic by putting several copies of it in the list.

For example:

Example

$$\frac{ \{ \Gamma \} t3'}{\{ \Gamma \} t4'; \{ \Gamma \} t5'}$$

$$\Rightarrow tac$$

$$[\Gamma 1 \vdash t1 \land (\forall x \bullet t2) \Rightarrow t3,$$

$$\Gamma 2 \vdash t4 \Leftrightarrow t1,$$

$$\Gamma 3 \vdash t5 \Rightarrow t2,$$

(Here t3' is some substitution instance of t3 and t4' and t5' are the corresponding instances of t4 and t5.)

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

See Also bc_-thm_-tac (which is used to perform step 2).

Error

```
29012 Theorem ?0 is not of the form '\Gamma \vdash \forall x1 \dots xn \bullet u \Leftrightarrow v' or '\Gamma \vdash \forall x1 \dots xn \bullet u \Rightarrow v'
```

```
| val back_chain_thm_tac : THM -> TACTIC; | val bc_thm_tac : THM -> TACTIC;
```

Description $back_chain_thm_tac$ is a tactic which uses a theorem whose conclusion is a possibly universally quantified implication or bi-implication to chain backwards one step from the conclusion of a goal. (bc_thm_tac) is an alias for $back_chain_thm_tac$.) The effect is as follows:

where t2' is an instance (under type instantiation and substitution) of t2 and t1' is the corresponding instance of t1. If t1' contains free variables which do not appear in the assumptions of the instantiated theorem or in t2', then the new subgoal t1' will be existentially quantified over these variables. For example,

Note that, bi-implications are in effect treated as right-to-left rewrite rules at the top level by this tactic. The standard rewriting mechanisms may be used for left-to-right rewriting.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

See Also back_chain_tac (which supplies a more general facility).

```
Errors 29011 Conclusion of the goal is not an instance of: ?0 29012 Theorem ?0 is not of the form '\Gamma \vdash \forall x1 \dots xn \bullet u \Leftrightarrow v' or '\Gamma \vdash \forall x1 \dots xn \bullet u \Rightarrow v'
```

```
|val| bad_proof : string \rightarrow 'a
```

Description bad_proof name is equivalent to error name 9001 []. bad_proof is for use in low level tactical programming to report the error situation when the proof generated by a tactic is supplied with the wrong number of arguments. (This will not happen for the usual use of tactics with tac_proof or within the subgoal package):

Errors

9001 the proof of the subgoals has produced the wrong number of theorems

Uses Specialised low-level tactic programming.

 $\begin{vmatrix} val \ \mathbf{CASES_{-}T2} : TERM \ -> (THM \ -> TACTIC) \ -> \\ (THM \ -> TACTIC) \ -> TACTIC; \end{vmatrix}$

Description Do a case split on a given boolean term using two tactic generating functions:

 $|CASES_T2\ t1\ ttac1\ ttac2\ (\{\Gamma\}\ t2) = ttac1(t1\vdash t1)(\{\Gamma\}\ t2)\ ;\ ttac2(\neg t1\vdash \neg t1)(\{\Gamma\}\ t2)$

See Also $cases_tac$, \lor_THEN , $CASES_T$

Errors

| 28022 ?0 is not boolean

SML

 $|val \ \mathbf{cases_tac} : TERM \rightarrow TACTIC;$

Description Do a case split on a given boolean term.

Tactic

See Also $CASES_T$, $\vee_T THEN$

Errors

| 28022 ?0 is not boolean

 $|val\ \mathbf{CASES_T}: TERM\ -> (THM\ ->\ TACTIC)\ ->\ TACTIC;$

Description Do a case split on a given boolean term using a tactic generating function:

 $|CASES_T t1 ttac (\{\Gamma\} t2) = ttac(t1 \vdash t1)(\{\Gamma\} t2) ; ttac(\neg t1 \vdash \neg t1)(\{\Gamma\} t2)$

See Also $cases_tac$, \lor_THEN , $CASES_T2$

Errors

28022 ?0 is not boolean

SML

 $|val \ CHANGED_T : TACTIC \rightarrow TACTIC;$

Description $CHANGED_{-}T$ tac is a tactic which applies tac to the goal and fails if this results in a single subgoal which is α -convertible to the original goal.

Uses CHANGED_T can be a useful way of ensuring termination of, e.g., rewriting tactics.

Errors

9601 the tactic did not change the goal

 $|val \ \mathbf{check_asm_tac}| : THM \ -> \ TACTIC;$

Description $check_asm_tac\ thm$ is a tactic which checks the form of the theorem, thm, and then takes the first applicable action from the following table:

thm	action
$\Gamma \vdash t$	proves goal if its conclusion is t
$\Gamma \vdash T$	as $id_{-}tac$ (i.e. the theorem is discarded)
$\Gamma \vdash F$	proves goal
$\Gamma \vdash \neg t$	proves goal if t in assumptions, else as $asm_{-}tac$
$\Gamma \vdash t$	proves goal if $\neg t$ in assumptions, else as $asm_{-}tac$

During the search through the assumptions in the last two cases, <code>check_asm_tac</code> also checks to see whether any of the assumptions is equal to the conclusion of the goal, and if so proves the goal. It also checks to see if the conclusion of the theorem is already an assumption, in which case the tactic has no effect. When all the assumptions have been examined, if none of the above actions is applicable, the conclusion of the theorem is added to the assumption list.

Uses Tactic programming.

See Also $strip_asm_tac$, $strip_tac$.

| val concl_in_asms_tac : TACTIC;

Description concl_in_asms_tac is a tactic which checks whether the conclusion of the goal is also in the assumptions, and if so proves the goal.

where t and t' are α -convertible.

Uses Tactic programming.

See Also strip_tac.

Errors

28002 Goal does not appear in the assumptions

 $\begin{vmatrix} val & COND_T : (GOAL -> bool) -> TACTIC -> TACTIC -> TACTIC; \end{vmatrix}$

Description $COND_{-}T \ p \ tac1 \ tac2$ is a tactic which acts as tac1 if the predicate p holds for the goal, otherwise it acts as tac2.

Example

 $|COND_T|$ (is_¬ o snd) (cases_tac $\lceil X:BOOL \rceil$) strip_tac

is a tactic which does a case split on $\lceil X \rceil$ if the goal is a negation and behaves as $strip_tac$ otherwise.

Uses For constructing larger tactics, in cases where the more common idiom using ORELSE would not have the desired effect.

See Also ORELSE

Errors As determined by the arguments.

SML

|val contr_tac : TACTIC;

Description A form of proof by contradiction: t holds if $\neg t \vdash F$.

(The name stands for classical contradiction, as opposed to the intuitionistic contradiction proof of i_contr_tac .)

Tactic

$$\frac{\{ \ \Gamma \ \} \ t}{\{ strip \ \neg t, \ \Gamma \} \ F} \qquad contr_tac$$

Uses Proof by contradiction.

See Also $strip_tac$, \neg_tac .

Errors

|28027| Conclusion of goal does not have type $\lceil:BOOL\rceil$

SML

$$|val\ CONTR_T: (THM -> TACTIC) -> TACTIC;$$

Description A form of proof by contradiction as a tactical. $CONTR_-T$ thmtac is a tactic which attempts to solve a goal (Γ, t) , by applying $thmtac(\neg t \vdash \neg t)$ to the goal (Γ, F) .

Tactic

$$\frac{ \{ \Gamma \} t}{thmtac (\neg t \vdash \neg t) (\{\Gamma\} F)}$$
 $CONTR_{-}T$ $thmtac$

Uses Proof by contradiction in combination with a theorem tactic.

See Also $contr_tac$, ¬ $_T$.

Errors

|28027| Conclusion of goal does not have type $\lceil :BOOL \rceil$

SMI

 $|val \ conv_tac : CONV \rightarrow TACTIC;$

Description conv₋tac conv is a tactic which applies the conversion conv to the conclusion of a goal, and replaces the conclusion of the goal with the right-hand side of the resulting equational theorem if this is successful:

Tacti

where $conv \ t2 = (\Gamma 1 \vdash t2 = t1)$.

Errors

9400 the conversion returned '?0' which is not of the form: '... \vdash ?1 \Leftrightarrow ...'

|val| **CONV_THEN** : $CONV \rightarrow THM_TACTICAL$;

Description CONV_THEN conv thmtac is a theorem tactic which first uses conv to transform the conclusion of a theorem and then acts as thmtac.

 $|(CONV_THEN)| conv| thmtac| thm = thmtac| (conv| thm)$

Uses For use in programming theorem tacticals. The function may be partially evaluated with only its conversion, theorem tactic and theorem arguments.

 $\begin{vmatrix} 9400 & the \ conversion \ returned \ `?0` \ which \ is \ not \ of \ the \ form: \\ `... \vdash ?1 \Leftrightarrow ...`$

 $\begin{vmatrix} val & \mathbf{discard_tac} : 'a -> TACTIC; \\ val & \mathbf{k_id_tac} : 'a -> TACTIC; \end{vmatrix}$

Description A tactic that discards its argument, but otherwise has no effect. $k_{-}id_{-}tac$ is an alias for $discard_{-}tac$.

Uses Can be used to remove unwanted assumptions: $a\ (POP_ASM_T\ discard_tac)$ discards the top-most assumption. This usage of $discard_tac$ may strengthen the goal. ie it may result in unprovable subgoals even when the original goal was provable.

 $|val \ \mathbf{DROP_ASMS_T} : (THM \ list -> TACTIC) -> TACTIC;$

Description $DROP_ASMS_T$ thmstac is a tactic which applies asm_rule to each assumption of the subgoal, giving a list of theorems, thms say, then removes all the assumptions of the goal and then acts as thmstac thms.

Uses To use all the assumptions as theorems.

Errors As for thmstac.

 $\begin{vmatrix} val & \mathbf{DROP_ASM_T} : TERM -> (THM -> TACTIC) -> TACTIC; \end{vmatrix}$

Description $DROP_ASM_T$ asm thmtac is a tactic which removes asm from the assumption list and then acts as $thmtac(asm \vdash asm)$.

where asm and asm' are α -convertible.

Uses To use an assumption as a theorem

Errors

9301 the term ?0 is not in the assumption list

 $\begin{vmatrix} val & \mathbf{DROP_FILTER_ASMS_T} : (TERM \rightarrow bool) \rightarrow \\ (THM & list \rightarrow TACTIC) \rightarrow TACTIC; \end{vmatrix}$

Description DROP_FILTER_ASMS_T pred thmstac is a tactic which applies asm_rule to each assumption of the subgoal that satisfies pred, giving a list of theorems, thms say, then removes all the selected assumptions of the goal and then acts as thmstac thms.

Uses To use all the selected assumptions as theorems.

Errors As for thmstac.

 $\begin{vmatrix} val & \mathbf{DROP_NTH_ASM_T} : int -> (THM -> TACTIC) -> TACTIC; \end{vmatrix}$

Description $DROP_NTH_ASM_T$ i thmtac is a tactic which applies asm_Trule to the i-th assumption of the goal, giving a theorem, thm say, and then removes asm from the assumptions and acts as thmtac thm.

Assumptions are numbered 1, 2..., so that, e.g., $DROP_NTH_ASM_T$ 1 is the same as POP_ASM_T

Uses To use an assumption as a theorem, treating the assumption list as an array.

Errors

9303 the index ?0 is out of range

```
| val eq_sym_asm_tac : TERM -> TACTIC; | val eq_sym_nth_asm_tac : int -> TACTIC;
```

Description These two tactics identify an assumption (either by being equal to the term argument, or by index number). They take it from the assumption list, use symmetry upon it to reverse any equations (or bi-implications) (though equations embedded within other equations will not be reversed), and then strip the result into the assumption list. The tactics fail if there are no equations to reverse.

Definition

Example

Errors

9301 the term ?0 is not in the assumption list

9303 the index ?0 is out of range

|28053| ?0 contains no equations

```
\begin{vmatrix} val & \mathbf{EVERY\_TTCL} \end{vmatrix}: THM\_TACTICAL list \longrightarrow THM\_TACTICAL;
```

Description $EVERY_TTCL$ is a theorem tactical combinator.

```
| EVERY_TTCL [ttcl1, ttcl2, ...] = ttcl1 THEN_TTCL ttcl2 THEN_TTCL ...
```

 $EVERY_TTCL$ [] acts as ID_THEN .

Uses For use in programming theorem tacticals.

| val EVERY_T : TACTIC list -> TACTIC; | val EVERY : TACTIC list -> TACTIC;

Description $EVERY_T$ thist is a tactic that applies the head of thist to its subgoal, and recursively applies the tail of thist to each resulting subgoal. EVERY is an alias for $EVERY_T$. EVERY [] is equal to id_tac .

Example

Errors As for the tactics in the list.

|val| fail_tac : TACTIC;

Description A tactic that always fails. This is the identity for the tactical *ORELSE_T*

Uses For constructing larger tactics.

Errors

9201 failed as requested

 $\begin{vmatrix} val & \mathbf{FAIL}_{\mathbf{T}}\mathbf{THEN} & : THM_{\mathbf{T}}ACTICAL; \end{vmatrix}$

Description This is a theorem tactical which always fails at the point it receives its theorem (having already been given a theorem tactic). It acts as the identity for the theorem tactical combinator $ORELSE_TTCL$.

Uses For use in programming theorem tacticals.

Errors

9401 failed as requested

 $|val \ \mathbf{fail_with_tac}: string \rightarrow int \rightarrow (unit \rightarrow string) \ list \rightarrow TACTIC;$

Description fail_with_tac area msg inserts is a tactic that always fails, reporting an error message via the call fail area msg inserts.

Uses For constructing larger tactics.

See Also fail

Errors As determined by the arguments.

Description FAIL_WITH_THEN area msg inserts is a theorem tactical that always fails when given its theorem (having already been given a theorem tactic), reporting an error message via the call fail area msg inserts.

Uses For constructing larger theorem tacticals.

See Also fail

Errors As determined by the arguments.

|val FIRST_TTCL : THM_TACTICAL list -> THM_TACTICAL;

Description $FIRST_{-}TTCL$ is a theorem tactical combinator. $FIRST_{-}TTCL$ [] fails on being applied to its theorem tactic and then theorem.

Uses For use in programming theorem tacticals.

Errors

9402 the list of theorem tactics is empty

```
| val FIRST_T : TACTIC list -> TACTIC; | val FIRST : TACTIC list -> TACTIC;
```

Description $FIRST_{-}T$ tlist is a tactic that attempts to apply each tactics in tlist until one succeeds, or all fail. The first successful application will be the result of the tactic, and it fails if all the attempts fail. FIRST is an alias for $FIRST_{-}T$. FIRST [] fails on being applied to any goal.

Errors

9105 the list of tactics is empty

Also as the failure of last member of a non-empty list.

```
| val forward_chain_tac : THM list -> TACTIC;
| val fc_tac : THM list -> TACTIC;
| val all_forward_chain_tac : THM list -> TACTIC;
| val all_fc_tac : THM list -> TACTIC;
| val asm_forward_chain_tac : THM list -> TACTIC;
| val asm_fc_tac : THM list -> TACTIC;
| val all_asm_forward_chain_tac : THM list -> TACTIC;
| val all_asm_fc_tac : THM list -> TACTIC;
| val all_asm_fc_tac : THM list -> TACTIC;
```

Description These are tactics which use theorems whose conclusions are implications, or from which implications can be derived using the canonicalisation function fc_canon , q.v., to reason forwards from the assumptions of a goal. (The names with fc are aliases for the corresponding ones with fc are aliases for the corresponding to fc and fc are aliases for the corresponding ones with fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc are aliases for the corresponding to fc and fc

The basic step is to take a theorem of the form $\Gamma \vdash t1 \Rightarrow t2$ and an assumption of the form t1' where t1' is a substitution instance of t1 and to deduce the corresponding instance of t2'. The new theorem, $\Delta \vdash t2'$ say, may then be stripped into the assumptions.

In the case of fc_tac the implicative theorem is always derived from the list of theorems given as an argument. In the case of asm_fc_tac the assumptions are also used. In all of the tactics the rule fc_canon is used to derive an implicative canonical form from the candidate implicative theorems. Normally combination of an implicative theorem and an assumption is then tried in turn and all resulting theorems are stripped into the assumptions of the goal. However, if the chaining results contain a theorem whose conclusion is $\lceil F \rceil$ then the first such found will be stripped into the assumptions, and all other theorems discarded.

If one of the implications has the form $t1 \Rightarrow t2 \Rightarrow t3$ or $t1 \land t2 \Rightarrow t3$ and if assumptions matching t1 and t2 are available, fc_tac or asm_fc_tac will derive an intermediate implication $t2 \Rightarrow t3$ and asm_fc_tac could then be used to derive t3. The variants with $all_$ may be used to derive t3 directly without generating any intermediate implications in the assumptions. They work like the corresponding tactic without $all_$ but any theorems which are derived which are themselves implications are not stripped into the assumptions but instead are used recursively to derive further theorems. When no new implications are derivable all of the non-implicative theorems derived during the process are stripped into the assumptions.

Note that the use of fc_canon implies that conversions from the proof context are applied to generate implications. E.g., in an appropriate proof-context covering set theory, $a \subseteq b$ might be treated as the implication $\forall x \bullet x \in a \Rightarrow x \in b$. Also variables which appear free in a theorem are not considered as candidates for instantiation (in order to give some control over the number of results generated). The tacticals, FC_T1 and ASM_FC_T1 may be used to avoid the use of fc_canon .

```
For example, the tactic:  |asm\_fc\_tac[] \ THEN \ asm\_fc\_tac[]  will prove the goal:  |\{p \ x, \ \forall x \bullet p \ x \Rightarrow q \ x, \ \forall x \bullet q \ x \Rightarrow r \ x\} \ r \ x.  See Also bc\_tac, FC\_T, ASM\_FC\_T, FC\_T1, ASM\_FC\_T1.
```

```
val \ FORWARD\_CHAIN\_T :
         (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val \ \mathbf{FC}_{-}\mathbf{T}:
         (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val ALL_FORWARD_CHAIN_T:
         (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
|val| ALL_FC_T :
         (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val ASM_FORWARD_CHAIN_T:
         (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val \ \mathbf{ASM\_FC\_T} :
         (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val ALL_ASM_FORWARD_CHAIN_T:
         (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val \ ALL\_ASM\_FC\_T :
         (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
```

Description These are tacticals which use theorems whose conclusions are implications, or from which implications can be derived, to reason forwards from the assumptions of a goal. (The tacticals with FC are aliases for the corresponding ones with $FORWARD_CHAIN$.)

The description of fc_-tac should be consulted for the basic forward chaining algorithms used. The significance of the final argument and of the presence or absence of ASM and ALL in the name is exactly as for fc_-tac and its relatives.

The tacticals allow variation of the tactic generating function used to process the theorems derived by the forward inference. The tactic generating function to be used is given as the first argument.

Examples fc_tac is the same as: FC_T (MAP_EVERY $strip_asm_tac$).

To rewrite the goal with the results of the forward inference one could use $FC_{-}T$ rewrite_tac.

See Also fc_tac , asm_fc_tac , bc_tac , FC_T1 .

```
val FORWARD_CHAIN_T1:
         (THM \rightarrow THM \ list) \rightarrow (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val \ \mathbf{FC}_{-}\mathbf{T1} :
         (THM \rightarrow THM \ list) \rightarrow (THM \ list) \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val ALL_FORWARD_CHAIN_T1:
         (THM \rightarrow THM \ list) \rightarrow (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
|val| ALL_FC_T1 :
         (THM \rightarrow THM \ list) \rightarrow (THM \ list) \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val ASM_FORWARD_CHAIN_T1:
         (THM \rightarrow THM \ list) \rightarrow (THM \ list) \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val \ \mathbf{ASM\_FC\_T1} :
         (THM \rightarrow THM \ list) \rightarrow (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val ALL_ASM_FORWARD_CHAIN_T1:
         (THM \rightarrow THM \ list) \rightarrow (THM \ list \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
val \ ALL\_ASM\_FC\_T1 :
         (THM \rightarrow THM \ list) \rightarrow (THM \ list) \rightarrow TACTIC) \rightarrow THM \ list \rightarrow TACTIC;
```

Description These are tacticals which use theorems whose conclusions are implications, or from which implications can be derived, to reason forwards from the assumptions of a goal. (The tacticals with FC are aliases for the corresponding ones with $FORWARD_CHAIN$.)

The description of fc_-tac should be consulted for the basic forward chaining algorithms used. The significance of the final argument and of the presence or absence of ASM and ALL in the name is exactly as for fc_-tac and its relatives.

The tacticals allow variation of the canonicalisation function used to obtain implications from the argument theorems and of the tactic generating function used to process the theorems derived by the forward inference. The canonicalisation function to use is the first argument and the tactic generating function is the second. (Related tacticals with names ending in T rather than T1 are also available for the simpler case when wants to use the same canonicalisation function as fc_-tac and just to vary the tactic generating function.)

Examples If the theorem argument comprises only implications which are to be used without canonicalisation, one might use: $FC_{-}T1$ $id_{-}canon$ $(MAP_{-}EVERY\ strip_{-}asm_{-}tac)$.

If one has an instance of t1 as an assumption and one wishes to use the bi-implication in a theorem of the form $\vdash t1 \Rightarrow (t2 \Leftrightarrow t3)$ for rewriting, one might use FC_T1 id_canon $rewrite_tac$.

See Also fc_tac , asm_fc_tac , bc_tac , FC_T .

 $strip_asm_tac.$

See Also

```
| val GEN_INDUCTION_T : THM -> (THM -> TACTIC) -> TERM -> TACTIC; | val gen_induction_tac : THM -> TERM -> TACTIC;
```

Description These give general means for constructing an induction tactic from an induction principle formulated as a theorem. The term argument is the induction variable, which must be free in the conclusion of the goal to which the tactic is applied but not in the assumptions.

 $GEN_INDUCTION_T$ causes any inductive hypotheses (see below) to be passed to a tactic generating function.

qen_induction_tac thm is the same as GEN_INDUCTION_T thm strip_asm_tac.

The discussion below is for the tactic computed by the call $GEN_INDUCTION_T$ thm $ttac\ y$ applied to a goal with conclusion t.

The induction principle, thm has the form:

```
\vdash \forall p \bullet a \Rightarrow \forall x \bullet p \ x
```

E.g. the usual principle of induction for the natural numbers:

```
\vdash \forall p \bullet p \ 0 \land (\forall n \bullet p \ n \Rightarrow p \ (n+1)) \Rightarrow (\forall n \bullet p \ n)
```

The induction tactic takes the following steps:

- 1. Use \forall -elimination on thm, (with the term $\lceil \lambda y \bullet t \rceil$) and β -reduction to give an implicative theorem, $\vdash a' \Rightarrow t$ and use it to reduce the goal to a subgoal with conclusion a'.
- 2. Repeatedly apply \wedge -tac and then repeatedly apply \forall -tac.
- 3. To any of the resulting subgoals whose principal connective corresponds to an an implication in thm apply $\Rightarrow_{-}T$ ttac. E.g., with the usual principle of induction for the natural numbers as formulated above $\Rightarrow_{-}T$ ttac is applied in the inductive step but not in the base case, even if the conclusion of the goal is an implication.

The tactic also renames bound variables so that names which begin with the name of the variable in the theorem now begin with the name of the induction variable passed to the tactic.

```
Errors
 \begin{vmatrix} 29021 & ?0 & does & not & have & the form `\vdash \forall p \bullet a \Rightarrow \forall x \bullet p & x` \\ 29023 & The & type & of ?0 & is & not & an & instance & of ?1 \\ 29024 & ?0 & is & not & a & variable \\ 29025 & ?0 & appears & free & in & the & assumptions & of & the & goal \\ 29026 & ?0 & does & not & appear & free & in & the & conclusion & of & the & goal \\ \end{aligned}
```

| val GEN_INDUCTION_T1 : THM -> (THM -> TACTIC) -> TACTIC; | val gen_induction_tac1 : THM -> TACTIC;

Description These give a means for constructing an induction tactic from an induction principle formulated as a theorem, in cases where the induction variable can be inferred from the form of the theorem and the goal. They are in other respects very like $GEN_INDUCTION_T$ and $gen_induction_tac\ thm$, q.v.

The induction theorem must be a theorem of the form:

$$\vdash \forall p \bullet a \Rightarrow \forall x \bullet t[p \ x/b]$$

Where t contains at least one occurrence of x. For example,

$$| \vdash \forall \ p \bullet p \ \{ \} \land (\forall \ a \ x \bullet \ a \in Finite \land p \ a \land \neg x \in a \Rightarrow p \ (\{x\} \cup a))$$
$$\Rightarrow (\forall \ a \bullet \ a \in Finite \Rightarrow p \ a)$$

(for which t is $a \in Finite \Rightarrow b$).

The induction tactic matches the conclusion, c, of the goal with t, uses the result to derive a theorem of the form $\vdash a' \Rightarrow c$ and then proceeds exactly like the corresponding induction tactic produced by $GEN_INDUCTION_T$ and $gen_induction_tac$ thm q.v.

Errors

 $\begin{vmatrix} val & \mathbf{GET_ASMS_T} : (THM \ list -> TACTIC) -> TACTIC; \end{vmatrix}$

Description $GET_{-}ASMS_{-}T$ thmstac is a tactic which applies $asm_{-}rule$ to each assumption of the goal, giving a list of theorems, thms say, and then acts as thmstac thms.

Uses To use all the assumptions as theorems.

Errors As for thmstac.

 $\begin{vmatrix} val & \mathbf{GET_ASM_T} : TERM -> (THM -> TACTIC) -> TACTIC; \end{vmatrix}$

Description $GET_{-}ASM_{-}T$ asm thmtac is a tactic which checks that asm is in the assumption list and then acts as $thmtac(asm \vdash asm)$.

where asm and asm' are α -convertible.

Uses To use an assumption as a theorem

Errors

9301 the term ?0 is not in the assumption list

 $\begin{vmatrix} val & \mathbf{GET_FILTER_ASMS_T} : (TERM -> bool) -> \\ (THM & list -> TACTIC) -> TACTIC; \end{vmatrix}$

Description GET_FILTER_ASMS_T pred thmstac is a tactic which applies asm_rule to each assumption of the subgoal that satisfies pred, giving a list of theorems, thms say and then acts as thmstac thms.

Uses To use all the selected assumptions as theorems.

Errors As for *thmstac*.

 $\begin{vmatrix} val & \mathbf{GET_NTH_ASM_T} : int -> (THM -> TACTIC) -> TACTIC; \end{vmatrix}$

Description $GET_-NTH_-ASM_-T$ i thmtac is a tactic which applies asm_-rule to the i-th assumption of the goal, giving a theorem, thm say, and then acts as thmtac thm.

Assumptions are numbered $1,2\ldots,$ so that, e.g., $GET_NTH_ASM_T$ 1 is the same as TOP_ASM_T

Uses To use an assumption as a theorem, treating the assumption list as an array.

Errors

9303 the index ?0 is out of range

 $\begin{vmatrix} val & \mathbf{id_tac} & : & TACTIC \end{vmatrix}$

Description A tactic that always succeeds, having no effect. This is the identity for the tactical $THEN_{-}T$.

Tactic

Uses For constructing larger tactics.

|val| **ID_THEN** : $THM_TACTICAL$;

Description This is the identity for the theorem tactical combinator *THEN_TTCL*.

 $|(ID_-THEN)| thmtac = thmtac$

Uses For use in programming theorem tacticals.

 $\begin{vmatrix} val & \mathbf{IF}_{-}\mathbf{T2} : (THM -> TACTIC) -> (THM -> TACTIC) -> TACTIC; \end{vmatrix}$

Description Reduce a conditional by applying tactic generating functions to the two cases for the selector.

Tactic

$$\frac{\{ \ \Gamma \ \} \ if \ a \ then \ tt \ else \ et}{ttac1\{ \ a, \ \Gamma \ \} \vdash tt; \ ttac2\{ \ \neg a, \ \Gamma \ \} \vdash et} \qquad \frac{IF_T2}{ttac1 \ ttac2}$$

See Also \Leftrightarrow_T , $STRIP_CONCL_T$

Errors

| 28071 Goal is not of the form: $\{\Gamma\}$ if a then tt else et

 $\begin{vmatrix} val & \mathbf{if_tac} : TACTIC; \end{vmatrix}$

Description Reduce a conditional subgoal by performing a case split on the selector.

$$\frac{\{ \Gamma \} \text{ if a then tt else et}}{\{ strip \ a, \ \Gamma \ \} \ tt \ ; \ \{ strip \ \neg a, \ \Gamma \ \} \ et} \qquad \text{if } _tac$$

See Also strip_tac

Errors

| 28071 Goal is not of the form: $\{\Gamma\}$ if a then tt else et

 $\begin{vmatrix} val & \mathbf{IF_THEN2} : (THM \rightarrow TACTIC) \rightarrow (THM \rightarrow TACTIC) \rightarrow (THM \rightarrow TACTIC); \end{vmatrix}$

Description A theorem tactical to apply given theorem tactics to the result of eliminating the conditional from a theorem with a conditional as its conclusion.

 $|IF_THEN|$ ttac $(\Gamma \vdash if \ a \ then \ tt \ else \ et) = ttac1 \ (a, \Gamma \vdash tt) \ THEN \ ttac2 \ (\neg a, \Gamma \vdash et)$

The function is partially evaluated with only the theorem tactic and theorem arguments.

See Also IF_THEN, STRIP_THM_THEN

Errors

7012 ?0 is not of the form: ' $\Gamma \vdash$ if to then tt else te'

 $|val \; \mathbf{IF_THEN} : (THM \; -> \; TACTIC) \; -> \; (THM \; -> \; TACTIC);$

Description A theorem tactical to apply a given theorem tactic to the result of eliminating the conditional from a theorem with a conditional as its conclusion.

 $|IF_THEN|\ ttac\ (\Gamma \vdash if\ a\ then\ tt\ else\ et) = ttac\ (\Gamma \vdash a \Rightarrow tt)\ THEN\ ttac\ (\Gamma \vdash \neg\ a \Rightarrow et)$

The function is partially evaluated with only the theorem tactic and theorem arguments.

See Also IF_THEN2, STRIP_THM_THEN

Errors

7012 ?0 is not of the form: ' $\Gamma \vdash$ if to then tt else te'

 $\begin{vmatrix} val & \mathbf{IF_T} & : (THM -> TACTIC) -> TACTIC; \end{vmatrix}$

Description Reduce a conditional by applying a tactic generating function to the two cases for the selector.

Tactio

See Also IF_T2, STRIP_CONCL_T

Errors

| 28071 Goal is not of the form: $\{\Gamma\}$ if a then tt else et

 $\begin{vmatrix} val & \mathbf{intro}_{\neg} \forall_{\neg} \mathbf{tac} : (TERM * TERM) -> TACTIC; \\ val & \mathbf{intro}_{\neg} \forall_{\neg} \mathbf{tac1} : TERM -> TACTIC; \end{vmatrix}$

Description Sometimes it is helpful to prove a goal by proving a more general conjecture has the goal as a special case. $intro_\forall_tac$ introduces a universal quantifier into the conclusion of a goal in order to do this.

where t is a term in which x appears free and where either t1 the same as x or x does not appear free in the conclusion, t[t1/x], of the original goal.

Note that t1 need not be a variable, e.g.,

 $intro_\forall_tac1$ is for use in the common case where one simply wants to take replace the goal by its universal closure over some variable. $intro_\forall_tac1 \ \ulcorner x \urcorner$ is equivalent to $intro_\forall_tac \ (\ulcorner x \urcorner, \ulcorner x \urcorner)$.

N.B. these tactics may strengthen the goal, i.e. they may result in unprovable subgoals even when the original goal was provable.

Uses The most common use is in preparation for an inductive proof when it is necessary to generalise the conclusion in order to give stronger assumptions in the inductive step or steps.

See Also \forall _reorder_conv

Errors

28082 ?0 does not appear free in the goal

28083 ?0 appears free in the goal and is not the same as ?1

SML

|val i_contr_tac : TACTIC;

Description Prove a goal by showing that the assumptions are contradictory, in an intuitionistic manner.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

Tactic

Uses If a proof is to be carried out by showing the assumptions inconsistent, then the conclusion of the subgoal is irrelevant and may be removed.

SML

|val| lemma_tac : $TERM \rightarrow TACTIC$;

Description Introduce a lemma (the term argument) to be proved, and then added as an assumption.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

See Also LEMMA_T

Errors

9603 the term ?0 is not boolean

SML

 $|val \ \mathbf{LEMMA_T}: TERM \rightarrow (THM \rightarrow TACTIC) \rightarrow TACTIC;$

Description $LEMMA_{-}T$ newsg thmtac is a tactic which sets newsg as a new subgoal and applies $thmtac(newsg \vdash newsg)$ to the original goal.

Uses For use in tactic programming and in interactive use where lemma_tac is not appropriate.

Errors

9603 the term ?0 is not boolean

See Also $lemma_tac$.

SML

 $|val\ list_asm_ante_tac: TERM\ list -> TACTIC;$

Description Repeatedly apply asm_ante_tac .

 α -equivalent assumptions will only appear once in the resulting goal, in their rightmost position, (which also means that duplicates in the list are ignored).

See Also asm_ante_tac, all_asm_ante_tac

Errors

|28052 Term ?0 is not in the assumptions

28055 The conclusion or an assumption of goal does not have type $\lceil :BOOL \rceil$

 $\begin{vmatrix} val & LIST_DROP_ASM_T : TERM & list -> (THM & list -> TACTIC) -> TACTIC; \end{vmatrix}$

Description $LIST_DROP_ASM_T$ [asm_1 , asm_2 ,...] thmtac is a tactic which removes the asm_1 , asm_2 ,... from the assumption list and then acts as

 $thmtac[(asm_1 \vdash asm_1), (asm_2 \vdash asm_2), ...]$

Tactic

where $asm_{-}i$ and $asm_{-}i'$ are α -convertible.

Uses To use assumptions as theorems

Errors

9301 the term ?0 is not in the assumption list

 $\begin{vmatrix} val & LIST_DROP_NTH_ASM_T : int \ list \ -> \ (THM \ list \ -> \ TACTIC) \ -> \ TACTIC; \ \end{vmatrix}$

Description $LIST_DROP_NTH_ASM_T$ [i, j, ...] thmtac is a tactic which applies asm_Tule to the i-th, j-th, etc assumptions of the goal, giving theorems, thm_i , thm_j , etc, say, and then removes the asm_i , asm_j from the assumptions and acts as thmtac $[thm_i$, thm_j , ...].

Tactio

Uses To use assumptions as theorems, treating the assumption list as an array.

Errors

9303 the index ?0 is out of range

 $|val \ LIST_GET_ASM_T : TERM \ list \rightarrow (THM \ list \rightarrow TACTIC) \rightarrow TACTIC;$

Description $LIST_GET_ASM_T$ [asm_1 , asm_2 ,...] thmtac is a tactic which checks that all the asm_1 , asm_2 ,... are in the assumption list and then acts as

 $thmtac[(asm_1 \vdash asm_1), (asm_2 \vdash asm_2), ...]$

Tactic

where $asm_{-}i$ and $asm_{-}i'$ are α -convertible.

Uses To use a list of assumptions as theorems

Errors

9301 the term ?0 is not in the assumption list

 $|val \ LIST_GET_NTH_ASM_T : int \ list \rightarrow (THM \ list \rightarrow TACTIC) \rightarrow TACTIC;$

Description $LIST_{-}GET_{-}NTH_{-}ASM_{-}T$ [i, j, ...] thmtac is a tactic which applies $asm_{-}rule$ to the i-th, j-th, etc, assumption of the goal, giving theorems, $thm_{-}i$, $thm_{-}j$, etc, say, and then acts as thmtac $[thm_{-}i, thm_{-}j, ...]$.

Uses To use assumptions as theorems, treating the assumption list as an array.

Errors

9303 the index ?0 is out of range

 $\begin{vmatrix} val & list_simple_ \exists_tac : TERM & list -> TACTIC \end{vmatrix}$;

Description Provide a list of witnesses for an interated existential subgoal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

 $\frac{ \left\{ \begin{array}{c} \Gamma \end{array} \right\} \ \exists \ x1, x2... \bullet \ t2[x1, x2, ...]}{ \left\{ \begin{array}{c} \Gamma \end{array} \right\} \ t2[t1', t2'...]} \qquad \begin{array}{c} list_simple_\exists_tac \\ \hline \end{array} } \\ \hline \left\{ \begin{array}{c} \Gamma \end{array} \right\} \ t2[t1', t2'...] \end{array}$

where $t1', t2', \ldots$ are $t1, t2, \ldots$, type instantiated to have the same type as $x1, x2, \ldots$

See Also $simple_{-}\exists_{-}tac$

Errors

29008 Cannot match witness ?0 to variable ?1

29015 The list of witnesses is longer than the list of existentially quantified variables in ?0

29016 The list of witnesses is empty

29017 Goal is not of the form: $\{ \Gamma \} \exists x \bullet t2[x]$

| val list_swap_asm_concl_tac : TERM list -> TACTIC; | val list_swap_nth_asm_concl_tac : int list -> TACTIC;

Description Strip the negation of current goal into the assumption list and make some assumptions, suitably negated, into a disjunction forming the current goal. If the list is empty then the conclusion will become $\lceil F \rceil$.

 $\frac{ \left\{ \begin{array}{c} \Gamma \end{array} \right\} \ t}{ \left\{ strip \ \ulcorner \neg \ t \urcorner, \ \varGamma - \{ \ulcorner tp \urcorner, \ ..., \ \ulcorner tq \urcorner \} \} } \quad \begin{array}{c} list_swap_nth_asm_concl_tac \\ [p,...,q] \end{array} } \\ \begin{array}{c} \neg \ tp \ \lor \ ... \ \neg \ tq \end{array}$

If any assumption is a negated term then the double negation will be eliminated.

See Also Other *swap* and *SWAP* functions.

Errors

9303 the index ?0 is out of range

28052 Term ?0 is not in the assumptions

val LIST_SWAP_ASM_CONCL_T

 $: TERM \ list \rightarrow (THM \rightarrow TACTIC) \rightarrow TACTIC;$

 $val\ LIST_SWAP_NTH_ASM_CONCL_T$

: $int \ list \ -> \ (THM \ -> \ TACTIC) \ -> \ TACTIC;$

Description Process the negation of current goal with the supplied theorem tactic and make some assumptions, suitably negated, into a disjunction forming the current goal.

$$= \underbrace{ \begin{array}{c} \{ \ \Gamma \ \} \ t \\ \hline ttac(asm_rule \ \ulcorner \neg t \urcorner \) \\ (\{ \Gamma - \{ \ulcorner tp \urcorner, ... \ulcorner tq \urcorner \} \} \ \neg \ t1) \end{array} }_{} \underbrace{ \begin{array}{c} LIST_SWAP_ASM_CONCL_T \\ [\ulcorner tp \urcorner, ... \ulcorner tq \urcorner] \\ ttac \end{array} }_{}$$

If an assumption is a negated term then the double negation will be eliminated. If the list is empty then the conclusion (before applying the tactic argument) will become $\lceil F \rceil$.

See Also Other *swap* and *SWAP* functions.

Errors

9303 the index ?0 is out of range

28052 Term ?0 is not in the assumptions

28027 Conclusion of goal does not have type $\lceil :BOOL \rceil$

```
| val MAP_EVERY_T : ( 'a -> TACTIC) -> 'a list -> TACTIC; | val MAP_EVERY : ( 'a -> TACTIC) -> 'a list -> TACTIC;
```

Description MAP_EVERY_T mapf alist maps mapf over alist, and then applies the resulting list of tactics to the goal in sequence (in the same manner as EVERY, q.v.). MAP_EVERY is an alias for MAP_EVERY_T .

Errors As the individual items generated by mapping the tactic over the list.

```
\begin{vmatrix} val & \mathbf{MAP\_FIRST\_T} : ('a \rightarrow TACTIC) -> 'a \ list -> TACTIC; \\ val & \mathbf{MAP\_FIRST} : ('a \rightarrow TACTIC) -> 'a \ list -> TACTIC; \\ \end{vmatrix}
```

Description MAP_FIRST_T mapf alist maps mapf over alist, and then attempts to apply each resulting tactic in order, until one succeeds or all fail (in the same manner as FIRST, q.v.). MAP_FIRST is an alias for MAP_FIRST_T .

Errors As the last tactic.

```
\begin{vmatrix} val & map\_shape : (('a \ list -> 'b) * int) \ list -> 'a \ list -> 'b \ list \end{vmatrix}
```

Description map_shape is a means of composing functions on lists. It is intended for composing the proofs produced by tactics in tacticals such as THEN. Its effect is as follows:

```
map\_shape \ [(f1, \ n1), \ (f2, \ n2)... \ ] \ [a1, \ a2, \ ...] = [f1[a1, \ ..., \ a(n1)], \ f2[a(n1+1), \ ..., \ a(n1+n2)], \ ...]
```

where, if there are not enough $a_{-}i$, then unused $f_{-}j$ are ignored and the last $f_{-}j$ to be used may receive less than $n_{-}j$ elements in its argument. (This case is not expected to occur in the application of map_shape in tactic programming.)

Uses Specialised low-level tactic programming.

```
|val| ORELSE_TTCL : (THM\_TACTICAL * THM\_TACTICAL) -> THM\_TACTICAL;
```

Description ORELSE_TTCL is a theorem tactical combinator. It is an infix operator. (tcl1 ORELSE_TTCL tcl2)th is tcl1 th unless evaluation of tcl1 th fails, in which case it is tcl2 th.

Uses For use in programming theorem tacticals.

```
|val ORELSE_T : (TACTIC * TACTIC) -> TACTIC;
|val ORELSE : (TACTIC * TACTIC) -> TACTIC;
```

Description ORELSE_T is a tactical used as an infix operator. tac1 ORELSE_T tac2 is a tactic which behaves as tac1 unless application of tac1 fails, in which case it behaves as tac2. ORELSE is an alias for ORELSE_T

See Also LIST_ORELSE_T

Errors As the failure of tac2.

|val| pair_rw_canon : CANON;

Description This is the rewrite canonicalisation function for the theory of pairs, defined as

```
 | val \ pair\_rw\_canon = \\ REWRITE\_CAN \\ (REPEAT\_CAN(FIRST\_CAN) [ \\ \forall\_rewrite\_canon, \\ \land\_rewrite\_canon, \\ \neg\_rewrite\_canon, \\ f\_rewrite\_canon, \\ \Leftrightarrow\_t\_rewrite\_canon]));
```

This is the repeated application of the first applicable operation in the following list:

- 1. stripping universal quantifiers (paired or simple);
- 2. dividing conjunctive theorems into their conjuncts;
- 3. changing $\vdash \neg(t1 \lor t2)$ to $\neg t1 \land \neg t2$;
- 4. changing $\vdash \neg \exists vs \bullet t \text{ to } \forall vs \bullet \neg t;$
- 5. changing $\vdash \neg \neg t$ to $t \Leftrightarrow F$;
- 6. changing $\vdash \neg t$ to $t \Leftrightarrow F$:
- 7. if none of the above apply, changing $\vdash t$ to $\vdash t \Leftrightarrow T$.

Finally, after all this canonicalisation we then universally quantify the resulting theorems in all free variables other than those that were free in the original.

```
\begin{vmatrix} val & POP\_ASM\_T : (THM -> TACTIC) -> TACTIC; \end{vmatrix}
```

Description POP_ASM_T thmtac is a tactic which removes the top entry, asm say, from the assumption list and then acts as $thmtac(asm \vdash asm)$.

Uses To use an assumption as a theorem

Errors

|9302| the assumption list is empty

 $\begin{vmatrix} val & \mathbf{prim_rewrite_tac} : CONV & NET -> CANON -> (THM -> TERM * CONV) & OPT -> \\ (CONV -> CONV) -> EQN_CXT -> THM & list -> TACTIC; \\ \end{vmatrix}$

Description This is the tactic based on *prim_rewrite_conv* (q.v.), with the same parameters as that function, except for the last argument:

 $\begin{array}{c|c} & prim_rewrite_tac \\ & (initial_net:\ CONV\ NET) \\ & (canon:\ CANON) \\ & (epp:(THM\ ->\ TERM\ *\ CONV)\ OPT) \\ & (traverse:\ CONV\ ->\ CONV) \\ & (with_eqn_cxt:\ EQN_CXT) \\ & (with_thms:\ THM\ list) \end{array}$

where $\lceil t' \rceil$ is the result of rewriting $\lceil t \rceil$ in the manner prescribed by the arguments.

| val prove_tac : THM list -> TACTIC;

Description This tactic is an automatic proof procedure appropriate to the current proof context.

At the point of applying this tactic to its theorems it will access the current setting of proof context field pr_tac , apply it to the theorem list immediately, and then to the goal, with its assumptions temporarily removed when available (i.e. the result is partially evaluated with only the list of theorems). The original assumptions will be returned to the resulting subgoals using $check_asm_tac$.

See Also $PC_{-}T1$ to defer accessing the proof context until application to the goal; and, $asm_{-}prove_{-}tac$ for the form that does react to the presence of assumptions.

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

and as the proof context setting.

It is possible that if $prove_tac$ does not prove all its subgoals, then there may be an identification of newly introduced variables with free variables in the assumptions that were temporarily put to one side. This will lead to failures in the execution of the proof parts of the tactics that constitute the current proof context's automatic prover. Such a failure may not give particularly helpful messages concerning the cause of the failure. The problem is avoided by using asm_prove_tac , or by a call to $rename_tac$ to change the offending variable names.

```
|val| prove_thm : (string * TERM * TACTIC) -> THM;
```

Description $prove_thm$ (key, gl, tac) applies the tactic tac to the goal ([], tm), and, if the tactic succeeds in proving the goal saves the theorem under the key given, and returns the resulting theorem.

prove_thm performs α -conversion as necessary to ensure that the theorem returned has the same form as the specified goal. In circumstances where these adjustments are known not to be necessary, $simple_tac_proof$ may be used to avoid the overhead.

```
\begin{array}{l} {}_{\rm Defn} \\ prove\_thm \ (key, \ tm, \ tac) = save\_thm(key, \ tac\_proof(([],tm).tac)); \end{array}
```

Uses The subgoal package is the normal interactive mechanism for developing proofs using tactics. *prove_thm* is typically used in tactic programming and other proof procedures, in cases where it is necessary to ensure that the correct goal is proved and saved.

```
| 9501 the tactic returned unsolved subgoals: ?0
| 9502 evaluation of the tactic failed: ?0
| 9503 the proof returned by the tactic failed: ?0
| 9504 the proof returned by the tactic proved ?0 which could not be converted into the desired goal.
| 9507 the conclusion ?0 is not of type \cappa:BOOL\cappa
```

See Also simple_tac_proof, prove_thm.

```
|val| prove_\exists_tac : TACTIC;
```

Description This tactic is an automatic proof procedure for existential proofs, appropriate to the current proof context.

At the point of applying this tactic to a goal it will access the current setting of proof context field $prove_{-}\exists$, apply it to the goal, with its assumptions temporarily removed, using $conv_{-}tac$. The original assumptions will be returned to the resulting subgoals using $check_{-}asm_{-}tac$.

See Also $asm_prove_\exists_tac$ that does react to any assumptions that are present.

Errors

```
51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified
```

and as the proof context setting.

```
|val | rename_tac : (TERM * string) list -> TACTIC;
```

Description rename_tac renames variables (bound or free) in a goal. It is typically used when a goal contains several variables with the same name or to introduce names which are better mnemonics. For the latter purpose, the argument controls the algorithm used to make variants of the names.

The renaming affects both the conclusions and the assumptions of the goal. Variables are renamed to ensure that the new goal satisfies the following conditions:

- No two free variables with different types have the same name.
- No bound variable has the same name as a free variable or a variable which is bound in an outer scope.
- No variable shall have the same name as any constant in scope.

Before a variable is checked, it is looked up in the *renaming* association list, and if present it is treated as if the name were the corresponding string. The function *variant*, q.v., is used to rename variables.

The function may be partially evaluated with only the renamings argument.

Note that applying the tactic in the subgoal package will give rise to the message "The subgoal <label> is α -convertible to its goal".

For example,

Uses In clarifying goals where the variable names clash or are unparseable or are inconvenient.

Errors | 3007 ?0 is not a term variable

```
\left| val \right| \mathbf{REPEAT_N_T} : int \rightarrow TACTIC \rightarrow TACTIC; \left| val \right| \mathbf{REPEAT_N} : int \rightarrow TACTIC \rightarrow TACTIC;
```

Description $REPEAT_N_T n$ is a tactical which repeatedly applies its tactic argument n times. Unlike REPEAT it fails if the tactic fails. If n is not greater than 0 then $REPEAT_N_T n$ tac is a tactic which has no effect.

 $REPEAT_N$ is an alias for $REPEAT_N_T$.

Errors As for the tactic being repeated.

| val REPEAT_TTCL : THM_TACTICAL -> THM_TACTICAL;

Description $REPEAT_TTCL\,ttcl$ is a theorem tactical which applies ttcl repeatedly until it fails.

Uses For use in programming theorem tacticals. As for the argument theorem tactic.

|val REPEAT_T : TACTIC -> TACTIC; |val REPEAT : TACTIC -> TACTIC;

Description $REPEAT_T$ is a tactical which repeatedly applies its tactic argument until it fails. This may cause an infinite loop of evaluation, or even no change, if the tactic fails on the first application. REPEAT is an alias for $REPEAT_T$.

 $\begin{vmatrix} val & \mathbf{REPEAT_UNTIL_T1} : (GOAL -> bool) -> TACTIC -> TACTIC; \\ val & \mathbf{REPEAT_UNTIL1} : (GOAL -> bool) -> TACTIC -> TACTIC; \\ \end{vmatrix}$

Description $REPEAT_UNTIL1_T1\ p\ tac$ is a tactical which repeatedly applies its tac until all outstanding subgoals either satisfy the predicate p or cause tac to fail.

If the goal already satisfies p, then REPEAT_UNTIL1_T1 p tac is a tactic which has no effect.

REPEAT_UNTIL1 is an alias for REPEAT_UNTIL1_T1.

Example

| REPEAT_UNTIL1 (is_or o snd) strip_tac

will repeatedly apply $strip_{-}tac$ until all outstanding subgoals have disjunctive conclusions or cause $strip_{-}tac$ to fail.

| val REPEAT_UNTIL_T : (TERM -> bool) -> TACTIC -> TACTIC; | val REPEAT_UNTIL : (TERM -> bool) -> TACTIC -> TACTIC;

Description $REPEAT_UNTIL1_T\ p\ tac$ is a tactical which repeatedly applies its tac until all outstanding subgoals either have conclusions which satisfy the predicate p or cause tac to fail.

If the conclusion of the goal already satisfies p, then $REPEAT_UNTIL1_T1$ p tac is a tactic which has no effect.

 $REPEAT_UNTIL$ is an alias for $REPEAT_UNTIL_T$.

Example

REPEAT_UNTIL is_or strip_tac

will repeatedly apply $strip_tac$ until all outstanding subgoals have disjunctive conclusions or cause $strip_tac$ to fail.

```
val rewrite_tac : THM list -> TACTIC;
val pure_rewrite_tac : THM list -> TACTIC;
val once_rewrite_tac : THM list -> TACTIC;
val pure_once_rewrite_tac : THM list -> TACTIC;
val asm_rewrite_tac : THM list -> TACTIC;
val pure_asm_rewrite_tac : THM list -> TACTIC;
val once_asm_rewrite_tac : THM list -> TACTIC;
val once_asm_rewrite_tac : THM list -> TACTIC;
val pure_once_asm_rewrite_tac : THM list -> TACTIC;
```

Description These are the rewriting tactics. They use the canonicalisation rule held by the current proof context (see, e.g., $push_{-}pc$) to preprocess the theorem list. The context is accessed at the point when the rules are given a list of theorems.

If a tactic is "pure" then there is no default rewriting, otherwise the default rewriting conversion net held by the current proof context will be used in addition to user supplied material.

If a tactic is "once" then rewriting will proceed from the root of the of the conclusion of the theorem to be rewritten, towards the leaves, and will not descend through any rewritten subterm, using $ONCE_MAP_WARN_C$. If not, rewriting will continue, moving from the root to the leaves, repeating if any rewriting is successful, until there is no rewriting redex anywhere within the rewritten conclusion, using $REWRITE_MAP_C$. This may cause non-terminating looping.

If a tactic is "asm" then the theorems rewritten with will include the canonicalised asm_ruled assumptions of the goal.

```
26001 no rewriting occurred
```

Also as error 26003 and warning 26002 of REWRITE_MAP_C (q.v.).

```
| val rewrite_thm_tac : THM -> TACTIC;
| val pure_rewrite_thm_tac : THM -> TACTIC;
| val once_rewrite_thm_tac : THM -> TACTIC;
| val pure_once_rewrite_thm_tac : THM -> TACTIC;
| val asm_rewrite_thm_tac : THM -> TACTIC;
| val pure_asm_rewrite_thm_tac : THM -> TACTIC;
| val once_asm_rewrite_thm_tac : THM -> TACTIC;
| val pure_once_asm_rewrite_thm_tac : THM -> TACTIC;
```

Description These are rewriting tactics parameterised to take only one theorem. This parameterisation is convenient to use with the many tactic generating functions, such as $LEMMA_{-}T$, which take a theorem tactic as an argument.

See, e.g. rewrite_tac for the details of the differences between these tactics.

```
\begin{bmatrix} 26001 & no \ rewriting \ occurred \end{bmatrix}
```

Errors will be reported as if they are from the corresponding _tac: e.g. from rewrite_tac rather than rewrite_thm_tac. This allows a simple implementation, and for there to be no functionality change even in errors between using singleton lists with the originals, and these functions. The following warning indicates the result of, perhaps only some, of the rewriting was discarded.

 $|val| ROTATE_T : int \rightarrow TACTIC \rightarrow TACTIC;$

Description $ROTATE_T i tac$ is a tactic which first applies tac and, if this does not achieve the goal, rotates the resulting subgoals by i places. i is taken modulo the number of subgoals produced by tac.

Thus if the result of tac is:

then the result of $ROTATE_{-}Tit$ will be:

Uses For use in tactic programming to handle tactics which return their subgoals in an inconvenient order for the task at hand.

Errors As for tac.

```
\begin{vmatrix} val & simple\_tac\_proof : (GOAL * TACTIC) -> THM; \end{vmatrix}
```

Description $simple_tac_proof(gl, tac)$ applies the tactic tac to the goal gl, and, if the tactic returns no unsolved subgoals returns the theorem proved by the tactic.

Infelicities in the coding of the tactic may cause the theorem returned to be rather different from the specified goal (in general, a "successful" application of a correctly coded tactic will return a theorem which may require addition of assumptions and α -conversion to give the desired goal). tac_proof should be used rather than $simple_tac_proof$ if it is important that the theorem should achieve the goal precisely.

Uses In programming tactics or other proof procedures where speed is important and the extra care taken by tac_proof is not required.

```
Errors
```

9501 the tactic returned unsolved subgoals: ?0

9502 evaluation of the tactic failed: ?0

9503 the proof returned by the tactic failed: ?0

See Also tac_proof

 $\begin{vmatrix} val & \mathbf{simple_taut_tac} \\ \end{vmatrix}$: TACTIC;

Description A tautology prover. If the conclusion of the goal is a tautology then $taut_tac$ will prove the goal. A tautology is taken to be any substitution instance of a term which is formed from boolean variables, the constants T and F and the following connectives:

$$|\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg, if \dots then \dots else$$

and which is true for any assignment of truth values to the variables.

See Also $strip_{-}tac$

Errors

28121 Conclusion of the goal is not a tautology

 $\begin{vmatrix} val & \mathbf{simple}_{\neg}_{\mathbf{in}_{\neg}}\mathbf{conv} : CONV; \end{vmatrix}$

Description This is a conversion which moves negations inside other predicate calculus connectives using whichever of the following rules applies:

It does not handle paired quantifiers.

Uses Tactic and conversion programming. The more general $\neg _in_conv$ is just as efficient as $simple_\neg_in_conv$ in cases where both succeed.

See Also strip_tac

Errors

28131 No applicable rules for the term ?0

|val| simple_ \neg _in_tac : TACTIC;

Description This is a tactic which moves negations inside other predicate calculus connectives using the following rules:

It fails with paired quantifiers.

Uses The more general $\neg in_tac$ is just as efficient as $simple \neg in_tac$ in cases where both succeed.

See Also $strip_tac$, $contr_tac$, \neg_T , \neg_in_tac

Errors

28025 No applicable rule for this goal

```
\begin{vmatrix} val & SIMPLE\_\neg\_IN\_THEN : THM\_TACTICAL; \end{vmatrix}
```

Description This is a theorem tactical which applies a given theorem tactic to the result of transforming a theorem by moving a top level negation inside other predicate calculus connectives using the following rules:

```
\neg \neg t
\neg(t1 \land t2)
                                                                   \neg t1 \lor \neg t2
\neg(t1 \lor t2)
                                                                   \neg t1 \land \neg t2
                                                                  t1 \wedge \neg t2
\neg(t1 \Rightarrow t2)
\neg(t1 \Leftrightarrow t2)
                                                                  (t1 \land \neg t2) \lor (t2 \land \neg t1)
\neg \forall x \bullet t
                                                                   \exists x \bullet \neg t
\neg \exists x \bullet t
                                                                   \forall x \bullet \neg t
                                 \forall x \bullet \neg (t \land \forall x' \bullet t[x'] \Rightarrow x' = x)
\neg \exists_1 x \bullet t \rightarrow
\neg T
                                                                   F
\neg F
                                                                    T
```

The function may be partially evaluated with only its theorem tactic and theorem arguments. It fails with paired quantifiers.

Uses The more general $\neg IN_THEN$ is just as efficient as $SIMPLE_\neg IN_THEN$ in cases where both succeed.

See Also strip_tac, STRIP_THM_THEN

Errors

28026 No applicable rule for this theorem

SML

 $|val \ \mathbf{simple}_\forall_\mathbf{tac} : TACTIC;$

Description Reduce a universally quantified goal. It fails with paired quantifiers.

where x' is a variant name of x, different from any variable in Γ or t.

Uses Tactic programming. The more general $\forall_{-}tac$ is just as efficient as $simple_{-}\forall_{-}tac$ in cases where both succeed.

See Also $\forall tac$

Errors

|28081 Goal is not of the form: $\{ \Gamma \} \forall x \bullet t[x]$

 $|val \text{ simple_} \exists _ \text{tac} : TERM \longrightarrow TACTIC ;$

Description Provide a witness for an existential subgoal. It fails with paired quantifiers.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

where t1 must have the same type as x.

Uses Tactic programming. The more general $\exists _tac$ is just as efficient as $simple_\exists _tac$ in cases where both succeed.

Errors

|28091 Goal is not of the form: $\{ \Gamma \} \exists x \bullet t2[x]$

28092 Term ?0 has the wrong type

```
|val| SIMPLE_\exists_THEN : (THM \rightarrow TACTIC) \rightarrow (THM \rightarrow TACTIC);
```

Description A theorem tactical which applies a given theorem tactic to the result of eliminating the outermost quantifier from a theorem of the form $\Gamma \vdash \exists x \bullet t$. It fails with paired quantifiers.

```
|SIMPLE\_\exists\_THEN\ thmtac\ (\Gamma \vdash \exists x \bullet t) = thmtac\ (\Gamma \vdash t[x'/x])
```

where $\lceil x \rceil$ is a variant of $\lceil x \rceil$ which does not appear in Γ or in the assumption or conclusion of the goal. The function is partially evaluated with only the theorem tactic and theorem arguments.

Uses Tactic programming. Note that the more general $\exists _THEN$ is just as efficient as $SIMPLE_\exists _THEN$ in cases where both succeed.

Error 28094 normally arises when $\lceil x' \rceil$ is also introduced by the proof of ttac, and occurs during the application of the proof of $SIMPLE_\exists_THEN$. The bound variable $\lceil x \rceil$ should be renamed to something that doesn't cause this identification of distinct variables, by using $rename_tac(q.v.)$.

See Also ∃_THEN

```
Errors

28093 ?0 is not of the form: 'Γ ⊢ ∃ x • t'

28094 Error in proof of SIMPLE_∃_THEN.

Usually indicates chosen skolem variable ?0 also
introduced by proof of supplied theorem tactic,
which gave '?1', and the two became identified:
use rename_tac to rename original bound variable ?2
```

```
\begin{vmatrix} val & \mathbf{simple}_{-} \exists_{1} \text{-} \mathbf{conv} : CONV; \end{vmatrix}
```

Description This is a conversion which turns a unique existential quantifier into an equivalent existential quantifier

Conversion
$$\begin{array}{c|c} & simple_\exists_{1_}conv \\ \hline & \vdash (\exists_{1}x \bullet t[x]) \Leftrightarrow \\ & (\exists x \bullet t[x] \land \forall x' \bullet t[x'] \Rightarrow x' = x) \end{array}$$

Uses Tactic and conversion programming. The more general $\exists _1_conv$ is just as efficient as $simple_\exists _1_conv$ in cases where both succeed.

See Also strip_tac

```
\begin{bmatrix} 4019 & ?0 \text{ is not of form: } \end{bmatrix}_1 v \bullet t \end{bmatrix}
```

 $|val \text{ simple}_\exists_{1_} \text{tac} : TERM \longrightarrow TACTIC;$

Description Simplify a unique existentially quantified goal with a particular witness. It fails with paired quantifiers.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

 $\begin{array}{c|c} & & \{ \ \varGamma \ \} \ simple_\exists_1 \ x \bullet P[x] \\ \hline \hline & \{ \ \varGamma \ \} \ P[t]; \\ \hline & \{ \ \varGamma \ \} \ \forall \ x' \bullet P[x'] \Rightarrow x' = t \end{array} \right. \quad simple_\exists_1_tac1$

where x' is a variant of x which does not occur free in t.

Uses Tactic programming. The more general $\exists _1_tac$ is just as efficient as $simple_\exists _1_tac$ in cases where both succeed.

Errors

| 28101 Goal is not of the form: $\{ \Gamma \} \exists_1 x \bullet P[x]$ | 28092 Term ?0 has the wrong type

 $\begin{vmatrix} val & \mathbf{SIMPLE}_{\exists \mathbf{1}_{-}}\mathbf{THEN} : (THM \rightarrow TACTIC) \rightarrow (THM \rightarrow TACTIC); \end{vmatrix}$

Description A theorem tactical which applies a given theorem tactic to the result of eliminating the outermost quantifier from a theorem of the form $\Gamma \vdash \exists _1x \bullet t$. It fails with paired quantifiers.

 $\begin{vmatrix} SIMPLE_{-}\exists_{1}_THEN & thmtac & (\Gamma \vdash \exists_{1}x \bullet t) = \\ thmtac & (\Gamma \vdash t[x'/x] \land \forall x'' \bullet P[x''] \Rightarrow x'' = x) \end{vmatrix}$

where $\lceil x \rceil$ and $\lceil x \rceil$ are distinct variants of $\lceil x \rceil$ which do not appear free in Γ or in the assumptions or conclusion of the goal.

Uses Tactic programming. The more general \exists_{1} -THEN is just as efficient as SIMPLE- \exists_{1} -THEN in cases where both succeed.

Error

| 28102 ?0 is not of the form: ' $\Gamma \vdash \exists_1 \ x \bullet t$ '

 $\begin{vmatrix} val & \mathbf{SOLVED_T} : TACTIC -> TACTIC; \end{vmatrix}$

Description SOLVED_T tac is a tactic which applies tac to the goal and fails if it does not solve the goal. I.e. it fails unless the tactic returns an empty list of subgoals.

 $SOLVED_{-}T$ does not check that the proof delivered by the tactic is valid. $tac_{-}proof$ may be used to achieve this type of effect.

Uses Tactic programming, for when a tactic that fails to prove a goal is likely to leave an untidy goal state.

See Also tac_proof

Errors

9602 the tactic did not solve the goal

```
| val spec_asm_tac : TERM -> TERM -> TACTIC;
| val list_spec_asm_tac : TERM -> TERM list -> TACTIC;
| val spec_nth_asm_tac : int -> TERM -> TACTIC;
| val list_spec_nth_asm_tac : int -> TERM list -> TACTIC;
```

Description These are four methods of specialising assumptions, differing by single or lists of values to specialise to, and in the method of selection of the assumption. All of them leave the old assumption in place, and place the instantiated assumption onto the assumption list using $strip_asm_tac$. If the desired behaviour differs from any of those supplied then use GET_ASM_T and its cousins to create the desired functionality.

The following all handle paired abstractions in a similar manner.

Definitions

fun $spec_asm_tac$ asm instance = GET_ASM_T asm $(strip_asm_tac$ o \forall_elim instance); $fun \ list_spec_asm_tac$ asm instances = GET_ASM_T asm $(strip_asm_tac$ o $list_\forall_elim$ instances); $fun \ spec_nth_asm_tac$ n instance = $GET_NTH_ASM_T$ n $(strip_asm_tac$ o \forall_elim instance); $fun \ list_spec_nth_asm_tac$ n instances = $GET_NTH_ASM_T$ n $(strip_asm_tac$ o $list_\forall_elim$ instances);

Errors As the constituents of the implementing functions.

```
val SPEC_ASM_T : TERM -> TERM -> (THM -> TACTIC) -> TACTIC;
val LIST_SPEC_ASM_T : TERM -> TERM list -> (THM -> TACTIC)
-> TACTIC;
val SPEC_NTH_ASM_T : int -> TERM -> (THM -> TACTIC) -> TACTIC;
val LIST_SPEC_NTH_ASM_T : int -> TERM list -> (THM -> TACTIC)
-> TACTIC;
```

Description These are four methods of specialising assumptions, differing by single or lists of values to specialise to, and in the method of selection of the assumption. All of them leave the old assumption in place, and place the instantiated assumption onto the assumption list using their theorem tactic. If the desired behaviour differs from any of those supplied then use GET_ASM_T and its cousins to create the desired functionality.

The following all handle paired abstractions in a similar manner.

```
LIST\_SPEC\_ASM\_T
            \frac{ \{ \ \varGamma, \ \ulcorner \forall \ x1 \ x2 \ \dots \bullet f \ [x1,x2,\dots] \ \urcorner \ \} \ t}{thm\_tac \ (asm\_rule \ \ulcorner f \ [t1,t2,\dots] \ \urcorner)} \qquad \qquad [ \ \ulcorner t1 \ \urcorner, \ \ulcorner t2 \ \urcorner,\dots]
                                                                                            \lceil \forall x1 \ x2 \ \dots \bullet f \ [x1,x2,\dots] \rceil
                                                                                            thm\_tac
Tactio
                                                                                            SPEC_NTH_ASM_T
           \frac{\{ \Gamma 1...n-1, \lceil \forall x' \bullet f [x'] \rceil, \Gamma \} t1}{thm\_tac (asm\_rule \lceil f [t2] \rceil)}
                                                                                            \lceil t2 \rceil
                 \{\Gamma 1...n-1, \neg \forall x' \bullet f [x'] \neg, \Gamma\} t1
                                                                                            thm\_tac
Tactic
                                                                                            LIST\_SPEC\_NTH\_ASM\_T
       \frac{ \{ \Gamma 1...n-1, \lceil \forall \ x1 \ ... \bullet \ f \ [x1,...] \rceil, \ \Gamma \} \ t}{thm\_tac \ (asm\_rule \ \lceil f \ [t1,...] \rceil)} \{ \Gamma 1...n-1, \lceil \forall \ x1 \ ... \bullet \ f \ [x1,...] \rceil, \ \Gamma \}}_{t}
                                                                                            [ \lceil t1 \rceil, \ldots ]
                                                                                            thm\_tac
Definitions
|fun\ SPEC\_ASM\_T\ asm\ instance\ thmtac =
              GET\_ASM\_T asm (thmtac o \forall\_elim\ instance);
fun\ LIST\_SPEC\_ASM\_T\ asm\ instances\ thmtac =
              GET\_ASM\_T asm (thmtac o list_\forall_elim instances);
fun\ SPEC\_NTH\_ASM\_T\ n\ instance\ thmtac =
              GET_NTH_ASM_T n (thmtac o \forall_elim\ instance);
fun\ LIST\_SPEC\_NTH\_ASM\_T\ n\ instances\ thmtac =
              GET_NTH_ASM_T n (thmtac o list_\forall_elim instances);
```

Errors As the constituents of the implementing functions.

```
| val step_strip_tac : TACTIC;
| val step_strip_asm_tac : THM -> TACTIC;
```

Description These functions provide methods of single-stepping through the application of $strip_tac$ and $strip_asm_tac$ (q.v.).

When stripping the antecedent of an implication ,or a theorem, into the assumption list $strip_tac$ and $strip_asm_tac$ respectively do all their stripping in one application of the tactic. This is not appropriate behaviour when:

- 1. Explaining the detailed behaviour of these functions by example applications.
- 2. Attempting to "debug" a failed or inappropriate stripping.
- 3. When a partial strip into the assumption list is desired.

The two functions provided give a single-step stripping of antecedents and theorems. They represent sets of objects that are partially stripped into the assumption list by making the conclusion of the resulting goal an implication with the antecedent being the conjunction of the partially stripped objects and the consequent being the unstripped part of the goal. Repeated use of the provided functions closely corresponds to the processing order and effect of $strip_tac$ and $strip_asm_tac$. Under certain unusual circumstances the match may not be exact.

These five steps (two on each branch) map onto one call of strip_tac.

Errors

|28003 There is no stripping technique for ?0 in the current proof context

```
|val| strip_asm_tac : THM -> TACTIC;
```

Description *strip_asm_tac* is a general purpose tactic for splitting a theorem up into useful pieces using a range of simplification techniques, including a parameterised part, before using it to increase the stock of assumptions.

First, before attempting to use the transformations below, $strip_asm_tac$ uses the current proof context's theorem stripping conversion to attempt to rewrite the outermost connective in the theorem.

Then the following simplification techniques will be tried. Using sat as an abbreviation for $strip_asm_tac$:

```
 \begin{vmatrix} sat \ (\vdash a \land b) & \rightarrow & sat \ (\vdash a) \ THEN \ sat \ (\vdash b) \\ sat \ (\exists x \bullet a) & \rightarrow & sat \ (a[x'/x] \vdash a[x'/x]) \\ sat \ (\vdash a \lor b)(\{\Gamma\}\ t) & \rightarrow & sat \ (a \vdash a) \ (\{\Gamma\}\ t) \ ; \ sat \ (b \vdash b) \ (\{\Gamma\}\ t) \\ \end{vmatrix}
```

I.e. $strip_asm_tac$ does a case split resulting in two subgoals when it processes a disjunction.

After all of the available simplification techniques have been attempted $strip_asm_tac$ then proceeds as $check_asm_tac$ (q.v.) to use the simplified theorem either to prove the goal or to generate additional assumptions.

See Also $STRIP_THM_THEN$, used to implement this function. $check_asm_tac$, $strip_tac$, $strip_asm_conv$.

```
\begin{vmatrix} val & \mathbf{strip\_concl\_conv} : CONV; \\ val & \mathbf{strip\_asm\_conv} : CONV; \end{vmatrix}
```

Description $strip_concl_conv \ tm$; applies the conclusion stripping conversion from the current proof context, to rewrite the outermost connective in the term tm.

 $strip_asm_conv\ tm$; applies the assumption stripping conversion from the current proof context, to rewrite the outermost connective in the term tm.

Errors

28003 There is no stripping technique for ?0 in the current proof context

```
| val strip_concl_tac : TACTIC; | val strip_tac : TACTIC;
```

Description strip_concl_tac, more usually known by its alias, strip_tac, is a general purpose tactic for simplifying away the outermost connective of a goal. It first tries to apply the conclusion stripping conversion from the current proof context, to rewrite the outermost connective in the goal. If that conversion fails, tries to simplify the goal by applying an applicable member of the following collection of tactics (only one could possibly apply):

```
|simple\_\forall\_tac, \land\_tac, \Rightarrow\_T \ strip\_asm\_tac, \ t\_tac
```

Failing either being successful, it tries $concl_in_asms_tac$ to prove the goal, and failing that, returns the error message below.

Note how new assumptions generated by the tactic are processed using $strip_asm_tac$, which uses the current proof context's theorem stripping conversion. $strip_tac$ may produce several new subgoals, or may prove the goal.

REPEAT strip_tac in the proof context "basic_hol" (amongst others) will prove all tautologies automatically. It will, however, not succeed in proving some substitution instances of tautologies involving positive and negative instances of a quantified subterm.

Uses This is the usual way of simplifying a goal involving predicate calculus connectives, and other functions "understood" by the current prof context.

See Also $STRIP_T$ and $STRIP_THM_THEN$ which are used to implement this function. $taut_tac$ for an alternative simplifier. $swap_t \lor_t tac$ to rearrange the conclusion for tailored stripping. Also $strip_t concl_t conv$, $strip_t asm_t conv$.

Errors

28003 There is no stripping technique for ?0 in the current proof context

```
| val STRIP_CONCL_T : (THM -> TACTIC) -> TACTIC; | val STRIP_T : (THM -> TACTIC) -> TACTIC;
```

Description STRIP_CONCL_T ttac is a general purpose way of stripping goals and passing any new assumptions generated by the stripping to a tactic generating function, ttac. STRIP_CONCL_T attempts to apply the conversion held for it in the current proof context to rewrite the goal. The conversion is extracted from the current proof context by current_ad_sc_conv. If that fails it attempts to apply one of the following list of tactics (in order):

```
|simple\_\forall\_tac, \land\_tac, \Rightarrow\_T \ ttac, \ t\_tac
```

If none of the above apply it tries $concl_{-in_{-}}asms_{-}tac$, and failing that, return the error message below.

The conversion in the current proof context held by $current_ad_sc_conv$ (q.v.) is derived by applying eqn_cxt_conv to an equational context in the proof context, extracted by $get_sc_eqn_cxt$.

 $STRIP_{-}T$ is an alias for $STRIP_{-}CONCL_{-}T$.

Uses Tactic programming.

See Also $strip_asm_tac, strip_tac, strip_concl_conv.$

Errors

28003 There is no stripping technique for ?0 in the current proof context

SML

|val STRIP_THM_THEN : THM_TACTICAL;

Description STRIP_THM_THEN provides a general purpose way of stripping theorems into primitive constituents before using them in a tactic proof. STRIP_THM_THEN attempts to apply the conversion held for the function in the current proof context, which is extracted by current_ad_st_conv. to rewrite the theorem. If that fails it attempts to apply a theorem tactical from the following list (in order):

$$\land_THEN$$
, \lor_THEN , $SIMPLE_\exists_THEN$

The conversion in the current proof context got by $current_{-}ad_{-}st_{-}conv$ (q.v.) is derived by applying $eqn_{-}cxt_{-}conv$ to an equational context in the proof context extracted by $get_{-}st_{-}eqn_{-}cxt$.

The function is partially evaluated with only the theorem tactic and theorem arguments.

Uses Tactic programming.

See Also strip_asm_tac, strip_tac.

Errors

28003 There is no stripping technique for ?0 in the current proof context

```
| val swap_asm_concl_tac : TERM -> TACTIC; | val swap_nth_asm_concl_tac : int -> TACTIC;
```

Description Strip the negation of current goal into the assumption list and make an assumption, suitably negated, into the current goal. If the simplifications it does are ignored, $swap_asm_concl_tac$ asmis equivalent to

Example

| contr_tac THEN asm_ante_tac asm

and $swap_nth_asm_concl_tac$ nis equivalent to

Example

| contr_tac THEN DROP_NTH_ASM_T n ante_tac

If the assumption is a negated term then the double negation will be eliminated.

See Also Other *swap* and *SWAP* functions.

Errors

9303 the index ?0 is out of range

28052 Term ?0 is not in the assumptions

 $\begin{vmatrix} val \ \mathbf{SWAP_ASM_CONCL_T} : TERM \ -> (THM \ -> TACTIC) \ -> TACTIC; \ val \ \mathbf{SWAP_NTH_ASM_CONCL_T} : int \ -> (THM \ -> TACTIC) \ -> TACTIC; \ \end{vmatrix}$

Description Process the negation of current goal with the supplied theorem tactic and make an assumption, suitably negated, into the current goal. If the simplifications it does are ignored, $SWAP_-ASM_-CONCL_-T$ asm ttacis equivalent to

Example

 $|CONTR_T| (fn \ x => asm_ante_tac \ asm \ THEN \ ttac \ x)$

and SWAP_NTH_ASM_CONCL_T n ttacis equivalent to

Example

 $|CONTR_T| (fn \ x => (DROP_NTH_ASM_T \ n \ ante_tac) \ THEN \ ttac \ x)$

 $\frac{ \left\{ \begin{array}{c} \Gamma, \lceil t1 \rceil \right\} t2}{ttac(asm_rule \ \lceil \neg t2 \rceil)(\{\Gamma\} \ \neg \ t1)} & \begin{array}{c} SWAP_ASM_CONCL_T \\ \\ \hline ttac \end{array}$

If the assumption is a negated term then the double negation will be eliminated.

See Also Other *swap* and *SWAP* functions.

Errors

9303 the index ?0 is out of range

28027 Conclusion of goal does not have type \(\text{:}BOOL \)

28052 Term ?0 is not in the assumptions

 $|val| \mathbf{swap}_{-} \lor_{-} \mathbf{tac} : TACTIC;$

Description Interchange the disjuncts of a disjunctive goal.

Uses For use in conjunction with $strip_tac$ (q.v.) when the reduction of $\{\Gamma\}a \lor b$ to $\{\neg a, \Gamma\}b$ is inappropriate.

See Also \vee -left_tac, \vee -right_tac, $swap_{-}\vee$ -tac, $strip_{-}tac$

Errors

| 28041 Goal is not of the form: $\{ \Gamma \} a \vee b$

```
\begin{vmatrix} val \ tac\_proof : (GOAL * TACTIC) -> THM; \end{vmatrix}
```

Description $tac_proof(gl, tac)$ applies the tactic tac to the goal gl, and, if the tactic succeeds in proving the goal returns the resulting theorem.

 tac_proof performs α -conversion, introduces additional assumptions, and reorders assumptions as necessary to ensure that the theorem returned has the same form as the specified goal (note that this is not possible if the goal has α -equivalent assumptions). In circumstances where these adjustments are known not to be necessary, $simple_tac_proof$ may be used to avoid the overhead.

Uses The subgoal package is the normal interactive mechanism for developing proofs using tactics. tac_proof is typically used in tactic programming and other proof procedures, in cases where it is necessary to ensure that the correct goal is proved.

```
9501
        the tactic returned unsolved subgoals: ?0
9502
        evaluation of the tactic failed: ?0
9503
       the proof returned by the tactic failed: ?0
9504
        the proof returned by the tactic proved ?0 which could not be
        converted into the desired goal.
9505
       the goal contains alpha-equivalent assumptions (?0 and ?1)
        the assumption ?0 is not of type \lnot:BOOL\lnot
9506
9507
        the conclusion ?0 is not of type \lceil :BOOL \rceil
See Also simple_tac_proof, prove_thm.
```

 $\begin{vmatrix} val & \mathbf{taut_conv} : CONV; \end{vmatrix}$

Description A tautology prover. A tautology is taken to be any universally quantified substitution instance of a term which is formed from boolean variables, the constants T and F and the following connectives:

$$|\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg, if \dots then \dots else$$

and which is true for any assignment of truth values to the variables. If its argument is a tautologically true term, then the function will return a theorem that the term is equivalent to T.

See Also taut_tac, taut_rule, simple_taut_tac.

Errors

27037 ?0 is not tautologically true

 $|val \ \mathbf{taut_rule} : TERM \rightarrow THM;$

Description A tautology prover. A tautology is taken to be any universally quantified substitution instance of a term which is formed from boolean variables, the constants T and F and the following connectives:

$$|\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg, if \dots then \dots else$$

and which is true for any assignment of truth values to the variables. If its argument is such a tautology then the function will return that term as a theorem.

See Also taut_tac, taut_conv, simple_taut_tac.

Errors

27037 ?0 is not tautologically true

|val| taut_tac : TACTIC;

Description A tautology prover. If the conclusion of the goal is a tautology then $taut_tac$ will prove the goal. A tautology is taken to be any (perhaps universally quantified) substitution instance of a term which is formed from boolean variables, the constants T and F and the following connectives:

$$|\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg, if \dots then \dots else$$

and which is true for any assignment of truth values to the variables.

See Also strip_tac, taut_rule, taut_conv, simple_taut_tac.

Errors

29020 Conclusion of the goal is not a universally quantified tautology

 $\begin{vmatrix} val \ \mathbf{THEN_LIST_T} : (\mathit{TACTIC} * \mathit{TACTIC} \ \mathit{list}) -> \mathit{TACTIC}; \\ val \ \mathbf{THEN_LIST} : (\mathit{TACTIC} * \mathit{TACTIC} \ \mathit{list}) -> \mathit{TACTIC}; \\ \end{vmatrix}$

Description $THEN_LIST_T$ is a tactical used as an infix operator. $tac\ THEN_LIST_T\ tlist$ is a tactic that applies tac, and then applies the first member of tlist to the first resulting subgoal, the second to the second, etc. If there are not the correct number of tactics in the list then an error will be raised. $THEN_LIST$ is an alias for $THEN_LIST_T$.

Errors

9101 number of tactics must equal the number of subgoals

As failures of the initial tactic or the tactics in the list.

```
| val THEN_T1 : (TACTIC * TACTIC) -> TACTIC;
| val THEN1 : (TACTIC * TACTIC) -> TACTIC;
```

Description THEN_T1 is a tactical used as an infix operator. tac1 THEN_T1 tac2 is the tactic that applies tac1 and then applies tac2 to the first of the resulting subgoals and id_tac to any other subgoals. If tac1 returns no subgoals, then nor will tac1 THEN_T1 tac2. THEN1 is an alias for THEN_T1.

It is intended for use in conjunction with induction tactics or tactics like $lemma_tac$ for which the first subgoal (i.e., the base case of the induction or the lemma) often has a simple proof.

See Also THEN

Errors As the errors of tac1 and tac2.

```
| val THEN_TRY_LIST_T : (TACTIC * TACTIC list) -> TACTIC; | val THEN_TRY_LIST : (TACTIC * TACTIC list) -> TACTIC;
```

Description $THEN_TRY_LIST_T$ is a tactical used as an infix operator. $tac\ THEN_TRY_LIST_T\ tlist$ is a tactic that applies tac, and then attempts to apply the first member of tlist to the first resulting subgoal, the second to the second, etc. If there are not the correct number of tactics in the list then an error will be raised. If any member of tlist fails on a particular subgoal, then that subgoal is returned unchanged. $THEN_LIST$ is an alias for $THEN_LIST_T$.

Errors

9101 number of tactics must equal the number of subgoals

As failures of the initial tactic.

```
|val THEN_TRY_TTCL : (THM_TACTICAL * THM_TACTICAL) -> THM_TACTICAL;
```

Description $THEN_{-}TRY_{-}TTCL$ is a theorem tactical combinator. It is an infix operator which applies the first theorem tactical, and then, if it succeeds, the second theorem tactical, using only the first result if the second fails.

Uses For use in programming theorem tacticals.

```
| val THEN_TRY_T : (TACTIC * TACTIC) -> TACTIC;
| val THEN_TRY : (TACTIC * TACTIC) -> TACTIC;
```

Description $THEN_{-}TRY_{-}T$ is a tactical used as an infix operator. tac1 $THEN_{-}TRY_{-}T$ tac2 is the tactic that applies tac1 and then attempts to apply tac2 to each resulting subgoal (perhaps none). If tac2 fails on any particular subgoal then that subgoal will be unchanged from the result of tac1. If tac1 fails then the overall tactic fails. $THEN_{-}TRY$ is an alias for $THEN_{-}TRY_{-}T$.

Errors As the errors of tac1.

```
\begin{vmatrix} val & THEN_TTCL \end{vmatrix}: (THM_TACTICAL * THM_TACTICAL) -> THM_TACTICAL;
```

Description $THEN_{-}TTCL$ is a theorem tactical combinator. It is an infix operator which composes two theorem tacticals using ordinary function composition:

```
|(tcl1 \ THEN\_TTCL \ tcl2) \ thmtac \ thm = (tcl1 \ o \ tcl2) \ thmtac \ thm
```

Uses For use in programming theorem tacticals.

 $egin{array}{c} val \ \mathbf{THEN_{-}T}: (\mathit{TACTIC}*\mathit{TACTIC}) -> \mathit{TACTIC}; \\ val \ \mathbf{THEN}: (\mathit{TACTIC}*\mathit{TACTIC}) -> \mathit{TACTIC}; \\ \end{array}$

Description $THEN_{-}T$ is a tactical used as an infix operator. tac1 $THEN_{-}T$ tac2 is the tactic that applies tac1 and then applies tac2 to each resulting subgoal (perhaps none). THEN is an alias for $THEN_{-}T$.

Errors As the errors of tac1 and tac2.

```
\begin{vmatrix} val & TOP\_ASM\_T : (THM -> TACTIC) -> TACTIC; \end{vmatrix}
```

Description If the top entry in the assumption list is asm say, TOP_ASM_T thmtac acts as $thmtac(asm \vdash asm)$.

Uses To use an assumption as a theorem

Errors

9302 the assumption list is empty

|val| TRY_TTCL : $THM_TACTICAL \rightarrow THM_TACTICAL$;

Description $TRY_TTCL\,ttcl$ is a theorem tactical which applies ttcl if it can, and otherwise acts as ID_THEN .

Uses For use in programming theorem tacticals.

| val TRY_T : TACTIC -> TACTIC; | val TRY : TACTIC -> TACTIC;

Description $TRY_{-}T$ tac is a tactic which applies tac to the goal and if that fails leaves the goal unchanged. It is the same as tac ORELSE $id_{-}tac$. TRY is an alias for $TRY_{-}T$.

 $\begin{vmatrix} val & \mathbf{t_{-tac}} : & TACTIC; \end{vmatrix}$

Description Prove a goal with conclusion T'.

 $\begin{bmatrix} T_{\text{actic}} \\ & & \\ & & \end{bmatrix} T \qquad \qquad t_{-}tac$

See Also $strip_tac$, $taut_tac$.

Uses Tactic programming.

Errors

| 28011 Goal does not have the form $\{\Gamma\}T$

```
| val var_elim_asm_tac : TERM -> TACTIC;
| val var_elim_nth_asm_tac : int -> TACTIC;
| val var_elim_ASM_T : TERM -> (THM -> TACTIC) -> TACTIC;
| val var_elim_NTH_ASM_T : int -> (THM -> TACTIC) -> TACTIC;
```

Description These tactics and tacticals do variable elimination with a chosen assumption of the goal. They take an assumption of the form: $\lceil var = value \rceil$ or $\lceil value = var \rceil$, where var is a variable and, if the subterm value does not contain var free, they substitute value for the free variable var throughout the goal (discarding the original assumption).

If an assumption is an equation of variables, then the tactic will strip digits and the current variant suffix from the right of the two variable names, and will choose to eliminate the variable with the shortest remaining name string, taking eliminating the left hand side variable if the strings are of equal length (this is a heuristic). If the variables are the same then the assumption is just discarded with no further effect.

 $var_elim_asm_tac$ will determine whether its term argument is an assumption of the above form. If so, it will substitute for the free variable var with value throughout the goal, stripping any changed assumptions back into the goal (returning the rest by $check_asm_tac$), and then discard the original assumption. $VAR_ELIM_ASM_T$ allows the users choice of function to be applied to the modified assumptions.

 $var_elim_nth_asm_tac$ works as $var_elim_asm_tac$, except it takes an integer indicating the "nth" assumption is to be used. $VAR_ELIM_NTH_ASM_T$ allows the users choice of function to be applied to the modified assumptions.

See Also $all_var_elim_asm_tac1$ and its kin to apply this sort of functionality to all the assumptions simultaneously. $prop_eq_prove_tac$ for more sophisticated approach to these kinds of problems.

```
| Profestors | 9301 | the term ?0 is not in the assumption list | 9303 | the index ?0 is out of range | 29027 ?0 is not of the form \( \tau var = ... \) or \( \tau ... \) | where the variable \( \tau var \) is not free in \( \tau ... \)
```

```
\begin{vmatrix} val \Leftrightarrow_{-}\mathbf{T2} : (THM -> TACTIC) -> (THM -> TACTIC) -> TACTIC; \end{vmatrix}
```

Description Reduce a bi-implication by passing the operands to tactic generating functions.

See Also $\Leftrightarrow_{-}T$, $STRIP_CONCL_T$

Errors | 28061 Goal is not of the form: $\{ \Gamma \} t1 \Leftrightarrow t2$

 $\begin{vmatrix} val \Leftrightarrow \mathbf{tac} : TACTIC; \end{vmatrix}$

Description Reduce a bi-implication to two subgoals.

See Also $strip_tac, \Leftrightarrow_T$

Errors

| 28061 Goal is not of the form: $\{ \Gamma \} t1 \Leftrightarrow t2$

```
\begin{vmatrix} val \Leftrightarrow_{-}\mathbf{THEN2} : (THM -> TACTIC) -> (THM -> TACTIC) -> \\ (THM -> TACTIC); \end{vmatrix}
```

Description A theorem tactical to apply given theorem tactics to the tresult of eliminating \Leftrightarrow from a theorem of the form $\Gamma \vdash t1 \Leftrightarrow t2$.

$$|\Leftrightarrow$$
_THEN2 ttac1 ttac2($\Gamma \vdash t1 \Leftrightarrow t2$) = ttac1($\Gamma \vdash t1 \Rightarrow t2$) THEN ttac2($\Gamma \vdash t2 \Rightarrow t1$)

The function is partially evaluated with only the theorem tactic and theorem arguments.

See Also \Leftrightarrow THEN, STRIP_THM_THEN

Errors

| 28062 ?0 is not of the form: ' $\Gamma \vdash t1 \Leftrightarrow t2$ '

 $|val \Leftrightarrow \mathbf{THEN} : (THM \rightarrow TACTIC) \rightarrow (THM \rightarrow TACTIC);$

Description A theorem tactical to apply a given theorem tactic to the result of eliminating \Leftrightarrow from a theorem of the form $\Gamma \vdash t1 \Leftrightarrow t2$.

$$|\Leftrightarrow$$
_THEN thmtac $(\Gamma \vdash t1 \Leftrightarrow t2) = thmtac $(\Gamma \vdash t1 \Rightarrow t2)$ THEN thmtac $(\Gamma \vdash t2 \Rightarrow t1)$$

The function is partially evaluated with only the theorem tactic and theorem arguments.

See Also ⇔_THEN2, STRIP_THM_THEN

Error

| 28062 ?0 is not of the form: ' $\Gamma \vdash t1 \Leftrightarrow t2$ '

 $\begin{vmatrix} val \Leftrightarrow_{-\mathbf{t}-\mathbf{tac}} : TACTIC; \end{vmatrix}$

Description Simplifies a goal of the form: $...\Leftrightarrow T$ or $T\Leftrightarrow...$

and

Tactio

$$\frac{\{ \ \Gamma \ \} \ T \Leftrightarrow t}{\{ \ \Gamma \ \} \ t} \Leftrightarrow t_-t_-tac$$

Errors

| 28012 Goal not of form: $\{ \Gamma \} t \Leftrightarrow T \text{ or } \{ \Gamma \} T \Leftrightarrow t$

See Also strip_tac

Uses Tactic programming.

 $|val \Leftrightarrow_{-} \mathbf{T} : (THM \rightarrow TACTIC) \rightarrow TACTIC;$

Description Reduce a bi-implication by passing each operand to a tactic generating function.

See Also \Leftrightarrow T2, STRIP_CONCL_T

Errors

| 28061 Goal is not of the form: $\{ \Gamma \} t1 \Leftrightarrow t2$

 $|val \wedge_{-\mathbf{tac}} : TACTIC;$

Description Reduce the proof of a conjunction to the proof of its conjuncts.

See Also strip_tac

Errors

| 28031 Goal is not of the form: $\{ \Gamma \} t1 \wedge t2$

 $|val \wedge_{\mathbf{THEN2}}: (THM \rightarrow TACTIC) \rightarrow (THM \rightarrow TACTIC) \rightarrow (THM \rightarrow TACTIC);$

Description A theorem tactical to apply given theorem tactics to the conjuncts of a theorem of the form $\Gamma \vdash t1 \land t2$.

 $\land_THEN2 \ thmtac1 \ thmtac2 \ (\Gamma \vdash t1 \land t2) = thmtac1 \ (\Gamma \vdash t1) \ THEN \ thmtac2 \ (\Gamma \vdash t2)$

See Also \land _THEN, STRIP_THM_THEN

Errors

| 28032 ?0 is not of the form: ' $\Gamma \vdash t1 \land t2$ '

 $val \wedge_{-}$ **THEN** : (THM -> TACTIC) -> (THM -> TACTIC);

Description A theorem tactical to apply a given theorem tactic to the conjuncts of a theorem of the form $\Gamma \vdash t1 \land t2$.

 \land THEN thmtac $(\Gamma \vdash t1 \land t2) = thmtac (\Gamma \vdash t1)$ THEN thmtac $(\Gamma \vdash t2)$

The function may be partially evaluated with only its theorem tactic and theorem arguments.

See Also \land _THEN2, $STRIP_THM_THEN$

Errors

|28032 ?0 is not of the form: $\Gamma \vdash t1 \land t2$

 $|val \lor_{-} \mathbf{left_tac} : TACTIC;$

Description Take the left disjunct of the current goal as the subgoal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

See Also \vee _left_tac, $swap_{\vee}$ _tac, $strip_{\perp}tac$

Errors

| 28041 Goal is not of the form: $\{ \Gamma \} a \vee b$

 $|val \lor _right_tac : TACTIC;$

Description Take the right disjunct of the current subgoal as the new subgoal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

See Also \vee -right_tac, $swap_{-}\vee$ -tac, $strip_{-}tac$

Errors

| 28041 Goal is not of the form: $\{ \Gamma \} a \vee b$

 $|val \lor THEN2 : (THM -> TACTIC) -> (THM -> TACTIC) -> (THM -> TACTIC);$

Description A theorem tactical to perform a case split on a given disjunctive theorem applying tactic generating functions to the extra assumption in each branch.

The function may be partially evaluated with only its theorem tactic and theorem arguments.

See Also $STRIP_THM_THEN$, \lor_THEN

Errors

| 28042 ?0 is not of the form: ' $\Gamma \vdash t1 \lor t2$ '

 $|val \lor_{-}\mathbf{THEN}: (THM \rightarrow TACTIC) \rightarrow (THM \rightarrow TACTIC);$

Description A theorem tactical to perform a case split on a given disjunctive theorem applying a tactic generating function to the extra assumption in each branch.

 $|\vee_{-}THEN|$ ttac $(\Delta \vdash t1 \lor t2)$ $(\{\Gamma\}\ t) = ttac\ (t1 \vdash t1)\ (\{\Gamma\}\ t);$ ttac $(t2 \vdash t2)(\{\Gamma\}\ t)$

The function may be partially evaluated with only its theorem tactic and theorem arguments.

See Also $STRIP_THM_THEN$, \lor_THEN2

Errors

28042 ?0 is not of the form: $\Gamma \vdash t1 \lor t2$

 $|val \neg _elim_tac : TERM \rightarrow TACTIC;$

Description Proof by showing assumptions give rise to two contradictory subgoals.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

The function may be partially evaluated with only its term argument.

Uses In tactic programming. If an assumption has its negation also in the assumption list this will make for a rapid proof. $asm_ante_tac\ t1\ THEN\ strip_tac$ is a more memorable idiom for handling such a case in interactive use but is a little slower.

See Also $strip_{-}tac$

Errors

28022 ?0 is not boolean

```
|val \neg_{\mathbf{in\_conv}} : CONV;
```

Description This is a conversion which moves a top level negation inside other predicate calculus connectives using whichever one of the following rules applies:

```
\neg \neg t
\neg (t1 \land t2)
                                                            \neg t1 \lor \neg t2
\neg(t1 \lor t2)
                                           =
                                                            \neg t1 \wedge \neg t2
\neg(t1 \Rightarrow t2)
                                           =
                                                            t1 \wedge \neg t2
                                                            (t1 \land \neg t2) \lor (t2 \land \neg t1)
\neg(t1 \Leftrightarrow t2)
\neg (if \ a \ then \ t1 \ else \ t2)
                                                            (if a then \neg t1 else \neg t2)
\neg \forall vs \bullet t
                                                            \exists vs \bullet \neg t
\neg \exists vs \bullet t
                                            =
                                                            \forall vs \bullet \neg t
                                             \forall vs \bullet \neg (t \land \forall vs' \bullet t[vs'] \Rightarrow vs' = vs)
\neg \exists_1 vs \bullet t
\neg T
                                                             F
                                                             T
\neg F
```

Uses Tactic and conversion programming.

See Also $simple_\neg_in_conv, \neg_in_tac$

Errors

28131 No applicable rules for the term ?0

```
\begin{vmatrix} val & \neg_{\mathbf{in\_tac}} & TACTIC \end{vmatrix}
```

Description This is a tactic which moves a top level negation in the conclusion of the goal inside other predicate calculus connectives using the following rules:

Uses

See Also $simple_\neg_in_tac, \neg_in_conv$

Errors

28025 No applicable rule for this goal

```
\begin{vmatrix} val & \neg_{-}IN_{-}THEN : THM_{-}TACTICAL; \end{vmatrix}
```

Description This is a theorem tactical which applies a given theorem tactic to the result of transforming a theorem by moving a top level negation inside other predicate calculus connectives using the following rules:

```
\neg \neg t
\neg (t1 \land t2)
                                                                  \neg t1 \lor \neg t2
\neg(t1 \lor t2)
                                                                 \neg t1 \land \neg t2
                                                              t1 \wedge \neg t2
\neg(t1 \Rightarrow t2)
\neg(t1 \Leftrightarrow t2)
                                                               (t1 \land \neg t2) \lor (t2 \land \neg t1)
\neg \forall vs \bullet t
                                                                 \exists vs \bullet \neg t
\neg \exists vs \bullet t
                                                                  \forall vs \bullet \neg t
                                                                  \forall vs \bullet \neg (t \land \forall vs' \bullet t[vs'] \Rightarrow vs' = vs)
\neg \exists_1 vs \bullet t
\neg T
                                                                  F
\neg F
                                                                   T
```

This function partially evaluates given only the theorem and theorem-tactical.

See Also $SIMPLE_\neg_IN_THEN$

Error

29010 No applicable rule for ?0

 $\begin{vmatrix} val & \neg_\mathbf{rewrite_canon} : THM & -> THM \ list \ val & \forall_\mathbf{rewrite_canon} : THM & -> THM \ list \ \end{vmatrix}$

Description These are some of the standard canonicalisation functions used for breaking theorems up into lists of equations for use in rewriting. They four perform the following transformations:

```
 \begin{array}{lll} \neg\_rewrite\_canon & (\Gamma \vdash \neg(t1 \lor t2)) & = (\Gamma \vdash \neg t1 \land \neg t2) \\ \neg\_rewrite\_canon & (\Gamma \vdash \neg \exists vs \bullet t) & = (\Gamma \vdash \forall vs \bullet \neg t) \\ \neg\_rewrite\_canon & (\Gamma \vdash \neg \neg t) & = (\Gamma \vdash t) \\ \neg\_rewrite\_canon & (\Gamma \vdash \neg t) & = (\Gamma \vdash t \Leftrightarrow F) \\ \forall\_rewrite\_canon & (\Gamma \vdash \forall vs \bullet t) & = \Gamma \vdash t \\ \end{array}
```

See Also $simple_\neg_rewrite_canon, simple_\forall_rewrite_canon.$

Errors

26201 Failed as requested

The area given by the failure will be fail_canon.

$$\begin{vmatrix} val & \neg_{\mathbf{T}\mathbf{2}} : TERM & -> (THM & -> TACTIC) & -> (THM & -> TACTIC) & -> TACTIC; \end{vmatrix}$$

Description A form of proof by contradiction using two theorem tactics to simplify the subgoals.

Note that $strip_tac$ may be used to push a negation inside other logical connectives, which is often the best way of handling a negated goal.

Uses To prove a negated term by showing that assuming the term gives rise to a contradiction.

See Also $strip_tac$, $contr_tac$, \neg_tac , $STRIP_CONCL_T$, \neg_in_conv

Errors

|28022|?0 is not boolean

28023 Goal is not of the form $\neg \tau$

 $\begin{vmatrix} val & \neg_\mathbf{tac} : TERM & -> TACTIC; \end{vmatrix}$

Description A form of proof by contradiction as a tactic: $\neg t2$ holds if $t2 \vdash t1$ and $t2 \vdash \neg t1$ for some term t1.

Note that $strip_tac$ may be used to push a negation inside other logical connectives, which is often the best way of handling a negated goal.

Uses To prove a negated term by showing that assuming the term gives rise to a contradiction.

See Also $strip_tac, contr_tac, \neg_T$

Errors

28022 ?0 is not boolean

28023 Goal is not of the form $\neg \tau$

 $\begin{vmatrix} val & \neg_{\mathbf{T}} : TERM & -> (THM & -> TACTIC) & -> TACTIC; \end{vmatrix}$

Description A form of proof by contradiction using a theorem tactic to simplify the subgoals.

Note that $strip_tac$ may be used to push a negation inside other logical connectives, which is often the best way of handling a negated goal.

Uses To prove a negated term by showing that assuming the term gives rise to a contradiction.

See Also $strip_tac$, $contr_tac$, \neg_tac , $STRIP_CONCL_T$, \neg_in_conv

Errors

28022 ?0 is not boolean

28023 Goal is not of the form $\neg \tau$

```
SML |val \neg \neg \neg thm : THM|
val \neg \neg \lor thm : THM|
val \neg \neg \lor thm : THM|
val \neg \neg \lor thm : THM|
val \neg \neg \Rightarrow thm : THM|
val \neg \bot thm : THM|
val \Rightarrow thm : THM|
```

Description These theorems are tautologies saved in the theory "misc" because they are frequently used in tactic and conversion programming.

The first seven theorems are De Morgan's laws for the various propositional connectives formulated so that they can be used to normalise a propositional term by moving all negations inside other connectives. $\neg_t t$ is also provided but is documented elsewhere.

The last three theorems give definitions for implication, bi-implication and conditional in terms of disjunction, conjunction and negation.

```
\vdash \forall a \bullet \neg \neg a \Leftrightarrow a
 \neg_-\neg_-thm
 \neg \_ \lor \_thm
                                                  \vdash \forall a \ b \bullet \neg (a \lor b) \Leftrightarrow (\neg a \land \neg b)
                                                  \vdash (\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)
 \neg \_ \land \_thm
  \neg \_ \Rightarrow \_thm
                                                  \vdash \forall a \ b \bullet \neg (a \Rightarrow b) \Leftrightarrow (a \land \neg b)
                                                  \vdash \forall a \ b \bullet \neg (a \Leftrightarrow b) \Leftrightarrow a \land \neg b \lor b \land \neg a
 \neg \_ \Leftrightarrow \_thm
 \neg_i f_t thm
                                                  \vdash \forall \ a \ b \bullet \neg (if \ a \ then \ T \ else \ T) \Leftrightarrow (if \ a \ then \ \neg \ T \ else \ \neg \ T)
                                                  \vdash \neg F \Leftrightarrow T
 \neg_-f_-thm
 \Rightarrow_thm
                                                  \vdash \forall a \ b \bullet (a \Rightarrow b) \Leftrightarrow (\neg a \lor b)
\Leftrightarrow_thm
                                                  \vdash \forall a \ b \bullet (a \Leftrightarrow b) \Leftrightarrow (a \Rightarrow b) \land (b \Rightarrow a)
if_{-}thm
                                                  \vdash \forall a \ b \ c \bullet (if \ a \ then \ b \ else \ c) \Leftrightarrow (a \land b) \lor (\neg a \land c)
See Also \neg_t t_m.
```

```
\begin{vmatrix} val \Rightarrow_{-\mathbf{tac}} : TACTIC; \end{vmatrix}
```

Description Strip the antecedent of an implicative goal into the assumption list.

| 28051 Goal is not of form: $\{\Gamma\}$ t1 \Rightarrow t2

 $|val \Rightarrow_{-} \mathbf{THEN} : (THM -> TACTIC) -> (THM -> TACTIC);$

Description A theorem tactical to apply a given theorem tactic to the result of eliminating \Rightarrow from a theorem of the form $\Gamma \vdash t1 \Rightarrow t2$.

 \Rightarrow THEN thmtac $(\Gamma \vdash t1 \Rightarrow t2) = thmtac (\Gamma \vdash \neg t1 \lor t2)$

The function is partially evaluated with only the theorem tactic and theorem arguments.

Errors

| 28054 ?0 is not of the form: ' $\Gamma \vdash t1 \Rightarrow t2$ '

 $|val \Rightarrow_{-} \mathbf{thm_tac} : THM \longrightarrow TACTIC;$

Description A tactic which uses a theorem whose conclusion is an implication, $t1 \Rightarrow t2$, to reduce a goal with conclusion t2 to t1.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

Uses Mainly for use in tactic programming where the extra generality of bc_-thm_-tac and bc_-tac is not required.

See Also bc_-thm_-tac , bc_-tac .

Errors

29013 Conclusion of the goal is not ?0

 $|val \Rightarrow_{-} \mathbf{T} : (THM \rightarrow TACTIC) \rightarrow TACTIC;$

Description Reduce an implicative goal by passing the antecedent to a tactic generating function.

Errors

| 28051 Goal is not of form: $\{ \Gamma \} t1 \Rightarrow t2$

 $\begin{vmatrix} val & \forall_{-\mathbf{tac}} : TACTIC; \end{vmatrix}$

Description Reduce a universally quantified goal.

Tactio

where x1' is a variant name of x1, etc, different from any variable in Γ or t.

See Also $simple_\forall_tac$

Errors

| 29001 Goal is not of the form: $\{ \Gamma \} \forall vs \bullet t[vs]$

 $|val \; \exists_{-}\mathbf{tac} : TERM \; -> \; TACTIC \; ;$

Description Provide a witness for an existential subgoal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

Tactic

$$\frac{\{ \Gamma \} \exists vs[x1,...] \bullet t2[x1,...]}{\{ \Gamma \} t2[t1',...]} \exists_{\Gamma} tac$$

where $vs[t_-1,...]$ is t, type instantiated to have the same type as vs[x1,...], and broken up using Fst and Snd as necessary.

See Also $simple_\exists_tac$

Errors

| 29002 Goal is not of the form: $\{ \Gamma \} \exists vs \bullet t2[vs]$ | 29008 Cannot match witness ?0 to varstruct ?1

```
|val| \exists_{-}THEN : (THM \rightarrow TACTIC) \rightarrow (THM \rightarrow TACTIC);
```

Description A theorem tactical which applies a given theorem tactic to the result of eliminating the outermost quantifier from a theorem of the form $\Gamma \vdash \exists vs \bullet t$.

```
\exists THEN \ thmtac \ (\Gamma \vdash \exists vs[x1,...] \bullet t) = thmtac \ (\Gamma \vdash t[x1'/x1,...])
```

where $\lceil x1 \rceil$ is a variant of $\lceil x1 \rceil$, etc, which does not appear in Γ or in the assumption or conclusion of the goal.

See Also SIMPLE_∃_THEN

Errors

|29003 ?0 is not of the form: $\Gamma \vdash \exists vs \bullet t$

```
\begin{vmatrix} val \ \exists_{1}\_\mathbf{tac} : TERM -> TACTIC \end{aligned}
```

Description Provide a witness for a goal with conclusion of the form $\exists_1 x \bullet t$.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

```
\frac{\{ \Gamma \} \exists_{1} \ vs[x1,...] \bullet P[x1,...]}{\{ \Gamma \} P[t1',...];} \qquad \exists_{1} tac1
\{ \Gamma \} P[t1',...] \bullet
P[x1',...] \bullet
P[x1',...] \Rightarrow vs[x1',...] = t'
```

where $x_{-}i'$ is a variant of $x_{-}i$ which does not occur free in t, t' is equal to t type instantiated to the type of vs[x1,...], and vs[t1',...] equals t' (perhaps using Fst and Snd).

Errors

```
29004 Goal is not of the form: \{ \Gamma \} \exists_1 \ vs \bullet t
29008 Cannot match witness ?0 to varstruct ?1
```

```
|val \; \exists_{\mathbf{1}}-THEN : (THM \; -> \; TACTIC) \; -> \; (THM \; -> \; TACTIC);
```

Description A theorem tactical which applies a given theorem tactic to the result of eliminating the outermost quantifier from a theorem of the form $\Gamma \vdash \exists _1vs \bullet t$.

```
 \begin{vmatrix} \exists_{1} \text{-} THEN \ thmtac \ (\Gamma \vdash \exists_{1} vs[x1,...] \bullet t) = \\ thmtac \ (\Gamma \vdash t[x1'/x1,...] \land \\ \forall vs[x1'',...] \bullet P[x1'',...] \Rightarrow vs[x1'',...] = vs[x1',...] \rangle
```

where $\lceil x1 \rceil$ and $\lceil x1 \rceil$ are distinct variants of $\lceil x1 \rceil$, etc, which do not appear free in Γ or in the assumptions or conclusion of the goal.

Errors

|29005| ?0 is not of the form: ' $\Gamma \vdash \exists_1 \ vs \bullet t$ '

```
\begin{vmatrix} val & \epsilon_{-}\mathbf{tac} : TERM -> TACTIC; \\ val & \epsilon_{-}\mathbf{T} : TERM -> (THM -> TACTIC) -> TACTIC; \end{vmatrix}
```

Description Given a choice term, $\epsilon x \bullet t$ say, $\epsilon_- tac$ sets $\exists x \bullet t$ as a lemma, and derives the new assumption $t[\epsilon x \bullet t/x]$ from it.

 $\epsilon_{-}T$ is the same as $\epsilon_{-}tac$ except that it passes the new assumption to a tactic generating function.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable. This occurs when the use of the choice function is in some sense irrelevant to the truth of the goal, e.g., $(\epsilon x \bullet T) = (\epsilon x \bullet T)$.

See Also $all_{-\epsilon_{-}}tac$, $all_{-\epsilon_{-}}T$ (which are easier to use in most cases).

Errors

|29050| ?0 is not of the form $\lceil \epsilon x \bullet p \rceil x \rceil$

7.4 Propositional Equational Reasoning

```
\begin{vmatrix} signature & \mathbf{PropositionalEquality} = sig \end{vmatrix}
```

Description This is the signature of a structure containing proof procedures for propositional calculus with equality.

```
| (* Proof Context: prop_eq *)
```

Description This is a complete proof context whose purpose is to supply a decision procedure for problems involving sets of equalities and the propositional calculus.

Contents The rewriting, theorem stripping and conclusion stripping components are as for the proof context predicates (q.v.). The automatic proof tactic is $prop_eq_prove_tac$ (q.v.) The automatic proof conversion just tries to prove its argument, t say, using the automatic proof tactic and returns $t \Leftrightarrow T$ if it succeeds.

```
|(*Proof\ Context: 'prop_eq *)
```

Description This is a component proof context whose purpose is to supply a decision procedure for problems involving sets of equalities and the propositional calculus.

Contents The automatic proof components are as for proof context *prop_eq*. Other components are blank.

```
| (* Proof Context: prop_eq_pair *)
```

Description This is a complete proof context whose main purpose is to supply a decision procedure for problems involving sets of equalities, the propositional calculus and pairing.

Contents The rewriting, theorem stripping and conclusion stripping components are as for the proof context predicates (q.v.) each augmented with conversion $pair_eq_conv$ (q.v.) which effect the following transformations:

```
Fst(a,b) = x
                               a = x
Snd(a,b) = y
                               b = y
x = Fst(a,b)
                               x = a
y = Snd(a,b)
                               y = b
(a,b) = (c,d)
                        \rightarrow a = c \wedge b = d
(a,b) = z
                              a = Fst \ z \land b = Snd \ z
z = (a,b)
                               Fst \ z = a \land Snd \ z = b
|z| = w
                               Fst \ z = Fst \ w \wedge Snd \ z = Snd \ w
```

The automatic proof tactic is $prop_-eq_-prove_-tac$ (q.v.). The automatic proof conversion just tries to prove its argument, t say, using the automatic proof tactic and returns $t \Leftrightarrow T$ if it succeeds.

```
| (* Proof Context: 'prop_eq_pair *)
```

Description This is a component proof context whose purpose is to supply a decision procedure for problems involving sets of equalities, the propositional calculus and pairing.

Contents The rewriting, theorem stripping and conclusion stripping components contain only the $pair_eq_conv$ conversion. The automatic proof components are as for $prop_eq_pair$. Other components are blank.

Description These are theorem tacticals which process the argument theorems and (for $ASM_PROP_EQ_T$) the assumptions before calling the argument theorem tactic. A call of " $ASM_PROP_EQ_T$ thm_tac thms" takes thms plus theorems representing any equations from the assumptions, these are cannonicalised by the rewriting canon of the current proof context, then processed by $prop_eq_rule$ (q.v.) to form the arguments passed to function thm_tac . The order of the assumptions may be changed. Tactical $PROP_EQ_T$ does not use the assumptions.

Uses With the rewriting tactics.

```
val pair_eq_conv : CONV
```

Description This conversion transforms equations involving pairs and the constants Fst and Snd into new equations whose comparands have simpler types by using the first match found in the following rules:

```
|Fst(a,b)| = x
                                a = x
Snd(a,b) = y
                                b = y
x = Fst(a,b)
                               x = a
                               y = b
y = Snd(a,b)
(a,b) = (c,d)
                               a = c \wedge b = d
                               a = Fst \ z \land b = Snd \ z
(a,b) = z
z = (a,b)
                               Fst \ z = a \land Snd \ z = b
z = w
                                Fst \ z = Fst \ w \wedge Snd \ z = Snd \ w
```

Uses The conversion is intended for use in tactic and conversion programming. It is usefully applied before using $prop_{-}eq_{-}prove_{-}tac$ or $ASM_{-}PROP_{-}EQ_{-}T$ (q.v.). The normal interactive interface is via rewriting or stripping in the proof context $prop_{-}eq_{-}pair$ (q.v.).

```
Errors
```

84001 ?0 is not an equation involving pairs

|val prop_eq_prove_tac : THM list -> TACTIC;

Description This tactic is suitable to be used as an automatic proof procedure in a proof context, it aims to solve problems which may be solved by reasoning in the propositional calculus with equality.

The tactic has the following steps:

- 1. It strips all of the assumptions, using the stripping functions of the current proof context, back into the assumptions. More precisely, 'DROP_ASMS_T (MAP_EVERY strip_asm_tac)' is used.
- 2. It applies *contr_tac* to increase the stock of assumptions.
- 3. It splits all of the assumptions into two groups, those which are equations and those which are not.
- 4. Using the equation assumptions and the given theorems, a new set of theorems is produced using *prop_eq_rule* (q.v.) which equate all members of an equivalence classes to a common member of the class.
- 5. It rewrites all of the other assumptions with these new theorems and with the rewriting theorems of the current proof context.
- 6. It strips the rewritten assumptions and the equational assumptions from step 3 back into the goal.

```
\begin{vmatrix} val & \mathbf{prop\_eq\_rule} : THM & list -> THM & list * THM & list; \end{vmatrix}
```

Description Given a list of theorems with conclusions of the form $a_i = b_i$ for various a_i and b_i this function produces a set of theorems that equate all members of each equivalence class determined by the equations to a common value. The equivalence classes are the sets of all a_i and b_i that are equated either directly or transitively, they comprise terms that are α -convertible rather than requiring strict equality. For each of the equivalence classes a set of theorems equating each term in the class to the "simplest" (see below) term in the class is generated. These new theorems have the simplest term as their right hand comparand, duplicated theorems and identity theorems are excluded. The first list in the result tuple contains the new theorems from all of the equivalence classes. The second list in the result tuple comprises all the argument theorems which were not equasions. The new theorems are intended to be used as arguments for a rewriting operation.

The choice of the "simplest" term is intended to give the most useful rewriting theorems and those which are least likely to loop. HOL constants are considered the most simple, variables next, then functional applications, with lamdba abstractions considered the most complex. A simple recursive counting function is used to traverse each term to evaluate its complexity. Function $term_order$ (q.v.) is used when the counting function cannot decide.

Example

Applying this rule to a list of theorems with the following conclusions:

```
\vdash a1=b1
                             \vdash a1 = c1
                                                            \vdash d1 = c1
                                                                                          \vdash z1 = x1
                             \vdash z1 = w1
\vdash b1 = y1
                                                           \vdash w1 = y1
                                                                                         \vdash c1 = y1
\vdash a2=b2
                             \vdash a2 = c2
                                                           \vdash d2 = c2
                                                                                         \vdash z2=x2
\vdash b2=y2
                             \vdash z2=w2
                                                            \vdash w2=y2
                                                                                          \vdash c2=y2
\vdash x \land y
```

will produce a list of theorems with the following conclusions as the first element of the result tuple:

plus the non equational theorems the second element of the result tuple.

7.5 Algebraic Normalisation

|signature| Normalisation = sig

Description This is the signature of a structure containing conversions for monomial and polynomial term normalisation and related metalanguage functions.

val anf_conv : CONV; val ANF_C : CONV -> CONV;

Description anf_conv is a conversion which proves theorems of the form $\vdash t1 = t2$ where t1 is a term formed from atoms of type \mathbb{N} and t2 is in what we may call additive normal form, i.e. it has the form: $t_1 + t_2 + ...$, where the t_i have the form $s_1 * s_2 * ...$ where the s_i are atoms. Here, by atom we mean a term which is not of the form $t_1 + t_2 + ...$ or $s_1 * s_2 * ...$

The summands t_i and, within them, the factors s_j are given in increasing order with respect to the ordering on terms given by the function $term_order$, q.v. Arithmetic computation is carried out on atoms to ensure that at most one of the summands is a numeric literal and that, within each summand, at most one factor is a numeric literal. Any literal appears at the beginning of its factor or summand and addition of θ or multiplication by θ is simplified out.

 $ANF_{-}C$ conv is a conversion which acts like $anf_{-}conv$ but which applies conv to each atom as it is encountered (and normalises the result recursively). The argument conversion may signal that it does not wish to change a subterm, t say, either by failing or by returning t = t, the former approach is more efficient.

The conversions fail with error number 81032 if there are no changes to be made to the term.

Errors

81032 ?0 is not of type 「:N¬ or is already in additive normal form

```
 \begin{vmatrix} val \ \mathbf{ASYM_C} : CONV -> CONV \\ val \ \mathbf{GEN_ASYM_C} : TERM \ ORDER -> CONV -> CONV \end{vmatrix}
```

Description These conversionals allow one to control the behaviour of a conversion by making it asymmetric with respect to an ordering relation on terms (in the sense that the resulting conversion will only prove theorems of the form t1 = t2 in which t2 strictly precedes t1 in the ordering.

 $ASYM_{-}C$ c is a conversion which behaves like c on terms t1 for which c t1 is a theorem with conclusion t1 = t2 where t2 (strictly) precedes t1 in the standard ordering on terms given by $term_{-}order$ q.v. and fails on other terms.

 GEN_ASYM_C is like $ASYM_C$ but allows the ordering function used to be supplied as a parameter. The parameter is interpreted as an ordering relation on terms in the same sense as the ordering relations used by sort, q.v.

Errors

81010 The conversion did not decrease the order of the term

81011 On argument ?0 the conversion returned ?1 which is not an equation

```
val cnf_conv : CONV;
```

Description This is a conversion which proves theorems of the form $\vdash t1 \Leftrightarrow t2$ where t2 is in conjunctive normal form, i.e. either T or F or a conjunction of one or more disjunctions in which each disjunct is a propositional atom. Here, by atom we mean either a term whose principal connective is not a propositional calculus connective or the negation of such a term.

The conversion simplifies disjunctions and conjunctions as they are generated according to the following schema.

```
a \wedge T \rightarrow
T \wedge a \rightarrow
                                 a
                                 F
F \wedge a \rightarrow
a \wedge F \rightarrow
a \wedge a \rightarrow
a \land \neg a \rightarrow
a \vee T \rightarrow
T \vee a \rightarrow
F \vee a \rightarrow
a \vee F \rightarrow
a \lor a \rightarrow
a \vee \neg a \rightarrow
                                 F
\neg T
\neg F
                                 T
```

Note, however, that more global simplifications are not done, e.g. there is no attempt to eliminate a conjunct all of whose constituent atoms are contained in another conjunct. Thus, the conversion will not automatically prove tautologies.

The conversion fails with error number 81030 if there are no changes to be made to the term.

See Also *strip_tac* and *taut_rule* which supply a more useful and efficient means for working with the propositional calculus in most cases.

Errors

81030 ?0 is not of type \(\text{:BOOL} \) or is already in conjunctive normal form

```
val dnf_conv : CONV;
```

Description This is a conversion which proves theorems of the form $\vdash t1 \Leftrightarrow t2$ where t2 is in disjunctive normal form, i.e. either T or F or a disjunction of one or more conjunctions in which each conjunct is a propositional atom. Here, by atom we mean either a term whose principal connective is not a propositional calculus connective or the negation of such a term.

The conversion simplifies disjunctions and conjunctions as they are generated according to the following schema.

```
a \wedge T \rightarrow
T \wedge a \rightarrow
                                 a
                                F
F \wedge a \rightarrow
a \wedge F \rightarrow
a \wedge a \rightarrow
a \land \neg a \rightarrow
a \vee T \rightarrow
T \vee a \rightarrow
F \vee a \rightarrow
a \vee F \rightarrow
a \lor a \rightarrow
a \vee \neg a \rightarrow
                                 F
\neg T
\neg F
                                 T
```

Note, however, that more global simplifications are not done, e.g. there is no attempt to eliminate a disjunct all of whose constituent atoms are contained in another disjunct. Thus, the conversion will not automatically prove tautologies.

The conversion fails with error number 81031 if there are no changes to be made to the term.

See Also $strip_tac$ and $taut_rule$ which supply a more useful and efficient means for working with the propositional calculus in most cases.

Errors

81031 ?0 is not of type \(\tau:BOOL\)\ or is already in disjunctive normal form

```
val\ \mathbf{gen\_term\_order}: (\mathit{TERM}\ ->\ (\mathit{TERM}\ *\mathit{INTEGER}))\ ->\ \mathit{TERM}\ ->\ \mathit{int};
```

Description gen_term_order gives a means of creating orderings on terms. It is retained for backwards compatibility, $make_term_order$ now being the recommended way of constructing term orderings.

In the call gen_term_order special, the idea is that whenever two terms, tm1 and tm2 say, are compared, special is applied to them to produce two pairs, (tm1', k1) and (tm2', k2) say. These pairs are then compared lexicographically (using the ordering recursively for the first components, in a similar way to $term_order$, q.v.). It is the caller's responsibility to provide an argument special which will ensure that this procedure terminates. A sufficient condition is only to use functions special with the property that for some disjoint sets of terms X_1 , X_2 , ..., we have that special tm = (tm, 0) if $tm \notin X_i$ for any i and that special $tm = (x_i, f_i(tm))$ if $tm \in X_i$, where x_i is a fixed element of X_i and f_i is a fixed injection of X_i into the natural numbers.

See Also $make_term_order1$ which is now the recommended way of constructing new term orderings.

```
val make_term_order:

(TERM ORDER -> TERM ORDER) list -> TERM ORDER;
```

Description make_term_order provides a systematic method for constructing term orderings. Its argument is a list of term order combinators: i.e., endofunctions on the type of term orderings.

The orderings $make_term_order$ returns are derived from a base ordering on terms which works as follows:

- 1. Constants are ordered lexicographically by name (using ascii_order), then type (using type_order).
- 2. Variables are ordered lexicographically by name (using ascii_order), then type (using type_order).
- 3. Simple λ -abstractions are ordered lexicographically by recursion, bound variable first, then matrix.
- 4. Applications ordered lexicographically by recursion, function first, then operand.

If the above function ewre called base, then the ordering $make_term_order$ [f, g, ..., h] acts as: f(g(...(h(base))...)) where each recursive call in base is a call on $make_term_order$ [f, g, ..., h].

For example, the following defines an ordering on terms which makes the immediate successor of any term of type BOOL its immediate successor:

```
 fun \ f \ t = (dest\_\neg \ t, \ 1) \ handle \ Fail \ \_ => (t, \ 0); 
 val \ \neg\_order = make\_term\_order \ [fn \ r => induced\_order(f, \ pair\_order \ r \ int\_order)];
```

```
| val poly_conv : TERM ORDER ->
| THM -> THM -> THM -> THM -> THM ->
| CONV -> CONV -> CONV;
```

Description This conversion normalises terms constructed from atoms using two operators, both associative and commutative, the second of which, say op_* distributes over the other, say op_+ . For clarity, we write the two operators with infix syntax although they need not actually be infix constants. Here, by "atom" we mean any term which is not of the form t1 op_+ t2 or t1 op_* t2. The theorems computed by the conversion have the form $t=t_1$ op_+ t_2 op_+ ..., where the t_i are in non-decreasing order with respect to the ordering on terms given by the first parameter and have the form s_1 op_* s_2 op_* ..., where the s_i are atoms and are in non-decreasing order.

The associativity and commutativity of the operators and the distributivity are given as the five theorem parameters (which are also used to infer what the two operators are; n.b. the operators can be arbitrary terms, they need not be constants). The remaining parameters are conversions which are applied to each atom as it is encountered and to each subterm of the form t_i op_+ ... or t_i op_* ... as it id created. In more detail the parameters are, in order, as follows:

- 1. A term ordering, such as $term_order$, q.v.
- 2. A theorem of the form $\vdash \forall x \ y \bullet x \ op_+ \ y = y \ op_+ \ x$.
- 3. A theorem of the form $\vdash \forall x \ y \ z \bullet (x \ op_+ \ y) \ op_+ \ z = x \ op_+ \ y \ op_+ \ z$.
- 4. A theorem of the form $\vdash \forall x \ y \bullet x \ op_* \ y = y \ op_* \ x$.
- 5. A theorem of the form $\vdash \forall x \ y \ z \bullet (x \ op_* \ y) \ op_* \ z = x \ op_* \ y \ op_* \ z$.
- 6. A theorem of the form $\vdash \forall x \ y \ z \bullet x \ op_* \ (y \ op_+ \ z) = (x \ op_* \ y) \ op_+ \ (x \ op_* \ z).$
- 7. A conversion to be applied to any subterm of the form t_i op_+ ... whenever such a subterm is created. The result of the conversion will not be further normalised.
- 8. A conversion to be applied to any subterm of the form t_i op_* ... whenever such a subterm is created. The result of the conversion will not be further normalised.
- 9. A conversion to be applied to any atom as it is encountered. If the conversion produces a non-atomic term, this is normalised recursively as it is produced.

The conversions supplied as parameters may signal that they do not wish to change a subterm, t say, either by failing or by returning t = t, the former approach is more efficient. The whole conversion fails with error number 81025 if there are no changes to be made to the term.

```
Errors 81023 ?0 does not have the form \vdash t1 op1 (t2 op2 t3) = (t1 op1 t2) op2 (t1 op1 t3) 81024 ?0 and ?1 do not have the forms \vdash t1 op1 t2 = t2 op1 t1 and \vdash t1 op1 (t2 op2 t3) = (t1 op1 t2) op2 (t1 op1 t3) 81025 ?0 is already sorted
```

```
 \begin{vmatrix} val \ \mathbf{sort\_conv} : TERM \ ORDER \ -> \\ THM \ -> THM \ -> CONV \ -> CONV \ -> CONV; \end{vmatrix}
```

Description This conversion normalises a term constructed from atoms using an associative and commutative binary operator, op say. For clarity, we write two operator with infix syntax although it need not actually be an infix constant. Here, by "atom" we mean any term which is not of the form t1 op t2. The theorems computed by the conversion have the form $t = t_1$ op t_2 op ..., where the t_i are in non-decreasing order with respect to the ordering on terms given by the first parameter.

The associativity and commutativity of the operator are given as the two theorem parameters (which are also used to infer what op is; n.b. op can be an arbitrary term, it need not be a constant). The remaining parameters are conversions which are applied to each atom as it is encountered and to each subterm of the form $t = t_i$ op ... as it is created. In more detail the parameters are, in order, as follows:

- 1. A term ordering, such as $term_order$, q.v.
- 2. A theorem of the form $\vdash \forall x \ y \bullet t \ x \ y = t \ y \ x$.
- 3. A theorem of the form $\vdash \forall x \ y \ z \bullet (x \ op \ y) \ op \ z = x \ op \ y \ op \ z$.
- 4. A conversion to be applied to each subterm of the form: t_i op ... whenever such a subterm is created. The result of the conversion will not be further normalised.
- 5. A conversion to be applied to each atom as it is encountered. If the conversion produces a non-atomic term, this is normalised recursively.

The conversions supplied as parameters may signal that they do not wish to change a subterm, t say, either by failing or by returning t = t, the former approach is more efficient. The whole conversion fails with error number 81025 if there are no changes to be made to the term.

```
Errors 81021 ?0 does not have the form \vdash t1 op t2 = t2 op t1 81022 ?0 does not have the form \vdash (t1 op t2) op t3 = t1 op (t2 op t3) 81025 ?0 is already sorted 81029 Internal error: unexpected error in term normalisation package
```

```
val term_order : TERM -> TERM -> int;
```

Description $term_order$ gives an ordering relation on HOL terms. The ordering relation follows the same conventions as those used by the sorting function sort, namely, $term_order$ t1 t2 is negative if t1 precedes t2, 0 if t1 and t2 are equivalent and positive if t2 precedes t1. The ordering used is, with some exceptions, that all constants precede all variables which precede all abstractions which precede all applications. Lexicographic ordering on the immediate constituents gives the ordering within each of these four classes (using alphabetic ordering of strings, $type_order$ or $term_order$ recursively to order the constituents as appropriate). The exceptions are (i) that any term of the form $\neg t$ comes immediately after t, (ii) that the numeric literals 0, 1, ... are taken in numeric rather than alphabetic order and come before all other terms, and (iii) that terms of the form i * x where i is a numeric literal are ordered so that the terms x, 0*x, 1*x, 2*x, ... are consecutive.

See Also *qen_term_order1* which is the recommended way of constructing new term orderings.

 $\begin{vmatrix} \text{SML} \\ & \end{vmatrix}$ val type_order : $TYPE \rightarrow TYPE \rightarrow int;$

Description $type_order$ gives a useful ordering relation HOL types. The ordering relation follows the same conventions as those used by the sorting function sort, namely, $type_order$ t1 t2 is negative if t1 precedes t2, 0 if t1 and t2 are equivalent and positive if t2 precedes t1. The ordering used is essentially that type variables are ordered by the alphabetic ordering of their names and precede all compound types which are ordered by the lexicographic ordering on their immediate constituents (using the alphabetic ordering for the type constructor names and the type ordering recursively for its operands).

7.6 First Order Resolution

SML

|signature **Resolution** = sig

Description This is the signature of a structure providing Resolution facilities to ICL HOL.

SMI

| (* resolution_diagnostics - boolean flag declared by new_flag *)

Description This is by default false, but if set true then the resolution mechanism will report the generation of new, unsubsumed theorems, and whether these subsume pre-existing theorems.

Uses Provide the designer of the resolution functions access to detailed diagnostics. Not intended for use by others. May be withdrawn.

```
type BASIC_RES_TYPE

(* TERM * bool * (TERM * (TERM -> THM -> THM))list

* TYPE list * THM * TERM list * TYPE list * int

* FRAG_PRIORITY

*);

type RES_DB_TYPE (* = BASIC_RES_TYPE list * BASIC_RES_TYPE list * BASIC_RES_TYPE list * BASIC_RES_TYPE list * THM list *);
```

Description These are type abbreviation for the basic resolution tool based on *prim_res_rule*. The arguments to *BASIC_RES_TYPE* are:

- 1. The term is a subterm of the theorem argument(5), reached through outer universal quantifications and all propositional connectives.
- 2. The bool is false if and only if the subterm occurs "negatively" in the conclusion of the theorem.
- 3. This list states how to specialise the given term to some other value in a theorem already specialised by the preceding entries in the list, and appropriately type instantiated.
- 4. The type list is the instantiable type variables of the subterm.
- 5. The theorem is the source of the fragment.
- 6. The term list is the term variables that may not be used in unifying the fragment
- 7. The next type list is the type variables that may not be used in unifying the fragment
- 8. The integer indicates the "generation", i.e. the number of resolutions involved in creating the fragment (initial theorems are at 0).
- 9. This argument indicates the priority given to taking this fragment from the *toprocess* list to use next.

The arguments to RES_DB_TYPE :

- 1. Items yet to be checked against (against).
- 2. Items checked against, but to be rechecked against new items to check with (done).
- 3. Items to check with (toprocess).
- 4. Theorems used to derive current items (dbdata).

```
\begin{vmatrix} val \ \mathbf{BASIC\_RESOLUTION\_T} : int \ -> \ THM \ list \ -> \ (THM \ -> \ TACTIC) \ -> \\ (THM \ -> \ TACTIC) \ -> \ TACTIC; \end{vmatrix}
```

Description $BASIC_RESOLUTION_T$ limit thms thmtac1 thmtac2 (seqasms, conc) will first apply thmtac1 to the negated goal, probably adding it into the assumption list in some manner. The assumptions derived from this will become the set of support, the pre-existing assumptions and the input thms will be the rest of the theorems. These theorems will be resolved against each other until only theorems with default generation past limit can be derived, or until ... $\vdash F$ is derived, or until no further resolution can be done. An assumption's or input theorem's generation is θ , and a theorem that is the result of resolution has a default generation of 1 plus the sum of the generations of the resolved theorems. Its actual generation will be the minimum of its default generation, and the generations of any previous theorems it subsumes. In any resolution attempt at least one of the two theorems will be assumed fragments from the stripped goal, or be derived from an earlier resolution in the evaluation. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and propositional connectives, by specialising the outer quantifications, and by type instantiation on the input theorems *thms* where necessary and possible.

The resulting list of theorems will have all the thms removed, all the theorems derived from stripping and negating the goal, and all the old assumptions removed. MAP_EVERY thmtac is then applied to the new theorems, and then to the goal. As a special case, ... $\vdash F$ is checked for, before any further processing. If present it will be used to prove the goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

Errors

67003 The limit, ?0, must be a positive integer

67004 No resolution occurred

```
\left| \begin{array}{c} val \\ val \end{array} \right|  BASIC_RESOLUTION_T1 : int -> THM \ list -> (THM -> TACTIC) -> TACTIC;
```

Description $BASIC_RESOLUTION_T1$ limit thms thmtac (seqasms, conc) will take the theorems gained by asm_rule 'ing the assumptions and thms as inputs. These theorems will be resolved against each other until only theorems with default generation past limit can be derived, or until ... $\vdash F$ is derived, or until no further resolution can be done. An assumption's or input theorem's generation is θ , and a theorem that is the result of resolution has a default generation of 1 plus the sum of the generations of the resolved theorems. Its actual generation will be the minimum of its default generation, and the generations of any previous theorems it subsumes. In any resolution attempt at least one of the two theorems will be from the original goals assumptions, or be derived from an earlier resolution in the evaluation. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and propositional connectives, by specialising the outer quantifications, and by type instantiation on the input theorems thms where necessary and possible.

The resulting list of theorems will have all the thms removed, and all the old assumptions removed. MAP_EVERY thmtac is then applied to the new theorems, and then to the goal. As a special case, ... $\vdash F$ is checked for, before any further processing. If present it will be used to prove the goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

| 67003 The limit, ?0, must be a positive integer | 67004 No resolution occurred

```
| val basic_resolve_rule: TERM -> THM -> THM -> THM;
```

Description basic_resolve_rule subterm pos neg attempts to resolve two theorems that have a common subterm, subterm, occurring "positively" in pos and "negatively" in neg.

```
 \begin{array}{c|c} & \Gamma \vdash P \ [subterm] \\ & \underline{\Delta \vdash N \ [subterm]} \\ \hline & simplify \ (\Gamma, \ \Delta \vdash P[F] \lor N[T]) \end{array} \quad \begin{array}{c} basic\_resolve\_rule \\ subterm \end{array}
```

Where simplify carries out the simplifications in the predicate calculus where an argument is the constant $\lceil T \rceil$ or $\lceil F \rceil$, plus a few others.

```
\begin{bmatrix} 3031 & ?0 \text{ is not of type } \ \hline 67009 & ?0 \text{ is not a subterm of } ?1 \end{bmatrix}
```

```
|val| basic_res_extract : RES_DB_TYPE \rightarrow THM \ list;
```

Description This is the extraction function for the basic resolution tool based on $prim_res_rule$. It does no more than return the fourth item of the RES_DB_TYPE tuple.

```
| val basic_res_next_to_process : BASIC_RES_TYPE list -> BASIC_RES_TYPE list;
```

Description This takes as the next fragment to process the first fragment which comes from a theorem that subsumed some pre-existing one, and failing that the next one on the list of fragments.

```
| val basic_res_post :
| (THM -> THM -> int) ->
| (THM list * int) * RES_DB_TYPE ->
| (RES_DB_TYPE * bool);
```

Description This is the post processor for the basic resolution tool based on $prim_res_rule$. The results will be split into their respective conjuncts (if any). Then $basic_res_post\ subsum\ ((res,\ gen),\ data)$ will test each member of res, checking for the conclusion T or F, and then against each member of the theorem list of data. In checking one theorem against another it will use subsum - discarding the new theorem if the result is 1, and discarding (with tidying up of data) the original if the result is 2, or keeping both (except for discards from further tests) if the result is 0, or any other value bar 1 and 2. gen is the default "generation" of the new theorems, except that the fragments for each new theorem will have the minimum generation number of this default generation, and the generation of any theorem in data it subsumes.

```
\begin{vmatrix} val & basic\_res\_pre : THM & list -> THM & list -> RES\_DB\_TYPE; \end{vmatrix}
```

Description This is the preprocessor for the basic resolution tool based on *prim_res_rule*. The first argument is the set of support theorems, the second argument is the rest of the input theorems. Each theorem will be fragmented, and each fragment added to the appropriate list (i.e. to the third list of the result if in the set of support, and the first list if otherwise). The final theorem list part of the result, *dbdata*, is just the appending of the first list of theorems to the second.

```
| val basic_res_resolver : Unification.SUBS -> int -> 
| BASIC_RES_TYPE -> BASIC_RES_TYPE -> THM list * int;
```

Description This is the resolver for the basic resolution tool based on prim_res_rule. Resolution seeks to find sufficient term specialisation and type instantiation on both terms to make one of the two term fragments the negation of the other, using term_unify. The resolution will not be attempted if the result would involve more resolutions than the "generations" limit. If this can be done then the two original theorems are specialised and instantiated in the same manner and the term fragment cancelled by basic_resolve_rule, and the result returned as a singleton list, paired with the default generation of the result. Prior to being returned, any allowed universal quantification will be added back in. In the basic resolution tool the generality of a list of theorems is unnecessary.

The *SUBS* argument is a "scratchpad" for the type unifier. The function keeps track of the number of resolutions used to create the result.

```
Errors
| 67001 Neither argument is in the set of support
| 67002 Cannot resolve the two arguments
| 67008 term_unify succeeded on ?0 and ?1 but failed to resolve ?2 and ?3
```

Message is a variant on 67002, included for diagnostic purposes. It will be removed in a more stable product.

```
| val basic_res_rule : int -> THM list -> THM list -> THM list;
```

Description $basic_res_rule\ limit\ sos\ rest$ will resolve the theorems in the set of support and the rest against each other until only theorems with default generation past limit can be derived, or until ... $\vdash F$ is derived, or until no further resolution can be done. A input theorem's generation is θ , and a theorem that is the result of resolution has a default generation of 1 plus the sum of the generations of the resolved theorems. Its actual generation will be the minimum of its default generation, and the generations of any previous theorems it subsumes. In any resolution attempt at least one of the two theorems will belong to the set of support, or be derived from an earlier resolution in the evaluation. Resolution will be attempted on subterms reached through outer universal quantification, and propositional connectives, by specialising the outer quantifications, and by type instantiation where necessary and allowed. Duplicates and pure specialisations in the resulting list will be discarded.

If any of the input theorems have $\lceil F \rceil$ as a conclusion then that theorem is returned as a singleton list.

Uses On its own, or in combination with some canonicalisation of the input theorems.

```
| 67003 The limit, ?0, must be a positive integer | 67004 No resolution occurred
```

```
\begin{vmatrix} val & \mathbf{basic\_res\_subsumption} : THM -> THM -> int; \end{vmatrix}
```

Description This returns 1 if the conclusion of the first theorem equals the second's, or is a less general form than the second (i.e. could be produced only by specialising and type instantiating the second theorem). It returns 2 if the second theorem's conclusion is a less general form than the first, and otherwise returns θ .

```
\begin{vmatrix} val & basic\_res\_tac1 : int -> THM & list -> TACTIC; \end{vmatrix}
```

Description basic_res_tac1 limit thms (seqasms, conc) will take the theorems gained by asm_rule'ing the assumptions and thms as inputs. These theorems will be resolved against each other until only theorems with default generation past limit can be derived, or until ... $\vdash F$ is derived, or until no further resolution can be done. An assumption's or input theorem's generation is 0, and a theorem that is the result of resolution has a default generation of 1 plus the sum of the generations of the resolved theorems. Its actual generation will be the minimum of its default generation, and the generations of any previous theorems it subsumes. In any resolution attempt at least one of the two theorems will be from the original goals assumptions, or be derived from an earlier resolution in the evaluation. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and propositional connectives, by specialising the outer quantifications, and by type instantiation on the input theorems *thms* where necessary and possible.

The resulting list of theorems will have all the thms removed, and all the old assumptions removed. $MAP_EVERY\ strip_asm_tac$ is then applied to the new theorems, and then to the goal. As a special case, ... $\vdash F$ is checked for, before any further processing. If present it will be used to prove the goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

```
Errors
67003 The limit, ?0, must be a positive integer
67004 No resolution occurred
```

```
\begin{vmatrix} val & \mathbf{basic\_res\_tac2} : int -> THM & list -> TACTIC; \end{vmatrix}
```

Description $basic_res_tac2$ limit thms (seqasms, conc) will first strip the negated goal into the assumption list. This uses $strip_tac$, except that the negation is pushed through all the outer universals. The assumptions derived from this will become the set of support, the pre-existing assumptions and the input thms will be the rest of the theorems. These theorems will be resolved against each other until only theorems with default generation past limit can be derived, or until ... $\vdash F$ is derived, or until no further resolution can be done. An assumption's or input theorem's generation is θ , and a theorem that is the result of resolution has a default generation of 1 plus the sum of the generations of the resolved theorems. Its actual generation will be the minimum of its default generation, and the generations of any previous theorems it subsumes. In any resolution attempt at least one of the two theorems will be assumed fragments from the stripped goal, or be derived from an earlier resolution in upon those fragments. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and propositional connectives, by specialising the outer quantifications, and by type instantiation on the input theorems thms where necessary and possible.

The tactic will fail unless the resulting list of theorems contains $... \vdash F$. If present it will be used to prove the goal.

```
Errors
67003 The limit, ?0, must be a positive integer
67004 No resolution occurred
67014 Failed to prove goal
```

```
\begin{vmatrix} val & basic\_res\_tac3 : int -> THM & list -> TACTIC; \end{vmatrix}
```

Description basic_res_tac3 limit thms (seqasms, conc) will take the theorems gained by asm_rule'ing the assumptions and thms as inputs. These theorems will be resolved against each other until only theorems with default generation past limit can be derived, or until ... $\vdash F$ is derived, or until no further resolution can be done. An assumption's or input theorem's generation is 0, and a theorem that is the result of resolution has a default generation of 1 plus the sum of the generations of the resolved theorems. Its actual generation will be the minimum of its default generation, and the generations of any previous theorems it subsumes. In any resolution attempt at least one of the two theorems will be from the original goals assumptions, or be derived from an earlier resolution in the evaluation. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and propositional connectives, by specialising the outer quantifications, and by type instantiation on the input theorems *thms* where necessary and possible.

The tactic will fail unless the resulting list of theorems contains $\dots \vdash F$. If present it will be used to prove the goal.

```
Errors
| 67003 The limit, ?0, must be a positive integer
| 67004 No resolution occurred
| 67014 Failed to prove goal
```

```
| val basic_res_tac4 : int -> int list -> int list -> THM list -> TACTIC;
```

Description $basic_res_tac4$ limit sos rest sos_thms $rest_thms$ (seqasms, conc) will take the theorems gained by asm_rule 'ing the numbered assumptions and thms as inputs. The "set of support" theorems with be those assumptions noted in the sos and those theorems in sos_thms , and "the rest" will be those assumptions noted in the rest, as well as $rest_thms$. These theorems will be resolved against each other until only theorems with default generation past limit can be derived, or until ... $\vdash F$ is derived, or until no further resolution can be done. An assumption's or input theorem's generation is θ , and a theorem that is the result of resolution has a default generation of 1 plus the sum of the generations of the resolved theorems. Its actual generation will be the minimum of its default generation, and the generations of any previous theorems it subsumes. In any resolution attempt at least one of the two theorems will be from the set of support, or be derived from an earlier resolution in the evaluation. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and propositional connectives, by specialising the outer quantifications, and by type instantiation on the input theorems *thms* where necessary and possible.

The resulting list of theorems will have all the thms removed, and all the old assumptions removed. $MAP_EVERY\ strip_asm_tac$ is then applied to the new theorems, and then to the goal. As a special case, ... $\vdash F$ is checked for, before any further processing. If present it will be used to prove the goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

```
Errors
67003 The limit, ?0, must be a positive integer
67004 No resolution occurred
9303 the index ?0 is out of range
```

```
| val basic_res_tac : int -> THM list -> TACTIC;
```

Description $basic_res_tac\ limit\ thms\ (seqasms, conc)$ will first strip the negated goal into the assumption list. This uses $strip_tac$, except that the negation is pushed through all the outer universals. The assumptions derived from this will become the set of support, the pre-existing assumptions and the input thms will be the rest of the theorems. These theorems will be resolved against each other until only theorems with default generation past limit can be derived, or until ... $\vdash F$ is derived, or until no further resolution can be done. An assumption's or input theorem's generation is θ , and a theorem that is the result of resolution has a default generation of 1 plus the sum of the generations of the resolved theorems. Its actual generation will be the minimum of its default generation, and the generations of any previous theorems it subsumes. In any resolution attempt at least one of the two theorems will be assumed fragments from the stripped goal, or be derived from an earlier resolution in upon those fragments. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and propositional connectives, by specialising the outer quantifications, and by type instantiation on the input theorems *thms* where necessary and possible.

The resulting list of theorems will have all the thms removed, all the theorems derived from stripping and negating the goal removed, and all the old assumptions removed. MAP_EVERY $strip_asm_tac$ is then applied to the new theorems, and then to the goal. As a special case, ... $\vdash F$ is checked for, before any further processing. If present it will be used to prove the goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

Errors

67003 The limit, ?0, must be a positive integer

67004 No resolution occurred

```
prim_res_rule:

(THM \ list -> THM \ list -> ('a \ list *'a \ list *'a \ list *'b)) -> (* \ preprocessor *)
('a -> 'a -> 'c) -> (* \ the \ resolver \ function *)
(('c * ('a \ list *'a \ list *'a \ list *'b)) ->
(('a \ list *'a \ list *'a \ list *'b) * bool)) -> (* \ postprocessor *)
('a \ list -> 'a \ list) -> (* \ next \ item \ to \ process *)
('a \ list *'a \ list *'a \ list *'b -> THM \ list) -> (* \ extract \ results *)
THM \ list -> (* \ input \ other \ theorems *)
THM \ list -> (* \ input \ other \ theorems *)
THM \ list; (* \ final \ outcome *)
```

Description prim_res_rule prep reso postp next extract limit sos rest works as follows:

- If any of the input theorems have $\lceil F \rceil$ as a conclusion then that theorem is returned as a singleton list.
- Evaluate prep sos rest, and set (against, tried, toprocess, dbdata) to this.
- Attempt resolutions, choosing the head of *toprocess* against the head of *against*. Commonly, the head of *toprocess* should be the first fragment from the set of support, *against* is all the non-set of support fragments, plus the head of *toprocess*, and *tried* is empty.
- The resolver will usually return a list of theorems, and perhaps some further data. When a resolution attempt returns a list of theorems, res, (resolution failures should not occur, just []), evaluate postp (res, (against, tried, toprocess, dbdata)) to extract a new (against, tried, toprocess, dbdata), and halt. It is up to the postprocessor to move the head of against either to tried or just thrown away.
- If halt is true (e.g. have proved ... $\vdash F$), or the toprocess list is empty then return as a result of the call extract (against, tried, toprocess, dbdata).
- If halt is false, then continue with the new data. If against is [] then the head of toprocess is dropped, and the new list of things to process generated by next (tl toprocess), the new head of this cons'd to done and against is set to done reversed, and then done set to [].

```
| 67004 No resolution occurred
| 67010 Postprocessor corrupted processing
```

Description This is a method of unifying two subterms in the context of limitations on both type instantiation and term specialisation. The *SUBS* argument is a "scratchpad" for the type unification function, based on *Unification.unify*. The initial type list is a list of type variables to avoid in generating new names, and the initial term list a list of term variables to likewise avoid. The other two input arguments are each a tuple of: a term to unify, a list of variables in the term that may be specialised, and a list of types for which instantiation is allowed. If the two terms can be unified then the function returns two tuples, referring to each of the two input tuples. Each tuple is a list of type instantiations and a list of term specialisations, which pair the original before type instantiation, and the result, type instantiated.

7.7. Proof Contexts 315

7.7 Proof Contexts

|signature| ProofContext = sig

Description This provides the basic tools for handling equational and proof contexts. To keep them short, the names in the structure are heavily abbreviated. The abbreviations used are:

pc(s)	proof context(s)
rw	rewriting
cs	constant specification
] ∃	existential theorem prover
pr	prove_tac and related tools
sg	goal stripping
st	theorem stripping
cd	clausal definition
vs	variable structure
ad	application data
net	discrimination net
eqn_cxt	equational context
nd	dictionary of discrimination nets (and sources)
canon(s)	theorem canonicalisation
mmp	matching mp rule
eqm	equation matcher

```
SML (* proof context key "initial" *)
```

Description This is the initial proof context, formed with empty lists and other default values. It thus has no default rewriting or stripping theorems. The rewriting canonicalisation is the identity. The automated existence prover fails on any input. The matching modus ponens rule is *Nil*.

```
|type \; \mathbf{EQN\_CXT};
```

Description This is the type of equational contexts. An equational context is a list of conversions, each paired with term index. It represents a statement of how to rewrite a term to result in an equational theorem, guided by the outermost form of the term to be rewritten, which is matched against the term index of each conversion. It is used to create a single conversion via eqn_-cxt_-conv (q.v.).

A theorem may be converted into a member of an equational context by thm_eqn_ext . A pre-existing conversion may be converted by determining the term index that matches at least all terms that the conversion must work on (see net_enter for details), and pair it with the conversion.

```
|type\ EQN\_CXT = (TERM * CONV)\ list;
```

Note that equational contexts can be merged by appending. An equational context may be transformed into a conversion discrimination net by $make_net$ or $list_net_enter(q.v.)$.

|val| asm_prove_tac : THM list -> TACTIC;

Description This tactic is an automatic proof procedure appropriate to the current proof context.

At the point of applying this tactic to its theorems it will access the current setting of proof context field pr_tac , apply it to the theorem list immediately, and then to the goal when available (i.e. the result is partially evaluated with only the list of theorems).

$$\frac{ \left\{ \begin{array}{c} \Gamma \end{array} \right\} \ t}{current_ad_pr_tac \ \left(\right) \ thms \ \left(\left\{ \begin{array}{c} \Gamma \end{array} \right\}, \ t \right) } \qquad \begin{array}{c} asm_prove_tac \\ thms \end{array}$$

See Also $PC_{-}T1$ to defer accessing the proof context until application to the goal; $prove_{-}tac$ for the form that does not react to the presence of assumptions.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

and as the proof context setting.

 $|val| \mathbf{asm_prove_} \exists_{\mathbf{tac}} : TACTIC;$

Description This tactic is an automatic proof procedure for existential proofs, appropriate to the current proof context.

At the point of applying this tactic to a goal it will access the current setting of proof context field $prove_{-}\exists$, apply it to the goal using $conv_{-}tac$.

See Also prove_ \exists _tac that does not react to any assumptions that are present.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

and as the proof context setting.

```
\begin{vmatrix} val & commit_pc : string -> unit; \end{vmatrix}
```

Description This commits a record of the proof context database, preventing further change, and allowing it to be used in the creation of further records. The context must be loadable at the point of committing (i.e. was created at a point now in scope), and after committal the proof context can only be loaded at a point when the point of committal is in scope, rather than the point of its initial creation (i.e. doing new_-pc).

Errors

51010 There is no proof context with key ?0

51014 Proof context ?0 was created in theory ?1 at a point now either not in scope, deleted or modified

51016 Proof context ?0 has been committed

7.7. Proof Contexts 317

SML

 $|val \ \mathbf{current_ad_mmp_rule} : unit \rightarrow (THM \rightarrow THM \rightarrow THM) \ OPT;$

Description This function returns the application data of the current proof context for the matching modus ponens rule as used by tools such as *forward_chain_rule*.

See Also set_mmp_rule for user data.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

SML

 $|val \ \mathbf{current_ad_pr_conv}: unit \rightarrow (THM \ list \rightarrow CONV) \ OPT;$

Description These functions returns the application data of the current proof context to the proof contexts for *prove_conv*.

See Also set_pr_conv for user data.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

SML

|val current_ad_pr_tac : unit -> (THM list -> TACTIC) OPT;

Description This function returns the application data of the current proof context for $prove_tac$.

See Also set_pr_tac for user data.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

SML

 $|val \ \mathbf{current_ad_rw_eqm_rule} : unit \rightarrow (THM \rightarrow TERM * CONV) \ OPT;$

Description This function returns the application data of the current proof context for the equation matcher as used by the rewriting tools.

See Also $set_rw_eqm_rule$ for user data.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

```
|val| delete_pc_fields : string |ist| -> string |val|
```

Description delete_pc_fields fields key empties (sets to the value of proof context "initial") the named fields, fields of the proof context with key key. If any field is divided into subfields, this deletion includes deleting the subfields of the field gained from merging in other proof contexts, as well as the proof context's "own" subfield.

Valid field names are:

```
"rw_eqn_cxt","rw_canons","st_eqn_cxt","sc_eqn_cxt",

"cs_\(\exists_convs\)","\(\exists_cd_thms\)","\(\exists_cs_thms\)","\(pr_tac\)","\(pr_conv\)",

"nd_entries", "mmp_rule"

Errors

51010 There is no proof context with key ?0

51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

51016 Proof context ?0 has been committed

51019 There is no field called ?0
```

```
\begin{vmatrix} val & \mathbf{delete\_pc} & : string -> unit; \end{vmatrix}
```

Description This deletes a record from the proof context database. The record with key "initial" may not be deleted.

```
| 51010 There is no proof context with key ?0 | 51012 Initial proof context may not be deleted
```

```
\begin{vmatrix} val & eqn_cxt_conv : EQN_CXT -> CONV; \end{vmatrix}
```

Description This function creates a single conversion from an equational context. This is done via $make_net$ and $net_lookup(q.v)$. There is a $CHANGED_C$ wrapped around each conversion in the equational context.

Errors

51005 Equational context gave no conversions that succeeded for ?0

7.7. Proof Contexts 319

```
\begin{vmatrix} val \ \mathbf{EXTEND\_PC\_C1} : string \ -> \ ('a \ -> \ CONV) \ -> \ 'a \ -> \ CONV; \ val \ \mathbf{EXTEND\_PCS\_C1} : string \ list \ -> \ ('a \ -> \ CONV) \ -> \ 'a \ -> \ CONV; \ \end{vmatrix}
```

Description $EXTEND_{-}PC_{-}C$ context conv arg will apply conversion conv arg in the proof context obtained by merging the proof context with key context into the current proof context. The named context is used as it is at the point of applying the rule to the argument. The $pr_{-}tac$, $pr_{-}conv$ and $mpp_{-}rule$ fields are taken from the named proof context. This is done via pushing and popping on the proof context stack.

EXTEND_PCS_C1 takes a list of proof contexts instead, merged as if by, e.g. push_extend_pcs.

```
See Also PC_{-}C
```

Errore

| 51010 There is no proof context with key ?0 | 51014 Proof context ?0 was created in theory ?1 at a | point now either not in scope, deleted or modified

and as the errors of the conversion. The previous proof context is restored, even if the conversion fails.

```
\begin{vmatrix} val \ \mathbf{EXTEND\_PC\_C} : string \ -> CONV \ -> CONV; \\ val \ \mathbf{EXTEND\_PCS\_C} : string \ list \ -> CONV \ -> CONV; \\ \end{vmatrix}
```

Description $EXTEND_PC_C$ context conv will apply conversion conv to a term in the proof context obtained by merging the proof context with key context into the current proof context. The named context is used as it is at the point of applying the conversion to a term. The pr_tac , pr_conv and mpp_rule fields are taken from the named proof context. This is done via pushing and popping on the proof context stack.

EXTEND_PCS_C takes a list of proof contexts instead, merged as if by, e.g. push_extend_pcs

Note that when using this functions that the standard rewriting functions (obvious candidates for this function) access the current proof context at the point of being given their theorem list argument: see $EXTEND_PC_C1$ for a method of avoiding this.

```
| 51010 There is no proof context with key ?0
| 51014 Proof context ?0 was created in theory ?1 at a
| point now either not in scope, deleted or modified
```

and as the errors of the conversion. The previous proof context is restored, even if the conversion fails.

```
\begin{vmatrix} val \ \mathbf{extend\_pc\_rule1} : string \ -> ('a \ -> 'b \ -> THM) \ -> 'a \ -> 'b \ -> THM; \ val \ \mathbf{extend\_pcs\_rule1} : string \ list \ -> ('a \ -> 'b \ -> THM) \ -> 'a \ -> 'b \ -> THM;
```

Description extend_pc_rule1 context rule arg1 arg2 will apply rule rule arg1 to arg2 in the proof context obtained by merging the proof context with key context into the current proof context. The named context is used as it is at the point of applying the rule to the argument. The pr_tac , pr_conv and mpp_rule fields are taken from the named proof context. This is done via pushing and popping on the proof context stack.

extend_pcs_rule1 takes a list of proof contexts instead, merged as if by, e.g. push_extend_pcs.

```
See Also pc_rule
```

```
Errors
```

51010 There is no proof context with key ?0

51014 Proof context ?0 was created in theory ?1 at a point now either not in scope, deleted or modified

and as the errors of the rule. The previous proof context is restored, even if the rule fails.

```
\begin{vmatrix} val & \mathbf{c.rule} & : string & -> ('a & -> THM) & -> ('a & -> THM); \\ val & \mathbf{c.rule} & : string & list & -> ('a & -> THM) & -> ('a & -> THM); \\ \end{vmatrix}
```

Description extend pc_rule context rule will apply rule rule to its argument in the proof context obtained by merging the proof context with key context into the current proof context. The named context is used as it is at the point of applying the rule to the argument. The pr_tac , pr_conv and mpp_rule fields are taken from the named proof context. This is done via pushing and popping on the proof context stack.

extend_pcs_rule takes a list of proof contexts instead, merged as if by, e.g. extend_merge_pcs

Note that when using this functions that the standard rewriting functions (obvious candidates for this function) access the current proof context at the point of being given their theorem list argument: see *extend_pc_rule1* for a method of avoiding this.

Error

51010 There is no proof context with key?0

51014 Proof context ?0 was created in theory ?1 at a point now either not in scope, deleted or modified

and as the errors of the rule. The previous proof context is restored, even if the rule fails.

7.7. Proof Contexts 321

```
\begin{vmatrix} val \ \mathbf{EXTEND\_PC\_T1} : string \ -> \ ('a \ -> \ TACTIC) \ -> \ 'a \ -> \ TACTIC; \ val \ \mathbf{EXTEND\_PCS\_T1} : string \ list \ -> \ ('a \ -> \ TACTIC) \ -> \ 'a \ -> \ TACTIC; \ \end{vmatrix}
```

Description $EXTEND_PC_T1$ context tac arg will apply tactic tac arg to a goal, and evaluate the proof, in the proof context obtained by merging the proof context with key context into the current proof context. The named context is used as it is at the point of applying the rule to the argument. The pr_tac , pr_conv and mpp_rule fields are taken from the named proof context. This is done via pushing and popping on the proof context stack.

EXTEND_PCS_T1 takes a list of proof contexts instead, merged as if by, e.g. push_extend_pcs.

```
See Also PC_{-}T
```

Errore

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified

and as the errors of the tactic. The previous proof context is restored, even if the tactic application or proof fails.

```
| val EXTEND_PC_T : string -> TACTIC -> TACTIC;
| val EXTEND_PCS_T : string list -> TACTIC -> TACTIC;
```

Description $EXTEND_PC_T$ context tac will apply tactic tac to a goal, and evaluate its proof, in the proof context obtained by merging the proof context with key context into the current proof context. The named context is used as it is at the point of applying the tactic to a goal. The pr_tac , pr_conv and mpp_rule fields are taken from the named proof context. This is done via pushing and popping on the proof context stack.

 $EXTEND_PCS_T_T$ takes a list of proof contexts instead, merged as if by, e.g. $push_extend_pcs$

Note that when using this functions that the standard rewriting functions (obvious candidates for this function) access the current proof context at the point of being given their theorem list argument: see $EXTEND_PC_T1$ for a method of avoiding this.

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
```

and as the errors of the tactic. The previous proof context is restored, even if the tactic application or proof fails.

```
|val| force_delete_theory : string \rightarrow unit;
```

Description force_delete_theory thy attempts to delete theory thy and all its descendants. If thy is in scope, then the function will change the current theory to the first theory that it can in the list returned by $get_parents\ thy$; (there may be none, in which case the function fails). It will then determine whether thy and its descendants can all be deleted: in particular it checks that none of them are locked (see $lock_theory$) or are a read-only ancestor.

The function indicates:

- whether the current theory has been deleted, and if so states the new current theory,
- the list of theories that have been deleted (unless this is just the requested theory, and is also not the current theory).

Further, all proof contexts created in now deleted theories will also be deleted (but the current proof context will remain unchanged).

```
Errors

| 51002 | Cannot open any of the parent theories, ?0, of the named theory, ?1
| 51003 | Will not be able to delete theories ?0, so no deletions made
| 51004 | Unexpectedly unable to delete any of ?0
| 51006 | Cannot open the parent theory, ?0, of the named theory, ?1
| 51007 | Will not be able to delete theory ?0, so no deletions made
| 51008 | Named theory, ?0, has no parents
```

Error 51004 will be raised by error rather than fail, as it shouldn't happen.

```
|val| get_current_pc : unit -> (string list * string);
```

Description Returns the key(s) of the entries from which the current proof context was copied, and the theory in which the single proof context was created. If the theory has since been placed out of scope, deleted or if the definition level becomes deleted, e.g. because an axiom or definition has been deleted, then this will output

```
(["context name"],"theory name (out of scope, deleted, or modified)")
```

Note that the key may no longer access a proof context in the database identical to the current proof context.

Merged proof contexts upon the stack (from push_merge_pcs and set_merge_pcs) will have the list of names of the constituent proof contexts, singleton contexts will have singleton lists.

See Also get_stack_pcs

```
|val| get_pcs : unit -> (string * string) list;
```

Description This lists the names of the proof contexts held in the proof context database, and the theory that was current at their time of creation. If the theory has since been deleted or if the definition level becomes deleted, e.g. because an axiom or definition has been deleted, then this will output ("context name", "theory name (out of scope, deleted, or modified)")

See Also get_stack_pcs , $get_current_pc$.

```
|val| get_stack_pcs : unit \rightarrow (string \ list * string) \ list;
```

Description This lists the keys of the proof contexts held in the proof context stack, and the theory that was current at their time of creation. If a proof context is pushed onto the stack by, e.g. $push_{-}pc$, the "keys" will be the singleton list of the name of the source proof context. If a proof context is pushed onto the stack by, e.g. $push_{-}merge_{-}pcs$, the "keys" will be the list of the names of the source proof contexts. If the theory has since been deleted or if the definition level becomes deleted, e.g. because an axiom or definition has been deleted, then this will output

```
[(["context name"],"theory name (out of scope, deleted, or modified)")
```

The head of the list returned is the current proof context, as also displayed by $get_current_pc$.

```
\begin{vmatrix} val & \mathbf{merge\_pcs} : string & list -> string -> unit; \end{vmatrix}
```

Description $merge_pcs$ keys tokey takes a list of committed proof contexts named by keys, and merges their fields into proof context tokey's fields, discarding duplicates. For each field that has subfields the lists of subfields from each proof context are appended, discarding subfields with duplicate keys, and if a field is not divided into subfields, then the proof contexts fields are appended, discarding duplicates. The pr_conv , pr_tac and mmp_rule fields take the value of the last proof context in the list that has the field set.

Failure to extract any proof context for merging will result in the proof context *tokey* being unchanged.

See Also merge_pc_fields, delete_pc_fields

```
Errors
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
51017 Proof context ?0 has not been committed
```

```
|val| merge_pc_fields : {context:string,fields:string list}list -> string -> unit;
```

Description $merge_pc_fields$ fields tokey merges the fields noted for each committed proof context in fields into proof context tokey's fields, discarding duplicates. Merging for each field that has subfields the lists of subfields is appending the proof contexts fields, discarding subfields with duplicate keys, and if a field is not divided into subfields, then the proof contexts fields are appended, discarding duplicates. Each of the pr_conv , pr_tac and mmp_rule fields take the value from the last proof context whose list of field names includes that field and which has the field set.

Failure to extract any proof context for merging will result in the proof context *tokey* being unchanged.

Valid field names are:

```
"rw\_eqn\_cxt", "rw\_canons", "st\_eqn\_cxt", "sc\_eqn\_cxt", \\ "cs\_\exists\_convs", "\exists\_cd\_thms", "\exists\_vs\_thms", "pr\_tac", "pr\_conv", \\ "nd\_entries", "mmp\_rule"
```

See Also $delete_pc_fields$ and $merge_pcs$, which used together in a particular order can give the same functionality as this function.

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
51017 Proof context ?0 has not been committed
51019 There is no field called ?0
```

```
|val|  new_pc : string -> unit;
```

Description new_pc new creates a new record in the proof context database, with key new. The fields of the proof context are set to default values. A note will be made of the current theory, and its current definition level at the time of creation, and an error will be raised if an attempt is made to push the new proof context (see $push_pc$) when that theory is not in scope, or when the definition level has been recorded as deleted. The definition level will be recorded as deleted if, e.g., some definition or axiom that was in scope in the original theory has since been deleted.

One responsibility of the creator of a proof context is to ensure that the theorems used within, or created by, the new context are also in scope: this is not automatically checked.

Errors

| 51011 There is already a proof context with key?0

```
\begin{vmatrix} val & \mathbf{PC_-C1} : string -> ('a -> CONV) -> 'a -> CONV; \\ val & \mathbf{MERGE_PCS_C1} : string \ list -> ('a -> CONV) -> 'a -> CONV; \\ \end{vmatrix}
```

Description $PC_{-}C$ context conv arg will apply conversion conv arg in the proof context with key context, using the named context as it is at the point of applying the conversion to a term. This is done via pushing and popping on the proof context stack.

MERGE_PCS_C1 takes a list of proof contexts instead, merged as if by, e.g. push_merge_pcs.

See Also $PC_{-}C$

| 51010 There is no proof context with key ?0 | 51014 Proof context ?0 was created in theory ?1 at a

and as the errors of the conversion. The previous proof context is restored, even if the conversion fails.

```
| val PC_C : string -> CONV -> CONV;
| val MERGE_PCS_C : string list -> CONV -> CONV;
```

point now either not in scope, deleted or modified

Description $PC_{-}C$ context conv will apply conversion conv to a term in the proof context with key context, using the named context as it is at the point of applying the conversion to a term. This is done via pushing and popping on the proof context stack.

MERGE_PCS_C takes a list of proof contexts instead, merged as if by, e.g. push_merge_pcs

Note that when using this functions that the standard rewriting conversions (obvious candidates for this function) access the current proof context at the point of being given their theorem list argument: see PC_-C1 for a method of avoiding this.

```
Errors
```

```
| 51010 There is no proof context with key ?0
| 51014 Proof context ?0 was created in theory ?1 at a
| point now either not in scope, deleted or modified
```

and as the errors of the conversion. The previous proof context is restored, even if the conversion fails.

```
\begin{vmatrix} val \ \mathbf{pc\_rule1} : string \ -> ('a \ -> 'b \ -> THM) \ -> 'a \ -> 'b \ -> THM; \ val \ \mathbf{merge\_pcs\_rule1} : string \ list \ -> ('a \ -> 'b \ -> THM) \ -> 'a \ -> 'b \ -> THM;
```

Description pc_rule context rule arg1 arg2 will apply rule rule arg1 to arg2 in the proof context with key context, using the named context as it is at the point of applying the rule to argument arg2. This is done via pushing and popping on the proof context stack.

merge_pcs_rule1 takes a list of proof contexts instead, merged as if by, e.g. push_merge_pcs.

See Also pc_rule

```
Errors
```

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
```

and as the errors of the rule. The previous proof context is restored, even if the rule fails.

```
\begin{vmatrix} val & \mathbf{pc\_rule} : string -> ('a -> THM) -> ('a -> THM); \\ val & \mathbf{merge\_pcs\_rule} : string & list -> ('a -> THM) -> ('a -> THM); \\ \end{vmatrix}
```

Description pc_rule context rule will apply rule rule to its argument in the proof context with key context, using the named context as it is at the point of applying the rule to the argument. This is done via pushing and popping on the proof context stack.

merge_pcs_rule takes a list of proof contexts instead, merged as if by, e.g. push_merge_pcs

Note that when using this functions that the standard rewriting functions (obvious candidates for this function) access the current proof context at the point of being given their theorem list argument: see *pc_rule1* for a method of avoiding this.

| 51010 There is no proof context with key ?0 | 51014 Proof context ?0 was created in theory ?1 at a | point now either not in scope, deleted or modified

and as the errors of the rule. The previous proof context is restored, even if the rule fails.

```
\begin{vmatrix} val & \mathbf{PC_T1} : string -> ('a -> TACTIC) -> 'a -> TACTIC; \\ val & \mathbf{MERGE_PCS_T1} : string \ list -> ('a -> TACTIC) -> 'a -> TACTIC; \\ \end{vmatrix}
```

Description $PC_{-}T1$ context tac arg will apply tactic tac arg to a goal, and evaluate the proof, in the proof context with key context, using at both times the named context as it is at the point of applying the tactic to a goal. This is done via pushing and popping on the proof context stack.

MERGE_PCS_T1 takes a list of proof contexts instead, merged as if by, e.g. push_merge_pcs.

```
See Also PC_{-}T
```

Errors

51010 There is no proof context with key ?0

51014 Proof context ?0 was created in theory ?1 at a point now either not in scope, deleted or modified

and as the errors of the tactic. The previous proof context is restored, even if the tactic application or proof fails.

```
| val PC_T : string -> TACTIC -> TACTIC;
| val MERGE_PCS_T : string list -> TACTIC -> TACTIC;
```

Description $PC_{-}T$ context tac will apply tactic tac to a goal, and evaluate its proof, in the proof context with key context, using at both times the named context as it is at the point of applying the tactic to a goal. This is done via pushing and popping on the proof context stack.

PCS_MERGE_T takes a list of proof contexts instead, merged as if by, e.g. push_merge_pcs

Note that when using this functions that the standard rewriting functions (obvious candidates for this function) access the current proof context at the point of being given their theorem list argument: see PC_-T1 for a method of avoiding this.

```
Errors
```

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
```

and as the errors of the tactic. The previous proof context is restored, even if the tactic application or proof fails.

```
| val pending_push_merge_pcs : string list -> unit -> unit;
| val pending_push_extend_pcs : string list -> unit -> unit;
```

Description pending_push_merge_pcs takes a snapshot of the result of merging the named proof contexts, and returns a function that, when applied to () stacks the previous proof context, and and sets the current proof context of the system to this snapshot.

pending_push_extend_pcs takes a snapshot of the result of merging the named proof contexts with the current proof context and then behaves just like pending_push_merge_pcs.

Merged proof contexts upon the stack will have $current_ad_names$ giving the list of names of the constituent proof contexts, singleton contexts will have singleton lists. The proof contexts used need not have been committed. The pr_conv , pr_tac and mmp_rule fields take the value of the last proof context in the list that has the field set.

The proof context must be in scope both at the time of the snapshot, and at the time of pushing on the stack.

This provides a method of being independent of changes to uncommitted proof contexts, or proof context deletions.

See Also push_merge_pc

```
Errors
| 51010 There is no proof context with key ?0
| 51014 Proof context ?0 was created in theory ?1 at a
| point now either not in scope, deleted or modified
| 51020 Must be at least one key in list
```

```
| val pending_push_pc : string -> unit -> unit;
| val pending_push_extend_pc : string -> unit -> unit;
```

Description $pending_push_pc$ takes a snapshot of the named proof context, and returns a function that, when applied to (): unit stacks the previous "current" proof context, and sets the current proof context of the system to this snapshot.

 $pending_push_extend_pc$ takes a snapshot of the result of merging the named proof context with the current proof context and then behaves just like $pending_push_merge_pc$.

The proof context must be in scope both at the time of the snapshot, and at the time of pushing on the stack.

This provides a method of being independent of changes to uncommitted proof contexts, or proof context deletions.

```
See Also push_pc
```

```
Errors
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
```

```
|val| pending_reset_pc_database : unit \rightarrow unit \rightarrow unit;
```

Description This function, applied to () takes a snapshot of the proof context database, and returns a function that, if applied to () will restore the proof context database to the snapshot.

This function is particularly useful in initialising child databases, and in conjunction with *pending-reset_pc_stack* and *pending-reset_pc_evaluators*.

Note that a named proof context on the proof context stack is never taken as more than an echo of the item with that name (if any) of proof context database, and this function in particular, though not alone, is responsible for the possible differences.

```
| val pending_reset_pc_stack : unit -> unit -> unit;
```

Description This function, applied to () takes a snapshot of the proof context stack, and returns a function that, if applied to () will restore the proof context stack to the snapshot.

Uses This function is particularly useful in initialising child databases, and in conjunction with pending_reset_pc_database and pending_reset_pc_evaluators.

```
|val| pending_reset_pc_evaluators : unit \rightarrow unit \rightarrow unit;
```

Description This function, applied to () takes a snapshot of the proof context evaluators (e.g. the one set by $pp'set_eval_ad_\exists_vs_thms$, and returns a function that, if applied to () will restore the proof context evaluators to the snapshot.

Uses This function is particularly useful in initialising child databases, and in conjunction with $pending_reset_pc_database$, and $pending_reset_pc_stack$

```
\begin{vmatrix} val & \mathbf{pop_-pc} : unit -> unit; \end{vmatrix}
```

Description This function unstacks the top of the proof context stack, and sets the current proof context of the system to it. There will always be a current proof context, though it may be the trivial "initial" proof context.

This function may make an out of scope proof context the current proof context.

See Also push_pc, set_pc, push_merge_pcs, set_merge_pcs

Errors

51001 The proof context stack is empty

```
| val pp'set_eval_ad_rw_net : (EQN_CXT -> CONV NET) -> unit; | val current_ad_rw_net : unit -> CONV NET;
```

Description These functions provide the interface to the initial conversion net for rewriting (see e.g. $rewrite_tac$) held in the application data of a proof context. The first sets the evaluator, the second extracts the field in the current proof context.

See Also $set_rw_eqn_cxt$ for the associated user data.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

```
| val pp'set_eval_ad_rw_canon : ((THM -> THM list) list -> (THM -> THM list)) | -> unit; | val current_ad_rw_canon : unit -> THM -> THM list;
```

Description These functions provide the interface to the canonicalisation function applied to rewriting theorems (see e.g. rewrite_tac) held in the application data of a proof context. The proof context is accessed after providing the theorem. The first sets the evaluator, the second extracts the field in the current proof context.

See Also set_rw_canons for the associated user data.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

```
\begin{vmatrix} val & \mathbf{pp'set\_eval\_ad\_st\_conv} : (EQN\_CXT -> CONV) -> unit; \\ val & \mathbf{current\_ad\_st\_conv} : unit -> CONV; \end{vmatrix}
```

Description These functions provide the interface to the conversion for stripping theorems into the assumption list (see e.g. $strip_tac$) held in the application data of a proof context. The proof context is accessed before provision of a term. The first sets the evaluator, the second extracts the field in the current proof context.

See Also set_st_conv for the associated user data.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

```
| val pp'set_eval_ad_sc_conv : (EQN_CXT -> CONV) -> unit; | val current_ad_sc_conv : unit -> CONV;
```

Description These functions provide the interface to the conversion for stripping goal conclusions (see e.g. $strip_tac$) held in the application data of a proof context. The proof context is accessed before provision of a term. The first sets the evaluator, the second extracts the field in the current proof context.

See Also set_sg_conv for the associated user data.

```
| val pp'set_eval_ad_nd_net :
| (string -> (TERM * (TERM -> THM)) list -> (TERM -> THM) NET) -> unit;
| val current_ad_nd_net : string -> (TERM -> THM) NET;
```

Description These functions provide the interface to the additional dictionary of discrimination nets held in the application data of a list of proof contexts.

The application data is generated by taking, for each key in at least one of the dictionaries in the appropriate subfields of the proof context, the appended lists of all the entries for that key in any of the subfields of the proof context. To this is applied the evaluator set by $pp'set_eval_ad_nd_net$ first applied to the dictionary key. The result is used as an entry, using the same dictionary key, in the resulting dictionary of nets. The default evaluator will just use $make_net$ on each list of sources.

 $current_{-}ad_{-}nd_{-}net$ key returns the net indexed by the key key in the current proof context. If no entry exists it returns the empty net $empty_{-}net$. Note that the returned net can be viewed as something of type $EQN_{-}CXT$, and made into a conversion by $eqn_{-}cxt_{-}conv$.

Uses For extending the proof context mechanisms. Though available to the end user, and indeed intended for use by the sophisticated user, the proof context mechanisms (as opposed to proof contexts) should be extended under ICL direction.

See Also set_nd_entry for the associated user data.

```
| val pp'set_eval_ad_cs_\Begin{array}{c} = convs : (CONV list -> CONV) \\ -> unit; \\ val current_ad_cs_\Begin{array}{c} = conv : unit -> CONV; \\ \end{array}
```

Description These functions provide the interface to the existence prover for constant specifications (see $const_spec$) held in the application data of a proof context. The proof context is accessed before provision of a term. The first sets the evaluator, the second extracts the field in the current proof context.

See Also $set_cs_{\exists}rule$ for the associated user data.

```
Errors
51015 No automated existence prover in the current proof context succeeds
51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified
```

Description These functions provide the interface to the clausal definition theorem information for the existence prover $prove_{-}\exists_{-}conv$. See $evaluate_{-}\exists_{-}cd_{-}thms$ for details upon the form of the information. The first sets the evaluator, the second extracts the field in the current proof context.

See Also $set_{\exists} cd_{thms}$ for the associated user data.

```
| 51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified
```

```
| val pp'set_eval_ad_\Box_thms : ((string * (TERM list * THM)) list -> (string * (TERM list * THM)) list) -> unit; | val current_ad_\Box_thms : unit -> (string * (TERM list * THM)) list;
```

Description These functions provide the interface to the application data variable structure information for the existence prover $prove_{-}\exists_{-}conv$. The first sets the evaluator, the second extracts the field in the current proof context.

See Also $set_{\exists}vs_{thms}$ for user data.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

```
| val prove_conv : THM list -> CONV;
```

Description This conversion is an automatic proof procedure appropriate to the current proof context.

At the point of applying this conversion to its theorems it will access the current setting of proof context field pr_conv , applying the result to the theorem list immediately, and then to the term when available (i.e. the result is partially evaluated with only the list of theorems).

See Also PC_C1 to defer accessing the proof context until application to the term.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

and as the proof context setting.

```
|val| prove_rule : THM list -> TERM -> THM;
```

Description This rule is an automatic proof procedure appropriate to the current proof context.

At the point of applying this rule to its theorem list it will access the current setting of proof context field pr_conv , apply it to the theorem list immediately, and then to the term when available (i.e. the result is partially evaluated with only the list of theorems), and then, if the resulting theorem is ' $\vdash term' \Leftrightarrow T$ ' (with no assumptions) where term is α -convertible to term', then apply \Leftrightarrow_t_elim , and otherwise fail.

See Also *pc_rule1* to defer accessing the proof context until application to the term.

Errors

```
51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified 51022 Result of applying conversion to ?0, which was ?1,
```

not of form: ' \vdash input \Leftrightarrow T'

and as the proof context setting.

|val| prove_ \exists _conv : CONV;

Description This conversion is an automatic proof procedure for existential proofs, appropriate to the current proof context.

At the point of applying this conversion to a term it will access the current setting of proof context field $cs_{-}\exists_{-}conv$, apply it to the theorem list, and then to the term.

The resulting theorem is not checked as having its L.H.S. being the input term.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

and as the proof context setting.

|val| prove_ \exists _rule : $TERM \rightarrow THM$;

Description This rule is an automatic proof procedure for existential proofs, appropriate to the current proof context.

At the point of applying this rule to a term term it will access the current setting of proof context field cs_\exists_conv , apply it to the term, and then, if the resulting theorem is ' $\vdash term' \Leftrightarrow T$ ' (with no assumptions) where term is α -convertible to term', then apply \Leftrightarrow_t_elim , and otherwise fail.

Errors

51021 The current proof context was created in theory ?0 at a point now either not in scope, deleted or modified

51022 Result of applying conversion to ?0, which was ?1, not of form: ' \vdash input \Leftrightarrow T'

and as the proof context setting.

```
| val push_extend_pcs : string list -> unit; | val set_extend_pcs : string list -> unit;
```

Description push_extend_pcs stacks the previous "current" proof context, and and then merges the proof contexts with the given keys into the current proof context. set_extend_pcs merges the proof contexts with the given keys into the previous current proof context without changing the stack

Merged proof contexts upon the stack will have $current_ad_names$ giving the list of names of the constituent proof contexts, singleton contexts will have singleton lists. The proof contexts used need not have been committed.

The pr_conv , pr_tac and mmp_rule fields take the value of the last proof context in the list that has the field set.

The current proof context is accessed by the functions prefixed $current_{-}ad_{-}$, and by $get_{-}current_{-}pc$.

```
See Also pop_pc, push_merge_pcs, set_merge_pcs
```

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51020 Must be at least one key in list
```

```
| val push_extend_pc : string -> unit;
| val set_extend_pc : string -> unit;
```

Description push_extend_pc stacks the previous "current" proof context, and and then merges the proof context with the given key into the current proof context. set_extend_pcs merges the proof context with the given key into the current proof context without changing the stack.

Merged proof contexts upon the stack will have $current_ad_names$ giving the list of names of the constituent proof contexts. The proof context used need not have been committed.

The pr_conv , pr_tac and mpp_rule fields take the value from the named proof context.

The current proof context is accessed by the functions prefixed $current_{-}ad_{-}$, and by $get_{-}current_{-}pc$.

```
See Also pop_pc, push_pc, set_pc
```

```
| 51010 There is no proof context with key ?0
| 51014 Proof context ?0 was created in theory ?1 at a
| point now either not in scope, deleted or modified
| 51020 Must be at least one key in list
```

```
| val push_merge_pcs : string list -> unit;
| val set_merge_pcs : string list -> unit;
```

Description push_merge_pcs stacks the previous "current" proof context, and and sets the current proof context of the system to the merge of the proof contexts with the given keys. set_merge_pcs discards the previous "current" proof context, and and sets the current proof context of the system to the merge of the proof contexts with the given keys. Merged proof contexts upon the stack will have current_ad_names giving the list of names of the constituent proof contexts, singleton contexts will have singleton lists. The proof contexts used need not have been committed.

The pr_conv , pr_tac and mmp_rule fields take the value of the last proof context in the list that has the field set.

The current proof context is accessed by the functions prefixed $current_{-}ad_{-}$, and by $get_{-}current_{-}pc$.

```
See Also pop_pc, push_pc, set_pc

Errors

| 51010 There is no proof context with key ?0
| 51014 Proof context ?0 was created in theory ?1 at a
| point now either not in scope, deleted or modified
```

```
| val push_pc : string -> unit;
| val set_pc : string -> unit;
```

51020 Must be at least one key in list

Description $push_-pc$ stacks the previous "current" proof context, and and sets the current proof context of the system to the proof context with the given key. set_-pc discards the previous "current" proof context, and and sets the current proof context of the system to the proof context with the given key.

The current proof context is accessed by the functions prefixed $current_ad_a$, and by $get_current_pc$.

See Also pending_push_pc, pop_pc, push_merge_pcs, set_merge_pcs

```
| 51010 There is no proof context with key ?0 | 51014 Proof context ?0 was created in theory ?1 at a point now either not in scope, deleted or modified
```

Description These functions provide the interface to the existence provers for constant specifications (see $const_spec$) held in the user data of a proof context. Under the initial evaluator, the existence proving conversion supplied by $current_cs_\exists_conv$ will have each of the conversions tried, in the reverse order of their entry, being applied to the RHS of the result of the previous successful application, or the initial term to which the conversion was applied, until the RHS is $\lceil T \rceil$, or no conversions remain.

```
Example
```

```
If get_cs_\Bar_convs of the current proof context returns

[([conv1, conv2],"pc1"),([conv3, conv4],"pc2")]

Then current_ad_cs_\Bar_conv will return

conv4 AND_OR_C conv3 AND_OR_C conv2 AND_OR_C conv1
```

"setting" overwrites the subfield whose key is the proof context's name, "getting" returns the entire field (which pairs data with proof context names).

Errors

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
```

```
| val set_mmp_rule : (THM -> THM -> THM) -> string -> unit; | val get_mmp_rule : string -> (THM -> THM -> THM) OPT;
```

Description These functions provide the interface to the proof contexts for the matching modus ponens rule as used by tools such as $forward_chain_rule$. Note that setting overwrites all previous data in this field, including from merged in proof contexts. Merged proof contexts take their value for this field from the last proof context in the list that has the field set.

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
```

```
| val set_nd_entry : string -> (TERM * (TERM -> THM))list -> string -> unit; | val get_nd_entry : string -> string -> ((TERM * (TERM -> THM))list * string) list;
```

Description These functions provide the interface to the additional dictionary of sources for discrimination nets held in the user data of a proof context. The dictionary is actually a list of subfields of the proof context, indexed by source proof context name, each subfield being a dictionary in its own right. You "set" a single dictionary entry of the subfield indexed by the proof context's name (creating a new entry if necessary). You "get" the dictionaries for all the subfields.

 $set_nd_entry\ dict_key\ entry\ pc_name$ overwrites (or creates, if necessary) the proof context's name's subfield dictionary entry whose key is $dict_key$ in the proof context pc_name with the value entry.

 $get_nd_entry\ dict_key\ pc_name$ returns the dictionary entries whose keys are $dict_key$ from each of the subfields in the proof context pc_name , paired with the source proof context name, or an empty list if the entry is not present in the dictionaries of any of the subfields of that proof context.

```
| 51010 There is no proof context with key ?0
| 51014 Proof context ?0 was created in theory ?1 at a
| point now either not in scope, deleted or modified
| 51016 Proof context ?0 has been committed
```

```
| val set_pr_conv : (THM list -> CONV) -> string -> unit;
| val get_pr_conv : string -> (THM list -> CONV);
| val get_pr_conv1 : string -> (THM list -> CONV) OPT;
```

Description These functions provide the interface to the proof contexts for $prove_conv$. Note that setting overwrites all previous data in this field, including from merged in proof contexts. If the field has not been set, get_pr_conv returns a function mapping any list of theorems to $fail_conv$ and get_pr_conv1 returns Nil. Merged proof contexts take their value for this field from the last proof context in the list that has the field set.

Note that when using these functions that the standard rewriting functions (obvious candidates for inclusion in automatic proof) access the current proof context at the point of being given their theorem list argument.

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
```

```
| val set_pr_tac : (THM list -> TACTIC) -> string -> unit;
| val get_pr_tac : string -> (THM list -> TACTIC);
| val get_pr_tac1 : string -> (THM list -> TACTIC) OPT;
```

Description These functions provide the interface to the proof contexts for $prove_tac$. Note that setting overwrites all previous data in this field, including from merged in proof contexts. If the field has not been set, get_pr_tac returns a function mapping any list of theorems to $fail_tac$ and get_pr_tac1 returns Nil. Merged proof contexts take their value for this field from the last proof context in the list that has this field set.

When asm_prove_tac is applied to its theorem list argument the system will evaluate this by applying the value set by set_pr_tac for the current proof context to that argument. The provided values for set_pr_tac can interpret their theorem list arguments as they wish (e.g. as a set of rewrite theorems, or as theorems to resolve against) - no interpretation is forced upon this argument.

Note that when using these functions that the standard rewriting functions (obvious candidates for inclusion in automatic proof) access the current proof context at the point of being given their theorem list argument.

```
| 51010 There is no proof context with key ?0
| 51014 Proof context ?0 was created in theory ?1 at a
| point now either not in scope, deleted or modified
| 51016 Proof context ?0 has been committed
```

```
| val set_rw_canons : (THM -> THM list) list ->
| string -> unit;
| val get_rw_canons : string -> ((THM -> THM list) list * string) list;
```

Description These functions provide the interface to the individual canonicalisation functions used to create the canonicalisation function applied to rewriting theorems (see e.g. rewrite_tac) held in the user data of a proof context.

"setting" overwrites the subfield whose key is the proof context's name, "getting" returns the entire field (which pairs data with proof context names).

```
| 51010 There is no proof context with key ?0
| 51014 Proof context ?0 was created in theory ?1 at a
| point now either not in scope, deleted or modified
| 51016 Proof context ?0 has been committed
```

```
| val set_rw_eqm_rule : (THM -> TERM * CONV) -> string -> unit; | val get_rw_eqm_rule : string -> (THM -> TERM * CONV) OPT;
```

Description These functions provide the interface to the proof contexts for the equation matcher as used by the rewriting tools. Note that setting overwrites all previous data in this field, including from merged in proof contexts. Merged proof contexts take their value for this field from the last proof context in the list that has the field set.

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

```
| val set_rw_eqn_cxt : EQN_CXT -> string -> unit;
| val get_rw_eqn_cxt : string -> (EQN_CXT * string) list;
| val add_rw_thms : THM list -> string -> unit;
```

Description These functions provide the interface to the equational context for rewriting (see e.g. $rewrite_tac$) held in the user data of a proof context. "setting" overwrites the subfield whose key is the proof context's name, "getting" returns the entire field (which pairs data with proof context names). "adding" processes its theorems by first canonicalising according to the current proof context's canonicalisation function, and then with thm_eqn_cxt and then adds them into the subfield whose key is the proof context's name.

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
```

```
| val set_sc_eqn_cxt : EQN_CXT -> string -> unit;
| val get_sc_eqn_cxt : string -> (EQN_CXT * string) list;
| val add_sc_thms : THM list -> string -> unit;
```

Description These functions provide the interface to the equational context for stripping goal conclusions (see e.g. $strip_tac$) held in the user data of a proof context. "setting" overwrites the subfield whose key is the proof context's name, "getting" returns the entire field (which pairs data with proof context names). "adding" processes its theorems by first canonicalising according to the current proof context's canonicalisation function, and then with thm_eqn_cxt and then adds them into the subfield whose key is the proof context's name.

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
```

```
| val set_st_eqn_cxt : EQN_CXT -> string -> unit;
| val get_st_eqn_cxt : string -> (EQN_CXT * string)list;
| val add_st_thms : THM list -> string -> unit;
```

Description These functions provide the interface to the equational context for stripping theorems into the assumption list (see e.g. $strip_tac$) held in the user data of a proof context. "setting" overwrites the subfield whose key is the proof context's name, "getting" returns the entire field (which pairs data with proof context names). "adding" processes its theorems by first canonicalising according to the current proof context's canonicalisation function, and then with thm_eqn_cxt and then adds them into the subfield whose key is the proof context's name.

| 51010 There is no proof context with key ?0 | 51014 Proof context ?0 was created in theory ?1 at a | point now either not in scope, deleted or modified | 51016 Proof context ?0 has been committed

```
| val set_∃_cd_thms : THM list -> string -> unit;
| val get_∃_cd_thms : string -> THM list;
| val add_∃_cd_thms : THM list -> string -> unit;
```

Description These functions provide the interface to the unevaluated clausal definition theorems held for the existence prover $prove_{-}\exists_{-}conv$. There are no subfields to this field, so "setting" overwrites the field with the proof context's name, "getting" returns the field. "adding" unions its theorem list with the proof contexts field.

See Also See $evaluate_{-}\exists_{-}cd_{-}thms$ for details upon the form of the theorems.

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
```

```
| val set_\( \extrm{\figs}_\) vs_thms: (string * (TERM list * THM)) list

-> string -> unit;

val get_\( \extrm{\figs}_\) vs_thms: string -> (string * (TERM list * THM)) list;
```

Description These functions provide the interface to the variable structure information for the existence prover *prove_∃_conv*. An individual entry in the list gives a method of handling an extended variable structure. It consists of the name of the constructor; a list of functions that extract each field of the constructor, and a theorem that states how the extraction functions extract from a data construction, and that the data constructor may be applied to the extracted values to regain the original value. For instance, for pairs the information is:

```
(",",

([\lceil Fst \rceil, \lceil Snd \rceil],

'\vdash \forall x \ y \ p \bullet

Fst \ (x, \ y) = x \land Snd \ (x, \ y) = y \land

(Fst \ p, \ Snd \ p) = p)'))
```

There are no subfields to this field, so "setting" overwrites the field with the proof context's name, "getting" returns the field.

Errors

```
51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
```

```
|val \text{ simple\_ho\_thm\_eqn\_cxt}: THM \rightarrow (TERM * CONV);
```

Description This function is an equation matcher for use by the rewriting tools that uses higher-order matching. It transforms an equational theorem into a representation of a higher-order rewrite rule in a form suitable for inclusion in an an equational context $(EQN_-CXT \text{ q.v.})$

```
 | thm\_eqn\_cxt ` \Gamma \vdash \forall x1 ... \bullet LHS = RHS` \rightarrow (LHS', simple\_eq\_match\_conv1 ` \Gamma \vdash \forall x1 ... \bullet LHS = RHS`)
```

Here the pattern term LHS' is derived from LHS by replacing linear patterns (see $simple_ho_match$) by variables of the same type.

The universal quantifiers must be over simple variables (not patterns) and the higher-order matching is done using $simple_ho_match$.

See Also *cthm_eqn_cxt* which canonicalises the theorem before transformation.

```
Errors
```

```
7095 ?0 is not of the form '\Gamma \vdash \forall x1 \dots xn \bullet u = v' where \lceil xi \rceil are variables
```

```
|val\ \mathbf{thm\_eqn\_cxt}: THM \rightarrow (TERM * CONV);
```

Description This function is a simple form of equation matcher for use by the rewriting tools. It transforms an equational theorem into a representation of a first-order rewrite rule in a form suitable for inclusion in an an equational context $(EQN_-CXT \text{ q.v.})$

```
 | thm\_eqn\_cxt ` \Gamma \vdash \forall x1 ... \bullet LHS = RHS` \rightarrow (LHS, simple\_eq\_match\_conv1 ` \Gamma \vdash \forall x1 ... \bullet LHS = RHS`)
```

The universal quantifiers must be over simple variables (not patterns).

See Also *cthm_eqn_cxt* which canonicalises the theorem before transformation.

Errors

7095 ?0 is not of the form ' $\Gamma \vdash \forall x1 \dots xn \bullet u = v'$ where $\lceil xi \rceil$ are variables

```
|signature| ProofContexts1 = signature
```

Description This signature gives access to two functions used in supplying the first group of proof contexts. Proof contexts themselves have no entry in the signature, however the contexts provided are:

Component	Complete
$'simple_abstractions$	predicates
$'paired_abstractions$	predicates 1
$^{\prime}propositions$	$basic_hol$
'funext	$basic_hol1$
'pair	$sets_ext$
'pair1	hol
'N	hol1
$'\mathbb{N}_{-}lit$	
'list	
'char	
'sum	
'one	
'combin	
'sets_alg	
'sets_ext	
$'basic_prove_\exists_conv$	

```
| (* Proof Context: 'basic_prove_\(\ext{\frac{1}{2}}\) conv *)
```

Description A component proof context that adds the function $basic_prove_\exists_conv$ as an automatic existence prover.

Contents Automatic proof procedures are respectively "always fail tactic", "always fail conversion", and $basic_prove_\exists_conv$.

Usage Notes Requires theory "basic_hol", intended to be combined into the merge of any component proof contexts that do not have their own special existence prover. It should usually be the first in the list of proof contexts to be merged together, so that other proof contexts may introduce pre-processors, and then the final default prover is invoked. This is because the standard application of the list of existence prover conversions is defined to be to apply them in a cumulative manner, in reverse order.

 $|(*Proof\ Context: 'simple_abstractions *)|$

Description A component proof context for handling only simple abstractions in stripping and canonicalisation.

Contents Rewriting:

Stripping theorems:

 $|simple_\neg_in_conv|$

Stripping conclusions:

 $|simple_\neg_in_conv|$

Rewriting canonicalisation:

 $|simple_ \forall_rewrite_canon, simple_ \neg_rewrite_canon$

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and no existence prover.

Usage Notes Not to be used with proof context "paired_abstractions" as their "domains" overlap. It requires theory $basic_hol$.

| (* Proof Context: 'paired_abstractions *)

Description A component proof context for handling simple and paired abstractions in stripping and canonicalisation.

Contents Rewriting:

 $\beta_{-}conv$

Stripping theorems:

Stripping conclusions:

 $\neg in_conv, \forall uncurry_conv$

Rewriting canonicalisation:

 $|\forall _rewrite_canon, \neg _rewrite_canon|$

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and no existence prover.

Usage Notes Not to be used with proof context "simple_abstractions", as their "domains" overlap. It requires theory basic_hol.

```
| (* Proof Context: 'propositions *)
```

Description A component proof context for reasoning about propositions.

Contents Rewriting:

Stripping theorems:

```
\Rightarrow\_thm, \Leftrightarrow\_thm, simple\_\exists_{1\_}conv,
`\vdash \forall \ x \bullet ((x = x) \Leftrightarrow T)`,
`\vdash \forall \ x \bullet (\neg(x = x) \Leftrightarrow F)`,
`\vdash \forall \ a \ t1 \ t2\bullet (if \ a \ then \ t1 \ else \ t2) \Leftrightarrow (a \Rightarrow t1) \land (\neg \ a \Rightarrow t2)`
```

Note these are intended to be used with $(simple_{-}) \neg _in_conv$ from "'paired_abstractions" or "'simple_abstractions", which covers the cases of an outermost \neg for each operator.

Stripping conclusions:

Note that the above are intended to be used in combination with $(simple_{-}) \neg_{-}in_{-}conv$ from "paired_abstractions" or "simple_abstractions", which covers the cases of an outermost \neg for each operator.

Rewriting canonicalisation:

```
\land \_rewrite\_canon, f\_rewrite\_canon
```

Automatic proof procedures are respectively $taut_tac$, $taut_conv$ and $basic_prove_\exists_conv$.

Usage Notes Usually used in conjunction with "paired_abstractions" or "simple_abstractions", requires theory basic_hol.

|(* Proof Context: 'fun_ext *)

Description A component proof context for adding reasoning using functional extensionality.

Contents Rewriting:

 ext_thm

Stripping theorems:

 $ext_{-}thm$

Stripping conclusions:

 ext_thm

Rewriting canonicalisation:

Automatic proof procedures are, respectively, $taut_tac$, $taut_conv$ and $basic_prove_\exists_conv$.

Usage Notes Normally used in conjunction with "propositions", requires theory basic_hol.

| (* Proof Context: predicates *)

Description A "mild" complete proof context for reasoning about the predicate calculus, including paired abstractions.

Contents Proof contexts "basic_prove_∃_conv", "paired_abstractions" and "propositions".

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and $basic_prove_d$ _d_conv (merged in from the proof context of the same name).

Usage Notes Requires theory basic_hol.

 $|(*Proof\ Context: \mathbf{predicates1}\ *)|$

Description An "aggressive" complete proof context for reasoning about the predicate calculus, including paired abstractions and functional extensionality.

Automatic proof procedures are, respectively, $basic_prove_tac$, $basic_prove_conv$ and $basic_prove_d$ _d_conv (merged in from the proof context of the same name).

```
|(* Proof Context: 'pair *)
```

Description A "mild" component proof context for theory pair.

Contents Rewriting (selected from *pair_clauses*):

Stripping theorems:

$$| \cdot \vdash \forall \ a \ b \ x \ y \bullet ((a, b) = (x, y) \Leftrightarrow a = x \land b = y) \cdot$$

Stripping conclusions:

$$| \cdot \vdash \forall \ a \ b \ x \ y \bullet ((a, b) = (x, y) \Leftrightarrow a = x \land b = y) \cdot$$

Existential variable structures:

```
Fst (x, y) = x \land Snd (x, y) = y \land (Fst p, Snd p) = p'
```

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and no existence prover.

```
* | (* Proof Context: 'pair1 *)
```

Description An "aggressive" component proof context for theory pair.

Contents Rewriting:

```
\bullet ((a, b) = p \Leftrightarrow a = Fst \ p \land b = Snd \ p) 

\land (p = (a, b) \Leftrightarrow Fst \ p = a \land Snd \ p = b)
```

Stripping theorems (selected from pair_clauses):

$$\bullet ((a, b) = p \Leftrightarrow a = Fst \ p \land b = Snd \ p)
\land (p = (a, b) \Leftrightarrow Fst \ p = a \land Snd \ p = b)`$$

Stripping conclusions:

```
\bullet ((a, b) = p \Leftrightarrow a = Fst \ p \land b = Snd \ p) 

\land (p = (a, b) \Leftrightarrow Fst \ p = a \land Snd \ p = b)`
```

Existential variable structures:

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and no existence prover.

Usage Notes Requires theory basic_hol, expected to be used in combination with "pair".

```
|(*Proof\ Context: '\mathbb{N}\ *)|
```

Description A "mild" component proof context for theory \mathbb{N} .

Contents Rewriting:

```
\[ \geq_def, greater_def, plus_clauses, times_clauses, \] \[ \leq_clauses, less_clauses, minus_clauses \]
```

Stripping theorems:

```
≥_def, greater_def, plus_clauses, times_clauses,
≤_clauses, less_clauses, minus_clauses,
and all boolean equations also pushed through $¬$
```

Stripping conclusions:

```
≥_def, greater_def, plus_clauses, times_clauses,
≤_clauses, less_clauses, minus_clauses,
and all boolean equations also pushed through $¬$
```

Existential clausal definition theorems:

```
prim\_rec\_thm
```

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and no existence prover.

```
|(*Proof\ Context: 'N_lit *)|
```

Description A component proof context for theory \mathbb{N} , that will, e.g., evaluate any arithmetic expression involving only numeric literals and certain arithmetic operators, namely $+, *, -, Div, Mod, \leq, <, >, \geq, and =$.

Contents Rewriting:

```
| plus_conv, times_conv, minus_conv, div_conv, mod_conv, \leq_conv, less_conv, greater_conv, \leq_conv, \mathbb{N}_-eq_conv
```

Stripping theorems:

```
|\leq_{-conv}, less_{-conv}, greater_{-conv}, \\ \geq_{-conv}, \mathbb{N}_{-eq\_{conv}}
```

Stripping conclusions:

```
|\leq_- conv, less\_conv, greater\_conv, \\ \geq_- conv, N\_eq\_conv
```

Existential clausal definition theorems:

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and no existence prover.

Usage Notes Requires theory $basic_hol$, expected to be used with proof context "N". It is separated from it as spotting the application of the conversions is time consuming, and may be known to be irrelevant.

```
|(* Proof Context: 'list *)
```

Description A component proof context for the theory *list*.

Contents Rewriting:

 $list_clauses$

Stripping theorems:

Stripping conclusions:

Existential clausal definition theorems:

```
list\_prim\_rec\_thm
```

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and no existence prover.

Usage Notes Requires theory list.

```
| (* Proof Context: 'char *)
```

Description A component proof context for theory *char*, for reasoning about character and string literals.

Contents Rewriting:

```
char_eq_conv, string_eq_conv
```

Stripping theorems:

```
char_eq_conv, string_eq_conv
```

Stripping conclusions:

```
char_{-}eq_{-}conv, string_{-}eq_{-}conv
```

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and an existence prover preprocessor that rewrites with \vdash "" = [] which assists using list's primitive induction on strings.

```
| (* Proof Context: basic_hol *)
```

Description A "mild" complete proof context for the ancestors of theory basic_hol.

Contents Proof contexts "predicates", "'pair, "'N", "'list", and "'char". Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and $basic_prove_∃_conv$ (merged in from the proof context of the same name).

Usage Notes Requires theory basic_hol.

```
|(*Proof\ Context: \mathbf{basic\_hol1}\ *)|
```

Description An "aggressive" complete proof context for the ancestors of theory basic_hol.

Contents Proof contexts "predicates1", "'pair", "'pair1", "'N", "'N_lit", "'list", and "'char".

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and $basic_prove_d$ _conv (merged in from the proof context of the same name).

Usage Notes Requires theory basic_hol.

```
| (* Proof Context: 'mmp1 *)
```

Description A component proof context with the matching modus ponens rule set to \Rightarrow _match_mp_rule1. All other fields are empty.

Usage Notes This makes forward chaining work as in releases prior to 2.9.1 (so that bound variables that are not constrained by the pattern matching are specialised to themselves).

```
| (* Proof Context: 'mmp2 *)
```

Description A component proof context with the matching modus ponens rule set to \Rightarrow *match_mp_rule2*. All other fields are empty.

Usage Notes Use this to ensure the default behaviour in forward chaining (so that bound variables that are not constrained by the pattern matching are specialised with new names as necessary to avoid variable capture).

```
** | (* Proof Context: 'sho_rw *)
```

Description A component proof context with the equation matching rule set to $simple_higher_order_thm_eqn_cxt$. All other fields are empty.

Usage Notes With this proof context, rewriting treats the rewriting theorems as higher order rewrite rules. For example, rewriting with the theorem *prenex_clauses* (q.v.) will convert a term into prenex normal form.

```
(* Proof Context: 'sum *)
Description A "mild" component proof context for theory sum.
Contents Rewriting:
| \cdot | \vdash \forall x1 \ x2 \ y1 \ y2 \ z
     • (InL \ x1 = InL \ x2 \Leftrightarrow x1 = x2)
       \wedge (InR \ y1 = InR \ y2 \Leftrightarrow y1 = y2)
       \wedge \neg InL x1 = InR y1
       \wedge \neg InR y1 = InL x1
       \wedge \ OutL \ (InL \ x1) = x1
       \wedge \ OutR \ (InR \ y1) = y1'
       \wedge IsL(InL x1) \wedge IsR(InR y1)
       \wedge \neg IsL(InR \ y1) \wedge \neg IsR(InL \ x1)
Stripping theorems:
| \cdot | \vdash \forall x1 \ x2 \ y1 \ y2 \ z
     • (InL \ x1 = InL \ x2 \Leftrightarrow x1 = x2)
       \wedge (InR \ y1 = InR \ y2 \Leftrightarrow y1 = y2)
       \wedge \neg InL x1 = InR y1
       \wedge \neg InR y1 = InL x1
       \wedge IsL(InL x1) \wedge IsR(InR y1)
       \wedge \neg IsL(InR \ y1) \wedge \neg IsR(InL \ x1)
Stripping conclusions:
 ' \vdash \forall x1 \ x2 \ y1 \ y2 \ z
     • (InL \ x1 = InL \ x2 \Leftrightarrow x1 = x2)
       \wedge (InR \ y1 = InR \ y2 \Leftrightarrow y1 = y2)
       \wedge \neg InL x1 = InR y1
       \wedge \neg InR \ y1 = InL \ x1
       \wedge IsL(InL x1) \wedge IsR(InR y1)
       \wedge \neg IsL(InR \ y1) \wedge \neg IsR(InL \ x1)
Existential clausal definition theorems:
| \cdot \vdash \forall f \ g \bullet \exists_1 \ h \bullet (\forall x \bullet h (InL x) = f x) \land (\forall x \bullet h (InR x) = g x) \cdot |
Automatic proof procedures are respectively basic_prove_tac, basic_prove_conv and no existence
prover.
```

Usage Notes Requires theory sum.

```
|(* Proof Context: 'one *)
```

Description A component proof context for theory one

Contents Rewriting (these both have the problem that their discrimination net entry will match anything):

```
one\_def, one\_fns\_thm
```

Stripping theorems:

```
 \begin{array}{l} ` \vdash \forall \ x \ y : ONE \bullet (x = y) \Leftrightarrow T ` \\ ` \vdash \forall \ x \ y : 'a \rightarrow ONE \bullet (x = y) \Leftrightarrow T ` \\ and \ through \ \neg \end{array}
```

Stripping conclusions:

```
 \begin{array}{c} ( \cdot \vdash \forall \ x \ y : ONE \bullet (x = y) \Leftrightarrow T \text{`} \\ ( \cdot \vdash \forall \ x \ y : 'a \rightarrow ONE \bullet (x = y) \Leftrightarrow T \text{`} \\ and \ through \ \neg \end{array}
```

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and no existence prover.

Usage Notes Requires theory *one*. As when entered into the rewriting net the rewriting theorems will match any term presented to the net, this proof context will slow down rewriting.

```
| (* Proof Context: 'combin *)
```

Description A component proof context for theory *combin*

Contents Rewriting:

```
|comb_{-i}def, comb_{-k}def, o_{-def}, o_{-i}thm|
```

Stripping theorems:

Stripping conclusions:

Automatic proof procedures are, respectively, $basic_prove_tac$, $basic_prove_conv$ and no existence prover.

Usage Notes Requires theory combin.

```
(* Proof Context: 'sets_alg *)
Description A "mild" component proof context for theory set.
Contents Rewriting:
\in comp\_conv, \in enum\_set\_conv, complement\_clauses,
\cup_clauses, \cap_clauses, set_dif_clauses, \ominus_clauses,
\subseteq clauses, \subseteq clauses, \bigcup clauses,
\bigcap_clauses, \mathbb{P}_{-}clauses
 ' \vdash \forall x y
         \bullet \neg x \in \{\}
        \land x \in \mathit{Universe}
        \land (x \in \{y\} \Leftrightarrow x = y)
Stripping theorems:
\in comp\_conv, \in enum\_set\_conv, \in in\_clauses
\subseteq clauses, \subseteq clauses
plus these all pushed in through \neg
Stripping conclusions:
|\in\_comp\_conv, \in\_enum\_set\_conv, \in\_in\_clauses|
\subseteq clauses, \subseteq clauses
plus these all pushed in through ¬
Automatic proof procedures are respectively basic_prove_tac, basic_prove_conv and the existence
prover preprocessor:
|TOP\_MAP\_C| (all_\exists\_uncurry\_conv|AND\_OR\_C| sets_simple_\exists\_conv)
. The preprocessor causes set membership (\in) to be treated as function application in some cases.
Usage Notes Should not be used with proof context "sets_ext", requires theory sets.
```

```
| (* Proof Context: 'sets_ext *)
```

Description A component proof context for theory *set*, "aggressively" using the extensionality of sets.

Contents Rewriting:

 $\in comp_conv, \in enum_set_conv, \in in_clauses, sets_ext_clauses$

Stripping theorems:

 \in comp_conv, \in enum_set_conv, \in in_clauses, sets_ext_clauses plus these all pushed in through \neg

Stripping conclusions:

 \in comp_conv, \in enum_set_conv, \in in_clauses, sets_ext_clauses plus these all pushed in through \neg

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and the existence prover preprocessor:

 TOP_MAP_C (all_ $\exists_uncurry_conv$ AND_OR_C sets_simple_ \exists_conv)

The preprocessor causes set membership (\in) to be treated as function application in some cases.

Usage Notes Should not be used with proof context "sets_alg", requires theory sets.

```
| (* Proof Context: sets_ext *)
```

Description A complete proof context for reasoning about sets within the predicate calculus, "aggressively" using the extensionality of sets.

Contents Proof contexts "sets_ext" and "predicates".

Usage Notes Requires theory *sets*. The proof context "sets_ext1" offers a much more useful treatment of sets of pairs.

```
| (* Proof Context: 'sets_ext1 *)
```

Description A component proof context for theory *set*, including sets of pairs, "aggressively" using the extensionality of sets.

Contents Rewriting:

```
\in \_comp\_conv, \in \_enum\_set\_conv, \in \_in\_clauses, \\ sets\_eq\_conv, \subseteq \_conv, \subset \_conv
```

Stripping theorems:

```
\in \_comp\_conv, \in \_enum\_set\_conv, \in \_in\_clauses, \\ sets\_eq\_conv, \subseteq \_conv, \subset \_conv \\ plus these all pushed in through <math>\neg
```

Stripping conclusions:

```
\in_comp_conv, \in_enum_set_conv, \in_in_clauses, sets_eq_conv, \subseteq_conv, \subset_conv plus these all pushed in through \neg
```

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and the existence prover preprocessor:

```
|TOP\_MAP\_C| (all\_\exists\_uncurry\_conv|AND\_OR\_C| sets\_simple\_\exists\_conv)
```

The preprocessor causes set membership (\in) to be treated as function application in some cases.

Usage Notes Should not be used with proof context "sets_alg", requires theory sets.

```
|(* Proof Context: sets_ext *)
```

Description A complete proof context for reasoning about sets within the predicate calculus, "aggressively" using the extensionality of sets.

Contents Proof contexts "sets_ext" and "predicates".

Usage Notes Requires theory sets.

```
| (* Proof Context: sets_ext1 *)
```

Description A complete proof context for reasoning about sets, including sets of pairs, within the predicate calculus, "aggressively" using the extensionality of sets.

Contents Proof contexts "sets_ext1" and "predicates".

Usage Notes Requires theory *sets*. The proof context "sets_ext1" offers a much more useful treatment of sets of pairs.

```
(* Proof Context: hol *)
```

Description A "mild" complete proof context for the ancestors of theory hol

Contents Proof contexts "basic_hol", "sum", "combin", and "sets_alg".

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and $basic_prove_d$ _conv (merged in from the proof context of the same name).

```
| (* Proof Context: hol1 *)
```

Description An "aggressive" complete proof context for the ancestors of theory hol.

Contents Proof contexts "basic_hol1", "'one", "'sum", "'combin", and "'sets_ext".

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and $basic_prove_d_conv$ (merged in from the proof context of the same name).

Usage Notes Requires theory *hol*. The proof context *hol2* offers a more useful treatment of sets of pairs.

```
| (* Proof Context: hol2 *)
```

Description An "aggressive" complete proof context for the ancestors of theory hol.

Contents Proof contexts "basic_hol1", "'one", "'sum", "'combin", and "'sets_ext1".

Automatic proof procedures are respectively $basic_prove_tac$, $basic_prove_conv$ and $basic_prove_d$ _conv (merged in from the proof context of the same name).

```
\begin{vmatrix} val & \mathbf{basic\_prove\_conv} : THM & list -> CONV; \end{vmatrix}
```

Description This is the conversion used for the automatic proof conversion (pr_tac field) of most supplied proof contexts, and is a reasonable, general-purpose, automatic proof conversion. It will either prove the theorem with the given conclusion, or fail.

In summary it will:

- 1. Set the term as the goal of the subgoal package.
- 2. Attempt to rewrite the term with the current default rewrite rules and given theorems.
- 3. Repeatedly apply $strip_tac$ to the goal.
- 4. Try $all_var_elim_asm_tac$ to do variable elimination.
- 5. Attempt to prove the resulting goals with resolution for up to 3 resolution steps, with goal's negated conclusion as a resolvant that must be used, and the assumptions as possible other resolvants. This has no effect on any resulting goal if it is unsolved.
- 6. Attempt to prove the resulting goals with resolution for up to 3 resolution steps amongst just the assumptions. This has no effect on any resulting goal if it is unsolved.
- 7. If the proof is successful, return $\vdash term \Leftrightarrow T$ and otherwise fail.

Note that in the stripping step may result in more than one subgoal, and thus the plural "resulting goals".

Under the current interface to resolution this equivalent to:

In the implementation however, partial evaluation with just the theorems is allowed.

Errors

76001 Could not prove theorem with conclusion ?0

```
| val basic_prove_tac : THM list -> TACTIC;
```

Description This is the tactic used for the automated proof tactic (the pr_tac field) of most supplied proof contexts, and is a reasonable, general-purpose, automatic proof tactic.

In summary it will:

- 1. Try all_var_elim_asm_tac to do variable elimination.
- 2. Extract the assumption list, rewrite each extracted assumption with the current default rewrite rules and given theorems, and strip the results back into the assumption list.
- 3. Attempt to rewrite the resulting goal's conclusions with the current default rewrite rules and given theorems.
- 4. Again try all_var_elim_asm_tac to do variable elimination.
- 5. Repeatedly apply *strip_tac* to the conclusions of the resulting goals.
- 6. Attempt to prove each of the resulting goals with resolution for up to 3 resolution steps, with goal's negated conclusion as a resolvant that must be used, and the assumptions as possible other resolvants. This has no effect on any resulting goal if it is unsolved.
- 7. Attempt to prove each of the resulting goals with resolution for up to 3 resolution steps amongst just the assumptions. This has no effect on any resulting goal if it is unsolved.

Note that either stripping step may result in more than one subgoal, and thus the plural "resulting goals".

Under the current interface to resolution this is

Chapter 8 359

SUPPORT FOR Z

8.1 Syntactic Manipulations

In the following descriptions of derived term constructors for Z it has been convenient to describe the effects of constructors using Z language quotations. In doing so quotations have sometimes been used which would not in fact be acceptable to the Z parser. The most frequent example of these is in quoting the declaration part of variable binding constructs in Z. The Z parser will not accept such declarations in isolation from the variable binding construct of which they form a part, but the most readable description of the effect of the constructor is obtained if we describe this as if the parser did accept such declarations in isolation.

In practice the best way of obtaining the term corresponding to the declaration part of such a construct is to parse a horizontal schema containing the required declaration part, and then take it apart using the appropriate destructor.

```
| signature ZTypesAndTerms = sig |
| Description The Z Abstract Machine functions are packaged into this signature.
```

Description The return value from function $basic_dest_z_term$. The BdzFail constructor gives information primarily intended for use by the Z pretty printer.

See Also Function basic_dest_z_term.

```
SML
                   \mathbf{Z}_{-}\mathbf{TERM} =
datatype
           ZDec of TERM list * TERM
                                                                 | ZSchemaDec of TERM * string
           ZDecl of TERM list
           ZEq of TERM * TERM
                                                                 \mid \mathbf{Z} \in of \ TERM * TERM
           ZTrue
                                                                   ZFalse
           \mathbf{Z} \neg \ of \ TERM
                                                                   \mathbf{Z}_{\neg_{\mathbf{S}}} of TERM
           \mathbf{Z} \wedge of \ TERM * TERM
                                                                   \mathbf{Z} \wedge_{\mathbf{s}} of TERM * TERM
           \mathbf{Z} \lor of \ TERM * TERM
                                                                   \mathbf{Z}\vee_{\mathbf{s}} of TERM * TERM
           \mathbf{Z} \Rightarrow of \ TERM * TERM
                                                                   \mathbf{Z} \Rightarrow_{\mathbf{s}} of TERM * TERM
           \mathbf{Z} \Leftrightarrow of \ TERM * TERM
                                                                   \mathbf{Z} \Leftrightarrow_{\mathbf{s}} of \ TERM * TERM
           \mathbf{Z} \exists of TERM * TERM * TERM
                                                                   \mathbf{Z} \exists_{\mathbf{s}} \ of \ TERM * TERM * TERM
           \mathbf{Z} \exists_1 \ of \ TERM * TERM * TERM
                                                                   \mathbf{Z} \exists_{1s} \ of \ TERM * TERM * TERM
           \mathbf{Z} \forall of \ TERM * TERM * TERM
                                                                 \mid \mathbf{Z} \forall_{\mathbf{s}} \ of \ TERM * TERM * TERM
           ZSchemaPred of TERM * string
           ZLVar of string * TYPE * TERM list
                                                                   ZGVar of string * TYPE * TERM list
           ZInt of string
                                                                   ZString of string
                                                                   \mathbf{Z}\langle\rangle of TYPE * TERM list
           ZFloat of TERM * TERM * TERM
           ZSetd of TYPE * TERM list
                                                                 | ZSeta of TERM * TERM * TERM
           \mathbf{Z}\mathbb{P} of TERM
           ZTuple of TERM list
           ZBinding of (string * TERM) list
           \mathbf{Z} \times of \ TERM \ list
           \mathbf{Z}\theta of TERM * string
           \mathbf{ZSel_s} of TERM * string
           \mathbf{ZSel_t} of TERM * int
                                                                  \mathbf{Z}\mu of TERM * TERM * TERM
           ZApp of TERM * TERM
                                                                 |\mathbf{Z}\lambda| of TERM * TERM * TERM
           ZLet of (string * TERM) list * TERM
           ZHSchema of TERM * TERM
           \mathbf{ZDecor_s} of TERM * string
                                                                   ZPres of TERM
           \mathbf{Z} \upharpoonright_{\mathbf{s}} of \ TERM * TERM
                                                                   \mathbf{ZHide_s} of TERM * string list
           \mathbf{Z}\Delta_{\mathbf{s}} of TERM
                                                                 \mid \mathbf{Z}\mathbf{\Xi_s} \ of \ TERM
           \mathbf{Z}_{os}^{o} of TERM * TERM
           ZRenames of TERM * (string * string) list
```

Description This datatype corresponds to a version of the abstract syntax of Z in which recursion has been removed and the distinction between declarations, predicates and terms ignored. It is used by the generalised mapping functions mk_-z_-TERM , is_-z_-term and $dest_-z_-term$ (q.v.).

```
| Z-TYPE = ZGivenType of string
| ZVarType of string
| ZPowerType of TYPE
| ZTupleType of TYPE list
| ZSchemaType of (string * TYPE) list;
```

Description This datatype is a representation of the abstract syntax of Z types. It is used by the generalised mapping functions mk_-z_-TYPE , is_-z_-type and $dest_-z_-type$ (q.v.). The operand of ZGivenType is the HOL name of the type.

```
|val| basic_dest_z_term : TERM * TERM \ list \rightarrow BDZ;
```

Description Function $basic_dest_z_term$ does the work of destroying a term to yield its Z structure. The arguments are in the result of applying $strip_app$ to a term.

A call of 'basic_dest_z_term(strip_app zt)' will attempt to destroy the Z term zt, if successful (i.e., zt is a valid Z term) then BdzOk is returned with the appropriate Z_TERM value. If zt is not a valid Z term then one of the other BDZ constructors is returned, these include an error code indicating what was wrong with the term. A BdzFail is returned when the term is similar to a Z term (i.e., it has a known constructor but the wrong number of arguments). In this case the BdzFCompc and BdzFArgc fields tell how many component lists and arguments (respectively) are allowed in a well formed Z term. A BdzNotZ is returned when the term is not recognisable as a Z term. In cases where insufficient component lists or arguments are given to a known constructor either BdzFail or BdzNotZ may be returned.

All of the error codes of function dest_z_term may be returned by this function.

See Also Functions: $dest_z_{term}$ and $strip_{app}$; and, datatype BDZ.

```
| val dest_z_name1 : string -> string * string OPT; | val dest_z_name2 : string -> string OPT -> string list list * string OPT;
```

Description Supplying dest_z_name2 with the result of dest_z_name1 gives the same overall result as dest_z_name q.v. These functions allow the destruction of the component names and projection part to be deferred for efficiency, in case they are not required.

```
\lfloor 47000 \mid ?0 is not a Z constant name
```

```
|val| dest_z_name : string \rightarrow string | string |
```

Description Analyses the names of Z semantic constants, returning the basic name and lists of embedded component names. If the name is a projection, then the projection part is also returned.

```
\lfloor 47000 \rceil?0 is not a Z constant name
```

```
|val \ \mathbf{dest_z_term} : TERM \longrightarrow Z\_TERM;
Description Converts a HOL term, which represents a valid Z term, to the appropriate
Z_{-}TERM.
See Also dest_z_term1 which makes a more careful check, especially of schema constructs.
47900 ?0 is not a Z term
47901 ?0 is not a Z package
47910 ?0 is not a Z simple declaration
47911 ?0 is not a Z schema declaration
47912 ?0 is not a Z declaration
47920 ?0 is not a Z existential quantification
47921 ?0 is not a Z unique existential quantification
47922 ?0 is not a Z universal quantification
47923 ?0 is not a Z schema as a predicate
47110 ?0 is not a Z sequence display
47120 ?0 is not a Z set display
47130 ?0 is not a Z set comprehension
47170 ?0 is not a Z \theta term
47190 ?0 is not a Z function application
47200 ?0 is not a Z \lambda abstraction
```

```
\begin{vmatrix} val \ val \ ext{gvar\_subst} \end{vmatrix}: TERM \rightarrow (TERM * TERM) \ list;
```

47941 ?0 is not a Z schema existential quantification

47943 ?0 is not a Z schema universal quantification

47942 ?0 is not a Z schema unique existential quantification

47936 ?0 is not a Z definite description 47937 ?0 is not a Z let expression 47940 ?0 is not a Z schema

Description Given an arbitrary term, t, $gvar_subst$ creates a substitution mapping those free variables of t (in the HOL sense) which have the same names as Z global variables (i.e. HOL constants) in the current scope to the appropriate instances of those global variables (with generic instantiation using \mathbb{U} as necessary). The resulting substitution may then be used with subst, q.v., to "bind" the term into the current scope.

```
val is_z_{term} : TERM \longrightarrow bool;
```

Description Tests if a given HOL term is valid Z in its top level structure.

Uses Recursively in well-formedness checks.

See Also is_z_term1 for a more complete check of top level structure, is_z for a full traversal of the terms structure.

```
|val is_z_type : TYPE -> bool;

Description Tests if a given HOL type represents a valid Z type.

Uses Recursively in well-formedness checks.
```

```
| val mk_dollar_quoted_string : string -> string; | val dest_dollar_quoted_string : string -> string; | val is_dollar_quoted_string : string -> bool;

| Description | The Z parser allows an arbitrary ML character string to be used to form an identifier. These functions implement the encoding used to embed an arbitrary ML string in the name of a Z variable:

| Example | mk_dollar_quoted_string"<ext-name>" = "$\"<ext-name>\"" | dest_dollar_quoted_string"$\"<ext-name>\"" = "<ext-name>\"" | is_dollar_quoted_string"$\"<ext-name>\"" = true | is_dollar_quoted_string"\"<ext-name>\"" = false

| Errors | 47001 | ?0 is not a valid dollar-quoted string
```

```
\begin{vmatrix} val & \mathbf{mk_u} : TYPE -> TERM; \\ val & \mathbf{is_u} : TERM -> bool; \\ val & \mathbf{dest_u} : TERM -> TYPE; \\ \mathbf{Description} & \text{These functions create, test for, and destroy terms of the form } \mathbb{U}[Totality] \text{ which are used by the Z type inferrer to stand for elided generic actual parameters. The type parameter to <math>mk_u and the result of dest_u is the type of the \mathbb{U}-term in question.
```

```
 \begin{vmatrix} val & \mathbf{mk_z_binding} : (string * TERM) & list -> TERM; \\ val & \mathbf{is_z_binding} : TERM -> bool; \\ val & \mathbf{dest_z_binding} : TERM -> (string * TERM) & list; \\  \mathbf{Description} & \text{The binding constructor.} \\ \begin{vmatrix} \mathbf{Description} \\ \mathbf{mk_z_binding} & [("n_1", [t_1]), ..., ("n_n", [t_n])] \\ = [t_1] & [t_1] & [t_2] & [t_3] \\ \end{vmatrix} = [t_1] & [t_1] & [t_2] & [t_3] & [t_4] & [t_4] \\ \end{vmatrix} 
 \begin{vmatrix} \mathbf{Errors} \\ \mathbf{47151} & \mathbf{?0} & is \ not \ a \ Z \ binding \\ \mathbf{47152} & Cannot \ bind \ more \ than \ one \ value \ to \ \mathbf{?0} \\ \end{vmatrix}
```

```
| val \, \, \text{mk\_z\_decl} : \, TERM \, \, list \, -> \, TERM; | val \, \, \text{is\_z\_decl} : \, TERM \, -> \, bool; | val \, \, \text{dest\_z\_decl} : \, TERM \, -> \, TERM \, \, list; | Description | Constructor, discriminator and destructor functions for the declaration part of a schema text. Its arguments must be made using mk\_z\_dec or mk\_z\_schema\_dec. | Definition | mk\_z\_decl [\lceil t1 \rceil, ..., \lceil tn \rceil] = \lceil t1 \rceil, ..., \lceil tn \rceil | Errors | 47912 \, ?0 \, is \, not \, a \, Z \, declaration | 3012 \, ?0 \, and \, ?1 \, do \, not \, have \, the \, same \, types
```

```
| val mk_z_decor<sub>s</sub> : TERM * string -> TERM;
| val is_z_decor<sub>s</sub> : TERM -> bool;
| val dest_z_decor<sub>s</sub> : TERM -> TERM * string;
```

Description Constructor, discriminator and destructor functions for systematic decoration of schemas. The first argument must be a schema, the second a decoration.

```
Example  |mk_-z_-decor_s( [[a,b,c:X \mid a=b]],"'") = [[a',b',c':X \mid a'=b']]  Errors  |47340 ?0 is not a Z decorated schema
```

```
| val mk_z_dec : TERM list * TERM -> TERM; val is_z_dec : TERM -> bool; val dest_z_dec : TERM -> TERM list * TERM;
```

Description Makes a simple declaration of one or more variables of the same type for use in the declaration part of a schema text.

```
\begin{array}{l} \text{Definition} \\ mk_{-}z_{-}dec([\ulcorner v_{1}\urcorner,..., \rbrack v_{n}\urcorner], \rbrack S\urcorner) = \lbrack v_{1},...v_{n} : S\urcorner \end{array}
```

Where the v_i and the members of S must have the same type.

Uses May only be used to make arguments for mk_-z_-decl .

```
Errors
| 47060 ?0 is not a Z set
| 3012 ?0 and ?1 do not have the same types
| 3017 An empty list argument is not allowed
| 47061 ?0 is not a Z simple declaration
```

```
| val mk_z_eq : TERM * TERM -> TERM;
| val is_z_eq : TERM -> bool;
| val dest_z_eq : TERM -> TERM * TERM;
```

Description Equality. For the moment this is the same as HOL equality, but this is likely to change in the future. Both arguments must be of the same type.

```
Definition
|mk_{-}z_{-}eq(\overline{z}a^{\neg},\overline{z}b^{\neg})| = \overline{z}(a=b)^{\neg}
Errors
|3012 ? 0 and ? 1 do not have the same types
|47220 ? 0 is not a Z equality
```

```
| val mk_z_false : TERM;
| val is_z_false : TERM -> bool;
| Description The Z constant false. It is the same as the HOL constant F.
```

```
| val mk_z_float : TERM * TERM * TERM -> TERM; | val is_z_float : TERM -> bool; | val dest_z_float : TERM -> TERM * TERM * TERM; |

Description | Constructor, discriminator and destructor functions for floating point literals. The argument is a triple of terms of type Z giving the mantissa, the number of digits after the decimal
```

Description Constructor, discriminator and destructor functions for floating point literals. The argument is a triple of terms of type \mathbb{Z} giving the mantissa, the number of digits after the decimal point and the exponent in that order, i.e., the triple (x, p, e) represents the real number $x \times 10^{e-p}$.

```
Errors |47107|?0 is not a Z floating point literal |47108|?0 does not have type \mathbb{Z}
```

```
| val mk_z_given_type : string -> TYPE;
| val is_z_given_type : TYPE -> bool;
| val dest_z_given_type : TYPE -> string
```

Description These are the constructor, discriminator and destructor functions for the types of given sets. The type names used by these functions are the HOL names.

```
| val mk_z_gvar : string * TYPE * TERM list -> TERM;
| val is_z_gvar : TERM -> bool;
| val dest_z_gvar : TERM -> string * TYPE * TERM list;
```

Description Constructor, discriminator and destructor functions for global variables. If the third argument is the empty list, this function is the same as the HOL mk-const function, otherwise a generic constant is created, the third argument being the generic actual parameters.

 $\lfloor 47100 \mid ?0$ is not a Z global variable

47420 ?0 is not a Z schema hiding

```
| 47940 ?0 is not a Z schema

| val mk_z_int : string -> TERM; | val is_z_int : TERM -> bool; | val dest_z_int : TERM -> string;

| Description | Content of the limit of the
```

Description Constructor, discriminator and destructor functions for integer literals. The argument should be a numeral, the result is the corresponding positive integer.

```
\lfloor 47105 \rceil?0 is not a Z integer
```

```
| val mk_z_let : (string * TERM) list * TERM -> TERM; | val is_z_let : TERM -> bool; | val dest_z_let : TERM -> (string * TERM) list * TERM;

| Description | The let-term constructor. The arguments are list of pairs, each comprising a local variable name and a defining term for that local variable, and a term giving the body of the let-expression.

| Definition | Def
```

```
 \begin{vmatrix} mk_-z_-let([("v", \lceil dt \rceil), \ldots], \lceil b \rceil) = \lceil let \ v \ \widehat{=} \ dt; \ldots \bullet \ t \rceil  Errors  \begin{vmatrix} 47211 & ?0 \ is \ not \ a \ Z \ let \ term
```

```
| val mk_z_lvar : string * TYPE * TERM list -> TERM;
| val is_z_lvar : TERM -> bool;
| val dest_z_lvar : TERM -> string * TYPE * TERM list;
```

Description Constructor, discriminator and destructor functions for local variables. If the third argument is the empty list, this function is the same as the HOL $mk_{-}var$ function, otherwise a generic variable is created, the third argument being the generic actual parameters.

Errors 47090 ?0 is not a Z local variable

```
|val \ mk_z power_type : TYPE \rightarrow TYPE;
val \ is_z power_type : TYPE \rightarrow bool;
val \ dest_z power_type : TYPE \rightarrow TYPE;

Description Set type constructor.

|mk_z power_type \ ty = \mathbb{P} \ ty

|mk_z power_type \ ty = \mathbb{P} \ ty

|mk_z power_type \ ty = \mathbb{P} \ ty

|mk_z power_type \ ty = \mathbb{P} \ ty
```

```
|val \ \mathbf{mk_z_pre_s}: TERM \rightarrow TERM;
|val \ \mathbf{is_z_pre_s}: TERM \rightarrow bool;
|val \ \mathbf{dest_z_pre_s}: TERM \rightarrow TERM;
|val \ \mathbf{dest_z_pre_
```

```
 \begin{vmatrix} val & \mathbf{mk_{-z_{-rename_s}}} : TERM * (string * string) list -> TERM; \\ val & \mathbf{is_{-z_{-rename_s}}} : TERM -> bool; \\ val & \mathbf{dest_{-z_{-rename_s}}} : TERM -> TERM * (string * string) list; \\  \mathbf{Description} & \text{The schema renaming construct. Its argument must be a schema.} \\ \begin{vmatrix} \mathbf{Definition} \\ \mathbf{mk_{-z_{-rename_s}}} & (\mathbf{v_{z}}, (\mathbf{v_{z}}, \mathbf{v_{z}}, \mathbf{v_{z}})) \\ \mathbf{v_{z}} & \mathbf{v_{z}} & \mathbf{v_{z}} & \mathbf{v_{z}} \\ \mathbf{v
```

```
| val mk_z_schema_dec : TERM * string -> TERM; | val is_z_schema_dec : TERM -> bool; | val dest_z_schema_dec : TERM -> TERM * string; |
| Description Constructor, discriminator and destructor functions for the components of a schema (the first argument), systematically decorated with the second argument.

| Uses May only be used to make arguments for mk_z_decl. |
| 47940 ?0 is not a Z schema | 47071 ?0 is not a Z schema as a declaration |
```

```
| val mk_z_schema_pred : TERM * string -> TERM; | val is_z_schema_pred : TERM -> bool; | val dest_z_schema_pred : TERM -> TERM * string; |
| Description | The schema as predicate constructor. The first argument must be a schema, the second is an optional decoration.

| Errors | 47940 ?0 is not a Z schema | 47320 ?0 is not a Z schema as a predicate expression
```

```
| val mk_z_schema_type : (string * TYPE) list \rightarrow TYPE; | val is_z_schema_type : TYPE \rightarrow bool; | val dest_z_schema_type : TYPE \rightarrow (string * TYPE) list; | Description | Binding type constructor. | Definition | mk_z_schema_type [(c1,ty1),...,(cn,tyn)] = [c1:ty1; ...; cn:tyn] | ext{Errors} | ext{47050} ?0 is not a Z binding type
```

```
SML
val \ \mathbf{mk_-z_-sel_s} : TERM * string -> TERM;
|val \ \mathbf{is_-z_-sel_s} : TERM -> bool;
|val \ \mathbf{dest_z} = \mathbf{sel_s} : TERM -> TERM * string;
```

Description Selection of a component from a binding. The type of the first argument must be a binding and the second argument must be a component of that type.

```
Definition
47180 ?0 is not a Z selection
```

```
val \ \mathbf{mk_z\_sel_t} : TERM * int -> TERM;
val is_{-}sel_{t} : TERM \longrightarrow bool;
|val \ \mathbf{dest_z_sel_t} : TERM \rightarrow TERM * int;
Description Selection of a component from a tuple. The type of the first argument must be a
```

tuple and the second argument must be a component in that tuple.

```
|mk_z - sel_t( Tup , i) = Tup.i
47185 ?0 is not a Z tuple selection
```

```
|val \ \mathbf{mk_-z_-seta} : TERM * TERM * TERM -> TERM;
|val is_zseta: TERM \rightarrow bool;
|val \ \mathbf{dest_z_seta} : TERM \rightarrow TERM * TERM * TERM;
```

Description Constructor, discriminator and destructor functions for set comprehension. The three arguments represent the declaration, predicate and body parts of the set comprehension and so must have the appropriate types. In particular, the first argument must be made using $mk_z_decl.$

```
Definition
|mk_z| = seta(\lceil d \rceil, \lceil p \rceil, \lceil v \rceil) = \lceil \{d \mid p \bullet v\} \rceil
47130 ?0 is not a Z set comprehension
```

```
|val \ \mathbf{mk_z} \mathbf{setd} : TYPE * TERM \ list \rightarrow TERM;
|val \ \mathbf{is_-z_-setd} : TERM \longrightarrow bool;
|val \ \mathbf{dest_z\_setd} : TERM \rightarrow TYPE * TERM \ list;
```

Description Constructor, discriminator and destructor functions for finite set displays. The result is the set made from the terms in the second argument, each of whose types must be the same as the first argument.

```
|mk_z| = setd(ty, [[t_1], ..., [t_n]]) = [[t_1, ..., t_n]]
Where the t_i all have type ty.
```

```
47120 ?0 is not a Z set display
```

```
| val mk_z_string : string -> TERM;
| val is_z_string : TERM -> bool;
| val dest_z_string : TERM -> string;
| Description | Constructor, discriminator and destructor functions for string literals. The argument should be a string, the result is the corresponding string quotation.
```

 $\lfloor 47106 \rceil$?0 is not a Z string

```
|val \text{ mk\_z\_term}: Z\_TERM \rightarrow TERM;
```

Description Given any Z_-TERM , mk_-z_-TERM calls the appropriate abstract machine mk_- function.

```
| val mk_z_true : TERM; | val is_z_true : TERM -> bool; |
Description The Z constant true. It is the same as the HOL constant T.
```

```
| val mk_z_tuple_type : TYPE list -> TYPE; | val is_z_tuple_type : TYPE -> bool; | val dest_z_tuple_type : TYPE -> TYPE list; | Description | Cartesian product type constructor. | mk_z_tuple_type [ty1,...,tyn] = ty1 \times ... \times tyn | type | type
```

```
| val mk_z_tuple : TERM list -> TERM; | val is_z_tuple : TERM -> bool; | val dest_z_tuple : TERM -> TERM list; | val dest_z_tuple : val constructor.

| Description | The tuple constructor. | val | v
```

```
\begin{vmatrix} val & \mathbf{mk_z_type} : Z_TYPE -> TYPE; \end{vmatrix}
```

Description Given any Z_-TYPE , mk_-z_-type calls the appropriate abstract machine mk_- function.

```
| val mk_z_var_type : string -> TYPE;
| val is_z_var_type : TYPE -> bool;
| val dest_z_var_type : TYPE -> string;
| Description The type of generic parameters.
| 47020 ?0 is not a Z type variable
```

```
\begin{vmatrix} val & \mathbf{mk}_{-}\mathbf{z}_{-}\boldsymbol{\Delta}_{\mathbf{s}} : TERM -> TERM; \\ val & \mathbf{is}_{-}\mathbf{z}_{-}\boldsymbol{\Delta}_{\mathbf{s}} : TERM -> bool; \\ val & \mathbf{dest}_{-}\mathbf{z}_{-}\boldsymbol{\Delta}_{\mathbf{s}} : TERM -> TERM; \\ \mathbf{Description} & \text{The delta constructor. Its argument must be a schema.} \\ \begin{vmatrix} \mathbf{Definition} \\ \mathbf{mk}_{-}\mathbf{z}_{-}\boldsymbol{\Delta}_{\mathbf{s}} & \mathbf{z} \mathbf{S}^{\mathsf{T}} = \mathbf{z} \mathbf{\Delta} \mathbf{S}^{\mathsf{T}} \\ 47460 & ?0 \text{ is not a } \mathbf{Z} \mathbf{\Delta} \end{vmatrix}
```

```
SML val \ \mathbf{mk_{-}z_{-}} \in : TERM * TERM -> TERM; val \ \mathbf{is_{-}z_{-}} \in : TERM -> bool; val \ \mathbf{dest_{-}z_{-}} \in : TERM -> TERM * TERM;

Description Set membership. The second argument must be a set, whose members have the same type as the first argument.

| Description | Description | | Description |
```

```
val \ \mathbf{mk_{-}z_{-}} \Leftrightarrow_{\mathbf{s}} : TERM * TERM -> TERM;
val \ \mathbf{is_{-}z_{-}} \Leftrightarrow_{\mathbf{s}} : TERM -> bool;
val \ \mathbf{dest_{-}z_{-}} \Leftrightarrow_{\mathbf{s}} : TERM -> TERM * TERM;

\mathbf{Description} The schema equivalence constructor. Both arguments must be schemas.

mk_{-}z_{-} \Leftrightarrow_{\mathbf{s}} (\overline{\ \ } R^{\neg}, \overline{\ \ } S^{\neg}) = \overline{\ \ } R \Leftrightarrow S^{\neg}

mk_{-}z_{-} \Leftrightarrow_{\mathbf{s}} (\overline{\ \ \ } R^{\neg}, \overline{\ \ \ } S^{\neg}) = \overline{\ \ \ } R \Leftrightarrow S^{\neg}

mk_{-}z_{-} \Leftrightarrow_{\mathbf{s}} (\overline{\ \ \ \ \ \ \ } S \Leftrightarrow S^{\neg}

mk_{-}z_{-} \Leftrightarrow_{\mathbf{s}} (\overline{\ \ \ \ \ \ \ \ } S \Leftrightarrow S^{\neg}
```

```
| val \ \mathbf{mk_-z_-} \Leftrightarrow : TERM * TERM -> TERM; | val \ \mathbf{is_-z_-} \Leftrightarrow : TERM -> bool; | val \ \mathbf{dest_-z_-} \Leftrightarrow : TERM -> TERM * TERM; | Description | If and only if; the same as HOL \Leftrightarrow. Its argument must be bool type.

| SO(3) = SO(3)
```

```
SML |val \ \mathbf{mk_-z_-}\langle\rangle: TYPE*TERM\ list -> TERM; |val \ \mathbf{is_-z_-}\langle\rangle: TERM\ -> bool; |val \ \mathbf{dest_-z_-}\langle\rangle: TERM\ -> TYPE*TERM\ list;

Description Constructor, discriminator and destructor functions for finite sequences. The result is the sequence made from the terms in the second argument, each of whose types must be the same as the first argument.

|mk_-z_-\rangle\langle(ty,[\overline{z}t_1^{-1},...,\overline{z}t_n^{-1}))| = \overline{z}\langle t_1,...,t_n\rangle^{-1}

Where the t_i all have type ty.

|mk_-z_-\rangle\langle\langle ty,[\overline{z}t_1^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t_n^{-1},...,\overline{z}t
```

```
| val mk_-z_-\neg_s : TERM -> TERM; | val is_-z_-\neg_s : TERM -> bool; | val dest_-z_-\neg_s : TERM -> TERM; | val dest_-z_-\neg_s : val val dest_-z_-\neg_s : val val
```

```
| val mk_z_¬: TERM -> TERM; val is_z_¬: TERM -> bool; val dest_z_¬: TERM -> TERM; | val dest_z_¬
```

```
| val \ \mathbf{mk_-z_-} \forall : TERM * TERM * TERM -> TERM; | val \ \mathbf{is_-z_-} \forall : TERM -> bool; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : TERM -> TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : Term -> TERM * TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : Term -> TERM * TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : Term -> TERM * TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : Term -> TERM * TERM * TERM; | val \ \mathbf{dest_-z_-} \forall : Term -> Term + Ter
```

```
SML |val \ \mathbf{mk_{-}z_{-}}\exists_{1s}: TERM * TERM * TERM -> TERM; |val \ \mathbf{is_{-}z_{-}}\exists_{1s}: TERM -> bool; |val \ \mathbf{dest_{-}z_{-}}\exists_{1s}: TERM -> TERM * TERM * TERM;

Description The schema unique existential quantifier constructor. The arguments must be a declaration (constructed using mk_{-}z_{-}decl), a predicate and a schema.

Definition |mk_{-}z_{-}\exists_{1s}(\lceil zd \rceil, \lceil p \rceil, \lceil zS \rceil) = \lceil z \exists_{1} \ d \ | p \bullet S \rceil
```

```
Errors |47440| ?0 is not a Z schema unique existential
```

47912 ?0 is not a Z declaration

47300 ?0 is not a Z unique existential quantification

```
| val \text{ mk}_{-}\mathbf{z}_{-}\exists_{1}: TERM * TERM * TERM -> TERM; | val \text{ is}_{-}\mathbf{z}_{-}\exists_{1}: TERM -> bool; | val \text{ dest}_{-}\mathbf{z}_{-}\exists_{1}: TERM -> TERM * TERM * TERM; | Description | Constructor, discriminator and destructor functions for unique existential quantification. Its arguments must be a declaration (constructed with mk_{-}z_{-}decl) and two predicates.

| Definition | mk_{-}z_{-}\exists_{1}(\lceil zd\rceil, \lceil p\rceil, \lceil zv\rceil) = \lceil z\exists_{1} \ d | p \bullet v\rceil
| Errors
```

```
SML |val \ \mathbf{mk_-z_-} \exists_{\mathbf{s}} : TERM * TERM * TERM -> TERM; val \ \mathbf{is_-z_-} \exists_{\mathbf{s}} : TERM -> bool; |val \ \mathbf{dest_-z_-} \exists_{\mathbf{s}} : TERM -> TERM * TERM * TERM;

Description The schema existential quantifier constructor. The arguments must be a declaration (constructed using mk_-z_-decl), a predicate and a schema.

Definition |mk_-z_-\exists_s(\lceil z d \rceil, \lceil p \rceil, \lceil z S \rceil) = \lceil z \exists d \mid p \bullet S \rceil

Errors |47430 \ ?0 \ is \ not \ a \ Z \ schema \ existential
```

```
| val \ \mathbf{mk_-z_-}\exists : TERM * TERM * TERM -> TERM; | val \ \mathbf{is_-z_-}\exists : TERM -> bool; | val \ \mathbf{dest_-z_-}\exists : TERM -> TERM * TERM * TERM; | Description | Constructor, discriminator and destructor functions for existential quantification. | Its arguments must be a declaration (constructed with mk_-z_-decl) and two predicates.

| Definition | mk_-z_-\exists (\lceil z d \rceil, \lceil z p \rceil, \lceil z v \rceil) = \lceil z \exists d | p \bullet v \rceil | Errors | 47912 \ ?0 \ is \ not \ a \ Z \ declaration | 47290 \ ?0 \ is \ not \ a \ Z \ existential \ quantification
```

```
| val \ \mathbf{mk_{-}z_{-}} \times : TERM \ list \rightarrow TERM;
| val \ \mathbf{is_{-}z_{-}} \times : TERM \rightarrow bool;
| val \ \mathbf{dest_{-}z_{-}} \times : TERM \rightarrow TERM \ list;
| \mathbf{Description} | \mathbf{The \ cartesian \ product \ constructor.}
| \mathbf{mk_{-}z_{-}} \times [\mathbf{z}t1^{\neg}, ..., \mathbf{z}tn^{\neg}] = \mathbf{z}(t1 \times ... \times tn)^{\neg}
| \mathbf{Errors}
| \mathbf{47160} \ ?0 \ is \ not \ a \ Z \ cartesian \ product
```

```
| val \ \mathbf{mk_{-}z_{-gs}} : TERM * TERM -> TERM; | val \ \mathbf{is_{-}z_{-gs}} : TERM -> bool; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | Description | The sequential composition constructor. Its arguments must both be schemas. | val \ \mathbf{mk_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM; | val \ \mathbf{dest_{-}z_{-gs}} : TERM -> TERM * TERM
```

```
| val \text{ mk}_{-}\mathbf{z}_{-}\theta : TERM * string -> TERM; | val \text{ is}_{-}\mathbf{z}_{-}\theta : TERM -> bool; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}_{-}\theta : TERM -> TERM * string; | val \text{ dest}_{-}\mathbf{z}
```

```
| val \ \mathbf{mk_-z_-}\lambda : TERM * TERM * TERM -> TERM; | val \ \mathbf{is_-z_-}\lambda : TERM -> bool; | val \ \mathbf{dest_-z_-}\lambda : TERM -> TERM * TERM * TERM; | Description | The lambda constructor. The arguments are a declaration (constructed using mk_-z_-decl \ \mathbf{q.v.}), a predicate and the body of the abstraction.

| Definition | mk_-z_-\lambda(\lceil z d \rceil, \lceil z p \rceil, \lceil z v \rceil) = \lceil z \lambda d | p \bullet v \rceil | Errors | 47200 \ ?0 \ is \ not \ a \ Z \ \lambda \ abstraction | 47201 \ ?0 \ ?1 \ and \ ?2 \ are inconsistent in \ Z
```

```
3ML | Val mk_z_\mu: TERM * TERM * TERM * TERM; | Val is_z_\mu: TERM -> terms | Val using mk_z z_\mu: TERM * TERM * TERM * TERM; | Val is_z_\mu: TERM -> terms | Val dest_z_\mu: TERM -> terms | Val using mk_z z_\mu: Terms | Val using mk_z z_\mu: mk_z z_\mu:
```

```
 \begin{vmatrix} val & \mathbf{mk}_{-}\mathbf{z}_{-} \rangle_{\mathbf{s}} : TERM * TERM -> TERM; \\ val & \mathbf{is}_{-}\mathbf{z}_{-} \rangle_{\mathbf{s}} : TERM -> bool; \\ val & \mathbf{dest}_{-}\mathbf{z}_{-} \rangle_{\mathbf{s}} : TERM -> TERM * TERM; \\  \mathbf{Description} \quad \text{The schema projection constructor. Both arguments must be schemas.} 
 \begin{vmatrix} \operatorname{Definition} \\ mk_{-}z_{-} \rangle_{\mathbf{s}} (\overline{\zeta}R^{\gamma}, \overline{\zeta}S^{\gamma}) &= \overline{\zeta}R \upharpoonright S^{\gamma} \\ | 47410 ?0 \text{ is not a $Z$ schema projection} \end{vmatrix}
```

8.2 Reasoning about Predicates

|signature| **ZPredicateCalculus** = sig

Description This provides a set of rules of inference, conversions and tactics sufficient for reasoning about the Z predicate calculus in ProofPower. This structure declares the theory $z_language_ps$, which is also used by structures ZSetTheory and ZSchemaCalculus.

 $|(* Proof Context: \mathbf{z_predicates} *)|$

Description A complete proof context for handling the requirements of the Z predicates of the Z language (as opposed to the mathematical tool-kit). It is composed of proof contexts "'z_predicates" and "'z_decl".

Usage Notes It requires theory $z_language_ps$. It is not intended to be mixed with HOL proof contexts.

```
| (* Proof Context: 'z_predicates *)
```

Description A component proof context for handling the requirements of the Z predicates of the Z language (as opposed to the mathematical tool-kit). It remains purely within the Z language, and thus lacks the features found in proof context "z_decl" which are necessary for a complete treatment of Z predicates. (which may be found in proof context "z_predicates").

Predicates treated by this proof context are constructs formed from:

```
| =, \neg, \land, \lor, \Rightarrow, \Leftrightarrow, \mathbb{U}, \forall D \mid P \bullet V, \exists D \mid P \bullet V, \exists_1 D \mid P \bullet V
```

This proof context further handles membership of constructs purely contructed from \mathbb{U} , generic formals, and Z paragraph markers. The language predicate \in is treated with the set constructs that it expresses membership of. Schemas (and especially schema references) as predicates are treated by "z_schemas", except that this proof context will replace an ill-formed "schema as predicate" expression with an explicit membership.

Contents Rewriting:

Stripping theorems:

```
 \begin{array}{l} z\_\neg\_in\_conv,\ z\_\neg\_gen\_pred\_conv,\ z\_\exists\_elim\_conv,\ z\_\exists_1\_conv,\\ z\_schema\_pred\_conv1,\ z\_schema\_pred\_conv1\ pushed\ in\ \neg,\\ z\_\in\_u\_conv,\ z\_\in\_u\_conv\ pushed\ in\ \neg,\ z\_\forall\_inv\_conv,\\ \Rightarrow\_thm,\ \Leftrightarrow\_thm,\ \forall\_rewrite\_thm,\ eq\_rewrite\_thm,\\ simplifications\ as\ z\_para\_pred\_canon \end{array}
```

Note that we do not break apart a $Z \forall$ into HOL quantifiers during theorem stripping.

Stripping conclusions:

```
 \begin{array}{l} z\_ \forall\_elim\_conv,\ z\_ \neg\_in\_conv,\ z\_ \neg\_gen\_pred\_conv,\ z\_ \in\_u\_conv,\\ z\_ \in\_u\_conv\ pushed\ in\ \neg,\ z\_ \exists\_inv\_conv,\ \Leftrightarrow\_thm,\ eq\_rewrite\_thm,\\ `\vdash \ \forall a\ b\bullet (a\ \lor\ \neg b)\ \Leftrightarrow\ (b\ \Rightarrow\ a)\ `,\ `\vdash \ \forall\ a\ b\bullet\ \neg\ a\ \lor\ b\ \Leftrightarrow\ a\ \Rightarrow\ b\ `\\ `\vdash \ \forall\ a\ b\bullet\ a\ \lor\ b\ \Leftrightarrow\ \neg\ a\ \Rightarrow\ b\ `,\ z\_schema\_pred\_conv1,\ z\_schema\_pred\_conv1\ pushed\ in\ \neg,\\ simplifications\ as\ z\_para\_pred\_canon \end{array}
```

Note that we do not break apart a Z ∃ into HOL quantifiers during conclusion stripping.

Rewriting canonicalisation:

```
|\forall\_rewrite\_canon, z\_\neg\_rewrite\_canon, \land\_rewrite\_canon, |f\_rewrite\_canon, z\_\forall\_rewrite\_canon, z\_para\_pred\_canon, z\_\Rightarrow\_rewrite\_canon
```

Notice in particular the use of the HOL \forall -rewrite-canon.

Automatic proof procedures are respectively z_basic_prove_tac, z_basic_prove_conv, and the list

```
 \begin{vmatrix} z_- \exists_- elim\_conv2, \ ALL\_SIMPLE\_ \exists_- C \ "simplifications \ as \ z\_para\_pred\_canon", \\ basic\_prove\_ \exists_- conv \\ \end{vmatrix}
```

The existence prover can also handle 1-tuples, 2-tuples, etc, up to 16-tuples. as arguments.

Usage Notes It requires theory $z_language_ps$. It is not intended to be mixed with HOL proof contexts. Use with proof context " z_decl " to handle declarations properly.

```
|(*Proof\ Context: 'z_{decl} *)
```

Description A component proof context for handling the requirements of converting Z declarations into their implicit predicates, kept separate from "z_predicates" due to it introducing a small portion of Z library set theoretic reasoning.

The requirement is met by appropriate treatment of:

```
|set\_display \subseteq set\_expression|
```

during stripping.

Contents

Rewriting:

Stripping theorems:

```
z\_setd\_\subseteq\_conv,
and this pushed in through \neg.
```

Stripping conclusions:

```
z\_setd\_\subseteq\_conv,
and this pushed in through \neg.
```

Notice how this proof context does not use $z_setd_\subseteq_conv$ for rewriting, but leaves such an effect to the proof context concerned with extensional reasoning about the Z library.

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence provers.

Usage Notes It requires theory $z_{-}language_{-}ps$. It is not intended to be mixed with HOL proof contexts. Used with proof context " z_{-} predicates".

```
| (* Proof Context: 'z_fc *)
```

Description A component proof context giving a faster but less general automatic proof capability than the one supplied in most other proof contexts for Z. The automatic proof procedures in the proof context are $z_fc_prove_tac$, $z_fc_prove_tonv$. All other fields are blank.

Usage Notes It requires theory $z_language_ps$.

Note that the way proof contexts are merged by $push_merge_pcs$ is such that to get the faster automatic proof procedures, one should put $'z_fc$ at the end of the list of proof contexts to be merged. For example, to work in the Z predicate calculus with the faster automatic proof procedures, one might use

```
|push\_merge\_pcs["z\_predicates", "'z\_fc"];
```

```
(* check_is_z : boolean flag *)

val set_check_is_z : bool -> bool;
```

Description This flag, if true (the default), will cause all Z inference rules and tactics that claim to remain in the Z language to check any terms they change (i.e. assumptions and conclusions) for remaining within the Z language. If any fail then the informational message 41004 is used to output text to the user. If the flag is false, no such checks are made. The checks are computationally expensive, and the results may be excessively verbose if terms are not all Z.

The function sets the flag to a specified value and return the original value.

Errors

|41004 The following subterms in the result are not in the Z language: ?0

```
\begin{vmatrix} val & \mathbf{all}_{\mathbf{z}} & \forall_{\mathbf{intro}} : THM -> THM; \end{vmatrix}
```

Description This will Z universally quantify all free variables in the conclusion of a theorem, that do not occur in the assumptions. The declaration part will state the variables are of type $\Sigma \mathbb{U}^{-}$, and the predicate part will just be true. If no variables can be introduced then the original theorem will be returned.

```
| val check_is_z_thm : string -> THM -> THM;
| val check_is_z_goal : string -> GOAL -> GOAL;
| val check_is_z_term : string -> TERM -> TERM;
| val CHECK_IS_Z_T : string -> TACTIC -> TACTIC;
| val check_is_z_conv_result : string -> THM -> THM;
```

Description For $check_is_z_thm$, if flag $check_is_z$ is true then the conclusion and assumptions of the provided theorem are checked for being within the Z language (except for outermost HOL universal quantification), and informational message 41005 used if not. The string argument is used as the name of the calling function in the error message. If the flag is false then there is no effect. In either case the theorem is passed through unchanged.

 $check_is_z_goal$ and $check_is_z_term$ are analogous. $CHECK_IS_Z_T$ checks each of the subgoals a tactic requests.

 $check_is_z_conv_result$ checks that the RHS of the resulting equational theorem, and any assumptions are within the Z language. This allows the RHS side of the equation to have outer HOL universal quantification, and the LHS not to be Z (e.g. in an Z introduction conversion) without complaint.

Errors

41005 In the result of ?0 the following subterms are not in the Z language: ?1

```
|val \ \mathbf{dest_z_{term1}}| : TERM \longrightarrow Z\_TERM;
```

Description This function acts as $dest_z_term$ on terms (i.e. expressions and predicates) in the Z language, but makes additional checks. This is in contrast to $dest_z_term$ whose intended purpose is categorisation and destruction of Z terms with minimal overhead.

The function does not recursively check the constituents of the outermost Z syntactic construction. For example, it does not check that the constituents of a Z decl are individually in the syntactic category dec.

Errors

41002 Not within the Z language due to subterm ?0

```
|val \ is_z_{term1} : TERM -> bool;
```

Description Tests if a given HOL term is valid Z in its top level structure.

Uses Recursively in well-formedness checks.

See Also is_z_term for a less complete check of top level structure, is_z for a full traversal of the terms structure.

```
| val is_z : TERM -> bool;
| val is_all_z_type : TYPE -> bool;
```

Description If the term (i.e. expression or predicate) or type given is in the range of the Z mapping for a term or type respectively then these functions will return true. They will otherwise return false, unless the only form of incorrectness is that the constituents of a Z syntactic construction are not as required. For example, it does not check that the constituents of a Z decl are individually in the syntactic category dec.

The test traverses the provided object by using $full_dest_z_term$ (and $dest_z_type$ for constituent-types) - the test is passed if the entire term can be broken into non-type and non-term parts (i.e. primitives such as strings or integers). Otherwise it will fail with the given error message.

Note that a term is a subterm of itself for these purposes.

```
See Also is\_z\_term and is\_z\_term1.
```

```
Errors
```

```
41002 Not within the Z language due to subterm ?0 41003 Not within the Z language due to containing type ?0
```

```
|val \text{ not_z} \text{-subterms} : TERM \rightarrow TERM \ list;
```

Description This function will return a list (perhaps empty) of all the subterms that prevent a term (i.e. expression or predicate) being within the Z language (by the checks of is_z , q.v.), starting with the rightmost subterm that is not Z. The subterms given will be maximal in the sense that subterms of those given will not be included in the list.

```
| val set_u_simp_eqn_cxt : EQN_CXT -> string -> unit;
| val get_u_simp_eqn_cxt : string -> (EQN_CXT * string)list;
```

Description $set_u_simp_eqn_cxt$ ec pc_name ; sets the "icl'u_simp" entry of the dictionary of nets field of the proof context called "pc_name" to the equational context ec. This means that when this named proof context has been made the current proof context (probably merged with others) it will be "aware" of the equational contexts potential \mathbb{U} simplifications.

For example, to make the current proof context aware of the U simplifications of the (in scope) theory "thy" one would do:

```
new_pc "thy_u_simp_pc";
set_u_simp_eqn_cxt (theory_u_simp_eqn_cxt "thy") "thy_u_simp_pc";
push_merge_pcs ("thy_u_simp_pc" :: other_desired_proof_contexts);
```

One could later update information about the theory (e.g. because new definitions have been added) by:

```
|set\_u\_simp\_eqn\_cxt \ (theory\_u\_simp\_eqn\_cxt \ "thy") \ "thy\_u\_simp\_pc"; \\ set\_merge\_pcs \ ("thy\_u\_simp\_pc" :: other\_desired\_proof\_contexts);
```

 $set_u_simp_eqn_cxt$ ex pc_name ; extracts the \mathbb{U} simplification subfields of the named proof context. These subfields are each an equational context paired with its original source proof context name.

See Also $u_simp_eqn_cxt$, $theory_u_simp_eqn_cxt$

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a
point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

```
\begin{vmatrix} val & theory\_u\_simp\_eqn\_cxt : string -> EQN\_CXT; \end{vmatrix}
```

Description theory_u_simp_eqn_cxt theory_name takes the named theory and checks it for theorems, definitions and axioms that could be used for creating proof context entries used by $z_{-}\in u_{-}conv$.

A theorem is checked by canonicalising it, and accepting those resulting theorems that are equations between an expression that is not \mathbb{U} , and \mathbb{U} . Those that can be so used are processed by thm_-eqn_-cxt and then added to the equational context being generated.

Uses This function is primarily intended for the automatic extraction and processing of the given set and free type definitions of a theory, when building a proof context for a particular theory.

Note that equational contexts can be joined using list append, @.

```
See Also u\_simp\_eqn\_cxt, set\_u\_simp\_eqn\_cxt
```

Errors As the failures of get_defn .

 $\begin{vmatrix} val & \mathbf{u}_{-}\mathbf{simp}_{-}\mathbf{eqn}_{-}\mathbf{cxt} : THM & list -> EQN_{-}CXT; \end{vmatrix}$

Description $u_simp_eqn_cxt$ thms takes each member of thms, and checks and then processes it for use in creating proof context entries used by $z_\in_u_conv$.

The check is that each theorem is canonicalised with the current proof context's canonicalisation function. For each resulting theorem, if it is a universally quantified equation of sets then it is processed by thm_-eqn_-cxt and added into the created equational context. If it is not equation of sets the theorem is ignored.

Uses This function is primarily intended to aid the construction of proof contexts containing \mathbb{U} simplification material.

Note that equational contexts can be joined using list append, @.

See Also $theory_u_simp_eqn_cxt$, $set_u_simp_eqn_cxt$

```
| val z_basic_prove_conv : THM list -> CONV;
```

Description This is the conversion used for the automatic proof conversion (pr_tac field) of most supplied proof contexts, and is a reasonable, general-purpose, automatic proof conversion. It will either prove the theorem with the given conclusion, or fail.

In summary it will:

- 1. Set the term as the goal of the subgoal package (or, more exactly, tac_proof).
- 2. Attempt to rewrite the term with the current default rewrite rules and given theorems.
- 3. Repeatedly apply $strip_tac$ to the goal.
- 4. Attempt variable elimination, using all_var_elim_asm_tac.
- 5. In all resulting goals replace all Z quantifiers by their HOL equivalents in both assumptions and goal.
- 6. Apply $all_asm_fc_tac$ once to each resulting goal.
- 7. Attempt to prove the resulting goals with resolution for up to 3 resolution steps, with goal's negated conclusion as a resolvant that must be used, and the assumptions as possible other resolvants.
- 8. Attempt to prove the resulting goals with resolution for up to 3 resolution steps amongst just the assumptions.
- 9. If the proof is successful, return $\vdash term \Leftrightarrow T$ and otherwise fail.

Note that in the stripping step may result in more than one subgoal, and thus the phrase "resulting goals" is used above.

Under the current interface to resolution this is equivalent to:

```
 fun \ z\_basic\_prove\_conv \ thms \ tm = \\ \Leftrightarrow\_t\_intro \ (\\ tac\_proof(([],tm),\\ TRY\_T \ (rewrite\_tac \ thms) \ THEN \\ REPEAT \ strip\_tac \ THEN \\ TRY\_T \ all\_var\_elim\_asm\_tac \ THEN \\ (z\_quantifiers\_elim\_tac \ THEN \\ basic\_res\_tac2 \ 3 \ [\vdash \ \forall \ x \ \bullet \ x = x] \\ ORELSE\_T \ basic\_res\_tac3 \ 3 \ [\vdash \ \forall \ x \ \bullet \ x = x])) \\ );
```

In the implementation however, partial evaluation with just the theorems is allowed.

Errors

76001 Could not prove theorem with conclusion ?0

```
| val z_basic_prove_tac : THM list -> TACTIC;
```

Description This is the tactic used for the automated proof tactic (the pr_tac field) of most supplied Z proof contexts, and is a reasonable, general-purpose, automatic proof tactic for Z.

In summary it will:

- 1. Attempt variable elimination, using all_var_elim_asm_tac.
- 2. Extract the assumption list, rewrite each extracted assumption with the current default rewrite rules and given theorems, and strip the results back into the assumption list.
- 3. Attempt to rewrite the conclusion of the resulting goal with the current default rewrite rules and given theorems.
- 4. Repeatedly apply *strip_tac* to the conclusions of the resulting goals.
- 5. Again attempt variable elimination, using all_var_elim_asm_tac.
- 6. In all resulting goals replace all Z quantifiers by their HOL equivalents in both assumptions and goal. This has no effect on any resulting goal if it is unsolved.
- 7. Apply $all_asm_fc_tac$ once to each resulting goal.
- 8. Attempt to prove each of the resulting goals with resolution for up to 3 resolution steps, with goal's negated conclusion as a resolvant that must be used, and the assumptions as possible other resolvants. This has no effect on any resulting goal if it is unsolved.
- 9. Attempt to prove each of the resulting goals with resolution for up to 3 resolution steps amongst just the assumptions. This has no effect on any resulting goal if it is unsolved.

Note that either stripping step may result in more than one subgoal, and thus the plural "resulting goals".

Under the current interface to resolution this is

```
\begin{vmatrix} val \ \mathbf{Z}_{-}\mathbf{DECL}_{-}\mathbf{C} : CONV -> CONV; \end{vmatrix}
```

Description Z_DECL_C applies the supplied conversion to each member of a declaration and returns the conjunction of the results. It fails if its conversion fails on any member of the declaration.

```
|fun\ z\_decl\_pred\_conv| = Z\_DECL\_C\ z\_dec\_pred\_conv;
```

will convert a valid Z declaration into its implicit Z predicate.

Errors

47912 ?0 is not a Z declaration

41012 Supplied conversion failed on one or more members of ?0

```
|val \ \mathbf{Z_DECL\_INTRO_C} : CONV \rightarrow CONV;
```

Description $Z_DECL_INTRO_C$ applies the supplied conversion to each conjunct of a predicate, flattening the conjunctive structure. If this is successful, it attempts to produce a declaration from the results.

 $Z_DECL_INTRO_C$ $z_pred_dec_conv$ will convert certain Z predicates into Z declarations implicitly containing the predicates, and otherwise will fail.

```
Errors
```

```
41013 ?0 not of the form: \lceil \text{true} \rceil or \lceil \text{c}_1 \land ... \rceil where all the c_i may have the supplied conversion applied 41014 ?0 when converted to ?1 cannot be viewed as a declaration
```

The conversion fails if the supplied conversion fails on any conjunct, returning the error message of that conversion application.

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{decl_pred_conv} : CONV; \end{vmatrix}$

Description A conversion which rewrites an explicit Z declaration (i.e. a decl) to its implicit predicate. An Z declaration may be found, e.g., as a component of a Z horizontal schema. A declaration consists of a list of components (each a dec), that are individually converted into predicates, and the results conjoined. The predicate implicit in a declaration, D, is also sometimes referred to as the "predicate from D".

The function is defined much as if by the following:

Definition

 $|val\ z_decl_pred_conv| = Z_DECL_C\ z_dec_pred_conv;$

Thus the handling of the individual declarations is as shown in the following examples:

Conversion
$$\begin{array}{c} z_{decl_pred_conv} \\ \hline \vdash_{\text{ML}} \underline{decl_of_{\mathbb{Z}}[x:X;\ y,\ z:\ Y;\ S]} \neg \Rightarrow \\ x \in X \ \land \ \{y,\ z\} \subseteq Y \ \land \ S \end{array} \qquad \begin{array}{c} z_{decl_pred_conv} \\ (decl_of_{\mathbb{Z}}[x:X;\ y,\ z:\ Y;\ S] \neg) \end{array}$$

and

Note that a declaration on its own is not a Z expression, though it may be correctly embedded within certain forms of Z expressions.

See Also $z_dec_pred_conv$

Errors

47912 ?0 is not a Z declaration

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{dec}_{-}\mathbf{pred}_{-}\mathbf{conv} : CONV; \end{vmatrix}$

Description A conversion which rewrites a *dec* part of a declaration to its implicit predicate. A *decsexp* type of declaration remains unchanged (since *decsexp* and *predsexp* are, in fact, the same thing).

$$\begin{array}{c} \text{Conversion} \\ \hline \\ & - \text{ML} m k_- z_- dec(\lceil \overline{z} x \rceil, \overline{z} X \rceil) \rceil \Leftrightarrow x \in X \\ \hline \text{and} \\ \\ \text{Conversion} \\ \hline \\ & - \text{ML} m k_- z_- dec(\lceil \overline{z} x \rceil, \overline{z} X \rceil) \rceil \Leftrightarrow \\ \hline \\ & - \text{ML} m k_- z_- dec(\lceil \overline{z} x \rceil, \dots], \overline{z} X \rceil) \rceil \Leftrightarrow \\ \hline \\ & x_1, \dots \} \subseteq X \\ \\ \text{and} \\ \\ \text{Conversion} \\ \end{array}$$

 $\vdash S \Leftrightarrow S$

where S is a schema (here promoted to a predicate). In this last case if the schema as predicate expression is not well-formed Z (perhaps because of substitution of variables) the result will be further converted to correct Z of the form:

 $z_dec_pred_conv$

 $binding \in schema$

Note that a declaration on its own is not a Z expression, though it may be correctly embedded within certain forms of Z expressions.

See Also $z_pred_dec_conv$

Error

41010 ?0 is not a declaration

```
| val \ \mathbf{z_-fc_-prove\_conv} : THM \ list -> CONV
| Description This is the automatic proof conversion supplied in the proof context 'z\_fc. It is based on the automatic proof tactic z\_fc\_prove\_tac, q.v., and is defined, in effect as:

| fun \ z\_fc\_prove\_conv \ (thms: THM \ list) : CONV = (fn \ tm => \Leftrightarrow \_t\_intro \ (tac\_proof(([],tm), z\_fc\_prove\_tac \ thms)) | );
```

Description The resolution-based proof procedure $z_basic_prove_tac$ supplied as the automatic proof tactic in many of the the proof contexts for Z may be found to be somewhat slow on complex problems. $z_fc_prove_tac$ supplies a less general but quicker alternative based on forward chaining (in the sense of fc_tac . It is supplied as the automatic proof tactic field in the proof context $'z_fc$. Its effect may be described as follows:

- 1. Attempt variable elimination, using all_var_elim_asm_tac.
- 2. Extract the assumption list, rewrite each assumption as it is extracted with the current default rewrite rules and given theorems, and strip the results back into the assumption list.
- 3. Attempt to rewrite the conclusions of the resulting goals with the current default rewrite rules and the argument theorems.
- 4. Apply contr_tac.
- 5. Again attempt variable elimination, using all_var_elim_asm_tac.
- 6. In all resulting goals replace all Z quantifiers by their HOL equivalents.
- 7. Apply $all_asm_fc_tac$.
- 8. Generate (universally quantified) implications from the assumptions using the canonicalisation function fc_canon1 . The go through three forward chaining passes (in the sense of fc_tac) using these implications as a starting point. At the end of each pass any generated results are both stripped into the assumptions and processed with fc_canon1 to be passed on as additional implications for the subsequent pass.

For example, the tactic will prove the following goal:

```
([], []
(\forall x1 : \mathbb{Z} \bullet x1 \in A \Rightarrow x1 \in B) \land
(\forall x1 : \mathbb{U}; x2 : \mathbb{U} \bullet (x1, x2) \in B \lhd x \Leftrightarrow (x1, x2) \in B \lhd x') \land
x1 \in A \land
x1 \in \mathbb{Z} \land
(x1, x2) \in x \Rightarrow (x1, x2) \in x'
(x1, x2) \in x \Rightarrow (x1, x2) \in x'
```

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{gen}_{-}\mathbf{pred}_{-}\mathbf{elim} : TERM \ list -> THM -> THM; \\ val \ \mathbf{z}_{-}\mathbf{gen}_{-}\mathbf{pred}_{-}\mathbf{elim1} : TERM -> THM -> THM; \end{vmatrix}$

Description Eliminate (some of) the generic formals of a generic predicate for actual values. If possible, the theorem will be type instantiated to allow generic formals to match the types of the supplied *TERM list*, otherwise the rule fails.

$$\begin{array}{c|c} & & \Gamma \vdash [X1,\ldots] \ (t[X1,\ldots]) & & z_gen_pred_elim \\ \hline & & \Gamma \vdash t[t1,\ldots] & & [t1,\ldots] \end{array}$$

 $z_gen_pred_elim1$ is just like $z_gen_pred_elim$ except that its argument is a term rather than a list of terms. $z_gen_pred_elim1^{\Gamma}_{\mathbb{Z}}(t1, \ldots)^{\Gamma}$ is equivalent to $z_gen_pred_elim[^{\Gamma}_{\mathbb{Z}}t1^{\Gamma}, \ldots]$; if the term argument, t, is not a Z tuple, $z_gen_pred_elim1^{\Gamma}_{\mathbb{Z}}t^{\Gamma}$ is equivalent to $z_gen_pred_elim[^{\Gamma}_{\mathbb{Z}}t^{\Gamma}]$. The advantage of $z_gen_pred_elim1$ is that in a call such as $z_gen_pred_elim1^{\Gamma}_{\mathbb{Z}}(\mathbb{U}, \mathbb{U}, \mathbb{U})^{\Gamma}$, the Z type inferrer can assign a more general type to the occurrences of U than it does in the call $z_gen_pred_elim[^{\Gamma}_{\mathbb{Z}}\mathbb{U}^{\Gamma}, ^{\Gamma}_{\mathbb{Z}}\mathbb{U}^{\Gamma}, ^{\Gamma}_{\mathbb{Z}}\mathbb{U}^{\Gamma}]$.

Errors

41034 ?0 is not of the form: ${}_{\mathbf{Z}}\Gamma \vdash [X1,...]t {}^{\mathsf{T}}$ where there are sufficient Xi to match the supplied term list

 $|val \ \mathbf{z}_{-}\mathbf{gen}_{-}\mathbf{pred}_{-}\mathbf{intro}: TERM \ list \rightarrow THM \rightarrow THM;$

Description Introduce a list of generic formals. The TERM list argument is of variables. Their types will be ignored, they are replaced by the variables $\sum var \stackrel{\oplus}{\oplus} \mathbb{P} var^{\neg}$.

Errors

|3007| ?0 is not a term variable

6005 ?0 occurs free in assumption list

 $|val \ \mathbf{z_-gen_-pred_tac} : TACTIC;$

Description A tactic to eliminate generic predicates.

Errors

| 41035 conclusion of goal is not of the form $\mathbb{Z}[X1,...]$ t

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{gen}_{-}\mathbf{pred}_{-}\mathbf{u}_{-}\mathbf{elim} : THM -> THM; \end{vmatrix}$

Description Substitute $\mathbb U$ for each of the generic formals of a generic predicate.

Each occurrence of $\mathbb U$ is instantiated to the same type as the corresponding generic formal parameter.

```
\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{get}_{-}\mathbf{spec} : TERM -> THM; \end{vmatrix}
```

Description This function returns the specification of a constant, based on its definiting theorem and, if one can be found, a consistency theorem. The defining theorem may have been created by Z paragraph processing, new_axiom , or a HOL definitional mechanism. This function should be the Z user's interface to definitional theorems, as $get_spec(q.v.)$ is for the HOL user.

 $z_get_spec \ \$ const $\ \$ will find the (first) definition or axiom in scope stored under key "name of const", in the theory in which the in-scope constant named const was defined. A definition will be taken in preference to an axiom in the same theory. $z_get_spec \ \ \$ const t1 t2 ... \(\) (i.e. a constant applied to an arbitrary number of arguments in HOL) will act as $z_get_spec \ \ \ \$ const $\ \ \ \$ This choice is made in the assumption that a naming convention has been followed that such a definition (or axiom) should be the definition of the constant named const. This convention has been followed throughout the implementation of ProofPower. In addition, there can only be one definition of a particular constant in scope (though the conventional key might be used elsewhere, or not at all). If there is no such constant in scope, or no definition with the given key, then the function fails.

If the definitional theorem is of the form:

```
\vdash ConstSpec \ p \ c
```

(i.e. its introduction requires a consistency assumption) the function will seek for a theorem or axiom stored with key *const* ^ "_consistent", starting at the theory in which the definition was found, and working "out" to the current theory. If conventions have been followed this theorem should be of the form:

```
\Gamma \vdash Consistent \ p
```

(Ideally there should be no assumptions in the theorem, but the function caters for their presence.) If a theorem of this form is found then the theorem:

```
|\beta_rule '\Gamma \vdash p c'
```

is formed. If not, then the theorem:

```
|\beta_rule 'Consistent p \vdash p c'
```

is formed. In all of the above cases, (i.e. with or without ConstSpec), the theorem formed is checked to see whether it is the definiton formed from processing a Z paragraph. If so, then the conclusion of the theorem is converted into a predicate (by $z_para_pred_conv$), and then returned as the result of z_get_spec . If not, then the theorem is returned without further processing as result of z_get_spec .

```
Errors
```

```
46005 There is no constant with name ?0 in scope
46006 There is no definition or axiom with key ?0 in
the declaration theory of the constant
46009 ?0 is not a constant, or a constant applied to some arguments
```

 $|val \ \mathbf{z_{-intro_gen_pred_tac}}|$ $|val \ \mathbf{z_{-intro_gen_pred_tac}}|$ $|val \ \mathbf{z_{-intro_gen_pred_tac}}|$ $|val \ \mathbf{z_{-intro_gen_pred_tac}}|$ $|val \ \mathbf{z_{-intro_gen_pred_tac}}|$

Description A tactic to introduce a generic predicate as the goal. The term list argument pairs is of a term and a variable (that is appropriate to be a generic formal), with the same set type i.e. the second is of the form \sqrt{var} . $\mathbb{P}'var^{\gamma}$.

where either $t_{-}i$ is the same as $X_{-}i$, or $X_{-}i$ does not appear free in the conclusion, t[t1,...], of the original goal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the original goal was provable.

Errors

28082 ?0 does not appear free in the goal

28083 ?0 appears free in the goal and is not the same as ?1

41036 ?0 does not have the same type as ?1

 $|val \ \mathbf{z_{-intro_{-}}} \forall_{-} \mathbf{tac} : TERM -> TACTIC;$

Description Introduce a Z universal with reference to a binding.

Errors

|41029| ?0 cannot be interpreted to be of the form: $\overline{z}(x_1 = t_1, ...)$

 $\begin{vmatrix} val & \mathbf{z_para_pred_canon} : CANON; \\ val & \mathbf{z_para_pred_conv} : CONV; \end{vmatrix}$

Description This canonicalisation function and conversion change Z paragraphs to Z predicates. This change is also the one z_get_spec does, where appropriate.

Some paragraphs entered by the Z parser have "markers" applied to the rest of the theorem body to indicate their origin (i.e. the kind of paragraph). In addition the form of the term is likely to have a an explicit declaration as the left conjunct, rather than a "predicate implicit in a declaration". $z_para_pred_canon$ is a canonicalisation function that removes these markers and converts, if present, a left conjunct declaration as $z_decl_pred_conv$ would; $z_para_pred_conv$ is a conversion that has the equivalent effect.

The following are instances in which markers are used:

Constraint Definitions
Free Type Definitions
Given Set Definitions
Axiomatic Definitions
Schema Boxes
Abbreviation Definitions

Example

If the following is entered:

$$\begin{aligned}
& = [X, Y] = \\
& | Ex : \mathbb{P}(X \times Y) \\
& | - - - - - \\
& | Ex = \{\} \\
& - - - - - -
\end{aligned}$$

z_para_pred_canon given the defining theorem, returns a singleton list containing:

```
\vdash \vdash \vdash X Y \bullet \vdash Ex[X, Y] \in \mathbb{P}(X \times Y) \land Ex[X, Y] = \{\} \vdash \vdash
```

Both functions remain within the Z language, though this is not checked, with the caveat on HOL universals representing generic formals.

Error

```
41080 No Z markers found applied to conclusion body of ?0
41082 No Z markers found applied to body of ?0
```

 $|val \ \mathbf{z_pred_decl_conv}: CONV;$

Description A conversion which, given a predicate comprising a conjunction of the forms recognised by $z_pred_dec_conv$, rewrites the predicate as a declaration,

The function is defined much as if by the following:

Definition

 $|val\ z_pred_decl_conv| = Z_DECL_INTRO_C\ z_dec_pred_conv;$

Thus the handling of the conjuncts is as shown in the following examples:

and

Conversion

See Also $z_{-}decl_{-}pred_{-}conv$

Errors

41011 ?0 cannot be rewritten to a declaration

 $|val \ \mathbf{z_-pred_dec_conv}| : CONV;$

Description A conversion which, given a certain form of predicate, rewrites the predicate as the dec component of a declaration. This acts as an inverse to the conversion $z_dec_pred_conv$, the four forms recognised being as shown below:

where the x must be variable, and

 $\begin{array}{c|c} & z_{-pred_dec_conv} \ \overline{\zeta}\{x_1, \ldots\} \subseteq X \Leftrightarrow \\ & \xrightarrow{\text{ML}} mk_{-}z_{-}dec(\overline{\zeta}x^{\gamma}, \ldots], \overline{\zeta}X^{\gamma})^{\gamma} \end{array}$

where the x_i must be variables, and

and

See Also $z_-dec_-pred_-conv$

Errors

41011 ?0 cannot be rewritten to a declaration

```
|val \ \mathbf{z_push\_consistency\_goal}: TERM -> unit;
```

Description $z_push_consistency_goal\ \ \ \ const\ \ \$ will first determine the specification theorem of const, by executing z_get_spec . The const may either be a constant, or a constant applied to a list of arguments. If this theorem has an assumption, it will then push that specification assumption onto the stack of subgoals (using $push_subgoal$, q.v.), as a goal with no assumptions. By how z_get_spec is designed, this (single) assumption will be of the form:

```
\lceil Consistent \ (\lambda \ vs[x1,...,xn] \bullet p[x1,...,xn]) \rceil
```

or the consistency has already been proven, and saved, under some assumptions. Only in the former case will the function continue: it will apply a tactic (that may be undone by undo) which rewrites the goal to:

```
|([], \exists D[x1,...,xn] \bullet p[x1,...,xn] \neg)
```

where D is a declaration of the variables, x1,...xn representing the existence witnesses of the n constants declared in one paragraph. Otherwise, if the definition involves generic formals:

```
|([], [\exists D[x1,...,xn] \bullet p[x1,...,xn]])|
```

If not, the function fails.

See Also save_consistency_thm to save the result in a conventional manner.

```
46005 There is no constant with name ?0 in scope
46006 There is no definition or axiom with key ?0 in
the declaration theory of the constant
46007 Specification of ?0 is not of the form: 'Consistent (λ vs[x1,...,xn]•p[x1,...,xn]) ⊢ ...'
46009 ?0 is not a constant, or a constant applied to some arguments
```

```
\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{quantifiers}_{-}\mathbf{elim}_{-}\mathbf{tac} : TACTIC; \end{vmatrix}
```

Description This tactic eliminates all Z \forall , \exists and \exists_1 quantifiers in both conclusion and assumptions, in favour of HOL \forall and \exists , using $z_-\forall_-elim_-conv2$, $z_-\exists_-elim_-conv2$, $z_-\exists_1_conv1$. All declarations introduced will be converted to their implicit Z predicates, and the following simplifications also done throughout:

```
\begin{bmatrix}
z\{x,y,...\} \subseteq s & ---> x \in s \land y \in s \land ... \\
(* only when the set display contains just variables *)
\end{bmatrix}

\begin{bmatrix}
z \times \wedge true & ---> x \\
z true \wedge x & ---> x
\end{bmatrix}

\begin{bmatrix}
z \times \Rightarrow true & ---> true
\end{bmatrix}
```

All assumptions will be stripped back into the assumption list, regardless of whether they were modified, using the current proof context.

This is done to prepare for some further processing, such as resolution. The result is unlikely to be in the Z language It has no effect (rather than failing) if there are no conversions to be done.

Uses Intended for implementing automated proof procedures.

 $\begin{vmatrix} val \ \mathbf{z_{-schema_pred_conv1}} : CONV; \end{vmatrix}$

Description Convert an ill-formed schema as a predicate expression into a statement of a binding being a member of the schema. The input expression is ill-formed if it is of the form

 $|Z'SchemaPred\ bind\ schema$

where *bind* is not equal to $\Sigma \theta$ schema.

Uses In correcting the results of functions that leave Z because of substituting into the binding portion of a schema as predicate. In particular, in the proof context "'z_predicates".

Errors

|41018 ?0 is not an ill-formed schema as predicate expression

 $|val \ \mathbf{z}_{-}\mathbf{setd}_{-} \subseteq \mathbf{conv} : CONV$

Description Expand out expressions that state that a set display is a subset of some other set. This is particularly aimed at processing declarations of the form $x_1,...,x_n:X$.

and

The conversion will all simplify certain subterms involving true or terms of the form x = x.

See Also $z_setd_\in \mathbb{P}_conv$

Errors

|41017|?0 is not of the form: $\mathbb{Z}\{x_1,...\}\subseteq X^{\neg}$

```
| val z_spec_asm_tac : TERM -> TERM -> TACTIC; | val z_spec_nth_asm_tac : int -> TERM -> TACTIC;
```

Description These are two methods of specialising a Z universally quantified assumption. Both leave the old assumption in place, and place the instantiated assumption onto the assumption list using $strip_asm_tac$. If the desired behaviour differs from any of those supplied then use GET_ASM_T and its cousins, with z_\forall_elim , to create the desired functionality.

Tactio

where D', P'_1 and P'_2 are specialised, and if necessary have bound variable renaming done, appropriately. Remains within the Z language (though failure to do this will be reported to be from $z_-\forall_- elim$).

 $z_spec_nth_asm_tac$ uses an assumption number rather than an explicit statement of the assumption to be specialised.

Errors As the constituents of the implementing functions (e.g. GET_ASM_T and z_\forall_elim).

```
| val z_term_of_type : TYPE -> TERM; | val z_type_of : TERM -> TERM;
```

Description $z_term_of_type\ ty$ is a term denoting the set of all elements of the type ty. The term is constructed using $mk_z = \mathbb{P}$, $mk_z = \mathbb{N}$, $mk_z = \mathbb{N}$, $mk_z = \mathbb{N}$, $mk_z = \mathbb{N}$, and the relation symbol $mk_z = \mathbb{N}$ in order to display the structure of the type in a Z-like way. $mk_z = \mathbb{N}$ is used when all else fails.

For example:

```
 \begin{vmatrix} z_{-}term_{-}of_{-}type(type_{-}of\ \overline{z}\langle 1,\ 2,\ 3\rangle^{\neg}) &= \overline{z}\mathbb{Z} \leftrightarrow \mathbb{Z}^{\neg} \\ z_{-}term_{-}of_{-}type(type_{-}of\ \overline{z}\langle 1,\ 2,\ 3\rangle^{\neg}) &= \overline{z}\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}^{\neg} \\ z_{-}term_{-}of_{-}type(type_{-}of\ \overline{z}\langle 1,\ 2,\ 3\rangle^{\neg}) &= \overline{z}\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}^{\neg} \\ z_{-}term_{-}of_{-}type(type_{-}of\ \overline{z}\langle a=1,\ b=2,\ c=3\rangle^{\neg}) &= \overline{z}a,\ b,\ c:\mathbb{Z}^{\neg} \\ z_{-}term_{-}of_{-}type(type_{-}of\ \overline{z}\langle 1,\ 2,\ 3\rangle^{\neg}) &= \overline{z}\mathbb{U}^{\neg} \end{aligned}
```

Note that the quotation in the last example contains an HOL list display, the type of which, namely $\lceil : \mathbb{N} \ LIST \rceil$, lies outside the representation of the Z type system in HOL.

 z_{type} of returns the set of all elements of the (HOL) type of a particular term.

```
Definition
```

```
|val\ z\_type\_of = z\_term\_of\_type\ o\ type\_of;
```

 $|val \mathbf{z}_{-} \in \mathbf{setd}_{-}\mathbf{conv} : CONV;$

Description A conversion of membership of a Z set display into equality with a member of the set.

Conversion

See Also $z_{-} \in setd_{-}conv1$

Error

|41015| ?0 is not of the form: $[x \in \{t1,...\}]$

41016 ?0 is an ill-formed fragment of the membership of a set display

```
\begin{vmatrix} val & \mathbf{z}_{-} \in \mathbf{u}_{-} \mathbf{conv} : CONV; \end{vmatrix}
```

Description Simplifies to *true* a predicate of the forms: $[x \in S[\mathbb{U}]]$, $[x \in S[\mathbb{U}]]$ or a schema as a predicate: $[a,b:S[\mathbb{U}]; c:S'[\mathbb{U}]; ...]$, where $S[\mathbb{U}], S'[\mathbb{U}], ...$ are structures that can be simplified to \mathbb{U} . This uses the application of the built-in simplifications listed below, and conversions held in the "icl'u_simp" entry of the dictionary of nets field of the current proof context (the built-in's taking precedence).

The conversion starts with the structure $S[\mathbb{U}]$ above. It will attempt to recursively prove equal to \mathbb{U} : the argument to \mathbb{P} , the constituent sets of a cartesian tuple, the types of a declaration part of a set abstraction with a true predicate, and the types of a declaration part of a horizontal schema with a true predicate. If it can do so it will then use:

```
 \begin{array}{l} \vdash \mathbb{P} \ \mathbb{U} = \mathbb{U} \\ \vdash (\mathbb{U} \times \mathbb{U} \times ...) = \mathbb{U} \\ \vdash \{lab1 : \mathbb{U}; \ lab2 : \mathbb{U}; \ lab3, lab4 : \mathbb{U}; \ ... \ \} = \mathbb{U} \\ \vdash [lab1 : \mathbb{U}; \ lab2 : \mathbb{U}; \ lab3, lab4 : \mathbb{U}; \ ... \ ] = \mathbb{U} \end{array}
```

to prove the set equal to \mathbb{U} . If it cannot complete the above proof it will use the first applicable conversion of the "icl'u_simp" entry of the dictionary of nets field of the current proof context, and then return to attempting to use the built-in algorithm.

If the set has been reduced to \mathbb{U} the conversion will prove the input term true. If the expression cannot be proven the conversion fails.

Uses For stripping in proof contexts, and in eliminating redundant declarations that have been converted to the predicates implicit in them.

See Also $u_simp_eqn_cxt$, $theory_u_simp_eqn_cxt$, and $set_u_simp_eqn_cxt$ for creating appropriate proof contexts.

```
\begin{vmatrix} val \ \mathbf{z}\_\neg\_\mathbf{gen}\_\mathbf{pred}\_\mathbf{conv} : CONV; \end{vmatrix}
```

Description Convert a negated generic predicate (which is not legal Z) into an existentially quantified negation (and therefore into Z).

Uses In stripping for repaired the effects of, e.g., contr_tac.

Errors |41031|? 0 is not of the form: $\neg \neg \neg [X1,...]$ pred

```
|val \mathbf{z}_{-}\neg_{-}\mathbf{in}_{-}\mathbf{conv}: CONV;
```

Description This is a conversion which moves an outermost negation inside other Z predicate calculus connectives using whichever of the following rules applies:

```
\neg \neg t
                                                  †
\neg(t1 \land t2)
                                                  \neg t1 \lor \neg t2
                                     =
\neg(t1 \lor t2)
                                     =
                                                  \neg t1 \wedge \neg t2
\neg(t1 \Rightarrow t2)
                                    =
                                                  t1 \wedge \neg t2
\neg(t1 \Leftrightarrow t1)
                                                  false
                                   =
                                                  (t1 \land \neg t2) \lor (t2 \land \neg t1)
\neg(t1 \Leftrightarrow t2)
                                  =
\neg(t1 = t1)
                                  =
                                                  false
\neg(\forall D \mid P \bullet V)
                                                 \exists D \mid P \bullet \neg V
                                    =
\neg(\exists D \mid P \bullet V)
                                  =
                                                 \forall D \mid P \bullet \neg V
\neg(\exists_1 \ D|P \bullet \ V)
                                                 \forall D|P \bullet \neg (V \land \forall D'|P' \bullet V' \Rightarrow D = D')
                                                  false
\neg true
                                     =
\neg false
                                                  true
```

Uses Tactic and conversion programming.

```
|val \ \mathbf{z}_{-} \neg_{-} \mathbf{rewrite}_{-} \mathbf{canon} : THM \ -> THM \ list
```

Description This is a canonicalisation function used for breaking theorems up into lists of equations for use in rewriting. It performs the following transformations:

```
 \begin{vmatrix} z_{\neg\neg rewrite\_canon} & (\Gamma \vdash \neg(t1 \lor t2)) & = (\Gamma \vdash \neg t1 \land \neg t2) \\ z_{\neg\neg rewrite\_canon} & (\Gamma \vdash \neg \exists D \mid P \bullet V) & = (\Gamma \vdash \forall D \mid P \bullet \neg V) \\ z_{\neg\neg rewrite\_canon} & (\Gamma \vdash \neg \neg t) & = (\Gamma \vdash t) \\ z_{\neg\neg rewrite\_canon} & (\Gamma \vdash \neg t) & = (\Gamma \vdash t \Leftrightarrow false) \end{vmatrix}
```

Remains within the Z language, though this is not checked.

See Also $simple_\neg_rewrite_canon$, $simple_\forall_rewrite_canon$.

The area given by the failure will be fail_canon.

```
\begin{vmatrix} val & \mathbf{z}_{\neg} \neg \forall_{\neg} \mathbf{conv} : CONV; \\ val & \mathbf{z}_{\neg} \neg \exists_{\neg} \mathbf{conv} : CONV; \end{vmatrix}
```

Description $z_{\neg \neg} \forall \neg conv$ converts a negated Z universal quantification to a Z existential quantification.

Conversion

The dual is $z_{\neg \neg}\exists conv$:

These two functions remain within the Z language, though this is not checked.

Errors

```
| 41050 ?0 not of the form: \lceil \neg (\forall D \mid P_1 \bullet P_2) \rceil | 41051 ?0 not of the form: \lceil \neg (\exists D \mid P_1 \bullet P_2) \rceil
```

```
\begin{vmatrix} val \ \mathbf{z}_{-} \Rightarrow_{-} \mathbf{rewrite}_{-} \mathbf{canon} : CANON; \end{vmatrix}
```

Description This canonicalisation expects to be passed the canonicalisations of, e.g., a Z universal or the result of a $z_- \forall_- elim$. These are theorems of the form:

```
\vdash "predicate from D" \land P \Rightarrow V
```

In these cases it is intended to prove and discard "predicate from D" whose conjuncts can be proven true by $z_{-}\in u_{-}conv$ (q.v.), and a P that is identically true.

In fact, each conjunct of the antecedent of the supplied theorem will have $z_{-} \in u_{-}conv$ attempted upon it, the resulting antecedent will be rewritten with the theorems

```
 | \vdash \forall \ x : \mathbb{U} \bullet x \land true \Leftrightarrow x \\ \vdash \forall \ x : \mathbb{U} \bullet true \land x \Leftrightarrow x
```

and if the antecedent is thus proven true it will be discarded. Remains within the Z language, though this is not checked.

```
Errors
```

```
| 41083 ?0 is not of the form: \Gamma \vdash P \Rightarrow Q | 41084 caused no change with ?0
```

```
\begin{vmatrix} val \ \mathbf{z}_{-} \forall_{-} \mathbf{elim_{-}conv1} : CONV; \end{vmatrix}
```

Description Turn a Z universally quantified predicate into a HOL universally quantified term, eliminating the declaration part of the original quantification using $z_{-} \in u_{-} conv$. The function fails if the declaration cannot be eliminated.

$$\begin{array}{c|c} & z_{\text{-}} \forall \text{-}elim_{\text{-}}conv1 \\ \hline & \vdash (\forall D[x_1,...] \mid P_1 \bullet P_2) \Leftrightarrow & \quad & \\ & \vdash \forall x_1 \dots \bullet {}_{\overline{z}} P_1 \Rightarrow P_2 {}^{\neg \neg} & & & \quad & \quad & \quad & \\ \end{array}$$

The order of the resulting universally quantified variables will be in a sorted order, rather than what the declaration part might suggest.

Simplifications based on P_i being true or false will also be applied.

If there are no quantified variables and the declaration is D[], the HOL universal quantification is not generated.

Remains within the Z language (with the caveat of using outer HOL universal quantification).

Uses For stripping in proof contexts.

See Also $z_-\forall_-elim_-conv2$ and $z_-\forall_-elim_-conv$

Errors

```
\begin{bmatrix} 41022 & ?0 \text{ is not of the form: } & \forall D \mid P_1 \bullet P_2 \end{bmatrix}
\begin{bmatrix} 41071 & ?0 \text{ is of the form: } & \forall D \mid P_1 \bullet P_2 \end{bmatrix} but could not eliminate D
```

```
\begin{vmatrix} val \ \mathbf{z}_{-} \forall_{-}\mathbf{elim}_{-}\mathbf{conv2} : CONV; \\ val \ \mathbf{z}_{-} \forall_{-}\mathbf{intro}_{-}\mathbf{conv1} : CONV; \end{vmatrix}
```

Description $z_\forall_elim_conv2$ turns a Z universally quantified predicate into a HOL universally quantified term. The result fails to be in the Z language because it contains a declaration used in a position requiring a predicate, which Z does not allow.

The order of the resulting universally quantified variables will be in a sorted order, rather than what the declaration part might suggest.

 $z_{-}\forall intro_conv1$ undoes this process, returning a theorem whose RHS should be in the Z language.

If there are no quantified variables and the declaration is D[], the HOL universal quantification is not generated by $z_\forall_elim_conv2$ nor expected by $z_\forall_intro_conv1$.

Uses Used in the Z form of $strip_tac$, and handling negations with quantifiers. It will handle paired quantifiers, and quantifiers in any order, so long as the quantifiers and declaration can be matched in names and types.

See Also $z_{\neg} \forall_{\neg} elim_{\neg} conv1$, $z_{\neg} \forall_{\neg} elim_{\neg} conv$, $z_{\neg} \forall_{\neg} intro_{\neg} conv$

```
41022 ?0 is not of the form: [\exists \forall \ D \mid P_1 \bullet P_2] 41023 ?0 is not of the form: [\forall \ x_1 \dots \bullet \ Decl \land P_1 \Rightarrow P_2] 41024 ?0 is not of the form: [\forall \ x_1 \dots \bullet \ Decl \land P_1 \Rightarrow P_2] where the [x_i] do not match the declaration
```

```
|val \ \mathbf{z}_{-} \forall_{-} \mathbf{elim}_{-} \mathbf{conv} : CONV;
```

Description Turn a Z universally quantified predicate into a HOL universally quantified term, converting the declaration part of the original quantification into its implicit predicate.

The order of the resulting universally quantified variables will be in a sorted order, rather than what the declaration part might suggest.

If there are no quantified variables and the declaration is D[], the HOL universal quantification is not generated.

Remains within the Z language (with the caveat of using outer HOL universal quantification).

```
Errors |41022\> ?0 is not of the form: {}_{\mathbf{Z}} \forall \ D \ | \ P_1 \bullet \ P_2 {}^{\lnot}
```

 $|val \ \mathbf{z}_{-} \forall_{-} \mathbf{elim} : TERM -> THM -> THM;$

Description Specialise the variables introduced by a Z universally quantifier to given values of the right type, the values being taken from a binding.

$$\begin{array}{c|c} & \Gamma \vdash \forall \ D[x_1,\ldots] \mid P_1[x_1,\ldots] \bullet \ P_2[x_1,\ldots] \\ \hline & \Gamma \vdash "predicate \ from \ D'[t_1,\ldots]" \\ & \land P'_1[t_1,\ldots] \Rightarrow P'_2[t_1,\ldots] \end{array} \quad \begin{array}{c} z_- \forall_- elim \\ \overline{z}(x_1 \ \widehat{=} \ t_1, \ \ldots) \\ \hline \end{array}$$

where D is a declaration that binds the x_i , that is converted to its implicit predicate by $z_decl_pred_conv$. The theorem may be type instantiated or require bound variable renaming to allow the specialisation to be valid, thus the priming in the result.

If both the supplied binding and the declaration are recognisably "empty" then the universal quantification will be eliminated.

If instead the theorem's conclusion has a single universally quantified variable and the theorem can be type instantiated to match the supplied argument, then that supplied argument will be used directly.

If neither of the above apply then the supplied binding may instead be anything else that has an appropriate binding type. In such cases projection functions will be used:

$$\frac{\Gamma \vdash \forall \ D[x_1,...] \mid P_1[x_1,...] \bullet \ P_2[x_1,...]}{\Gamma \vdash "predicate \ from \ D[t.x_1,...]" \land} \qquad z_- \forall_- elim \\
P'_1[t.x_1,...] \Rightarrow P'_2[t.x_1,...]$$

See Also $z_{-}\forall_{-}elim_{-}conv2$

Error

47310 ?0 is not a Z universal quantification

41021 ?0 cannot be interpreted as a binding that matches ?1

 $\begin{vmatrix} val \ \mathbf{z}_{-} \forall_{-} \mathbf{intro1} : THM -> THM; \end{vmatrix}$

Description A rule to introduce a Z universal quantification. The variables to be quantified over must not occur free in the assumptions, and are determined from the form of the input theorem.

where "predicate from D" is converted to a declaration in which this predicate is implicit by $Z_DECL_INTRO_C$ $z_pred_dec_conv$.

An arbitrary conjunctive structure is allowed in "D as a predicate", including repeated bindings of single variables: only the ordering, as opposed to the nesting is significant in the conjunctive structure. The predicate *true* is converted to the empty declaration.

See Also $z_{-}\forall_{-}intro$ for implicit $x_{i} \in \mathbb{U}$ conjuncts, $all_{-}z_{-}\forall_{-}intro, z_{-}\forall_{-}intro_{-}conv1$.

Errors 6005 ?0 occurs free in assumption list 41026 ?0 not of the form ' Γ \vdash "predicate from D" \land $P_1 \Rightarrow P_2$ ' 41027 ?0 cannot be made into a declaration

 $|val \ \mathbf{z}_{-} \forall_{-} \mathbf{intro}_{-} \mathbf{conv} : CONV;$

Description $z_\forall_intro_conv$ converts an arbitrary simple HOL universally quantified term into the corresponding Z, returning a theorem whose RHS should be in the Z language (though this is not checked for).

$$\begin{array}{c|c} & z_{-} \forall z_{1} \dots \bullet P^{\neg} \Leftrightarrow \\ & (\forall x_{1} : \mathbb{U}; \dots \mid true \bullet P) \end{array}$$

This conversion cannot introduce a Z universal quantification with an empty declaration.

See Also $z_\forall_intro_conv1$

|41047> ?0 is not of the form: $\neg \forall x_1 \dots \bullet P \neg$

 $|val \ \mathbf{z}_{-} \forall_{-} \mathbf{intro} : TERM \ list -> THM -> THM;$

Description A rule to introduce a Z universal quantification. The variables to be quantified over must not occur free in the assumptions, and are determined from the variables from the supplied list.

 $\begin{array}{c|c} & \Gamma \vdash P_1 \Rightarrow P_2 & z_{\neg} \forall intrological \\ \hline & \Gamma \vdash \forall x_1 : \mathbb{U}; \dots \mid P_1 \bullet P_2 & [x_1, \dots] \end{array}$

or else:

An arbitrary conjunctive structure is allowed, including repeated bindings of single variables: only the ordering, as opposed to the nesting is significant in the conjunctive structure.

See Also $z_{\neg} \forall _intro1$ for use without additional $x_i \in \mathbb{U}$, $all_{\neg} z_{\neg} \forall _intro$, $z_{\neg} \forall _intro_conv1$.

Errors

3007 ?0 is not a term variable

6005 ?0 occurs free in assumption list

 $|val \ \mathbf{z}_{-} \forall_{-} \mathbf{inv}_{-} \mathbf{conv} : CONV;$

Description Simplifies a Z universal quantification whose predicate or constraint is invariant w.r.t. the free variables bound by the declaration.

if P_2 has no free variables bound by D, and

 $\begin{array}{c|c}
 & z_{-}\forall inv_conv \\
\hline
 & \vdash \forall D \mid P_1 \bullet P_2 \Leftrightarrow \\
 & P_1 \Rightarrow (\forall D \mid true \bullet P_2)
\end{array}$

if P_1 has no free variables bound by D, and

 $\begin{array}{c|c} & z_{-}\forall_{-}inv_{-}conv \\ \hline & \vdash \forall \ D \mid P_{1} \bullet \ P_{2} \Leftrightarrow \\ P_{1} \Rightarrow (\forall \ D \mid true \bullet \ false) \ \lor \ P_{2} \end{array}$

if both have no free variables bound by D. The appropriate simplification will be avoided where the predicate P_1 , is $\lceil true \rceil$ or the value, P_2 is $\lceil true \rceil$.

See Also $z_{-}\exists_{-}inv_{-}conv$

Errors |47310> ?0 is not a Z universal quantification |41025> ?0 is not of the form: ${}_{\mathbb{Z}}\forall$ $D\mid P_1\bullet P_2{}^{\neg}$ where at least one of P_1 or P_2 are unbound by D

 $\begin{vmatrix} val \ \mathbf{z}_{-} \forall_{-} \mathbf{rewrite}_{-} \mathbf{canon} : CANON; \end{vmatrix}$

Description Take a possibly Z universally quantified theorem and make it into, as far as possible, a HOL universally quantified theorem usable for rewriting.

$$\begin{array}{c} \Gamma \vdash {}_{\mathbb{Z}}(\forall \ D[x_1,\ldots] \mid P_1 \bullet P_2){}^{\neg} \\ \hline & [\Gamma \vdash {}^{\neg}\forall \ x_1 \ \ldots \bullet \\ & {}_{\mathbb{Z}}"predicate \ from \ D[x_1,\ldots]" \\ & \wedge P_1 \Rightarrow P_2{}^{\neg}{}^{\neg}] \end{array}$$

See $z_decl_pred_conv$ for a description of the conversion of a declaration to its implicit predicate.

Remains within the Z language (under the relaxation that allows outermost HOL universals), though this is not checked.

See Also z_-defn_-canon

Errors

|41081| ?0 is not of the form: $[(\forall D \mid P_1 \bullet P_2)]$

 $|val \ \mathbf{z}_{-} \forall_{-} \mathbf{tac} : TACTIC;$

Description Eliminate a Z universal in a goal.

D is converted to its implicit predicate by $z_decl_pred_conv$. D, P and V are primed in the result because the tactic may require some renaming to avoid, e.g. variable capture of the names of free variables in the assumption list.

Errors

|41030 Conclusion of the goal is not of the form: ∑∀ D | P • V

```
|val \ \mathbf{z}_{-}\exists_{-}\mathbf{elim}_{-}\mathbf{conv1} : CONV;
```

Description Turn a Z existentially quantified predicate into a HOL existentially quantified term, eliminating the declaration part of the original quantification using $z_{-} \in u_{-} conv$. The function fails if the declaration cannot be eliminated.

The order of the resulting existentially quantified variables will be in a sorted order, rather than what the declaration part might suggest.

Simplifications based on P_i being true or false will also be applied.

If there are no quantified variables and the declaration is D[], the HOL existential quantification is not generated.

Uses For stripping in proof contexts.

See Also $z_{\exists}elim_{conv2}, z_{\exists}elim_{conv}$

```
Errors  \begin{vmatrix} 41042 & ?0 \text{ is not of the form: } \exists D \mid P_1 \bullet P_2 \urcorner \\ 41043 & ?0 \text{ is of the form: } \exists \exists D \mid P_1 \bullet P_2 \urcorner, \text{ but } D \text{ non-trivial} \end{vmatrix}
```

```
\begin{vmatrix} val \ \mathbf{z}_{-} \exists_{-}\mathbf{elim_{-}conv2} : CONV; \\ val \ \mathbf{z}_{-} \exists_{-}\mathbf{intro_{-}conv1} : CONV; \\ \end{vmatrix}
```

Description $z_\exists elim_conv2$ turns a Z existentially quantified predicate into a HOL existentially quantified term. The result fails to be in the Z language because it contains a declaration used in a position that requires a predicate, which Z does not allow, as well as the outer HOL existential quantification.

The order of the resulting existentially quantified variables will be in a sorted order, rather than what the declaration part might suggest.

 $z_{-}\exists_{-}intro_{-}conv1$ undoes this process, returning a theorem whose RHS should be in the Z language (though this is not checked for).

If there are no quantified variables and the declaration is D[], the HOL existential quantification is not generated by $z_{-}\exists_{-}elim_{-}conv2$ nor expected by $z_{-}\exists_{-}intro_{-}conv1$.

Uses Used in the Z form of *strip_tac*, and handling negations with quantifiers.

See Also $z_{\exists}elim_{conv1}, z_{\exists}elim_{conv} \text{ and } z_{\exists}intro_{conv}$

 $|val \mathbf{z}_{-}\exists_{-}\mathbf{elim}_{-}\mathbf{conv}: CONV;$

Description Turn a Z existentially quantified predicate into a HOL existentially quantified term, converting the declaration part of the original quantification into its implicit predicate.

The order of the resulting existentially quantified variables will be in a sorted order, rather than what the declaration part might suggest.

If there are no quantified variables and the declaration is D[], the HOL existential quantification is not generated.

The result fails to be within the Z language, but only due to the outer HOL existential quantification.

See Also $z_{\exists}elim_{conv2}, z_{\exists}elim_{conv1}$

Errors

|41042| ?0 is not of the form: $\Xi \exists D \mid P_1 \bullet P_2 \urcorner$

 $\begin{vmatrix} val \ \mathbf{z}_{-} \exists_{-} \mathbf{intro}_{-} \mathbf{conv} : CONV; \end{vmatrix}$

Description $z_{\exists}intro_conv$ converts an arbitrary simple HOL existentially quantified term into the corresponding Z, returning a theorem whose RHS should be in the Z language (though this is not checked for).

This conversion cannot introduce a Z existential quantification with an empty declaration.

See Also $z_{\exists}intro_conv1$

|41046|?0 is not of the form: $\exists x_1 \dots \bullet P \exists$

 $|val \ \mathbf{z}_{-}\exists_{-}\mathbf{inv}_{-}\mathbf{conv} : CONV;$

Description Simplifies a Z existential quantification whose predicate or constraint is invariant w.r.t. the free variables bound by the declaration.

Conversion

if P_2 has no free variables bound by D, and

Conversion

if P_1 has no free variables bound by D, and

Conversion

$$\begin{array}{c|c} & z_{\exists inv_conv} \\ \hline & \vdash \exists \ D \mid P_1 \bullet P_2 \Leftrightarrow \\ P_1 \land (\exists \ D \mid true \bullet \ true) \land P_2 \end{array}$$

if both have no free variables bound by D.

 P_1 nor P_2 will be "extracted" if identical to true.

See Also $z_{-}\forall_{-}inv_{-}conv$

47290 ?0 is not a Z existential quantification 41040 ?0 is not of the form: $\Box \exists D \mid P_1 \bullet P_2 \neg$ where at least one of P_1 or P_2 are unbound by D

 $\begin{vmatrix} val \ \mathbf{z}_{-} \exists_{-} \mathbf{tac} : TERM -> TACTIC \end{vmatrix}$

Description Given a binding of identifiers to witnesses, accept this as a "group witness" for a Z existentially quantified goal.

$$\begin{array}{c|c} & \{ \begin{array}{c} \Gamma \end{array} \} \begin{array}{c} \exists \hspace{0.1cm} D[x_{1},\ldots] \hspace{0.1cm} | \hspace{0.1cm} P_{1}[x_{1},\ldots] \bullet \hspace{0.1cm} P_{2}[x_{1},\ldots] \\ \hline & \{ \begin{array}{c} \Gamma \end{array} \} \begin{array}{c} \exists \hspace{0.1cm} D[t_{1},\ldots] \bullet \hspace{0.1cm} P_{2}[x_{1},\ldots] \\ \hline & \{ \begin{array}{c} \Gamma \end{array} \} \begin{array}{c} \exists \hspace{0.1cm} Lac \\ \hline & [x_{1} \ \cong \ t_{1},\ldots) \end{array} \end{array} \end{array}$$

where the t'_i are appropriately type instantiated forms of the t_i . Renaming of bound variables may be necessary, thus P'_1 rather than P_1 , etc. See $z_decl_pred_conv$ for the conversion of a declaration to its implicit predicate.

An empty declaration may be given an empty binding.

If the goal's conclusion has a single Z existentially bound variable, and the supplied argument can be type instantiated to match that, then it will be used as a witness.

$$\frac{ \left\{ \begin{array}{c} \Gamma \end{array} \right\} \ \exists \ x: X \ | \ P_1[x_1] \bullet \ P_2[x_1] \\ \hline \left\{ \begin{array}{c} \Gamma \end{array} \right\} \ t' \in X \ \land \ P'_1[t'] \ \land \ P'_2[t'] \\ \end{array} } \quad z_{-} \exists_{-} tac$$

where t' is an appropriately type instantiated form of the t.

Finally, if none of the above apply, the supplied binding may instead be anything else that can be type instantiated to the appropriate binding type. In such cases projection functions will be used:

$$\frac{ \left\{\begin{array}{c|c} \Gamma \end{array}\right\} \ \exists \ D[x_1,\ldots] \ | \ P_1[x_1,\ldots] \bullet \ P_2[x_1,\ldots]}{ \left\{\begin{array}{c|c} \Gamma \end{array}\right\} \ "predicate \ from \ D[t.x_1',\ldots]" \ \land \\ P_1'[t'.x_1,\ldots] \ \land \ P_2'[t'.x_1,\ldots] \end{array} } \qquad z_{-}\exists_{-}tac$$

where t' is an appropriately type instantiated form of the t.

Errors

| 47290 ?0 is not a Z existential quantification | 41021 ?0 cannot be interpreted as a binding that matches ?1

 $|val \mathbf{z}_{-}\exists_{1-}\mathbf{conv} : CONV;$

Description Converts a Z unique existential quantification to a Z existential quantification.

where the P'_i are variants of the P_i , to correspond to the difference between D and D'.

Additional decoration may be introduced as necessary to avoid free variable names capture, while maintaining the same decoration on each component (variable, schema, etc) of the declaration.

 $|z_{-}\exists_{1-}conv \ \overline{z} \ \exists_{1} \ [x,y:X;z:Y] \mid x=x' \ y \bullet \ z=f \ x \neg;$ $\vdash (\exists_1 [x, y : X; z : Y \mid true] \mid x = x' y \bullet z = f x)$ $\Leftrightarrow (\exists [x, y : X; z : Y \mid true])$ $|(x = x' y) \wedge (z = f x)|$ $| \bullet \forall [x, y : X; z : Y \mid true]'' \\ | (x'' = x' y'') \land (z'' = f x'') \\ | \bullet (x'' = x) \land (y'' = y) \land (z'' = z))$

See Also $z_{-}\exists_{1}$ -intro_conv

|41122 ?0 is not of the form: $\Xi \exists_1 D \mid P_1 \bullet P_2 \urcorner$

```
|val \ \mathbf{z}_{-}\exists_{\mathbf{1}}\text{-intro\_conv} : CONV;
```

Description $z_{-}\exists_{1}$ -intro_conv converts an arbitrary simple HOL unique existentially quantified term into the corresponding Z, returning a theorem whose RHS should be in the Z language.

It can only reason about a single bound variable.

```
Conversion
                                                                                                                              z_{-}\exists_{1}\_intro\_conv
                                     \vdash \ulcorner \exists_1 \ x \bullet P \ [x] \urcorner \Leftrightarrow
                                                                                                                              \lceil \exists_1 \ x \bullet P[x] \rceil
                                      (\exists_1 \ x: \mathbb{U} \mid true \bullet \ P[x])
```

This conversion cannot introduce a Z unique existential quantification with an empty declaration.

See Also $z_{\neg} \forall_{\neg} intro_{\neg} conv1$

|41048| ?0 is not of the form: $\Box_1 x_1 \bullet P \Box$

```
|val \ \alpha_{-} \mathbf{to}_{-} \mathbf{z}_{-} \mathbf{conv} : CONV;
```

Description This function will return the equality theorem between a term and one that adjusts all sub-terms that fail to be Z because either:

- The subterm is a *decl*-style binding, and the type of the binding does not match the names of the variables bound. This is adjusted using the Z renaming construct.
- The subterm is a *decl*-style binding whose bound variables are not in the canonical ordering that would result from the Z mapping. This is adjusted by reorganising the order of abstractions and arguments.

If a HOL α -conversion will suffice then that will be used instead.

Subterms that are not covered by these two cases will be traversed and their own subterms checked, regardless of their language.

NOT YET IMPLEMENTED.

See Also $\alpha_{-}to_{-}z$

Errors

41100 No adjustment took place

 $|val \ \alpha_{-}\mathbf{to}_{-}\mathbf{z}: TERM -> TERM;$

Description This function will adjust all sub-terms that fail to be Z because either:

- The subterm involves a *decl*-style binding, and the type of the binding does not match the names of the variables bound. This is adjusted using the Z renaming construct.
- The subterm is a *decl*-style binding whose bound variables are not in the canonical ordering that would result from the Z mapping. This is adjusted by reorganising the order of abstractions and arguments.

If a HOL α -conversion will suffice then that will be used instead.

Subterms that are not covered by these two cases will be traversed and their own subterms checked, regardless of their language.

NOT YET IMPLEMENTED.

See Also $\alpha_- to_- z_- conv$

Errors

41100 No adjustment took place

8.3 Reasoning about Expressions

```
\left| signature \ \mathbf{ZExpressions} \right| = sig
```

Description This provides the rules of inference, conversions and theorems for Z language set theory, tuples and cartesian products in the Z proof support system.

```
|(* Proof Context: 'z_{=} \in set_{lang} *)|
```

Description A component proof context for handling the membership of expressions created by Z language set operations. It also provides some simplifications.

Set expressions treated by this proof context are constructs formed from:

```
set displays, set comprehensions, \mathbb{P}, \lambda, \mu, application, sequence displays
```

If there was proof context material for string literals, or bag displays, it would perhaps go here.

Contents

Rewriting:

```
z_{-} \in seta\_conv1, z_{-} \in setd\_conv1, z_{-} \in \lambda\_conv, z_{-} \in \langle \rangle\_conv, z_{-} \in z_{-} = z_
```

Stripping theorems:

```
z_{-} \in seta_{-} conv1, z_{-} \in setd_{-} conv1, z_{-} \in \lambda_{-} conv, z_{-} \in \langle \lambda_{-} conv \rangle, plus these all pushed in through \neg, and z_{-} \beta_{-} conv, \in C z_{-} \beta_{-} conv if the resulting theorem has no assumptions.
```

Stripping conclusions:

```
 \begin{vmatrix} z_- \in -seta\_conv1, \ z_- \in -setd\_conv1, \ z_- \in -\lambda\_conv, \ z_- \in -\langle \rangle\_conv, \\ plus \ these \ all \ pushed \ in \ through \ \neg, \\ and \ z_-\beta\_conv, \ \in \_C \ z_-\beta\_conv \ if \ the \ resulting \ theorem \ has \ no \ assumptions.
```

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory z_sets . It is intended to be used with proof context "z_predicates". It is not intended to be mixed with HOL proof contexts.

See Also 'z_sets_ext

```
| (* Proof Context: 'z_sets_ext_lang *)
```

Description An aggressive component proof context for handling the manipulation of Z sets by breaking them into predicate calculus, within the Z language. It is intended to always be used in conjunction with "z_set_lib".

Set expressions treated by this proof context are constructs formed from:

```
set displays, set comprehensions, \mathbb{P}, \lambda, \mu, application, equality of two set expressions, sequence displays
```

Contents

Rewriting:

```
|z\_sets\_ext\_conv, z\_\in \mathbb{P}\_conv, z\_setd\_\in \mathbb{P}\_conv,
```

Stripping theorems:

```
z\_sets\_ext\_conv, z\_\in \mathbb{P}\_conv, z\_setd\_\in \mathbb{P}\_conv,
plus these all pushed in through \neg
```

Stripping conclusions:

```
 \begin{array}{c} z\_sets\_ext\_conv, \ z\_\in \_\mathbb{P}\_conv, \ z\_setd\_\in \_\mathbb{P}\_conv, \\ plus \ these \ all \ pushed \ in \ through \ \neg \end{array}
```

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover (2-tuples are handled in proof context "z_predicates").

Usage Notes It requires theory z_sets . It is intended to always be used in conjunction with " z_set_lang ".

It is not intended to be mixed with HOL proof contexts.

See Also $z \in set$

```
| (* Proof Context: 'z_tuples_lang *)
```

Description A component proof context for handling the manipulation of Z tuples and cartesian products within the Z language.

Expressions and predicates treated by this proof context are constructs formed from:

```
(membership\ of)\ \times,\ equations\ of\ tuple\ displays, selection from tuple displays
```

Contents

Rewriting:

```
 \begin{vmatrix} z_{-} \in \times_{-} conv, \\ z_{-} tuple_{-} lang_{-} eq_{-} conv, \ z_{-} sel_{t_{-}} lang_{-} conv \end{vmatrix}
```

Stripping theorems:

```
|z_{-} \in \times conv, z_{-} tuple_{-} lang_{-} eq_{-} conv, \in C z_{-} sel_{t_{-}} lang_{-} conv,
|z_{-} sel_{t_{-}} lang_{-} conv (for boolean components of tuples)
|plus these all pushed in through \neg
```

Stripping conclusions:

```
z_{-} \in \times_{-} conv, z_{-} tuple_{-} lang_{-} eq_{-} conv, \in_{-} C z_{-} sel_{t_{-}} lang_{-} conv, z_{-} sel_{t_{-}} lang_{-} conv (for boolean componets of tuples) plus these all pushed in through \neg
```

Stripping also contains the above in negated forms.

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $_basic_prove_conv$, and no existence prover (2-tuples are handled in proof context "z_predicates").

Usage Notes It requires theory z_sets . It is intended to be used with proof context "z_predicates". It should not be used with "'z_tuples_lang". It is not intended to be mixed with HOL proof contexts.

```
| (* Proof Context: 'z_bindings *)
Description A component proof context for handling the manipulation of Z bindings.
Expressions and predicates treated by this proof context are constructs formed from:
equations of binding displays,
selection from binding displays
Contents
Rewriting:
|z\_binding\_eq\_conv2, z\_sel_s\_conv|
Stripping theorems:
|z\_binding\_eq\_conv2, \in C z\_sel_s\_conv,
|z_{-}sel_{s-}conv| (where component of binding is boolean).
plus this pushed in through \neg
Stripping conclusions:
|z\_binding\_eq\_conv2, \in C z\_sel_s\_conv,
|z_{-}sel_{s-}conv| (where component of binding is boolean).
plus this pushed in through \neg
Rewriting canonicalisation:
Automatic proof procedures are respectively z_basic_prove_tac, z_basic_prove_conv, and no ex-
istence prover.
Usage Notes It requires theory z_{-}language_{-}ps. It is intended to be used with proof context
"z_predicates". It is not intended to be mixed with HOL proof contexts.
val\ z\_sets\_ext\_thm: THM;
val \ z \in \mathbb{P}_t thm1 : THM;
val\ z\_app\_thm:\ THM;
|val\ z\_app\_\in\_thm: THM;
|val\ z_{-} \in app\_thm : THM;
Description The ML bindings of the theorems (other than consistency ones) in theory z-
\_language\_ps.
SML
|val \ \mathbf{z}_{-}\mathbf{app\_conv} : CONV;
Description A function to convert a Z application into the corresponding \mu expression (i.e.
definite description).
Conversion
                                                         z_-app_-conv
      \vdash f \ a = (\mu \ f_{-}a : \mathbb{U} \mid (a, f_{-}a) \in f \bullet f_{-}a)
                                                         \sum_{z} f a^{\neg}
```

Remains within the Z language though this is not checked.

See Also $z_app_thm, z_app_eq_tac$

47190 ?0 is not a Z function application

Errors

 $\begin{vmatrix} val \ \mathbf{z} - \mathbf{app} - \mathbf{eq} - \mathbf{tac} \ : \ TACTIC; \end{vmatrix}$

Description Reduces a subgoal that states a Z application is equal to something to sufficient conditions for this to be provable. The conditions are not "necessary" only because they ignore the fact that in ProofPower-Z every predicate or expression is equal to itself, and other vacuous variants of this.

$$\frac{\{\Gamma\}\ f\ a=v}{\{\Gamma\}\ (\forall\ f_a: \mathbb{U}\mid (a,f_a)\in f\bullet f_a=v)} \qquad z_app_eq_tac$$

$$\land\ (a,v)\in f$$

If this does not match the pattern of the goal then

will be tried instead. In addition an implicit " $\Leftrightarrow true$ " will be used if the conclusion of the goal is an application.

See Also z_-app_-thm , z_-app_-conv

D. . .

42002 Conclusion of goal is not of the form: $\overline{z}f \ a = v^{\gamma}$, $\overline{z}v = f \ a^{\gamma}$ or $\overline{z}f \ x^{\gamma}$

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{app}_{-}\lambda_{-}\mathbf{rule} : TERM -> THM; \end{vmatrix}$

Description Given a Z β redex this function will return a theorem stating sufficient conditions for this redex to be proven equal to some arbitrary value.

Some renaming of bound variables may occur, thus the priming of D, etc.

Errors

|42008| ?0 is not of the form: ${}_{\mathbf{Z}}(\lambda \ D \mid P \bullet \ V) \ t^{\neg}$

 $|val \ \mathbf{z_-bindingd_elim_conv}| : CONV$

Description Given a a binding display, that binds labels to the selection of that label to a single value, return that single value.

Errors

|42018 ?0 is not of the form: $\sum (x_1 = b.x_1, ..., x_N = b.x_N)$ \rangle where $N \geq 1$

 $\begin{vmatrix} val & \mathbf{z_bindingd_intro_conv} \end{vmatrix} : CONV$

Description Given a value with a binding type, prove it equal to a binding display.

 $\begin{array}{c|c} & & z_bindingd_intro_conv \\ \hline & \vdash b = (x_1 \triangleq b.x_1, \ldots) \end{array}$

Errors

42017 ?0 does not have a binding type

 $egin{array}{lll} val & \mathbf{z_binding_eq_conv} : CONV; \\ val & \mathbf{z_binding_eq_conv1} : CONV; \\ val & \mathbf{z_binding_eq_conv2} : CONV; \\ \end{array}$

Description A conversion for eliminating equations of bindings.

Conversion $\frac{z_binding_eq_conv}{(b_1 = b_2) \Leftrightarrow (b_1.s_1 = b_2.s_1) \land (b_1.s_2 = b_2.s_2) \land \dots} \qquad z_binding_eq_conv$

where b_1 (and thus b_2) has a binding type equal to the type of something of the form $[s_1 \in ..., s_2 \in ..., ...]$.

 $z_-binding_-eq_-conv1$ first applies conversion $z_-binding_-eq_-conv$, and then, if either or both of b_1 and b_2 are binding constructions it eliminates the projection functions, in a manner similar to $z_-sel_{s-}conv$.

 $z_binding_eq_conv2$ requires both sides to be binding displays or have the empty schema type:

Conversion

Conversion

See Also $z_-sel_{s-}conv, z_-binding_-eq_-conv3$

Errors

|42013|?0 is not of the form $\sum binding = binding$

42021 ?0 is not of the form $\Sigma b_1 = b_2$ where b_i has the form $\Sigma (x_1 = ..., ...)$ or has the empty schema

 $|val \ \mathbf{z_defn_simp_rule} : THM \rightarrow THM;$

Description This rule is a method of processing a standard style of specification into a simple rewriting theorem.

```
 \begin{array}{c} & \qquad \qquad \vdash x \in (\mathbb{P} \ y) \ \land \ (\forall z : y \bullet \ z \in x \Leftrightarrow f[z]) \\ & \qquad \qquad \vdash \forall \ z : \ \mathbb{U} \bullet z \in x \Leftrightarrow z \in y \ \land \ f[z] \end{array}  z_{-}defn_{-}simp_{-}rule
```

The rule will also attempt to preprocess its input with $z_para_pred_conv$. This is on the basis that theorems that are of an appropriate form for this rule are often derived from a Z definition, and this pre-processing is all the processing required to convert the definition to acceptable input. The rule can also handle generic parameters to the theorem.

LETTORS 42011 ?0 cannot be converted to the form: $\Gamma \vdash x \in (\mathbb{P} \ y) \land (\forall z : y \bullet \ z \in x \Leftrightarrow f[z])$.

```
|val \ \mathbf{z_{-let\_conv1}}| : CONV;
```

Description This conversion replaces a let-expression by an equivalent μ -expression.

This is mainly intended for use in programming proof procedures. $z_{-}let_{-}conv$ may be used simply to expand let-expressions

See Also $z_{-}let_{-}conv$

Errors

47211 ?0 is not a Z let term

```
|val \ \mathbf{z_{-let\_conv}}| : CONV;
```

Description This conversion expands the local definitions in a let-expression.

The conversion will fail with message 42029 given a let-expression such as $\sqrt[n]{let} \ x = 42$; y = 99; $x = 43 \bullet x + y$ that contains incompatible local definitions.

See Also $z_{-}let_{-}conv1$

42029 The local definitions in the let-expression ?0 cannot be expanded

```
val Z_RAND_C : CONV -> CONV;
val Z_RANDS_C : CONV -> CONV;
val Z_LEFT_C : CONV -> CONV;
val Z_RIGHT_C : CONV -> CONV;
```

Description Z_RAND_C (resp. Z_RANDS_C , Z_LEFT_C , Z_RIGHT_C) applies a conversional to the operand (resp. operands, left operand, right operand) of a Z function application.

 $|val \ \mathbf{z_{-sel_{s-}conv}} : CONV;$

Description A conversion for selecting a component from a binding.

See Also $z_binding_eq_conv$

Errors

|42014|?0 is not of the form: $\sum (n_1 = t_1,...).n_c$

 $|val \ \mathbf{z_{-sel_{t-intro_conv}}}: CONV;$

Description This conversion carries out the introduction of a tuple display of tuple selections from the same tuple.

Errors

42004 ?0 does not have a Z tuple type

 $|val \ \mathbf{z_{-sel_{t-lang_conv}}}: CONV;$

Description This conversion carries out the selection from a tuple display.

Errors

| 47185 ?0 is not a Z tuple selection | 42006 ?0 is not of the form $\overline{\Sigma}(x,...).i$

 $|val \ \mathbf{z}_{-}\mathbf{setd}_{-} \in \mathbb{P}_{-}\mathbf{conv} : CONV$

Description Expand out expressions that state that a set display is a member of a power set. .

and

Conversion

The conversion will all simplify certain subterms involving true or terms of the form x = x.

See Also $z_setd_\subseteq_conv$

Errors

|42019| ?0 is not of the form: $\mathbb{Z}\{x_1,...\}\in\mathbb{P}$ X^{\neg}

 $|val \ \mathbf{z_{-sets_ext_conv}}|$

Description Use the extensionality of sets in combination with knowledge about tuples. Given as input an equality of the form v = w then:

If v is of type ty SET where ty is not a tuple type:

where xn is the first variable in the list x1, x2,... that doesn't appear in v or w (free or bound).

If w is of type ty SET where ty is an n-tuple type, or binding type, then sufficient $x_{-}i$ will be introduced, instead of just xn, to allow xn to be replaced by a construct of bindings and tuples of the $x_{-}i$, such that no $x_{-}i$ has a binding or tuple type and appears exactly once in the construct.

Example

```
 \begin{vmatrix} z\_sets\_ext\_conv \ [z](r \times [a,b:X] \times x2) = d \rceil = \\ \vdash r \times [a, b:X] \times x2 = d \\ \Leftrightarrow (\forall x1: \mathbb{U}; x3: \mathbb{U}; x4: \mathbb{U} \\ \bullet (x1, x3, x4) \in r \times [a, b:X] \times x2 \Leftrightarrow (x1, x3, x4) \in d)
```

Notice how the introduced universal quantification "skips" x2 which is present in the input term.

See Also z_sets_ext_thm

Errors

| 42010 ?0 is not of the form: z = w where z = v has a set type

| val z_string_conv : CONV; | val z_∈_string_conv : CONV;

Description z_string_conv changes a Z string into a Z sequence of HOL characters. It thus does not remain in Z.

Conversion

Definition

 $|val z_{-} \in string_conv| = \in C z_string_conv;$

See Also $char_{-}eq_{-}conv$ for the equality of HOL characters, $z_{-}string_{-}eq_{-}conv$ for the equality of Z strings.

Errors

|42015|?0 is not of the form: \mathbb{Z} "abc..."

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{tuple}_{-}\mathbf{lang}_{-}\mathbf{eq}_{-}\mathbf{conv} : CONV; \end{vmatrix}$

Description A conversion for eliminating tuples over equality.

Errors

|42003| ?0 is not of the form: [(x1,...) = (y1,...)]

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{tuple}_{-}\mathbf{lang}_{-}\mathbf{intro}_{-}\mathbf{conv} : CONV; \end{vmatrix}$

Description This conversion carries out the elimination of a tuple display of tuple selections from the same tuple.

$$\begin{array}{c|c} & & z_{tuple_lang_intro_conv} \\ \hline & & \vdash (t.1,...,t.n) = t \end{array}$$

where n is the arity of t.

Errors

|42005| ?0 is not of the form: $\mathbb{Z}(t.1,...,t.n)$

 $\begin{vmatrix} val \ \mathbf{Z}_{-} \in \mathbf{ELIM}_{-}\mathbf{C} : CONV -> CONV; \end{vmatrix}$

$$\vdash xi \in \mathsf{ML}tm^{\mathsf{T}} \Leftrightarrow f[xi]$$

and then return the theorem

$$\vdash \mathsf{ML} tm = \{xi : \mathbb{U} \mid f[xi]\}$$

Errors

42027 ?0 is not a Z set

And as conversion argument upon the membership term, with the error being passed through by the conversional untouched.

 $\begin{vmatrix} val & \mathbf{z}_{-} \in \mathbf{seta_conv} : CONV; \\ val & \mathbf{z}_{-} \in \mathbf{seta_conv1} : CONV; \end{vmatrix}$

Description A conversion of membership of a Z set abstraction into a Z existential quantification. Bound variables in the existential quantification are renamed as necessary.

In the case of $z_{-} \in seta_{-}conv1$, if T is a tuple or simple variable then the conversion will attempt to eliminate the existential quantification via the methods of $basic_{-}prove_{-}\exists_{-}conv$. In particular, this attempt should succeed if T is the characteristic tuple of D.

No simplification is attempted by $z_{-} \in seta_conv$

Renaming of bound variables may be necessary, thus the priming in the RHS.

Errors

|42001> ?0 is not of the form: $z \in seta$ where seta is a set abstraction

 $|val \ \mathbf{z}_{-} \in \mathbf{setd_conv1} : CONV;$

Description A conversion proving membership of a Z set display where the member is syntactically identical (up to α -conversion) to a member of the set.

 $\begin{array}{c|c} & z_{-} \in setd_conv1 \\ \hline & \vdash t \in \{ ..., t, ... \} \Leftrightarrow true \end{array}$

See Also $z_{-} \in setd_conv$

Errors

|42009| ?0 is not of the form: $\mathbb{Z}t \in \{...,t,...\}$

 $|val \ \mathbf{z}_{-} \in \times_{\mathbf{conv}} : CONV;$

Description A conversion for the membership of cartesian products.

Conversion

 $z_{-}sel_{t-}conv$, q.v., will be attempted on each of the tuple selections.

See Also $z_{-}\times_{-}conv$

Errors

|42007|?0 is not of the form: $z \in (T_1 \times T_2 \times ...)$

 $\begin{vmatrix} val & \mathbf{z}_{-} \in \mathbb{P}_{-}\mathbf{conv} : CONV; \end{vmatrix}$

Description Use $z_- \in \mathbb{P}_- thm1$ in combination with knowledge about tuples. Given as input a term of the form $v \in \mathbb{P}$ w then:

If w is of type ty SET where ty is not a tuple type:

where xn is the first variable in the list x1, x2,... that doesn't appear in v or w (free or bound).

If w is of type ty SET where ty is an n-tuple type, or binding type, then sufficient $x_{-}i$ will be introduced, instead of just xn, to allow xn to be replaced by a construct of bindings and tuples of the $x_{-}i$, such that no $x_{-}i$ has a binding or tuple type and appears exactly once in the construct.

Example

```
\begin{vmatrix} z_{-} \in \mathbb{P}_{-} conv \ ^{}_{\mathbf{Z}} p \in \mathbb{P} \ (r \times [a, b : X] \times x2) \\ \vdash p \in \mathbb{P} \ (r \times [a, b : X] \times x2) \\ \Leftrightarrow (\forall \ x1 : \mathbb{U}; \ x3 : \mathbb{U}; \ x4 : \mathbb{U}; \ x5 : \mathbb{U} \\ \bullet \ (x1, \ (a \triangleq x3, \ b \triangleq x4), \ x5) \in p \\ \Rightarrow (x1, \ (a \triangleq x3, \ b \triangleq x4), \ x5) \in r \times [a, \ b : X] \times x2) \end{vmatrix}
```

Notice how the introduced universal quantification "skips" x2 which is present in the input term.

See Also $z_{-} \in \mathbb{P}_{-}thm1, z_{-} \in \mathbb{P}_{-}thm, z_{-} \subseteq conv$

Errors

| 42016 ?0 is not of the form $\Sigma v \in \mathbb{P}$ w

```
\begin{vmatrix} val & \mathbf{z}_{-}\langle \rangle_{-}\mathbf{conv} : CONV; \\ val & \mathbf{z}_{-}\in_{-}\langle \rangle_{-}\mathbf{conv} : CONV; \end{vmatrix}
```

Description Convert a sequence display into a set display.

Definition

 $|val z_{-} \in \langle \rangle_{-} conv = \in C z_{-} \langle \rangle_{-} conv;$

Error

|42025|?0 is not of the form: $\langle Z \rangle$

 $\begin{vmatrix} val \ \mathbf{z}_{-} \times_{-} \mathbf{conv} : CONV; \end{vmatrix}$

Description A conversion for eliminating cartesian products.

The t_i used are distinct from any variable names in the T_i .

See Also $z_{-} \in \times_{-} conv$, which is a faster function, if appropriate.

Errors

47160 ?0 is not a Z cartesian product

 $\begin{vmatrix} val \ \mathbf{z}_{-}\beta_{-}\mathbf{conv} : CONV; \end{vmatrix}$

Description A conversion for a simple Z β redex. The λ -term of the redex must have only a single variable in its declaration part.

$$\begin{array}{c|c} & z_{-\beta_{-}conv} \\ \hline & t \in X, \\ & P[t] \\ \vdash (\lambda \ x : X \mid P[x] \bullet \ V[x]) \ t = V'[t] \\ \end{array}$$

Errors

| 42012 ?0 is not of the form $\frac{1}{2}(\lambda x:X \mid P \bullet V) t^{-1}$

 $\begin{vmatrix} val \ \mathbf{z}_{-}\lambda_{-}\mathbf{conv} : CONV; \\ val \ \mathbf{z}_{-}\in_{-}\lambda_{-}\mathbf{conv} : CONV; \end{vmatrix}$

Description Convert a Z λ abstraction into a set abstraction.

Conversion

$$\frac{z_{-}\lambda_{-}conv}{\vdash (\lambda \ D \mid P \bullet \ V) = \{ \ D \mid P \bullet \ (charD, V) \}} \qquad \overline{z} \lambda \ D \mid P \bullet \ V \neg$$

Where charD is the characteristic tuple of D.

Definition

 $|val z_{-} \in \lambda_{-} conv| = \in C z_{-} \lambda_{-} conv;$

See Also $z_-app_-\lambda_-rule, z_-\beta_-tac$

Errors

|47200| ?0 is not a Z λ abstraction

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mu_{-}\mathbf{rule} : TERM -> THM; \end{vmatrix}$

Description This rule is given a Z μ expression (i.e. a Z definite description), and returns a theorem that states what is required for this μ expression to be equal to some value, x. The requirement is that if any value satisfies the schema text of the μ expression then it must equal x, and that x satisfies the schema text of the μ expression.

The result may require bound variable renaming and thus the priming of D, etc.

 $\lfloor 47210 \ ?0 \ is \ not \ a \ Z \ \mu \ term$

 $|val| \in \mathbb{C} : CONV \longrightarrow CONV;$

Description $\in C$ cnv tm takes a conversion cnv, that applies to set terms, will check to see if its term argument, tm is a membership statement. If so, it will apply its conversion to the set. If not it will fail. It does not check that its result remaining in Z (and indeed is applicable to HOL membership terms as well).

See Also $Z \in ELIM C$

And as conversion argument upon the set, with the error being passed through by the conversional untouched.

8.4 Reasoning about Schema Expressions

```
|signature\> ZSchemaCalculus = sig
```

Description This provides the rules of inference for schema calculus in the Z proof support system. The material is implemented within the theory $z_language_ps$.

```
|(*Proof\ Context: 'z\_schemas *)
```

Predicates and expressions treated by this proof context are constructs formed from:

```
(selection from) horizontal schemas, schemas as predicates, (selection from) \theta expressions, \neg_s, \land_s, \lor_s, \Rightarrow_s, \Leftrightarrow_s, \forall_s, \exists_1, decor_s, pre_s, \uparrow_s, hide_s, \Delta_s, \Xi_s, \S_s, rename_s,
```

Contents

Rewriting:

```
 \begin{array}{l} (RAND\_C \ z\_\theta\_conv \ THEN\_C \ z\_sel_s\_conv) \\ - \ which \ simplifies \ terms \ of \ the \ form: \ _{\bf Z}^{-}(\theta \ s).nm \\ \hline z\_\theta\_eq\_conv, \ z\_\theta\_conv1, \\ z\_e\_\neg_s\_conv, \ z\_e\_\wedge_s\_conv, \ z\_e\_\rightarrow_s\_conv, \\ z\_e\_\Rightarrow_s\_conv, \ z\_e\_\leftrightarrow_s\_conv, \ z\_e\_\exists_s\_conv, \\ z\_e\_\exists_{1s}\_conv, \ z\_e\_\forall_s\_conv, \ z\_e\_h\_schema\_conv, \\ z\_e\_decor_s\_conv, \ z\_e\_pre_s\_conv, \ z\_e\_\mid_s\_conv, \\ z\_e\_hide_s\_conv, \ z\_e\_\Delta_s\_conv, \ z\_e\_E_s\_conv, \\ z\_e\_g_s\_conv, \ z\_e\_rename_s\_conv, \ z\_schema\_pred\_intro\_conv \\ \hline \end{array}
```

Stripping theorems and conclusions:

```
 (RAND\_C \ z\_\theta\_conv \ THEN\_C \ z\_sel_s\_conv) \\ - which \ simplifies \ boolean \ terms \ of \ the \ form: \ \ulcorner z(\theta \ s).nm \urcorner \\ \in \_C \ (RAND\_C \ z\_\theta\_conv \ THEN\_C \ z\_sel_s\_conv) \\ - which \ simplifies \ terms \ of \ the \ form: \ \ulcorner z \in (\theta \ s).nm \urcorner \\ - z\_\theta\_eq\_conv, \ z\_\in\_\neg_s\_conv, \ z\_\in\_\land_s\_conv, \ z\_\in\_\lor_s\_conv, \\ z\_e\_\Rightarrow_s\_conv, \ z\_e\_\Rightarrow_s\_conv, \ z\_e\_\exists_s\_conv, \\ z\_e\_\exists_{1s}\_conv, \ z\_e\_\forall_s\_conv, \ z\_e\_h\_schema\_conv, \\ z\_e\_decor_s\_conv, \ z\_e\_pre_s\_conv, \ z\_e\_\upharpoonright_s\_conv, \\ z\_e\_hide_s\_conv, \ z\_e\_pre_s\_conv, \ z\_e\_\sqsubseteq s\_conv, \\ z\_e\_g_s\_conv, \ z\_e\_rename_s\_conv, \ z\_schema\_pred\_intro\_conv \\ plus \ these \ all \ pushed \ in \ through \ \urcorner
```

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory $z_language_ps$. It is intended to be used with proof context "z_bindings". It is not intended to be mixed with HOL proof contexts.

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{decor_{s-}conv} : CONV; \\ val \ \mathbf{z}_{-}\in_{-}\mathbf{decor_{s-}conv} : CONV; \end{vmatrix}$

Description A conversion which expands a statement of membership to a decorated schema.

where the type of S is

$$\mathbb{P}\left[x_1:\mathbb{U};\dots\right]$$

S may be a schema-reference, or (in extended Z) anything of the stated type. Schemas as predicates will be treated as membership statements by this conversion. If v is a binding display then $v.x_i$ will be simplified.

```
|val \ \mathbf{z_{-dec\_rename_{s-}conv}}: CONV;
```

Description This conversion turns an ill-formed schema-as-declaration into a well-formed one using renaming. The ill-formed schemas-as-declarations in question are those of the form

 $\lceil Z'SchemaDec \ bind \ schema \rceil;$

where bind is not equal to $\Xi \theta$ schema.

Uses In correcting the results of functions which produce results outside Z because of substitution within variable binding constructs.

Errors

|43060> ?0 is not an ill-formed schema-as-declaration

 $\begin{vmatrix} val \ \mathbf{z_hide_{s-conv}} : CONV; \\ val \ \mathbf{z_{-}e_{hide_{s-conv}}} : CONV; \end{vmatrix}$

Description A conversion concerning the schema hiding.

where S is a schema that has signature variables $x_1, x_2, ...$ and $y_1, y_2, ...$.

Definition

 $|val z_{-} \in hide_{s-}conv| = \in C z_{-}hide_{s-}conv$

Schemas as predicates will be treated as membership statements by this conversion.

Errors

|43018| ?0 is not of the form: $[S \setminus_s (x_1, ...)]$ where S is a schema

SML

 $|val \ \mathbf{z_h_schema_conv}: CONV;$

Description A conversion from a horizontal schema to a set comprehension.

 $\begin{array}{c|c} & & z_{-h_schema_conv} \\ \hline & & & \\ \hline & & \vdash [D|P] = \{D|P \bullet \theta D\} & & \\ \hline \end{array}$

See Also $z_{-} \in h_{-}$ schema_conv1 and $z_{-} \in h_{-}$ schema_conv, which are more appropriate if the schema expression occurs as a subterm of a membership expression.

Errors

43004 ?0 is not a horizontal schema

 $\begin{vmatrix} val \ \mathbf{z_h_schema_pred_conv} : CONV; \end{vmatrix}$

Description A conversion for eliminating a horizontal schema as a predicate.

Projections from bindings, which are likely to be introduced, are automatically expanded out. The user may do so with, e.g.,

 $|MAP_{-}C| z_{-}sel_{s-}conv$

The horizontal schema may be decorated.

See Also $z_schema_pred_conv$ for a more general conversion.

Errors

43012 ?0 is not a horizontal schema as a predicate

 $|val| \mathbf{z_{-norm_h_schema_conv}} : CONV;$

Description A conversion for normalising horizontal schemas.

D1 is the implicit predicate formed from D by $z_decl_pred_conv$, and then simplified. The simplification is that conjuncts of the predicate that are provable by $z_\in_u_conv$, q.v., are proven and then eliminated from D1. DU is the signature formed from the variables bound by D, all of type \mathbb{U} .

 $\begin{vmatrix} z_{-norm_h_schema_conv} \ z_{-norm_h_sc$

Notice how, since $z \in \mathbb{U}$ can be proven by $z \in u conv$, it is not included in D1.

Errors

| 43004 ?0 is not a horizontal schema

```
\begin{vmatrix} val \ \mathbf{z_-pre_{s-}conv} : CONV; \\ val \ \mathbf{z_-\in pre_{s-}conv} : CONV; \end{vmatrix}
```

Description Schema precondition elimination.

DI is the declaration formed from the unprimed and input ('?') variables of S, given type \mathbb{U} . DF is the declaration formed from the primed and output ('!') variables of S, given type \mathbb{U} . It is possible for one or both of DI and DF to be the empty declaration. S1 is the schema S as a predicate.

Schemas as predicates will be treated as membership statements by this conversion.

Errors

43007 ?0 is not a schema precondition

 $\begin{vmatrix} val & \mathbf{z_rename_{s-conv}} : CONV; \\ val & \mathbf{z_{-e-rename_{s-conv}}} : CONV; \end{vmatrix}$

Description A conversion concerning schema renaming.

where S has signature variables y_1 , ... and z_1 , ... Schemas as predicates will be treated as membership statements by this conversion. If v is a binding display then $v.x_i$ will be simplified. The conversion will fail with error 43035 if applied to a renaming that renames one component to an already existent, unrenamed, component.

Definition

 $|val\ z_rename_{s_}conv| = Z_\in_ELIM_C\ z_\in_rename_{s_}conv;$

Errors

 $\begin{vmatrix} val & \mathbf{z_{-schema_pred_conv}} : CONV; \\ val & \mathbf{z_{-\theta}_{-e_schema_intro_conv}} : CONV; \end{vmatrix}$

Description $z_schema_pred_conv$ is a conversion from a schema as a predicate to the predicate asserting that its θ -term is a member of the schema.

S is any schema as a predicate, including both schema references and horizontal schemas.

 $z_schema_pred_conv$ is an alias for $z_\theta_\in_schema_intro_conv$.

See Also $z_h_schema_pred_conv$ for alternative, z_θ_conv , and $z_\theta_\in_schema_conv$.

Errors

43014 ?0 is not a schema as a predicate

 $\begin{vmatrix} val \ \mathbf{z_{-schema_pred_intro_conv}} : CONV; \end{vmatrix}$

Description This conversion attempts to convert a predicate that is a membership of a schema into a schema as a predicate.

 $\begin{array}{c|c} & z_schema_pred_intro_conv \\ \hline & \vdash ((x_1 \triangleq x_1, \ldots) \in S) \Leftrightarrow S \end{array} \qquad \begin{array}{c} z_schema_pred_intro_conv \\ \hline \\ z \in S \end{array}$

The input term must have a binding display that binds to each label a variable with the label's name (maintaining decoration).

Errors

43032 ?0 cannot be converted to a schema as a predicate

```
| val z_strip_tac : TACTIC;
```

Description z_strip_tac is a general purpose tactic for simplifying away the outermost connective of a Z goal. It first attempts to apply z_\forall_tac . If that fails it then tries to apply the current proof context's conclusion stripping conversion, to rewrite the outermost connective in the goal. Failing that it tries to simplify the goal by applying an applicable member of the following collection of tactics (only one could possibly apply):

```
|simple\_\forall\_tac, \land\_tac,
\Rightarrow\_T \ strip\_asm\_tac, \ t\_tac
```

Failing either being successful, it tries $concl_{-in_asms_tac}$ to prove the goal, and failing that, returns the error message below.

finally, it will attempt to make the goal a "schema as predicate", if possible, by using $z_schema_pred_intro_conv$.

Note how new assumptions generated by the tactic are processed using $strip_asm_tac$, which uses the current proof context's theorem stripping conversion. z_strip_tac may produce several new subgoals, or may prove the goal.

The tactic is defined as:

Uses This is the usual way of simplifying a goal involving Z predicate calculus connectives, and other functions "understood" by the current prof context.

See Also $STRIP_CONCL_T$ and $STRIP_THM_THEN$ which are used to implement this function. $taut_tac$ for an alternative simplifier. $swap_\lor_tac$ to rearrange the conclusion for tailored stripping.

Errors

28003 There is no stripping technique for ?0 in the current proof context

```
\begin{vmatrix} val \ \mathbf{z}_{-}\boldsymbol{\Delta}_{\mathbf{s}-}\mathbf{conv} : CONV; \\ val \ \mathbf{z}_{-}\in_{-}\boldsymbol{\Delta}_{\mathbf{s}-}\mathbf{conv} : CONV; \end{vmatrix}
```

Description A conversion concerning the delta schemas.

Definition

```
|val z \in \Delta_{s-}conv| = C z \Delta_{s-}conv
```

Schemas as predicates will be treated as membership statements by this conversion.

Errors

```
|43022| ?0 is not of the form: {}^{\square}_{Z}\Delta S^{\square} where S is a schema
```

 $\begin{vmatrix} val & \mathbf{z}_{-} \in \mathbf{h}_{-} \mathbf{schema}_{-} \mathbf{conv1} : CONV; \end{vmatrix}$

Description A conversion from a predicate asserting membership of a horizontal schema to an existential quantification.

```
 \begin{array}{c|c} & z_{-\in h\_schema\_conv1} \\ \hline & \vdash v \in [D|P] \Leftrightarrow \exists D'|P' \bullet \theta[D'] = v \end{array} \qquad \begin{array}{c} z_{-\in h\_schema\_conv1} \\ \hline & \vdash v \in [D|P] \end{array}
```

Bound variable renaming may be necessary, and thus the priming in the RHS of the result. Schemas as predicates will be treated as membership statements by this conversion.

See Also $z_{-} \in h_{-}$ schema_conv for a faster, if more verbose result from simplifying the same category of terms, $z_{-}h_{-}$ schema_conv for a horizontal schema term without and outer \in .

```
Errors
 \begin{vmatrix} 43003 & ?0 \text{ is not of the form } \lceil v \in [D|P] \rceil \\ 43033 & Unable \text{ to prove } ?0 \text{ equal to something of the form: } \lceil \exists D'|P' \bullet \theta[D'] = v \rceil \\ & use \ z \in h\_schema\_conv \text{ instead, and then work by hand}
```

Error 43033 indicates that there is some sort of variable capture problem preventing the conversion from functioning correctly. As indicated, $z_{-} \in h_{-}schema_{-}conv$ is a conversion that does apply to simplify the input term.

 $\begin{vmatrix} val \ \mathbf{z}_{-} \in \mathbf{h}_{-}\mathbf{schema}_{-}\mathbf{conv} : CONV; \end{vmatrix}$

Description A conversion from a predicate asserting membership of a horizontal schema to a predicate.

$$\begin{array}{c|c} & z_{-\in -h_schema_conv} \\ \hline & \vdash v \in [D|P] \Leftrightarrow D' \wedge P' \end{array} \qquad \begin{array}{c} z_{-\in -h_schema_conv} \\ \vdash v \in [D|P] \end{array}$$

where, if D declares variables $x_1, x_2,...$, then D' is

"predicate from $D[x_1 \setminus v.x_1, ...]$ "

as converted by $z_decl_pred_conv$, and P' is

$$P[x_1 \setminus v.x_1, ...]$$

The execution of the conversion may also involve bound variable renaming. If v is a binding display then $v.x_i$ will be simplified. Though this conversion gives a rather verbose result, it evaluates faster than $z_- \in h_- schema_- conv1$, and is probably of more practical value in a proof. Schemas as predicates will be treated as membership statements by this conversion.

See Also $z \in h_schema_conv1$

Errors

|43003| ?0 is not of the form $\lceil v \in [D|P] \rceil$

 $\begin{vmatrix} val & \mathbf{z}_{-}\mathbf{\Xi}_{\mathbf{s}-}\mathbf{conv} : CONV; \\ val & \mathbf{z}_{-}\in_{-}\mathbf{\Xi}_{\mathbf{s}-}\mathbf{conv} : CONV; \end{vmatrix}$

Description A conversion concerning Ξ schemas.

Conversion

Definition

$$|val z_{-} \in \Xi_{s-} conv| = \in C z_{-} \Xi_{s-} conv$$

Schemas as predicates will be treated as membership statements by this conversion.

Errors

|43023| ?0 is not of the form: $\Xi\Xi$ S^{\neg} where S is a schema

```
\begin{vmatrix} val & \mathbf{z}_{-} \Leftrightarrow_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ val & \mathbf{z}_{-} \in_{-} \Leftrightarrow_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \end{vmatrix}
```

Description A conversion concerning the membership of a schema bi-implication.

where R and S are schemas that have signature variables $r_1, r_2, ...$ and $s_1, s_2, ...$ respectively, and

$$bind1 = (r_1 \stackrel{\frown}{=} v.r_1, ...)$$

 $bind2 = (s_1 \stackrel{\frown}{=} v.s_1, ...)$

Schemas as predicates will be treated as membership statements by this conversion. If v is a binding display then $v.x_i$ will be simplified.

Definition

```
|val\ z_{\leftarrow}\Leftrightarrow_{s_{-}}conv = Z_{\leftarrow}=ELIM_{-}C\ z_{\leftarrow}\Leftrightarrow_{s_{-}}conv;
```

Errors

 $\begin{vmatrix} val \ \mathbf{z}_{-} \wedge_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ val \ \mathbf{z}_{-} \in_{-} \wedge_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \end{vmatrix}$

Description A conversion concerning the membership of a schema conjunction.

where R and S are schemas that have signature variables $r_1, r_2, ...$ and $s_1, s_2, ...$ respectively, and

$$\begin{vmatrix} bind1 = (r_1 \stackrel{\frown}{=} v.r_1, ...) \\ bind2 = (s_1 \stackrel{\frown}{=} v.s_1, ...) \end{vmatrix}$$

Schemas as predicates will be treated as membership statements by this conversion. If v is a binding display then $v.x_i$ will be simplified.

Definition

 $|val \ z_{-} \wedge_{s_{-}} conv| = Z_{-} \in ELIM_{-}C \ z_{-} \in A_{s_{-}} conv;$

Errors

 $\begin{vmatrix} val \ \mathbf{z}_{-} \lor_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ val \ \mathbf{z}_{-} \in _{-} \lor_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ \end{vmatrix}$

Description A conversion concerning the membership of a schema disjunction.

where R and S are schemas that have signature variables $r_1, r_2, ...$ and $s_1, s_2, ...$ respectively, and

 $bind1 = (r_1 \stackrel{\frown}{=} v.r_1, ...)$ $bind2 = (s_1 \stackrel{\frown}{=} v.s_1, ...)$

Schemas as predicates will be treated as membership statements by this conversion. If v is a binding display then $v.x_i$ will be simplified.

Definition

 $|val\ z_{-}\vee_{s_{-}}conv| = Z_{-}\in ELIM_{-}C\ z_{-}\in V_{s_{-}}conv;$

Errors

 $\begin{vmatrix} val \ \mathbf{z}_{-} \neg_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ val \ \mathbf{z}_{-} \in \neg_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ \end{vmatrix}$

Description A conversion concerning the membership of a schema negation.

 $\begin{array}{c|c}
 & z_{-} \in \neg_{s-} conv \\
\hline
 & \vdash v \in (\neg S) \Leftrightarrow \neg (v \in S) \\
\end{array}$

where S is a schema. Schemas as predicates will be treated as membership statements by this conversion.

Definition

 $|val z_{\neg s} - conv| = Z_{-} \in ELIM_{-}C z_{-} \in \neg_{s} - conv;$

Errors

|43017|?0 is not of the form: $z \in (\neg S)$ where S is a schema

 $\begin{vmatrix} val & \mathbf{z}_{-} \Rightarrow_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ val & \mathbf{z}_{-} \in_{-} \Rightarrow_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \end{vmatrix}$

Description A conversion concerning the membership of a schema implication.

where R and S are schemas that have signature variables variables $r_1, r_2, ...$ and $s_1, s_2, ...$ respectively, and

 $\begin{vmatrix} bind1 = (r_1 \stackrel{\frown}{=} v.r_1, ...) \\ bind2 = (s_1 \stackrel{\frown}{=} v.s_1, ...) \end{vmatrix}$

Schemas as predicates will be treated as membership statements by this conversion. If v is a binding display then $v.x_i$ will be simplified.

Definition

 $|val z_{-} \Rightarrow_{s_{-}} conv = Z_{-} \in ELIM_{-}C z_{-} \in \Rightarrow_{s_{-}} conv;$

Error

```
\begin{vmatrix} val \ \mathbf{z}_{-} \forall_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ val \ \mathbf{z}_{-} \in _{-} \forall_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ \end{vmatrix}
```

Description A conversion concerning schema universals.

where S is a schema that has signature variables $x_1, x_2, ...$ and $y_1, y_2, ...$ D a declaration that declares $y_1, y_2, ...$. The "predicate from D" will also have schemas as predicates eliminated in favour of bindings being members of schemas. Schemas as predicates will be treated as membership statements by this conversion. If v is a binding display then $v.x_i$ will be simplified.

```
\begin{vmatrix} val & \mathbf{z}_{-} \exists_{\mathbf{1s}} - \mathbf{conv} : CONV; \\ val & \mathbf{z}_{-} \in_{-} \exists_{\mathbf{1s}} - \mathbf{conv} : CONV; \end{vmatrix}
```

Description A conversion concerning schema unique existentials.

where S is a schema that has signature variables $x_1, x_2, ...$ and $y_1, y_2, ...$ D a declaration that declares $y_1, y_2, ...$. The "predicate from D" will also have schemas as predicates eliminated in favour of bindings being members of schemas. Schemas as predicates will be treated as membership statements by this conversion. If v is a binding display then $v.x_i$ will be simplified.

```
\begin{vmatrix} val \ \mathbf{z}_{-} \exists_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ val \ \mathbf{z}_{-} \in \exists_{\mathbf{s}_{-}} \mathbf{conv} : CONV; \\ \end{vmatrix}
```

Description A conversion concerning membership of schema existentials.

```
Conversion  z_{-} \in \exists_{s-} conv \\ \exists y : \mathbb{U} \bullet (\exists D \mid P \bullet S) = \\ \land P[y.y_1/y_1,...] " \\ \land P[y.y_1/y_1,...] \land \\ (x_1 \triangleq v.x_1,...,y_1 \triangleq y.y_1,...) \in S   z_{-} \in \exists_{s-} conv \\ \exists v \in (\exists D \mid P \bullet S) \urcorner
```

where S is a schema that has signature variables $x_1, x_2, ...$ and $y_1, y_2, ...$ D a declaration that declares $y_1, y_2, ...$. The "predicate from D" will also have schemas as predicates eliminated in favour of bindings being members of schemas. Schemas as predicates will be treated as membership statements by this conversion. If v is a binding display then $v.x_i$ will be simplified.

```
\begin{vmatrix} val & \mathbf{z}_{-g_{\mathbf{S}}} - \mathbf{conv} : CONV; \\ val & \mathbf{z}_{-g_{\mathbf{S}}} - \mathbf{conv} : CONV; \\ \end{vmatrix}
```

Description A conversion concerning schema sequential composition.

where R and S are schemas with signature variables as follows:

and x1, x2, ... are variables whose names are not used for variables, or as labels for the binding types of R or S. The signature variables enclosed in parentheses in the table are not shown in the theorem returned by the conversion but, if present, may result in extra schema declarations of the form $v : \mathbb{U}$ and binding maplets of the form v = v where v is e.g. z_{a_1} .

```
 \begin{array}{ll} \text{Definition} \\ |val \ z_{-} \in g_{s-} conv| = \in C \ z_{-g_{s-}} conv \end{array}
```

Schemas as predicates will be treated as membership statements by this conversion.

 $\begin{vmatrix} val \ \mathbf{z}_{-}\theta_{-}\mathbf{conv} : CONV; \\ val \ \mathbf{z}_{-}\theta_{-}\mathbf{conv1} : CONV; \end{vmatrix}$

Description $z_-\theta_-conv$ conversion from a θ -term to the binding constructor for the schema.

 $z_-\theta_-conv1$ is as $z_-\theta_-conv$, except that the conversion only succeeds if the θ term is ill-formed (i.e. is not Z).

Errors

 $\begin{vmatrix} 43010 & ?0 \text{ is not a } \theta-\text{term} \\ 43011 & ?0 \text{ is not an ill-formed } \theta-\text{term} \end{vmatrix}$

 $|val \mathbf{z}_{-}\theta_{-}\mathbf{eq}_{-}\mathbf{conv}: CONV;$

Description A conversion from an equality of two θ -terms, or a θ term and a binding display, to an elementwise equality condition.

where decS and decT are the decoration of the respective schemas. Also:

Conversion $\begin{array}{c|c}
 & z_{-}\theta_{-}eq_{-}conv \\
\hline
 & \vdash (\theta S = (n_{1} \stackrel{\frown}{=} x_{1}, \ldots)) \\
\Leftrightarrow (n_{1} = x_{1}) \wedge \ldots
\end{array}$

Uses Used in combination with $z_binding_eq_conv2$ to give η -terms the same status as binding displays.

Errors |43034> ?0 is not of the form: ${}_{\mathbf{Z}}^{\mathsf{T}}\theta S = \theta T {}^{\mathsf{T}}$ or ${}_{\mathbf{Z}}^{\mathsf{T}}\theta S = (n_1 \; \widehat{=} \; x_1, \, ...) {}^{\mathsf{T}}$

 $\begin{vmatrix} val \ \mathbf{z}_{-}\theta_{-} \in \mathbf{schema_conv} : CONV; \end{vmatrix}$

Description A conversion from a predicate asserting that the θ -term of a schema is a member of the schema to that schema as a predicate.

 $\begin{array}{c|c} & z_{-\theta_{-} \in _schema_conv} \\ \hline & + \theta S \in S \Leftrightarrow S \end{array} \qquad \begin{array}{c} z_{-\theta_{-} \in _schema_conv} \\ \overline{z} \theta S \in S \end{array}$

Note that the schemas cannot be decorated, as the type of $\Sigma \theta$ S $^{\prime}$ is the same as the type of $\Sigma \theta$ S. Other than that S may be any schema as a predicate, including schema references and horizontal schemas.

See Also $z_-\theta_- \in schema_intro_conv$; and $z_-pred_dec_conv$, which subsumes this conversion.

Errors

|43002> ?0 is not of the form $\lceil \theta S \in S \rceil$ where $\lceil S \rceil$ is an undecorated schema

Description A conversion concerning the membership of a schema projection.

Conversion

$$\frac{z_{-\upharpoonright s-conv}}{\vdash (R \upharpoonright_s S) = (R \land S) \setminus_s (x_1, x_2, ...)} \qquad \overline{z}_{-\upharpoonright s-conv}$$

where R and S are schemas and $x_1, x_2, ...$ are the signature variables of R that are not signature variables of S.

Definition

$$|val z \in conv| = C z \mid s = conv|$$

Schemas as predicates will be treated as membership statements by this conversion.

Errors

|43019> ?0 is not of the form: ${}^{\Gamma}_{Z}R \upharpoonright_{s} S^{\Gamma}$ where R and S are schemas

Chapter 9 447

THEORIES

9.1 Theory Listings

This section contains the listings of each theory.

9.1.1 The Theory z_arithmetic_tools

9.1.1.1 Parents

 $z_numbers$

9.1.1.2 Children

 $z_numbers1$ $z_nlibrary$

9.1.1.3 Constants

$$egin{array}{lll} \mathbb{Z}_{-}\mathbf{z} & \mathbb{Z} & \mathbb{Z} \ \mathbf{z}_{-}\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \end{array}$$

9.1.1.4 Definitions

$$\mathbf{z}_{-}\mathbf{z}$$

$$\vdash ConstSpec$$

$$(\lambda \ (\$"z_{-}\mathbf{z}'", \mathbb{Z}_{-}z')$$

$$\bullet \ \mathbb{Z}_{-}z' \ (\mathbb{N}\mathbb{Z} \ 1) = \mathbb{Z}1^{\mathsf{T}}$$

$$\land \ (\forall i \ j)$$

$$\bullet \ \mathbb{Z}_{-}z' \ (i + j) = \mathbb{Z}^{\mathsf{T}}\mathbb{Z}_{-}z' \ i^{\mathsf{T}} + \mathbb{T}\mathbb{Z}_{-}z' \ j^{\mathsf{T}})$$

$$\land \ (\forall i \bullet \mathbb{Z}_{-}z' \ (\sim i) = \mathbb{Z}^{\mathsf{T}} \sim \mathbb{T}\mathbb{Z}_{-}z' \ i^{\mathsf{T}})$$

$$\land \ \$"z_{-}\mathbb{Z}'" \ \mathbb{Z}1^{\mathsf{T}} = \mathbb{N}\mathbb{Z} \ 1$$

$$\land \ (\forall i \ j)$$

$$\bullet \ \$"z_{-}\mathbb{Z}'" \ \mathbb{Z}^{\mathsf{T}} = \mathbb{N}\mathbb{Z} \ 1$$

$$\land \ (\forall i \bullet \$"z_{-}\mathbb{Z}'" \ \mathbb{Z}^{\mathsf{T}} = \sim (\$"z_{-}\mathbb{Z}'" \ i))$$

$$\land \ (\forall i \bullet \$"z_{-}\mathbb{Z}'" \ (\mathbb{Z}_{-}z' \ x) = x)$$

$$\land \ (\forall y \bullet \mathbb{Z}_{-}z' \ (\$"z_{-}\mathbb{Z}'" \ y) = y))$$

$$(z_{-}\mathbb{Z}, \mathbb{Z}_{-}z)$$

9.1.1.5 Theorems

$\mathbf{z}_{-}\mathbb{Z}_{-}$ consistent

 $\mathbb{Z}_{-\mathbf{z}_{-}}$ consistent

```
 \vdash Consistent \\ (\lambda \ (\$"z_-\mathbb{Z}'", \ \mathbb{Z}_-z') \\ \bullet \ \mathbb{Z}_-z' \ (\mathbb{N}\mathbb{Z} \ 1) = \mathbb{Z}1^{\neg} \\ \land \ (\forall \ i \ j \\ \bullet \ \mathbb{Z}_-z' \ (i+j) = \mathbb{Z}^{\neg}\mathbb{Z}_-z' \ i^{\neg} + {\neg}\mathbb{Z}_-z' \ j^{\neg}) \\ \land \ (\forall \ i \bullet \ \mathbb{Z}_-z' \ (\sim i) = \mathbb{Z} \sim {\neg}\mathbb{Z}_-z' \ i^{\neg}) \\ \land \ \$"z_-\mathbb{Z}'" \ \mathbb{Z}1^{\neg} = \mathbb{N}\mathbb{Z} \ 1 \\ \land \ (\forall \ i \ j \\ \bullet \ \$"z_-\mathbb{Z}'" \ \mathbb{Z}i + j^{\neg} = \$"z_-\mathbb{Z}'" \ i + \$"z_-\mathbb{Z}'" \ j) \\ \land \ (\forall \ i \bullet \ \$"z_-\mathbb{Z}'" \ \mathbb{Z} \sim i^{\neg} = \sim (\$"z_-\mathbb{Z}'" \ i)) \\ \land \ (\forall \ x \bullet \ \$"z_-\mathbb{Z}'" \ (\mathbb{Z}_-z' \ x) = x) \\ \land \ (\forall \ y \bullet \ \mathbb{Z}_-z' \ (\$"z_-\mathbb{Z}'" \ y) = y)) \\ \mathbf{z}_-\mathbb{Z}_- \mathbf{plus}_- \mathbf{thm} \\ \vdash \forall \ i \ j \bullet \ z_-\mathbb{Z} \ \mathbb{Z}i + j^{\neg} = z_-\mathbb{Z} \ i + z_-\mathbb{Z} \ j \\ \vdash \forall \ i \ j \bullet \ z_-\mathbb{Z} \ \mathbb{Z}i * j^{\neg} = z_-\mathbb{Z} \ i * z_-\mathbb{Z} \ j
```

 $z_{-}\mathbb{Z}_{-}subtract_{-}thm$

$$\vdash \forall \ i \ j \bullet \ z_{-} \mathbb{Z} \ \overline{j} i - j = z_{-} \mathbb{Z} \ i - z_{-} \mathbb{Z} \ j$$

 $\mathbf{z}_{-}\mathbb{Z}_{-}\mathbf{minus}_{-}\mathbf{thm}$

$$\vdash \forall \ i \bullet \ z_{-} \mathbb{Z} \ _{\mathsf{Z}} \sim i^{\mathsf{T}} = \sim (z_{-} \mathbb{Z} \ i)$$

$$\mathbb{Z}_{-}\mathbf{z}_{-}\mathbf{plus}_{-}\mathbf{thm} \quad \vdash \ \forall \ i \ j \bullet \ \mathbb{Z}_{-}z \ (i + j) = \mathbb{I}_{-}\mathbb{Z}_{-}z \ i^{\neg} + \mathbb{I}_{-}z \ j^{\neg \neg}$$

 $\mathbb{Z}_{-}\mathbf{z}_{-}\mathbf{times}_{-}\mathbf{thm}$

$$\vdash \forall \ i \ j \bullet \ \mathbb{Z}_{-}z \ (i * j) = \mathbb{Z}^{\Gamma} \mathbb{Z}_{-}z \ i \mathbb{Z} * \mathbb{Z}_{-}z \ j \mathbb{Z}_{-}z$$

 $\mathbb{Z}_{-}\mathbf{z}_{-}\mathbf{subtract}_{-}\mathbf{thm}$

$$\vdash \forall i j \bullet \mathbb{Z}_{-}z (i - j) = \mathbb{Z}^{\Gamma} \mathbb{Z}_{-}z i^{\neg} - \Gamma \mathbb{Z}_{-}z j^{\neg \neg}$$

 $\mathbb{Z}_{\mathbf{z}}$ _minus_thm

$$\vdash \forall i \bullet \mathbb{Z}_{-}z \ (\sim i) = \mathbb{Z} \sim \lceil \mathbb{Z}_{-}z \ i \rceil \rceil$$

 $\mathbf{z}_{-}\mathbb{Z}_{-}$ one_one_thm

$$\vdash \forall \ i \ j \bullet \ z_{-} \mathbb{Z} \ i = z_{-} \mathbb{Z} \ j \Leftrightarrow i = j$$

 $\mathbb{Z}_{-}\mathbf{z}_{-}one_one_thm$

$$\vdash \forall \ i \ j \bullet \ \mathbb{Z}_{-}z \ i = \mathbb{Z}_{-}z \ j \Leftrightarrow i = j$$

$$\mathbf{z}_{-} \leq \mathbb{Z}_{-} \leq \mathbf{thm} \quad \vdash \forall \ i \ j \bullet \ \mathbb{I}_{z}(i, j) \ \exists \in \mathbb{I}_{z}(1, j) \ \exists \in \mathbb{$$

 $\mathbf{z}_\mathbf{less}_\mathbb{Z}_\mathbf{less}_\mathbf{thm}$

$$\vdash \forall \ i \ j \bullet \lceil (i, j) \rceil \in \lceil (- < -) \rceil \Leftrightarrow z - \mathbb{Z} \ i < z - \mathbb{Z} \ j$$

9.1.2 The Z Theory z_bags

9.1.2.1 Parents

 $z_sequences$

9.1.2.2 Children

 $z_library$

9.1.2.3 Global Variables

$$\begin{array}{lll} \mathbf{bag} \ \mathbf{X} & \mathbb{P} \ (X \leftrightarrow \mathbb{Z}) \\ \mathbf{count}[\mathbf{X}] & (X \leftrightarrow \mathbb{Z}) \leftrightarrow X \leftrightarrow \mathbb{Z} \\ (_\mathbf{in}_)[\mathbf{X}] & X \leftrightarrow X \leftrightarrow \mathbb{Z} \\ (_ \uplus _)[\mathbf{X}] & (X \leftrightarrow \mathbb{Z}) \times (X \leftrightarrow \mathbb{Z}) \leftrightarrow X \leftrightarrow \mathbb{Z} \\ \mathbf{items}[\mathbf{X}] & (\mathbb{Z} \leftrightarrow X) \leftrightarrow X \leftrightarrow \mathbb{Z} \\ (\llbracket \dots \rrbracket)[\mathbf{X}] & (\mathbb{Z} \leftrightarrow X) \leftrightarrow X \leftrightarrow \mathbb{Z} \end{array}$$

9.1.2.4 Fixity

fun 0 rightassoc

$$(\llbracket \ \dots \ \rrbracket)$$

fun 30 leftassoc

gen 70 rightassoc

$$(bag_{-})$$

 \mathbf{rel}

(_ in _)

9.1.2.5 Axioms

9.1.2.6 Definitions

$$\mathbf{bag} \ _ \qquad \qquad \vdash [X](\mathit{bag} \ X = X \ + \!\!\!+ \mathbb{N}_1)$$

9.1.3 The Z Theory z₋functions

9.1.3.1 Parents

 $z_{-}relations$

9.1.3.2 Children

 $z_functions1$ $z_numbers$

9.1.3.3 Global Variables

9.1.3.4 Fixity

gen 5 rightassoc

9.1.3.5 Definitions

9.1.3.6 Theorems

```
z_- \rightarrow -thm
                                    \vdash \forall f : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
                                            \bullet f \in X \rightarrow Y
                                               \Leftrightarrow f \in X \leftrightarrow Y
                                                   \wedge (\forall x : X; y1, y2 : Y)
                                                       • (x, y1) \in f \land (x, y2) \in f \Rightarrow y1 = y2
z_-\!\!\to_-\!thm1
                                    \vdash \forall f : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
                                            \bullet f \in X \nrightarrow Y
                                               \Leftrightarrow f \in X \leftrightarrow Y
                                                   \wedge (\forall x : \mathbb{U}; y1, y2 : \mathbb{U})
                                                       | x \in X \land y1 \in Y \land y2 \in Y
                                                      \bullet (x, y1) \in f \land (x, y2) \in f \Rightarrow y1 = y2)
z_- \rightarrow_- thm
                                    \vdash \forall f : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
                                            • f \in X \to Y \Leftrightarrow f \in X \to Y \land dom \ f = X
                                    \vdash \forall \ f : \mathbb{U}; \ X : \mathbb{U}; \ Y : \mathbb{U}
\mathbf{z}_{-} \rightarrow -\mathbf{thm}
                                            \bullet \ f \in X \not \mapsto Y
                                               \Leftrightarrow f \in X \nrightarrow Y
                                                   \wedge (\forall x1, x2 : \mathbb{U})
                                                      | x1 \in dom \ f \land x2 \in dom \ f
                                                      \bullet f x1 = f x2 \Rightarrow x1 = x2
\mathbf{z}_{-} \rightarrow -\mathbf{thm}
                                    \vdash \forall f : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
                                            • f \in X \rightarrow Y
                                               \Leftrightarrow f \in X \to Y
                                                   \wedge (\forall x1, x2 : \mathbb{U})
                                                      |x1 \in dom \ f \land x2 \in dom \ f
                                                      \bullet f x1 = f x2 \Rightarrow x1 = x2
z_- + \rightarrow -thm
                                    \vdash \forall f : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
                                            • f \in X \twoheadrightarrow Y \Leftrightarrow f \in X \nrightarrow Y \land ran f = Y
                                    \vdash \forall f : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
z_- \rightarrow -thm
                                            • f \in X \rightarrow Y \Leftrightarrow f \in X \rightarrow Y \land ran f = Y
z \rightarrow -thm
                                    \vdash \forall f : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
                                            \bullet f \in X \rightarrowtail Y
                                               \Leftrightarrow f \in X \to Y
                                                   \wedge ran f = Y
                                                   \wedge (\forall x1, x2 : \mathbb{U})
                                                       | x1 \in dom \ f \land x2 \in dom \ f
                                                      \bullet f x1 = f x2 \Rightarrow x1 = x2
\mathbf{z}_{-} {\rightarrow}_{-} \mathbf{app}_{-} \mathbf{thm} \hspace{0.3cm} \vdash \forall \hspace{0.1cm} X \hspace{0.1cm} : \mathbb{U}; \hspace{0.1cm} Y \hspace{0.1cm} : \mathbb{U}; \hspace{0.1cm} f \hspace{0.1cm} : \mathbb{U}; \hspace{0.1cm} x \hspace{0.1cm} : \mathbb{U}
                                            • f \in X \to Y \land x \in X \Rightarrow f \ x \in Y \land (x, f \ x) \in f
z_{-} \in \underline{\text{first\_thm}}
                                     \vdash \forall x : \mathbb{U} \bullet x \in first \Leftrightarrow x.1.1 = x.2
z_{-} \in \underline{\text{second}}_{-} \text{thm}
                                     \vdash \forall \ x : \mathbb{U} \bullet x \in second \Leftrightarrow x.1.2 = x.2
z_- \rightarrow -app_- \in -rel_-thm
                                    \vdash \forall X : \mathbb{U}; Y : \mathbb{U} \bullet \forall f : X \to Y; x : X \bullet (x, f x) \in f
z_- \rightarrow app_eq_+ \Leftrightarrow \in rel_thm
                                    \vdash \forall X : \mathbb{U}; Y : \mathbb{U}
                                            • \forall f: X \to Y; x: X; z: \mathbb{U} \bullet f \ x = z \Leftrightarrow (x, z) \in f
\mathbf{z}_{-} \rightarrow_{-} \in \mathbf{rel}_{-} \Leftrightarrow \mathbf{app}_{-} \mathbf{eq}_{-} \mathbf{thm}
                                    \vdash \forall X : \mathbb{U}; Y : \mathbb{U}
                                            \bullet \ \forall \ f: X \to Y; \ x: X; \ z: \mathbb{U} \bullet (x, z) \in f \Leftrightarrow f \ x = z
```

```
\vdash \forall \ Y : \mathbb{U} \bullet \{\} \leftrightarrow Y = \{\{\}\} \land Y \leftrightarrow \{\} = \{\{\}\}\}
z_- \rightarrow \_clauses
z_- \rightarrow_- clauses
                                 \vdash \forall Y : \mathbb{U}
                                        • \{\} \to Y = \{\{\}\}
                                           \land Y \to \{\} = \{x : \mathbb{U} \mid x = \{\} \land Y = \{\}\}
                                 \vdash \forall \ Y : \mathbb{U} \bullet \{\} \rightarrowtail Y = \{\{\}\} \land \ Y \rightarrowtail \{\} = \{\{\}\}\}
z_{-} \rightarrow -clauses
                                 \vdash \forall Y : \mathbb{U}
z_{-}\rightarrow_{-}clauses
                                        \bullet \ \{\} \rightarrowtail \ Y = \{\{\}\}
                                           \land Y \rightarrowtail \{\} = \{x : \mathbb{U} \mid x = \{\} \land Y = \{\}\}
z_- + -clauses
                                 \vdash \forall Y : \mathbb{U}
                                        • \{\} \twoheadrightarrow Y = \{x : \mathbb{U} \mid x = \{\} \land Y = \{\}\}
                                           \land Y \twoheadrightarrow \{\} = \{\{\}\}
                                 \vdash \ \forall \ Y : \mathbb{U}
z_- \rightarrow _- clauses
                                        • \{\} \rightarrow Y = \{x : \mathbb{U} \mid x = \{\} \land Y = \{\}\}
                                           \land Y \to \{\} = \{x : \mathbb{U} \mid x = \{\} \land Y = \{\}\}
z \rightarrow clauses
                                        • \{\} \rightarrowtail Y = \{x : \mathbb{U} \mid x = \{\} \land Y = \{\}\}
                                           \land Y \rightarrowtail \{\} = \{x : \mathbb{U} \mid x = \{\} \land Y = \{\}\}
z_fun_app_clauses
                                 \vdash \forall f : \mathbb{U}; \ x : \mathbb{U}; \ y : \mathbb{U}; \ X : \mathbb{U}; \ Y : \mathbb{U}
                                        • (f \in X \rightarrow Y)
                                                  \forall f \in X \not \mapsto Y
                                                  \forall f \in X \twoheadrightarrow Y
                                                  \forall f \in X \rightarrow Y
                                                  \forall f \in X \rightarrow Y
                                                  \forall f \in X \twoheadrightarrow Y
                                                 \forall f \in X \rightarrow Y
                                              \land (x, y) \in f
                                           \Rightarrow f \ x = y
z_{\text{fun}} \in \text{clauses}
                                 \vdash \forall f : \mathbb{U}; x : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
                                        • ((f \in X \to Y \lor f \in X \rightarrowtail Y \lor f \in X \twoheadrightarrow Y \lor f \in X \rightarrowtail Y)
                                                 \land x \in X
                                              \Rightarrow f \ x \in Y
                                           \land \ ((f \in X \, \nrightarrow \, Y \, \lor f \in X \, \nrightarrow \, Y \, \lor f \in X \, \nrightarrow \, Y)
                                                  \land x \in dom f
                                              \Rightarrow f \ x \in Y
z_fun_dom_clauses
                                 \vdash \forall f : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
                                        • (f \in X \rightarrow Y \lor f \in X \rightarrow Y \lor f \in X \Rightarrow Y \Rightarrow dom \ f \subseteq X)
                                           \land (f \in X \to Y \lor f \in X \rightarrowtail Y \lor f \in X \twoheadrightarrow Y \lor f \in X \rightarrowtail Y)
                                              \Rightarrow dom \ f = X
z_fun_ran_clauses
                                 \vdash \forall f : \mathbb{U}; X : \mathbb{U}; Y : \mathbb{U}
                                        \bullet \ (f \in X \to Y \lor f \in X \nrightarrow Y \lor f \in X \nrightarrow Y \lor f \in X \rightarrowtail Y
                                              \Rightarrow ran \ f \subseteq Y
                                           \land (f \in X \implies Y \lor f \in X \implies Y \lor f \in X \implies Y \Rightarrow ran f = Y)
```

9.1.4 The Z Theory z_functions1

9.1.4.1 Parents

 $z_{-}functions$

9.1.4.2 Children

 $z_numbers1$

9.1.4.3 Theorems

```
\mathbf{z}_- \oplus_- {\mapsto}_- \mathbf{app}_- \mathbf{thm}
                                 \vdash \forall f : \mathbb{U}; \ x : \mathbb{U}; \ y : \mathbb{U} \bullet (f \oplus \{x \mapsto y\}) \ x = y
z_{-}dom_{-} \oplus_{-} \mapsto_{-}thm
                                 \vdash \forall f : \mathbb{U}; x : \mathbb{U}; y : \mathbb{U}
                                        \bullet \ dom \ (f \oplus \{x \mapsto y\}) = dom \ f \cup \{x\}
\mathbf{z}_- \oplus_- \mapsto_- \in_- \to_- \mathbf{thm}
                                 \vdash [X,
                                      Y](\forall \ f: X \rightarrow Y; \ x: X; \ y: Y \bullet f \oplus \{x \mapsto y\} \in X \rightarrow Y)
z_- \oplus_- \mapsto_- app\_thm1
                                 \vdash [X,
                                     Y[(\forall f: X \rightarrow Y; x2: X; x1: \mathbb{U}; y: \mathbb{U})]
                                        x2 = x1
                                        • (f \oplus \{x1 \mapsto y\}) \ x2 = f \ x2)
\mathbf{z}_{-} \lhd_{-} \rightarrow_{-} \mathbf{thm}
                                 \vdash [Y,
                                     Z](\forall X : \mathbb{U}; f : Y \to Z)
                                        \bullet \ X \subseteq Y \Rightarrow X \vartriangleleft f \in X \to ran \ (X \vartriangleleft f))
z_ran_⊲_thm
                                \vdash [Y,
                                     Z](\forall X : \mathbb{U}; f : Y \to Z)
                                        • ran (X \triangleleft f)
                                           = ran f
                                                  \setminus \{y : \mathbb{U}\}
                                                  | \forall x : \mathbb{U} | (x, y) \in f \bullet \neg x \in X \}
z_- \in \_ \to \_ thm
                                 \vdash \forall X : \mathbb{U}; Y : \mathbb{U}
                                        \bullet \ \forall \ f: X \to Y; \ x: \mathbb{U}; \ y: \mathbb{U}
                                           | (x, y) \in f
                                           \bullet x \in X \land y \in Y
z_- \rightarrow -ran_- eq_- \rightarrow -thm
                                 \vdash \forall A : \mathbb{U}; B : \mathbb{U}
                                        • (\exists f : A \to B \bullet ran f = B) \Leftrightarrow (\exists f : A \twoheadrightarrow B \bullet true)
\vdash \forall A : \mathbb{U}; B : \mathbb{U}
                                        • (\exists f : A \rightarrow B \bullet ran f = B) \Leftrightarrow (\exists f : A \rightarrow B \bullet true)
z_ran_mono_thm
                                 \vdash \forall X : \mathbb{U}; Y, Z : \mathbb{U}; f : \mathbb{U}
                                       | f \in X \rightarrow Y \land ran f \subseteq Z
                                        \bullet f \in X \to Z
z_- \rightarrow -thm2
                                 \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U}
                                        • f \in A \rightarrow B \Leftrightarrow f \in dom \ f \rightarrow B \land dom \ f \subseteq A
```

```
z_- \rightarrow -thm1
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U}
                                                                                   • f \in A \rightarrow B \Leftrightarrow f \in A \rightarrow B \land B \subseteq ran f
z_{-} \rightarrow -thm1
                                                                    \vdash [X,
                                                                             Y](X \implies Y
                                                                                  = \{f: X \rightarrow Y\}
                                                                                         | \forall x1, x2 : \mathbb{U}; y : \mathbb{U}
                                                                                                \bullet (x1, y) \in f \land (x2, y) \in f \Rightarrow x1 = x2\})
\mathbf{z}_{-} \rightarrow \mathbf{dom}_{-}\mathbf{thm} \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U} \bullet f \in A \rightarrow B \Rightarrow f \in dom \ f \rightarrow B
z\_{\rightarrowtail}\_thm1
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U}
                                                                                  • f \in A \rightarrow B
                                                                                         \Leftrightarrow f \in A \to B
                                                                                                \wedge \ (\forall \ x, \ y : \mathbb{U}; \ z : \mathbb{U})
                                                                                                       \bullet (x, z) \in f \land (y, z) \in f \Rightarrow x = y)
\vdash \forall A : \mathbb{U}; B : \mathbb{U}; C : \mathbb{U}; D : \mathbb{U}; f : \mathbb{U}; g : \mathbb{U}
                                                                                   • f \in A \leftrightarrow B \land g \in C \leftrightarrow D \Rightarrow f \cup g \in A \cup C \leftrightarrow B \cup D
                                                                    \vdash \forall f : \mathbb{U}; g : \mathbb{U} \bullet ran (f \cup g) = ran f \cup ran g
z_ran_{\cup}thm
z_- \cup_- \rightarrow_- thm
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; C : \mathbb{U}; D : \mathbb{U}; f : \mathbb{U}; g : \mathbb{U}
                                                                                   • f \in A \to B \land g \in C \to D \land A \cap C = \{\}
                                                                                         \Rightarrow f \cup g \in A \cup C \rightarrow B \cup D
\mathbf{z}_- \cup_- \rightarrowtail_- \mathbf{thm}
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; C : \mathbb{U}; D : \mathbb{U}; f : \mathbb{U}; g : \mathbb{U}
                                                                                   \bullet \ f \in A \rightarrowtail B \land g \in C \rightarrowtail D \land A \cap C = \{\} \land B \cap D = \{\}
                                                                                         \Rightarrow f \cup q \in A \cup C \rightarrowtail B \cup D
                                                                    \vdash \ \forall \ A : \mathbb{U}; \ B : \mathbb{U}; \ C : \mathbb{U}; \ D : \mathbb{U}; \ f : \mathbb{U}; \ g : \mathbb{U}
\mathbf{z}_{-}\cup_{-}—_thm
                                                                                  \bullet f \in A \twoheadrightarrow B \land g \in C \twoheadrightarrow D \land A \cap C = \{\}
                                                                                         \Rightarrow f \cup g \in A \cup C \twoheadrightarrow B \cup D
\mathbf{z}_- \cup_{\longrightarrow} -\mathbf{thm}
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; C : \mathbb{U}; D : \mathbb{U}; f : \mathbb{U}; g : \mathbb{U}
                                                                                  • f \in A \rightarrow B \land g \in C \rightarrow D \land A \cap C = \{\} \land B \cap D = \{\}
                                                                                         \Rightarrow f \cup g \in A \cup C \rightarrowtail B \cup D
\mathbf{z}_{-} \circ_{-} \rightarrow_{-} \mathbf{thm}
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; C : \mathbb{U}; f : \mathbb{U}; g : \mathbb{U}
                                                                                   • f \in A \to B \land g \in B \to C \Rightarrow g \circ f \in A \to C
z_{-} \circ_{-} \rightarrow -thm
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; C : \mathbb{U}; f : \mathbb{U}; g : \mathbb{U}
                                                                                   • f \in A \twoheadrightarrow B \land g \in B \twoheadrightarrow C \Rightarrow g \circ f \in A \twoheadrightarrow C
\mathbf{z}\_\circ\_\rightarrowtail\_\mathbf{thm}
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; C : \mathbb{U}; f : \mathbb{U}; g : \mathbb{U}
                                                                                   • f \in A \rightarrow B \land g \in B \rightarrow C \Rightarrow g \circ f \in A \rightarrow C
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; C : \mathbb{U}; f : \mathbb{U}; g : \mathbb{U}
\mathbf{z}_{-} \circ \longrightarrow thm
                                                                                   • f \in A \rightarrow B \land q \in B \rightarrow C \Rightarrow q \circ f \in A \rightarrow C
z_rel_inv_{\rightarrow}thm
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U} \bullet f \in A \rightarrowtail B \Rightarrow f \sim \in B \rightarrowtail A
z_id_thm1
                                                                    \vdash \forall X : \mathbb{U}; x, y : \mathbb{U} \bullet (x, y) \in id \ X \Leftrightarrow x \in X \land x = y
                                                                   \vdash \forall X : \mathbb{U} \bullet id X \in X \Rightarrow X
\mathbf{z}_{-}\mathbf{id}_{-} \rightarrow \mathbf{thm}
z_simple_swap_{\rightarrow}thm
                                                                     \vdash \forall x, y : \mathbb{U} \bullet \{(x, y), (y, x)\} \in \{x, y\} \rightarrow \{x, y\}
\mathbf{z}_{\mathbf{z}} = \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} = \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} = \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} + \mathbf{z}_{\mathbf{z}} = \mathbf{z}_{\mathbf{z}} + 
                                                                                   \bullet \ \forall \ x, \ y : X
                                                                                         \bullet \exists g: X \rightarrowtail X \bullet (x, y) \in g \land (y, x) \in g
z_{\rightarrow}trans_thm
                                                                     \vdash \forall X : \mathbb{U} \bullet \forall x, y : X \bullet \exists q : X \rightarrowtail X \bullet (x, y) \in q
z_{-}dom_{-}f_{-}\leftrightarrow_{-}f_{-}thm
                                                                    \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U}
                                                                                   \bullet f \in A \leftrightarrow B
                                                                                         \Rightarrow \{x : A; y : B\}
```

```
|(x, y) \in f
                                                   • (x, (x, y))
                                                \in dom \ f \leftrightarrow f
z\_dom\_f\_ {\rightarrow} \_f\_thm
                                  \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U}
                                         \bullet f \in A \rightarrow B
                                             \Rightarrow \{x:A; y:B\}
                                                   |(x, y) \in f
                                                    \bullet (x, (x, y))
                                                \in dom \ f \to f
z_{-}dom_{-}f_{-} \rightarrow f_{-}thm
                                  \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U}
                                          • f \in A \to B
                                             \Rightarrow \{x:A; y:B\}
                                                    |(x, y) \in f
                                                   \bullet (x, (x, y))
                                                \in dom f \twoheadrightarrow f
z_{-}dom_{-}f_{-} \rightarrow _{-}f_{-}thm
                                  \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U}
                                         • f \in A \rightarrow B
                                             \Rightarrow \{x:A; y:B\}
                                                   |(x, y) \in f
                                                    • (x, (x, y))
                                                \in dom \ f \rightarrow f
z_dom_f \longrightarrow f_thm
                                  \vdash \forall A : \mathbb{U}; B : \mathbb{U}; f : \mathbb{U}
                                          \bullet f \in A \to B
                                             \Rightarrow \{x : A; y : B\}
                                                   | (x, y) \in f
                                                    • (x, (x, y))
                                                \in dom \ f \rightarrow f
                                  \vdash \forall X : \mathbb{U}; Y : \mathbb{U}; f, g : \mathbb{U}
\mathbf{z}_{-}\cap_{-} \leftrightarrow_{-} thm
                                        |f \in X \leftrightarrow Y|
                                         • f \cap g \in dom \ (f \cap g) \leftrightarrow ran \ (f \cap g)
                                 \vdash \forall X : \mathbb{U}; f : \mathbb{U} \bullet f \in X \leftrightarrow ran \ f \Leftrightarrow f \in X \leftrightarrow \mathbb{U}
z_{-} \leftrightarrow_{-} ran_{-} thm
                                 \vdash \forall X : \mathbb{U}; f : \mathbb{U} \bullet f \in X \rightarrow ran \ f \Leftrightarrow f \in X \rightarrow \mathbb{U}
z_- \rightarrow _- ran_- thm
                                  \vdash \forall X : \mathbb{U}; Y : \mathbb{U}; f, g : \mathbb{U}
\mathbf{z}_-\cap_-{\rightarrow}_-\mathbf{thm}
                                        |f \in X \to Y
                                         • f \cap g \in dom \ (f \cap g) \rightarrow ran \ (f \cap g)
\mathbf{z}_{-}\cap_{-} \rightarrow_{-} \mathbf{thm}
                                  \vdash \forall \ X : \mathbb{U}; \ Y : \mathbb{U}; f, g : \mathbb{U}
                                         | f \in X \rightarrow Y
                                         • f \cap g \in dom \ (f \cap g) \rightarrow ran \ (f \cap g)
                                 \vdash \forall X : \mathbb{U}; Y : \mathbb{U}; f : \mathbb{U} \mid f \in X \to Y \bullet f \in dom \ f \twoheadrightarrow ran \ f
z_- \rightarrow ran_thm
                                  \vdash \forall X : \mathbb{U}; Y : \mathbb{U}; f, g : \mathbb{U}
\mathbf{z}_- \cap_- \twoheadrightarrow_- \mathbf{thm}
                                         | f \in X \rightarrow Y
                                         • f \cap g \in dom \ (f \cap g) \twoheadrightarrow ran \ (f \cap g)
\mathbf{z}_- \cap \longrightarrow -\mathbf{thm}
                                  \vdash \forall X : \mathbb{U}; Y : \mathbb{U}; f, g : \mathbb{U}
                                        |f \in X \rightarrow Y
                                         • f \cap g \in dom \ (f \cap g) \rightarrow ran \ (f \cap g)
z_- \rightarrow_- diff_singleton_thm
                                  \vdash \forall X : \mathbb{U}; Y : \mathbb{U}
```

$$\begin{array}{c} \bullet \ \forall \ f: X \to Y; \ x: \mathbb{U}; \ y: \mathbb{U} \\ \bullet \ (x, \ y) \in f \Rightarrow f \setminus \{(x, \ y)\} \in X \setminus \{x\} \to Y \\ \mathbf{z}_ \rightarrowtail_- \mathbf{diff_singleton_thm} \end{array}$$

 $z_singleton_app_thm$

$$\vdash \forall \ x : \mathbb{U}; \ y : \mathbb{U} \bullet \{(x, \ y)\} \ x = y$$

 $z_empty_{-} \rightarrow _thm$

$$\vdash \forall X : \mathbb{U} \bullet (\exists f : \{\} \rightarrow X \bullet true) \Leftrightarrow X = \{\}$$

 $\mathbf{z}_-{\rightarrow}_- empty_thm$

$$\vdash \forall \ X : \mathbb{U} \bullet (\exists \ f : X \to \{\} \bullet \ true) \Leftrightarrow X = \{\}$$

9.1.5 The Theory z_{-} language

9.1.5.1 Parents

 \mathbb{Z} hol

9.1.5.2 Children

 $z_language_ps$

9.1.5.3 Notes

This theory is a cache theory; its contents have not been listed.

9.1.6 The Z Theory z_language_ps

9.1.6.1 Parents

 $z_{-}language$

9.1.6.2 Children

 z_sets

9.1.6.3 Theorems

```
z_app_thm
                                      \vdash \forall \ a : \mathbb{U}; f : \mathbb{U}; x : \mathbb{U}
                                              • (\forall f_a : \mathbb{U} \mid (a, f_a) \in f \bullet f_a = x) \land (a, x) \in f
                                                  \Rightarrow f \ a = x
z_sets_ext_thm
                                      \vdash \forall \ x : \mathbb{U}; \ y : \mathbb{U} \bullet x = y \Leftrightarrow (\forall \ z : \mathbb{U} \bullet z \in x \Leftrightarrow z \in y)
                                      \vdash \forall \ t : \mathbb{U}; \ u : \mathbb{U} \bullet t \in \mathbb{P} \ u \Leftrightarrow (\forall \ z : \mathbb{U} \bullet z \in t \Rightarrow z \in u)
\mathbf{z}_-{\in}_-\mathbb{P}_-\mathbf{thm1}
\mathbf{z}_{-} \in \mathbf{app\_thm} \quad \vdash \forall \ a : \mathbb{U}; \ x : \mathbb{U}; \ f : \mathbb{U}
                                              • (\exists f_{-}x : \mathbb{U})
                                                     • a \in f_-x
                                                         \land (x, f_{-}x) \in f
                                                         \wedge (\forall f_{-}x1 : \mathbb{U} \bullet (x, f_{-}x1) \in f \Rightarrow f_{-}x1 = f_{-}x))
                                                  \Rightarrow a \in f x
\mathbf{z}_{-}\mathbf{app}_{-} \in \mathbf{thm} \quad \vdash \forall \ a : \mathbb{U}; \ x : \mathbb{U}; \ f : \mathbb{U}
                                              • (\exists f_{-}x : \mathbb{U})
                                                     • f_{-}x \in a
                                                         \wedge (x, f_{-}x) \in f
                                                         \wedge (\forall f_{-}x1 : \mathbb{U} \bullet (x, f_{-}x1) \in f \Rightarrow f_{-}x1 = f_{-}x))
                                                  \Rightarrow f \ x \in a
```

9.1.7 The Z Theory z_{-} library

9.1.7.1 Parents

 $z_sequences1 \quad z_arithmetic_tools \qquad z_bags$

9.1.8 The Z Theory z_numbers

9.1.8.1 Parents

 $z_{-}functions$

9.1.8.2 Children

 $z_reals\ z_sequences$ $z_numbers1$ $z_arithmetic_tools$

9.1.8.3 Global Variables

```
\mathbb{Z}
                                                         \mathbb{P} \mathbb{Z}
                                                        \mathbb{P} \mathbb{Z}
(\sim _{-})
                                                         \mathbb{Z} \leftrightarrow \mathbb{Z}
                                                         \mathbb{Z} \times \mathbb{Z} \leftrightarrow \mathbb{Z}
(- + -)
                                                        \mathbb{Z} \times \mathbb{Z} \leftrightarrow \mathbb{Z}
(_{-} - _{-})
                                                        \mathbb{Z} \times \mathbb{Z} \leftrightarrow \mathbb{Z}
(- * -)
                                                        \mathbb{Z} \leftrightarrow \mathbb{Z}
(- \leq -)
                                                        \mathbb{Z} \leftrightarrow \mathbb{Z}
(-<-)
                                                        \mathbb{Z} \leftrightarrow \mathbb{Z}
(- \geq -)
                                                        \mathbb{Z} \leftrightarrow \mathbb{Z}
(- > -)
                                                        \mathbb{Z} \leftrightarrow \mathbb{Z}
(abs _)
(_ div _)
                                                        \mathbb{Z} \times \mathbb{Z} \leftrightarrow \mathbb{Z}
                                                        \mathbb{Z} \times \mathbb{Z} \leftrightarrow \mathbb{Z}
(_ mod _)
                                                        \mathbb{P} \mathbb{Z}
\mathbb{N}_{\mathbf{1}}
                                                        \mathbb{Z} \leftrightarrow \mathbb{Z}
succ
                                                    \mathbb{Z} \leftrightarrow (X \leftrightarrow X) \leftrightarrow X \leftrightarrow X
iter[X]
(\boldsymbol{x}_{-} \quad \boldsymbol{x}_{-} \quad \boldsymbol{x}_{-} )[\mathbf{X}]
                                                       (X \leftrightarrow X) \times \mathbb{Z} \leftrightarrow X \leftrightarrow X
(_ .. _)
                                                        \mathbb{Z} \times \mathbb{Z} \leftrightarrow \mathbb{P} \mathbb{Z}
\mathbb{F} \mathbf{X}
                                                        \mathbb{P}(\mathbb{P}X)
\mathbb{F}_1 X
                                                        \mathbb{P}(\mathbb{P}X)
\#[\mathbf{X}]
                                                        \mathbb{P} X \leftrightarrow \mathbb{Z}
X \ +\!\!\!+\!\!\!\!+ Y
                                                       \mathbb{P}(X \leftrightarrow Y)
X \not \rightarrowtail Y
                                                        \mathbb{P}(X \leftrightarrow Y)
                                                         \mathbb{P} \ \mathbb{Z} \, \leftrightarrow \, \mathbb{Z}
\min
                                                         \mathbb{P} \ \mathbb{Z} \leftrightarrow \mathbb{Z}
max
```

9.1.8.4 Fixity

fun 20 leftassoc

(_ .. _)

fun 30 leftassoc

$$(_{-} + _{-})(_{-} - _{-})$$

fun 40 leftassoc

```
fun 50 rightassoc
```

fun 70 rightassoc

gen 5 rightassoc

gen 70 rightassoc

$$(\mathbb{F}_{-})$$
 (\mathbb{F}_{1-})

 \mathbb{N}

$$(-<-)(->-)(-\le-)(-\ge-)$$

9.1.8.5 Axioms

```
\sim _
_ + _
                                   \vdash ((\_+\_) \in \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}
                                         \wedge (\sim \_) \in \mathbb{Z} \to \mathbb{Z}
                                          \wedge \mathbb{N} \in \mathbb{P} \mathbb{Z}
                                          \wedge (\forall i, j, k : \mathbb{Z})
                                             \bullet i + j + k = i + (j + k)
                                                 \wedge i + j = j + i
                                                \wedge i + \sim i = 0
                                                 \wedge i + \theta = i
                                          \wedge (\forall h : \mathbb{P} \mathbb{Z})
                                             • 1 \in h \land (\forall i, j : h \bullet i + j \in h \land \sim i \in h)
                                                 \Rightarrow h = \mathbb{Z}
                                          \wedge \ \mathbb{N} = \bigcap \ \{s: \mathbb{P} \ \mathbb{Z} \ | \ \theta \in s \land \{i: s \bullet i + 1\} \subseteq s\}
                                          \wedge \sim 1 \notin \mathbb{N}
z'int_{-}def
                                   \vdash \ulcorner \forall \ i \bullet \ \ulcorner Z \'Int \ (i + 1) \urcorner \urcorner = \ulcorner Z \'Int \ i \urcorner + 1 \urcorner \urcorner
\mathbf{Z}'Int
                                   \vdash (\_-\_) \in \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \land (\forall i, j : \mathbb{Z} \bullet i - j = i + \sim j)
                                   \vdash (\_ * \_) \in \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}
                                          \wedge (\forall i, j, k : \mathbb{Z})
                                             \bullet i * j * k = i * (j * k)
                                                \wedge i * j = j * i
                                                 \wedge i * (j + k) = i * j + i * k
                                                 \wedge 1 * i = i
_ ≤ _
_ < _
_ ≥ _
                                   \vdash \{(- \le -), (- < -), (- \ge -), (- > -)\} \subseteq \mathbb{Z} \leftrightarrow \mathbb{Z}
_ > _
                                          \wedge (\forall i, j : \mathbb{Z})
                                             • (i \le j \Leftrightarrow j - i \in \mathbb{N})
                                                \wedge (i < j \Leftrightarrow i + 1 \leq j)
                                                \land (i \ge j \Leftrightarrow j \le i)
                                                 \land (i > j \Leftrightarrow j < i))
```

```
\vdash (abs \_) \in \mathbb{Z} \to \mathbb{N} \land (abs \_) = (\sim \_) \oplus id \mathbb{N}
abs_
_ div _
                                 \vdash \{(\_div \_), (\_mod \_)\} \subseteq \mathbb{Z} \times \mathbb{Z} \setminus \{0\} \to \mathbb{Z}
_ mod _
                                        \land (\forall i : \mathbb{Z}; j : \mathbb{Z} \setminus \{0\})
                                           \bullet i = i \ div \ j * j + i \ mod \ j
                                              \land 0 \leq i \mod j
                                              \land i \mod j < abs j
                                 \vdash succ \in \mathbb{N} \to \mathbb{N} \land (\forall n : \mathbb{N} \bullet succ \ n = n + 1)
succ
                                 \vdash [X](iter[X] \in \mathbb{Z} \to (X \leftrightarrow X) \to X \leftrightarrow X
iter
                                        \land (\forall \ r: X \leftrightarrow X)
                                           • iter[X] \ \theta \ r = id \ X
                                              \wedge (\forall k : \mathbb{N})
                                                  • iter[X] (k + 1) r = r \circ iter[X] k r)
                                              \wedge (\forall k : \mathbb{N})
                                                  • iter[X] (\sim k) \ r = iter[X] \ k \ (r \sim)))
                                 \vdash [X]((\_ \ \ )[X] \in (X \leftrightarrow X) \times \mathbb{Z} \to X \leftrightarrow X
                                        \wedge \ (\forall \ r: X \leftrightarrow X; \ k: \mathbb{Z})
                                           • ( - )[X](r, k) = iter k r)
                                 \vdash (\_ .. \_) \in \mathbb{Z} \times \mathbb{Z} \to \mathbb{P} \mathbb{Z}
                                        \wedge (\forall x, y : \mathbb{Z} \bullet x ... y = \{k : \mathbb{Z} \mid x \leq k \wedge k \leq y\})
#
                                 \vdash [X](\#[X] \in \mathbb{F} \ X \to \mathbb{N}
                                        \wedge \ (\forall \ S : \mathbb{F} \ X)
                                           \bullet \#[X] S
                                              = (\mu \ n : \mathbb{N} \mid (\exists \ f : 1 \ .. \ n \rightarrow S \bullet ran \ f = S))))
                                 \vdash min \in \mathbb{P}_1 \mathbb{Z} \to \mathbb{Z}
min
                                        \land min
                                           = \{S : \mathbb{P}_1 \ \mathbb{Z}; \ m : \mathbb{Z}\}
                                              \mid m \in S \land (\forall n : S \bullet m \leq n)
                                              \bullet S \mapsto m
                                 \vdash max \in \mathbb{P}_1 \mathbb{Z} \to \mathbb{Z}
max
                                        \wedge max
                                           = \{S : \mathbb{P}_1 \ \mathbb{Z}; \ m : \mathbb{Z}\}
                                              \mid m \in S \land (\forall n : S \bullet m \ge n)
                                              • S \mapsto m
```

9.1.8.6 Definitions

9.1.8.7 Theorems

```
 \begin{split} \mathbf{z\_plus\_comm\_thm} \\ & \vdash \forall \ i, \ j: \mathbb{U} \ \bullet \ i+j = j+i \\ \mathbf{z\_plus\_assoc\_thm} \end{split}
```

```
\vdash \forall i, j, k : \mathbb{U} \bullet i + j + k = i + (j + k)
z_plus_assoc_thm1
                               \vdash \forall i, j, k : \mathbb{U} \bullet i + (j + k) = i + j + k
z_plus_order_thm
                               \vdash \forall i : \mathbb{U}
                                     \bullet \ \forall j, k : \mathbb{U}
                                        \bullet j + i = i + j
                                           \wedge i + j + k = i + (j + k)
                                           \wedge j + (i+k) = i + (j+k)
                               \vdash \forall \ i : \mathbb{U} \bullet i + 0 = i \land 0 + i = i
z_plus0_thm
z_plus_minus_thm
                               \vdash \forall i : \mathbb{U} \bullet i + \sim i = 0 \land \sim i + i = 0
                              \vdash \mathbb{N} = \bigcap \{s : \mathbb{U} \mid \theta \in s \land \{i : s \bullet i + 1\} \subseteq s\}
z_-\mathbb{N}_-thm
                                     \land \neg
                                     \sim 1 \in \mathbb{N}
{\bf z\_plus\_cyclic\_group\_thm}
                                     • 1 \in h \land (\forall i, j : h \bullet i + j \in h \land \sim i \in h)
                                        \Rightarrow h = \mathbb{U}
\mathbf{z}_{-}\mathbf{int}_{-}homomorphism_{-}thm
                               z_{-}\mathbb{Z}_{-}induction_thm
                                  \wedge (\forall i \bullet p i \Rightarrow p \vdash \sim i)
                                           \Rightarrow (\forall m \bullet p m)^{\neg}
z_N_plus1_thm
                               \vdash \forall i : \mathbb{N} \bullet i + 1 \in \mathbb{N}
z_0_N_thm
                              \vdash \theta \in \mathbb{N}
z_-\mathbb{N}_-induction_thm
                                  • p \ \overline{\ } 0 \ \wedge \ (\forall \ i \bullet \ i \in \overline{\ } \mathbb{N} \ \wedge \ p \ i \Rightarrow p \ \overline{\ } i + 1 \ )
                                        \Rightarrow (\forall m \bullet m \in {}^{\Gamma}_{\mathbf{Z}} \mathbb{N}^{\neg} \Rightarrow p m)^{\neg}
\mathbf{z}_{-}\mathbb{N}_{-}\mathbf{plus}_{-}\mathbf{thm} \vdash \forall i, j : \mathbb{N} \bullet i + j \in \mathbb{N}
\mathbf{z}_{-}\mathbb{Z}_{-}\mathbf{eq}_{-}\mathbf{thm}
                              \vdash \forall i, j : \mathbb{U} \bullet i = j \Leftrightarrow i + \sim j = 0
                            \vdash \forall i, j : \mathbb{U}
z_minus_thm
                                     \bullet \sim \sim i = i
                                        \wedge i + \sim i = 0
                                        \wedge \sim i + i = 0
                                        \wedge \sim (i+j) = \sim i + \sim j
                                        \wedge \sim \theta = \theta
z_minus_clauses
                               \vdash \forall i : \mathbb{U}
                                     \bullet \sim \sim i = i \wedge \sim 0 = 0 \wedge i + \sim i = 0 \wedge \sim i + i = 0
z_{-}N_{-}cases_{-}thm
                               \vdash \forall i : \mathbb{N} \bullet i = 0 \lor (\exists j : \mathbb{N} \bullet i = j + 1)
                               \vdash \forall \ i : \mathbb{U} \bullet \neg \ i \in \mathbb{N} \Rightarrow \sim i \in \mathbb{N}
\mathbf{z}_{-} \neg_{-} \mathbb{N}_{-} \mathbf{thm}
z_{-}\mathbb{Z}_{-}cases_{-}thm
                               \vdash \forall i : \mathbb{U} \bullet \exists j : \mathbb{N} \bullet i = j \lor i = \sim j
z_N_\neg_{plus1\_thm}
```

 $\mathbf{z}_{-}\mathbb{N}_{-}\neg_{-}\mathbf{minus}_{-}\mathbf{thm}$

$$\vdash \forall \ i : \mathbb{N} \bullet i = 0 \lor \neg \sim i \in \mathbb{N}$$

 $\vdash \forall \ i : \mathbb{U} \bullet i \in \mathbb{N} \lor (\exists \ j : \mathbb{N} \bullet i = \sim (j+1))$

 $z_plus_clauses$

 $z_{times_comm_thm}$

$$\vdash \forall \ i, j : \mathbb{U} \bullet i * j = j * i$$

z_times_assoc_thm

$$\vdash \forall i, j, k : \mathbb{U} \bullet i * j * k = i * (j * k)$$

 $z_{times_assoc_thm1}$

$$\vdash \forall i, j, k : \mathbb{U} \bullet i * (j * k) = i * j * k$$

 $z_{times_order_thm}$

 $\mathbf{z}_{-}\mathbf{times1}_{-}\mathbf{thm} \quad \vdash \ \forall \ i : \mathbb{U} \bullet i * 1 = i \land 1 * i = i$

 $z_{times_plus_distrib_thm}$

$$\vdash \forall \ i, j, k : \mathbb{U}$$
• $i * (j + k) = i * j + i * k$

$$\land (i + j) * k = i * k + j * k$$

 $\mathbf{z}_{-}\mathbf{times}\mathbf{0}_{-}\mathbf{thm} \vdash \forall \ i: \mathbb{U} \bullet \theta * i = \theta \wedge i * \theta = \theta$

 $z_{minus_times_thm}$

 $z_N_{times_thm}$

$$\vdash \forall i, j : \mathbb{N} \bullet i * j \in \mathbb{N}$$

 $z_{times_{q_0}0_{thm}}$

$$\vdash \forall i, j : \mathbb{U} \bullet i * j = 0 \Leftrightarrow i = 0 \lor j = 0$$

 $z_{times_clauses}$

```
z_<_trans_thm
                                 \vdash \forall i, j, k : \mathbb{U} \mid i \leq j \land j \leq k \bullet i \leq k
z_{less\_trans\_thm}
                                 \vdash \forall i, j, k : \mathbb{U} \mid i < j \land j < k \bullet i < k
z_{less} \le trans_{thm}
                                 \vdash \forall i, j, k : \mathbb{U} \mid i < j \land j \leq k \bullet i < k
z_{\leq}less_{trans_{thm}}
                                 \vdash \forall i, j, k : \mathbb{U} \mid i \leq j \land j < k \bullet i < k
z_{\min us_{\mathbb{N}} \le thm}
                                 \vdash \ \forall \ i : \mathbb{U}; \, j : \mathbb{N} \bullet i \, + \sim j \, \leq i
z_{-} \leq -plus_{-} \mathbb{N}_{-}thm
                                 \vdash \forall i : \mathbb{U}; j : \mathbb{N} \bullet i \leq i + j
z_{-} \leq cases_{-}thm
                                 \vdash \forall i, j : \mathbb{U} \bullet i \leq j \lor j \leq i
z_{-} \leq _{-} refl_{-} thm
                                \vdash \forall i : \mathbb{U} \bullet i \leq i
                                \vdash \forall i : \mathbb{U} \bullet i \in \mathbb{N} \Leftrightarrow 0 \leq i
\mathbf{z}_{-} \in \mathbb{N}_{-}\mathbf{thm}
\mathbf{z}_{-} \leq \leq \mathbf{0}_{-} \mathbf{thm} \quad \vdash \forall i, j : \mathbb{U} \bullet i \leq j \Leftrightarrow i + \sim j \leq 0
z_{-} \leq antisym_{-}thm
                                 \vdash \forall i, j : \mathbb{U} \mid i \leq j \land j \leq i \bullet i = j
z_{\neg}-less\_thm
                                \vdash \forall i, j : \mathbb{U} \bullet \neg i < j \Leftrightarrow j \leq i
\mathbf{z}_{-}\neg_{-}\leq_{-}\mathbf{thm}
                                \vdash \forall \ i, j : \mathbb{U} \bullet \neg \ i \le j \Leftrightarrow j < i
z_{-} \le _{-} clauses
                                \vdash \forall i, j, k : \mathbb{U}
                                        • (i + k \le j + k \Leftrightarrow i \le j)
                                          \land (k + i \leq j + k \Leftrightarrow i \leq j)
                                          \land (i + k \le k + j \Leftrightarrow i \le j)
                                          \land (k + i \le k + j \Leftrightarrow i \le j)
                                          \land (i + k \le k \Leftrightarrow i \le 0)
                                          \wedge (k + i \le k \Leftrightarrow i \le 0)
                                          \land (i \leq k + i \Leftrightarrow 0 \leq k)
                                          \land (i \leq i + k \Leftrightarrow 0 \leq k)
                                          \wedge i \leq i
                                           \land \neg
                                           1 \leq 0
                                           \wedge \theta \leq 1
z_{less\_clauses}
                                 \vdash \forall i, j, k : \mathbb{U}
                                        \bullet \ (i + k < j + k \Leftrightarrow i < j)
                                          \land (k + i < j + k \Leftrightarrow i < j)
                                          \land (i + k < k + j \Leftrightarrow i < j)
                                          \land (k + i < k + j \Leftrightarrow i < j)
                                          \wedge (i + k < k \Leftrightarrow i < 0)
                                          \land (k + i < k \Leftrightarrow i < \theta)
                                          \wedge (i < k + i \Leftrightarrow 0 < k)
                                          \wedge (i < i + k \Leftrightarrow 0 < k)
                                          \land \neg
                                          i < i
                                           \wedge 0 < 1
                                          \land \neg
                                           1 < 0
z_less_irrefl_thm
                                 \vdash \forall i, j : \mathbb{U} \bullet \neg (i < j \land j < i)
```

```
\vdash \forall i : \mathbb{N} \bullet abs \ i = i \land abs \sim i = i
z_abs_thm
z_abs_minus_thm
                                   \vdash \forall i : \mathbb{U} \bullet abs \sim i = abs i
z_abs_N_thm
                                  \vdash \forall i : \mathbb{U} \bullet abs \ i \in \mathbb{N}
z_abs_times_thm
                                    \vdash \forall i, j : \mathbb{U} \bullet abs (i * j) = abs i * abs j
z_abs_plus_thm
                                    \vdash \forall i, j : \mathbb{U} \bullet abs (i + j) \leq abs i + abs j
z_abs_eq_0-thm
                                   \vdash \forall i : \mathbb{U} \bullet abs \ i = 0 \Leftrightarrow i = 0
z_{-}N_{-}abs_{-}minus_{-}thm
                                   \vdash \forall i, j : \mathbb{N} \mid j \leq i \bullet abs (i + \sim j) \leq i
z_{-} \leq _{-} induction_{-} thm
                                   \vdash \ulcorner \forall j p
                                       • p \ j \land (\forall \ i \bullet \ \overline{z}(j, \ i) \ \neg \in \overline{z}(\_ \le \_) \ \neg \land p \ i \Rightarrow p \ \overline{z}i + 1 \ \neg)
                                              \Rightarrow (\forall m \bullet {}_{\mathsf{Z}}(j, m)^{\mathsf{T}} \in {}_{\mathsf{Z}}(\_ \le \_)^{\mathsf{T}} \Rightarrow p m)^{\mathsf{T}}
z_{less_plus1_thm}
                                    \vdash \forall m, n : \mathbb{U} \bullet m < n + 1 \Leftrightarrow m = n \lor m < n
z_{-}cov_{-}induction_{-}thm
                                   \vdash \vdash \forall j p

    (∀ i

                                              • \overline{z}(j, i)^{\neg} \in \overline{z}(- \leq -)^{\neg}
                                                         \wedge \ ^{\Gamma}_{Z} \forall \ k : \mathbb{Z} \bullet j \leq k \wedge k < i \Rightarrow ^{\Gamma} p \ k^{\Gamma}
                                                      \Rightarrow p i
                                              \Rightarrow (\forall i \bullet \overline{z}(j, i)^{\neg} \in \overline{z}(- \leq -)^{\neg} \Rightarrow p i)^{\neg}
z_div_mod_unique_thm
                                   \vdash \forall i, j, d, r : \mathbb{U}
                                          i = 0
                                           • i = d * j + r \land 0 \le r \land r < abs j
                                              \Leftrightarrow d = i \ div \ j \land r = i \ mod \ j
z_{-} \leq _{-} less_{-} eq_{-} thm
                                   \vdash \forall x, y : \mathbb{U} \bullet x \leq y \Leftrightarrow x < y \lor x = y
                                   \vdash \forall \ x : \mathbb{U} \bullet x \in \mathbb{N}_1 \Leftrightarrow 0 < x
\mathbf{z}_-{\in}_-\mathbb{N}_1\_\mathbf{thm}
\mathbf{z}_{-}\mathbb{F}_{-}\mathbf{thm}
                                   \vdash \forall X : \mathbb{U}
                                           \bullet \mathbb{F} X
                                              = \{S : \mathbb{P} \mid X\}
                                                 \exists n : \mathbb{N} \bullet \exists f : 1 \dots n \to S \bullet ran f = S
\mathbf{z}_{-}\mathbb{F}_{1-}thm
                                   \vdash \forall \ X : \mathbb{U} \bullet \mathbb{F}_1 \ X = \mathbb{F} \ X \setminus \{\emptyset\}
z_{-}\mathbb{F}_{-}empty_{-}thm
                                   \vdash \mathbb{F} \left\{\right\} = \mathbb{P} \left\{\right\}
```

9.1.9 The Z Theory z_numbers1

9.1.9.1 Parents

 $z_arithmetic_tools$ $z_numbers$ $z_functions1$

9.1.9.2 Children

 $z_sequences1$

9.1.9.3 Theorems

 $z_dot_dot_clauses$

$$\begin{array}{l} \vdash \forall \ i, \ i1, \ i2, \ j1, \ j2 : \mathbb{U} \\ \bullet \ (i \in i1 \ ... \ i2 \Leftrightarrow i1 \leq i \ \land \ i \leq i2) \\ \land \ (i1 \ ... \ i2 = \{\} \Leftrightarrow i2 < i1) \\ \land \ (i1 \ ... \ i2 \subseteq j1 \ ... \ j2 \\ \Leftrightarrow i2 < i1 \ \lor \ j1 \leq i1 \ \land \ i2 \leq j2) \end{array}$$

 $z_dot_dot_plus_thm$

$$\vdash \forall n, i1, i2 : \mathbb{U}$$

• $\{i : i1 ... i2 • i + n\} = i1 + n ... i2 + n$

 $z_{less_cases_thm}$

$$\vdash \forall i, j : \mathbb{U} \bullet i < j \lor i = j \lor j < i$$

 $z_{-} \leq_{-} \text{plus} 1_{-} \text{thm}$

$$\vdash \forall \ i, j : \mathbb{U} \bullet i \leq j \land j \leq i + 1 \Leftrightarrow j = i \lor j = i + 1$$

 $z_{dot_{dot_{diff_{thm}}}$

$$\vdash \forall \ i : \mathbb{N} \bullet (1 \dots i + 1) \setminus \{i + 1\} = 1 \dots i$$

 $\mathbf{z}_{-}\mathbf{dot}_{-}\mathbf{dot}_{-}\cup_{-}\mathbf{thm}$

$$\vdash \forall \ i : \mathbb{N} \bullet (1 \dots i) \cup \{i + 1\} = 1 \dots i + 1$$

 $z_dot_dot_\cap_thm$

$$\vdash \forall \ i : \mathbb{N} \bullet (1 \dots i) \cap \{i+1\} = \{\}$$

 $z_{-}empty_{-}\mathbb{F}_{-}thm$

$$\vdash [X](\{\} \in \mathbb{F} | X)$$

 $\mathbf{z}_{-}\mathbb{F}_{-}\cup_{-}$ singleton_thm

$$\mathbf{z}_{-}\mathbb{F}_{-}\mathbf{thm1} \mapsto [X](\forall \ x : X; \ a : \mathbb{F} \ X \bullet a \cup \{x\} \in \mathbb{F} \ X) \\ \vdash [X](\mathbb{F} \ X) \\ = \bigcap \\ \{u : \mathbb{P} \ \mathbb{P} \ X \\ \mid \{\} \in u \land (\forall \ x : X; \ a : u \bullet a \cup \{x\} \in u)\})$$

 $z_{-}\mathbb{F}_{-}$ induction_thm

 $z_size_empty_thm$

```
\vdash \{\} \in (\mathbb{F}_{-}) \land \# \{\} = \emptyset
z_size_singleton_thm
                                  \vdash \forall x : \mathbb{U} \bullet \{x\} \in (\mathbb{F}_{-}) \land \# \{x\} = 1
z_size_dot_dot_thm
                                  \vdash \forall n : \mathbb{N} \bullet 1 ... n \in (\mathbb{F}_{-}) \land \# (1 ... n) = n
\mathbf{z}_{-}\mathbf{size}_{-} + \mathbf{b}_{-}\mathbf{thm} \vdash \forall \ X : \mathbb{U}; \ Y : \mathbb{U}; \ f : \mathbb{U}
                                         | f \in X \twoheadrightarrow Y
                                         • f \in (\mathbb{F}_{-}) \land \# f = \# (dom f)
z_size_seq_thm
                                  \vdash \forall X : \mathbb{U}; f : \mathbb{U}; n : \mathbb{N} \mid f \in \mathcal{I} \dots n \to X \bullet \# f = n
z\_size\_\cup\_singleton\_thm
                                  \vdash \forall \ a : (\mathbb{F}_{-}); \ x : \mathbb{U} \mid \neg \ x \in a \bullet \# (a \cup \{x\}) = \# \ a + 1
                                  \vdash \forall a, b : \mathbb{U} \mid a \in (\mathbb{F}_{-}) \lor b \in (\mathbb{F}_{-}) \bullet a \cap b \in (\mathbb{F}_{-})
\mathbf{z}_{-}\mathbb{F}_{-}\cap_{-}\mathbf{thm}
                                  \vdash \forall a, b : \mathbb{U} \mid a \in (\mathbb{F}_{-}) \bullet a \setminus b \in (\mathbb{F}_{-})
\mathbf{z}_{-}\mathbb{F}_{-}\mathbf{diff}_{-}\mathbf{thm}
\mathbf{z}_{-} \subseteq \mathbb{F}_{-}\mathbf{thm}
                                  \vdash \forall \ a : (\mathbb{F}_{-}); \ b : \mathbb{U} \mid b \subseteq a \bullet b \in (\mathbb{F}_{-})
z_size_{-}\cup_{-}thm
                                 \vdash \forall a, b : (\mathbb{F}_{-})
                                         • a \cup b \in (\mathbb{F}_{-}) \land \# (a \cup b) + \# (a \cap b) = \# a + \# b
z_{-} J_{-} \mathbb{F}_{-} thm
                                  \vdash \forall \ u : \mathbb{F} \ (\mathbb{F}_{-}) \bullet \bigcup u \in (\mathbb{F}_{-})
z_size_diff_thm
                                  \vdash \forall \ a : (\mathbb{F}_{-}); \ b : \mathbb{U}
                                         • a \setminus b \in (\mathbb{F}_{-}) \wedge \# (a \setminus b) + \# (a \cap b) = \# a
                                 \vdash \forall \ a : (\mathbb{F}_{-}) \bullet \# \ a \in \mathbb{N}
z_size_N_thm
z_{F_size_thm1}
                                  \vdash \forall \ a : (\mathbb{F}_{-}) \bullet \exists \ f : 1 .. \# \ a \Rightarrow a \bullet true
z_size_mono_thm
                                  \vdash \forall \ a : (\mathbb{F}_{-}); \ b : \mathbb{U} \mid b \subseteq a \bullet \# b \leq \# a
z_size_{-}\cup_{-}<_{thm}
                                  \vdash \forall \ a, \ b : (\mathbb{F}_{-}) \bullet \# (a \cup b) \leq \# \ a + \# \ b
z_size_eq_thm
                                  \vdash \forall a, b : (\mathbb{F}_{-}) \mid a \subseteq b \land \# a = \# b \bullet a = b
z_size_0_thm
                                  \vdash \forall \ a : (\mathbb{F}_{-}) \bullet \# \ a = 0 \Leftrightarrow a = \{\}
                                  \vdash \forall \ a : (\mathbb{F}_{-}) \bullet \# \ a = 1 \Leftrightarrow (\exists \ x : \mathbb{U} \bullet a = \{x\})
z_size_1_thm
z_size_pair_thm
                                  \vdash \forall x, y : \mathbb{U} \mid \neg x = y \bullet \{x, y\} \in (\mathbb{F}_{-}) \land \# \{x, y\} = 2
z_size_2-thm
                                  \vdash \forall \ a : (\mathbb{F}_{-})
                                         \bullet \# a = 2 \Leftrightarrow (\exists x, y : \mathbb{U} \bullet \neg x = y \land a = \{x, y\})
                                \vdash \forall \ a : (\mathbb{F}_{-}); \ b : (\mathbb{F}_{-})
z_size_{-} \times_{-}thm
                                         • a \times b \in (\mathbb{F}_{-}) \land \# (a \times b) = \# a * \# b
\mathbf{z}_{-}\mathbf{size}_{-} {\leq}_{-} \mathbf{1}_{-} \mathbf{thm}
                                  \vdash \forall \ a : (\mathbb{F}_{-}) \mid \# \ a \leq 1 \bullet a = \{\} \lor (\exists \ x : \mathbb{U} \bullet a = \{x\})
z_size_dot_dot_thm1
                                  \vdash \forall i, j : \mathbb{Z}
                                         • i \dots j \in (\mathbb{F}_{-})
                                            \wedge (i \le j \Rightarrow \# (i ... j) = j + \sim i + 1)
                                            \land (j < i \Rightarrow \# (i ... j) = 0)
z_pigeon_hole_thm
                                  \vdash \forall \ u : \mathbb{F} \ (\mathbb{F}_{-}) \mid \# \ (\bigcup \ u) > \# \ u \bullet \exists \ a : u \bullet \# \ a > 1
                                  \vdash \forall i, j, k : \mathbb{Z}
z_div_thm
                                        | ¬
                                         j = 0
                                         • i \ div \ j = k
```

```
\Leftrightarrow (\exists \ m : \mathbb{Z} \bullet i = k * j + m \land 0 \leq m \land m < abs \ j)
z_{-}mod_{-}thm
                              \vdash \forall i, j, k : \mathbb{Z}
                                   | ¬
                                   j = 0
                                    \bullet i \mod j = k
                                       \Leftrightarrow (\exists \ d : \mathbb{Z} \bullet i = d * j + k \land 0 \le k \land k < abs \ j)
z_abs_pos_thm
                              \vdash \forall i : \mathbb{Z} \mid 0 < i \bullet abs \ i = i \land abs \sim i = i
z_abs_neg_thm
                              \vdash \forall i : \mathbb{Z} \mid i < 0 \bullet abs \ i = \sim i \land abs \sim i = \sim i
z_abs_{\le times_thm}
                              \vdash \forall i, j : \mathbb{Z} \mid \neg i = 0 \land \neg j = 0 \bullet abs j \leq abs (i * j)
z_abs_0_{less\_thm}
                              \vdash \forall \ i : \mathbb{Z} \mid \neg \ i = \theta \bullet \theta < abs \ i
z_0_{less\_times\_thm}
                              \vdash \forall i, j : \mathbb{Z}
                                    • 0 < i * j \Leftrightarrow 0 < i \land 0 < j \lor i < 0 \land j < 0
z_{times_{less_{0}}}
                              \vdash \forall i, j : \mathbb{Z}
                                    • i * j < 0 \Leftrightarrow 0 < i \land j < 0 \lor i < 0 \land 0 < j
\mathbf{z}_{-} \in \mathbf{succ}_{-}\mathbf{thm} \vdash \vdash \forall i j
                                 • \Gamma(i, j) \in \Gamma succ
                                       \Leftrightarrow \overline{z}(0, i)^{\neg} \in \overline{z}(- \leq -)^{\neg} \wedge j = \overline{z}i + 1^{\neg \neg}
z_succ^0_thm
                              \vdash succ^{0} = id \mathbb{Z}
z\_succ^n\_thm
                              \vdash \forall \ n : \mathbb{Z} \mid 1 \leq n \bullet succ^{n} = \{m : \mathbb{N} \bullet m \mapsto m + n\}
z_succ^{minus_n}_{thm}
                              \vdash \forall \ n : \mathbb{N} \mid 1 \leq n \bullet succ \sim n = \{m : \mathbb{N} \bullet m + n \mapsto m\}
```

9.1.10 The Z Theory z_{-} reals

9.1.10.1 Parents

 \mathbb{R} $z_{-}numbers$

9.1.10.2 Global Variables

9.1.10.3 Fixity

fun 20 leftassoc

(-...R-)

fun 30 leftassoc

$$(-+_{R}-)$$
 $(--_{R}-)$

fun 40 leftassoc

$$(-*_R -)$$
 $(-/_R -)$ $(-/_Z -)$

fun 50 rightassoc

$$(abs_{R-})$$
 (\sim_{R-})

 $fun\ 60\ right assoc$

$$(-^{\sim}Z^{-})$$

rel
$$(-lb_R -)$$
 $(- <_R -)$ $(- <_R -)$ $(- <_R -)$ $(- <_R -)$

9.1.10.4 Axioms

```
abs<sub>R</sub> _
-/\mathbf{R}
- *R -
_{-} +_{\mathbf{R}} _{-}
\sim_{\mathbf{R}} -
- ≤R -
                                         \vdash ((\_ <_R \_) \in \mathbb{R} \leftrightarrow \mathbb{R}
_{-} <_{\mathbf{R}} _{-}
                                                 \wedge (- \leq_R -) \in \mathbb{R} \leftrightarrow \mathbb{R}
                                                 \wedge (\sim_R \ \_) \in \mathbb{R} \to \mathbb{R}
                                                 \wedge ( -+_{R-}) \in \mathbb{R} \times \mathbb{R} \to \mathbb{R}
                                                 \wedge \ (\ \ \cdot \ \ast_R \ \ \ ) \in \mathbb{R} \times \mathbb{R} \to \mathbb{R}
                                                 \wedge (-/R) \in \mathbb{R} \times \mathbb{R} \to \mathbb{R}
                                                 \land (abs_{R-}) \in \mathbb{R} \to \mathbb{R})
                                                 \land (\forall x, y : \mathbb{R} \bullet x <_R y \Leftrightarrow \lceil x < y \rceil)
                                                 \land (\forall x, y : \mathbb{R} \bullet x \leq_R y \Leftrightarrow \lceil x \leq y \rceil)
                                                 \wedge (\forall x : \mathbb{R} \bullet \sim_R x = \lceil \sim x \rceil)
                                                 \wedge (\forall x, y : \mathbb{R} \bullet x +_R y = \lceil x + y \rceil)
                                                 \wedge (\forall x, y : \mathbb{R} \bullet x *_R y = \lceil x * y \rceil)
                                                 \wedge (\forall x, y : \mathbb{R} \bullet x /_R y = \lceil x / y \rceil)
                                                  \wedge \ (\forall \ x : \mathbb{R} \bullet abs_R \ x = \lceil Abs \ x \rceil)
- -R -
- ≥R -
                                         \vdash ((\_>_R\_) \in \mathbb{R} \leftrightarrow \mathbb{R}
_ ><sub>R</sub> _
                                                 \wedge \ (\underline{\ } \geq_R \underline{\ } ) \in \mathbb{R} \leftrightarrow \mathbb{R}
                                                 \wedge \ (\_-_{R} \ \_) \in \mathbb{R} \times \mathbb{R} \to \mathbb{R})
                                                 \wedge \ (\forall \ x, \ y : \mathbb{R} \bullet x >_R y \Leftrightarrow y <_R x)
                                                 \wedge \ (\forall \ x, \ y : \mathbb{R} \bullet x \geq_R y \Leftrightarrow y \leq_R x)
                                                 \wedge (\forall x, y : \mathbb{R} \bullet x -_R y = x +_R \sim_R y)
                                         \vdash real \in \mathbb{Z} \to \mathbb{R}
real
                                                 \land real \ 1 = \lceil 1. \rceil
                                                  \wedge \ (\forall \ i : \mathbb{Z} \bullet real \ (\sim i) = \sim_R real \ i)
                                                  \wedge (\forall i, j : \mathbb{Z} \bullet real (i + j) = real i +_R real j)
-/\mathbf{z} -
                                         \vdash (\_/_Z \_) \in \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}
                                                  \wedge (\forall i, j : \mathbb{Z} \bullet i /_Z j = real i /_R real j)
- ^ Z -
                                         \vdash (\_ ^{\frown}_{Z} \_) \in \mathbb{R} \times \mathbb{Z} \to \mathbb{R}
                                                  \wedge \  \, \lceil \forall \  \, x \  \, m \bullet \, \, \lceil x \, \, ^{\smallfrown}_{Z} \, \, ^{\smallfrown}_{Z} \, \, \lceil Z' Int \, \, m \, ^{\urcorner \urcorner} \, = \, x \, \, ^{\smallfrown} \, \, m \, ^{\urcorner}
                                                  • \sum_{Z} x \hat{Z} (\sim Z' Int (m+1)) = 1. / x (m+1)
                                         \vdash (\_ ... R \_) \in \mathbb{R} \times \mathbb{R} \to \mathbb{P} \mathbb{R}
- ··R -
                                                  \wedge (\forall x, y : \mathbb{R})
                                                     \bullet \ x ... R \ y = \{t : \mathbb{R} \mid x \leq_R t \land t \leq_R y\})
                                         \vdash (\_lb_R \_) \in \mathbb{R} \leftrightarrow \mathbb{P} \mathbb{R}
_ lb<sub>R. -</sub>
                                                  \wedge \ (\forall \ r : \mathbb{R}; \ sr : \mathbb{P} \ \mathbb{R})
                                                      • r lb_R sr \Leftrightarrow (\forall x : sr \bullet r \leq_R x))
                                          \vdash glb_R \in \mathbb{P} \mathbb{R} \to \mathbb{R}
glb_R
                                                  \wedge \ (\forall \ sr : \mathbb{P} \ \mathbb{R}; \ glb : \mathbb{R}
                                                     • sr \mapsto glb \in glb_R
                                                          \Leftrightarrow glb \ lb_R \ sr
                                                              \land (\forall lb : \mathbb{R} \mid lb \ lb_R \ sr \bullet lb \leq_R glb))
                                         \vdash (\_ub_R\_) \in \mathbb{R} \leftrightarrow \mathbb{P} \mathbb{R}
_ ub<sub>R</sub> _
```

9.1.10.5 Definitions

$$\mathbb{R} \qquad \vdash \mathbb{R} = \mathbb{U}$$

$$\mathbf{Z'Float} \qquad \vdash \lceil \forall \ m \ p \ e$$

$$\bullet \ \lceil Z \rceil Z' Float \ m \ p \ e \rceil \rceil$$

$$= \lceil Z real \ m *_{R} real \ 10 \ \rceil_{Z} \ (e + \sim p) \rceil \rceil$$

9.1.10.6 Theorems

 $z_{-}\mathbb{R}_{-}$ unbounded_below_thm

$$\vdash \forall \ x : \mathbb{R} \bullet \exists \ y : \mathbb{R} \bullet \ y <_R \ x$$

 $z_{\mathbb{Z}}$ -unbounded_above_thm

$$\vdash \forall \ x : \mathbb{R} \bullet \exists \ y : \mathbb{R} \bullet x <_R y$$

 $z_{-}\mathbb{R}_{-}less_{-}irrefl_{-}thm$

$$\vdash \forall \ x : \mathbb{R} \bullet \neg \ x <_R \ x$$

 $\mathbf{z}_{-}\mathbb{R}_{-}less_antisym_thm$

$$\vdash \forall x, y : \mathbb{R} \bullet \neg (x <_R y \land y <_R x)$$

 $z_{\mathbb{R}}_{less_trans_thm}$

$$\vdash \forall x, y, z : \mathbb{R} \bullet x <_R y \land y <_R z \Rightarrow x <_R z$$

 $\mathbf{z}_{-}\mathbb{R}_{-}\mathbf{less}_{-}\mathbf{cases}_{-}\mathbf{thm}$

$$\vdash \forall x, y : \mathbb{R} \bullet x <_R y \lor x = y \lor y <_R x$$

 $z_{-}\mathbb{R}_{-} \leq _{-} cases_{-} thm$

$$\vdash \forall x, y : \mathbb{R} \bullet x \leq_R y \vee y \leq_R x$$

 $z_{\mathbb{R}} \leq less_{cases_thm}$

$$\vdash \forall x, y : \mathbb{R} \bullet x \leq_R y \lor y <_R x$$

$$\mathbf{z}_{-}\mathbb{R}_{-}\mathbf{eq}_{-} \leq_{-}\mathbf{thm} \; \vdash \; \forall \; x, \; y : \mathbb{R} \; \bullet \; x = y \; \Leftrightarrow \; x \leq_{R} y \; \land \; y \leq_{R} x$$

 $\mathbf{z}_{-}\mathbb{R}_{-}\leq_{-}$ antisym_thm

$$\vdash \forall x, y : \mathbb{R} \bullet x \leq_R y \land y \leq_R x \Rightarrow x = y$$

 $z_{R-less} \leq trans_{thm}$

$$\vdash \forall x, y, z : \mathbb{R} \bullet x <_R y \land y \leq_R z \Rightarrow x <_R z$$

 $z_{\mathbb{Z}} \leq less_{trans_{thm}}$

$$\vdash \forall \ x, \ y, \ z : \mathbb{R} \bullet x \leq_R y \land y <_R z \Rightarrow x <_R z$$

 $z_{-}\mathbb{R}_{-} \leq _{-} refl_{-}thm$

$$\vdash \forall \ x : \mathbb{R} \bullet x \leq_R x$$

 $\mathbf{z}_{-}\mathbb{R}_{-} \leq_{-} \mathbf{trans}_{-} \mathbf{thm}$

$$\vdash \forall x, y, z : \mathbb{R} \bullet x \leq_R y \land y \leq_R z \Rightarrow x \leq_R z$$

 $\mathbf{z}_{-}\mathbb{R}_{-}\leq_{-}\neg_{-}\mathbf{less}_{-}\mathbf{thm}$

$$\vdash \ \forall \ x, \ y : \mathbb{R} \bullet x \leq_R y \Leftrightarrow \neg \ y <_R x$$

 $\mathbf{z}_{-}\mathbb{R}_{-}\neg_{-}\leq_{-}\mathbf{less}_{-}\mathbf{thm}$

$$\vdash \forall x, y : \mathbb{R} \bullet \neg x \leq_R y \Leftrightarrow y <_R x$$

 $z_{\mathbb{Z}}$ _less_¬_eq_thm

$$\vdash \forall x, y : \mathbb{R} \bullet x <_R y \Rightarrow \neg x = y$$

 $z_{-}\mathbb{R}_{-}less_{-}dense_{-}thm$

```
\vdash \forall x, y : \mathbb{R} \bullet x <_R y \Rightarrow (\exists z : \mathbb{R} \bullet x <_R z \land z <_R y)
z_{\mathbb{Z}} complete thm
                              \vdash \forall A : \mathbb{P} \mathbb{R}
                                     \bullet \neg A = \{\} \land (\exists b : \mathbb{R} \bullet \forall x : \mathbb{R} \bullet x \in A \Rightarrow x \leq_R b)
                                        \Rightarrow (\exists s : \mathbb{R})
                                           • (\forall x : \mathbb{R} \bullet x \in A \Rightarrow x \leq_R s)
                                              \wedge (\forall b : \mathbb{R})
                                                 • (\forall x : \mathbb{R} \bullet x \in A \Rightarrow x \leq_R b) \Rightarrow s \leq_R b)
z_{-}\mathbb{R}_{-}plus_assoc_thm
                              \vdash \forall x, y, z : \mathbb{R} \bullet x +_R y +_R z = x +_R (y +_R z)
z_{-}\mathbb{R}_{-}plus_assoc_thm1
                              \vdash \forall x, y, z : \mathbb{R} \bullet x +_R (y +_R z) = x +_R y +_R z
z_{-}\mathbb{R}_{-}plus_comm_thm
                              \vdash \forall x, y : \mathbb{R} \bullet x +_R y = y +_R x
\mathbf{z}_{-}\mathbb{R}_{-} plus_unit_thm
                              \vdash \forall \ x : \mathbb{R} \bullet x +_R real \ \theta = x
z_{\mathbb{Z}}_plus_mono_thm
                              \vdash \forall x, y, z : \mathbb{R} \bullet y <_R z \Rightarrow x +_R y <_R x +_R z
z_{\mathbb{R}_plus_mono_thm1}
                              \vdash \forall x, y, z : \mathbb{R} \bullet y <_R z \Rightarrow y +_R x <_R z +_R x
\mathbf{z}_{-}\mathbb{R}_{-}plus_mono_thm2
                              \vdash \forall x, y, s, t : \mathbb{R}
                                     • x <_R y \land s <_R t \Rightarrow x +_R s <_R y +_R t
\mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{0}_{-}\mathbf{thm}
                              \vdash \forall x : \mathbb{R} \bullet x +_R real \ 0 = x \land real \ 0 +_R x = x
z_{-}\mathbb{R}_{-}plus_order_thm
                              \vdash \forall x, y, z : \mathbb{R}
                                     \bullet \ y +_R x = x +_R y
                                        \wedge x +_{R} y +_{R} z = x +_{R} (y +_{R} z)
                                        \wedge y +_R (x +_R z) = x +_R (y +_R z)
z_{\mathbb{R}_plus_minus_thm}
                              \vdash \forall x : \mathbb{R} \bullet x +_R \sim_R x = real \ 0 \land \sim_R x +_R x = real \ 0
\mathbf{z}_{-}\mathbb{R}_{-}\mathbf{eq}_{-}\mathbf{thm}
                              \vdash \forall x, y : \mathbb{R} \bullet x = y \Leftrightarrow x +_R \sim_R y = real \ \theta
z_{-}\mathbb{R}_{-} minus_clauses
                               \vdash \forall x, y : \mathbb{R}
                                     \bullet \sim_R \sim_R x = x
                                        \wedge x +_R \sim_R x = real \ \theta
                                        \wedge \sim_R x +_R x = real \ \theta
                                        \wedge \sim_R (x +_R y) = \sim_R x +_R \sim_R y
                                        \wedge \sim_R real \ \theta = real \ \theta
z_{-}\mathbb{R}_{-}minus_eq_thm
                              \vdash \forall x, y : \mathbb{R} \bullet \sim_R x = \sim_R y \Leftrightarrow x = y
z_{\mathbb{R}_plus\_clauses}
                              \vdash \forall x, y, z : \mathbb{R}
                                     \bullet (x +_R z = y +_R z \Leftrightarrow x = y)
                                        \wedge (z +_R x = y +_R z \Leftrightarrow x = y)
                                        \wedge (x +_R z = z +_R y \Leftrightarrow x = y)
                                        \wedge (z +_R x = z +_R y \Leftrightarrow x = y)
```

 $z_{\mathbb{R}}$ _less_clauses

$$\vdash \forall x, y, z : \mathbb{R}$$

$$\bullet (x +_R z <_R y +_R z \Leftrightarrow x <_R y)$$

$$\land (z +_R x <_R y +_R z \Leftrightarrow x <_R y)$$

$$\land (x +_R z <_R z +_R y \Leftrightarrow x <_R y)$$

$$\land (z +_R x <_R z +_R y \Leftrightarrow x <_R y)$$

$$\land (x +_R z <_R z \Leftrightarrow x <_R real \ 0)$$

$$\land (x +_R x <_R z \Leftrightarrow x <_R real \ 0)$$

$$\land (x <_R z +_R x \Leftrightarrow real \ 0 <_R z)$$

$$\land (x <_R x +_R z \Leftrightarrow real \ 0 <_R z)$$

$$\land \neg$$

$$x <_R x$$

$$\land real \ 0 <_R real \ 1$$

$$\land \neg$$

$$real \ 1 <_R real \ 0$$

 $z_{\mathbb{Z}} \leq clauses$

 $z_{\mathbb{Z}}$ times_assoc_thm

$$\vdash \forall x, y, z : \mathbb{R} \bullet x *_R y *_R z = x *_R (y *_R z)$$

 $z_{-}\mathbb{R}_{-}$ times_comm_thm

$$\vdash \forall x, y : \mathbb{R} \bullet x *_R y = y *_R x$$

 $\mathbf{z}_{-}\mathbb{R}_{-}$ times_unit_thm

$$\vdash \forall \ x : \mathbb{R} \bullet x *_R real \ 1 = x$$

 $z_{\mathbb{R}_0}$ _less_0_less_times_thm

$$\vdash \forall x, y : \mathbb{R}$$

• real
$$0 <_R x \land real \ 0 <_R y \Rightarrow real \ 0 <_R x *_R y$$

 $z_{-}\mathbb{R}_{-}times_{-}assoc_{-}thm1$

$$\vdash \forall x, y, z : \mathbb{R} \bullet x *_R (y *_R z) = x *_R y *_R z$$

 $z_{-}\mathbb{R}_{-}$ times_plus_distrib_thm

 $z_{\mathbb{Z}}$ _times_order_thm

$$\vdash \forall x, y, z : \mathbb{R}
\bullet y *_{R} x = x *_{R} y
\land x *_{R} y *_{R} z = x *_{R} (y *_{R} z)
\land y *_{R} (x *_{R} z) = x *_{R} (y *_{R} z)$$

 $z_{-}\mathbb{R}_{-}$ times_clauses

 $z_{-}\mathbb{R}_{-}over_{-}clauses$

 $z_{\text{-}}float_{\text{-}}thm$

$$\vdash \forall m, p, e : \mathbb{Z}$$

$$\bullet \ulcorner Z'Float \ m \ p \ e \urcorner$$

$$= real \ m *_R real \ 10 \land_Z (e + \sim p)$$

9.1.11 The Z Theory z_relations

9.1.11.1 Parents

 $z_{-}sets$

9.1.11.2 Children

 $z_{-}functions$

9.1.11.3 Global Variables

9.1.11.4 Fixity

fun 10 leftassoc

fun 40 leftassoc

$$\begin{pmatrix} - \circ - \end{pmatrix} \begin{pmatrix} - \circ - \end{pmatrix}$$

fun 50 leftassoc

(- ⊕ -)

fun 60 leftassoc

fun 65 rightassoc

fun 70 rightassoc

gen 70 rightassoc

 (id_{-})

9.1.11.5 Axioms

$$= \{x: X; y: Y \\ \mid x \mapsto y \in R \land y \in T \\ \bullet x \mapsto y\}))$$

$$\stackrel{\triangleright}{-} = -$$

$$\stackrel{\triangleleft}{-} = -$$

$$\stackrel{\vdash}{-} = -$$

$$\stackrel{\vdash}{-} = -$$

$$\stackrel{\triangleleft}{-} = -$$

$$\stackrel{\vdash}{-} = -$$

$$\stackrel{\vdash}{$$

9.1.11.6 Definitions

$$\mathbf{id} \ _ \qquad \qquad \vdash [X](id \ X = \{x : X \bullet x \mapsto x\})$$

9.1.11.7 Theorems

```
z_- \leftrightarrow_- thm
                                    \vdash \forall X : \mathbb{U}; Y : \mathbb{U} \bullet X \leftrightarrow Y = \mathbb{P} (X \times Y)
z_-\mapsto_- thm
                                    \vdash \forall \ x : \mathbb{U}; \ y : \mathbb{U} \bullet x \mapsto y = (x, \ y)
                                    \vdash \forall z : \mathbb{U}; R : \mathbb{U} \bullet z \in dom \ R \Leftrightarrow (\exists \ y : \mathbb{U} \bullet (z, \ y) \in R)
z_dom_thm
                                    \vdash \forall z : \mathbb{U}; R : \mathbb{U} \bullet z \in ran \ R \Leftrightarrow (\exists \ x : \mathbb{U} \bullet (x, z) \in R)
z_ran_thm
z_id_thm
                                    \vdash \forall X : \mathbb{U} \bullet id X = \{x : \mathbb{U} \mid x \in X \bullet (x, x)\}
                                    \vdash \forall R : \mathbb{U}; S : \mathbb{U} \bullet R \circ S = S \circ R
\mathbf{z}_{-q}-thm
z_{-} \circ_{-} thm
                                    \vdash \forall \ x : \mathbb{U}; \ S : \mathbb{U}; \ R : \mathbb{U}
                                            • x \in S \circ R
                                               \Leftrightarrow (\exists y : \mathbb{U} \bullet (x.1, y) \in R \land (y, x.2) \in S)
                                    \vdash \forall \; x : \mathbb{U}; \; S : \mathbb{U}; \; R : \mathbb{U} \, \bullet \, x \in S \, \lhd \, R \Leftrightarrow x.1 \, \in S \, \land \, x \in R
z_{-} \triangleleft_{-} thm
z_{-} \triangleright_{-} thm
                                    \vdash \forall \ x : \mathbb{U}; \ R : \mathbb{U}; \ S : \mathbb{U} \bullet x \in R \rhd S \Leftrightarrow x \in R \land x.2 \in S
z_{-} \triangleleft_{-} thm
                                    \vdash \forall \ x : \mathbb{U}; \ S : \mathbb{U}; \ R : \mathbb{U} \bullet x \in S \lessdot R \Leftrightarrow \neg \ x.1 \in S \land x \in R
                                    \vdash \forall \ x : \mathbb{U}; \ R : \mathbb{U}; \ S : \mathbb{U} \bullet x \in R \Rightarrow S \Leftrightarrow x \in R \land \neg x.2 \in S
z_{-} \triangleright_{-} thm
z_{rel_inv_thm}
                                    \vdash \forall x : \mathbb{U}; R : \mathbb{U} \bullet x \in R \stackrel{\sim}{=} (x.2, x.1) \in R
z_rel_image_thm
                                    \vdash \forall \ y : \mathbb{U}; \ R : \mathbb{U}; \ S : \mathbb{U}
                                            • y \in R ( S ) \Leftrightarrow (\exists x : \mathbb{U} \bullet x \in S \land (x, y) \in R)
z_{trans\_closure\_thm}
                                    \vdash \forall R : \mathbb{U}
                                            • R +
                                               = \bigcap \{Q : \mathbb{U} \mid R \subseteq Q \land Q \circ Q \subseteq Q\}
z_reflex_trans_closure_thm
                                    \vdash \forall R : \mathbb{U}
                                            • R *
                                               = \cap
                                                      \{Q:\mathbb{U}
                                                      \mid (id \mid -) \subseteq Q
                                                          \wedge R \subseteq Q
                                                          \land Q \circ_{g} Q \subseteq Q \}
z_- \oplus_- thm
                                    \vdash \forall f : \mathbb{U}; \ q : \mathbb{U} \bullet f \oplus q = dom \ q \lessdot f \cup q
                                    \vdash \forall \ X : \mathbb{U} \bullet X \leftrightarrow \{\} = \{\{\}\} \land \{\} \leftrightarrow X = \{\{\}\}\}
\mathbf{z}\_{\leftarrow}\_\mathbf{clauses}
z_dom_clauses
                                    \vdash \forall \ a : \mathbb{U}; \ b : \mathbb{U}
                                            • dom \ \mathbb{U} = \mathbb{U}
                                               \land dom \{\} = \{\}
                                               \wedge \ dom \ \{a \mapsto b\} = \{a\}
                                               \land dom \{(a, b)\} = \{a\}
z_ran_clauses
                                    \vdash \forall \ a : \mathbb{U}; \ b : \mathbb{U}
                                            • ran \mathbb{U} = \mathbb{U}
                                               \land ran \{\} = \{\}
                                               \land ran \{a \mapsto b\} = \{b\}
                                               \land \ ran \ \{(a, \ b)\} = \{b\}
z_id_clauses
                                    \vdash id \{\} = \{\}
                                    \vdash \forall R : \mathbb{U} \bullet R : \mathbb{G} \{\} = \{\} \land \{\} : \mathbb{G} R = \{\} \land \mathbb{U} : \mathbb{G} \mathbb{U} = \mathbb{U} \}
z_{-q}_clauses
                                    \vdash \forall R : \mathbb{U} \bullet R \circ \{\} = \{\} \land \{\} \circ R = \{\} \land \mathbb{U} \circ \mathbb{U} = \mathbb{U}
z_{-} \circ _{clauses}
z_{-} \triangleleft_{-} clauses
                                    \vdash \forall R : \mathbb{U}; S : \mathbb{U}
                                            • \mathbb{U} \triangleleft R = R \land \{\} \triangleleft R = \{\} \land S \triangleleft \{\} = \{\}
z_{-} \triangleright_{-} clauses
                                    \vdash \forall R : \mathbb{U}; S : \mathbb{U}
```

•
$$R \rhd \mathbb{U} = R \land \{\} \rhd S = \{\} \land R \rhd \{\} = \{\}$$

 $\mathbf{z}_{-} \lessdot_{-} \mathbf{clauses} \qquad \vdash \forall \ R : \mathbb{U}; \ S : \mathbb{U}$

$$\bullet \ \mathbb{U} \mathrel{\lessdot} R = \{\} \land \{\} \mathrel{\lessdot} R = R \land S \mathrel{\lessdot} \{\} = \{\}$$

 $\mathbf{z}_{-} \triangleright_{-} \mathbf{clauses} \qquad \vdash \forall \ R : \mathbb{U}; \ S : \mathbb{U}$

$$\bullet \ R \, \rhd \, \mathbb{U} = \{\} \, \wedge \, \{\} \, \rhd \, S = \{\} \, \wedge \, R \, \rhd \, \{\} = R$$

 $z_rel_inv_clauses$

$$\vdash \mathbb{U}^{\sim} = \mathbb{U} \wedge \{\}^{\sim} = \{\}$$

 $z_rel_image_clauses$

$$\vdash \forall R : \mathbb{U}; S : \mathbb{U} \bullet R (\{\}) = \{\} \land \{\} (S) = \{\}$$

 ${\bf z_trans_closure_clauses}$

$$\vdash \mathbb{U}^{+} = \mathbb{U} \wedge \{\}^{+} = \{\}$$

 ${\bf z}_{-}{\bf reflex}_{-}{\bf closure}_{-}{\bf clauses}$

$$\vdash \mathbb{U}^* = \mathbb{U} \wedge \{\}^* = (id_{-})$$

$$\mathbf{z}_{-} \oplus_{-} \mathbf{clauses} \qquad \vdash \forall \ f : \mathbb{U} \bullet f \oplus \{\} = f \land \{\} \oplus f = f \land f \oplus \mathbb{U} = \mathbb{U}$$

9.1.12 The Z Theory z_sequences

9.1.12.1 Parents

 $z_numbers$

9.1.12.2 Children

 $z_sequences1$ z_bags

9.1.12.3 Global Variables

9.1.12.4 Fixity

 $fun\ 30\ left assoc$

(_ ^ _)

fun 40 leftassoc

(- | -)

fun 45 rightassoc

(-1-)

gen 70 rightassoc

$$(iseq_{-})(seq_{-})(seq_{1-})$$

rel (disjoint _) (_ partition _)

9.1.12.5 Axioms

```
\vdash [X]((\_ \cap \_)[X] \in seq\ X \times seq\ X \rightarrow seq\ X
                                   \land (\forall s, t : seq X)
                                      \bullet (_ ^{\frown}_)[X] (s, t)
                                         = s \cup \{n : dom \ t \bullet n + \# \ s \mapsto t \ n\}))
                             \vdash [X](head[X] \in seq_1 \ X \to X)
head
                                   \wedge (\forall s : seq_1 X \bullet head[X] s = s 1))
last
                             \vdash [X](last[X] \in seq_1 \ X \to X)
                                   \wedge \ (\forall \ s : seq_1 \ X \bullet last[X] \ s = s \ (\# \ s)))
                             \vdash [X](tail[X] \in seq_1 \ X \rightarrow seq \ X)
tail
                                   \land (\forall s : seq_1 X)
                                      • tail[X] \ s = (\lambda \ n : 1 ... \# s - 1 \bullet s (n + 1))))
front
                             \vdash [X](front[X] \in seq_1 \ X \rightarrow seq \ X)
                                   \land (\forall s : seq_1 X)
                                      • front[X] \ s = (1 ... \# s - 1) \lhd s))
                             \vdash [X](rev[X] \in seq\ X \rightarrow seq\ X)
rev
                                   \land (\forall s : seq X)
                                      • rev[X] s = (\lambda \ n : dom \ s \bullet s \ (\# \ s - n + 1))))
squash
                             \vdash [X](squash[X] \in (\mathbb{Z} \implies X) \rightarrow seq X
                                   \wedge \ (\forall \ f : \mathbb{Z} \nrightarrow X)
                                      • squash[X] f
                                         = \{ p : f \}
                                            • \# \{i : dom f \mid i \leq p.1\} \mapsto p.2\})
                             \vdash [X]((\_ \ 1 \ \_)[X] \in \mathbb{P} \ \mathbb{Z} \times seq \ X \rightarrow seq \ X
_ 1 _
                                   \wedge \ (\forall \ a : \mathbb{P} \ \mathbb{Z}; \ s : seq \ X)
                                      \bullet \ (\_ \ ] \ \_)[X] \ (a, s) = squash \ (a \vartriangleleft s)))
                             \vdash [X]((\_ \upharpoonright \_)[X] \in seq \ X \times \mathbb{P} \ X \rightarrow seq \ X
\wedge \ (\forall \ s : seq \ X; \ a : \mathbb{P} \ X
                                      \bullet (_ \ _ )[X] (s, a) = squash (s \triangleright a)))
                             \vdash [X]( \cap /[X] \in seq \ seq \ X \rightarrow seq \ X
                                   \wedge \cap /[X] \langle \rangle = \langle \rangle
                                   \land (\forall s : seq X \bullet \cap /[X] \langle s \rangle = s)
                                   \wedge (\forall q, r : seq seq X)
                                      \bullet \cap /[X] (q \cap r) = \cap /[X] q \cap \cap /[X] r)
disjoint _
                             \vdash [I,
                                X]((disjoint \ \_)[I, X] \in \mathbb{P} \ (I \to \mathbb{P} \ X)
                                   \wedge \ (\forall \ S : I \to \mathbb{P} \ X)
                                      • S \in (disjoint \ \_)[I, X]
                                         \Leftrightarrow (\forall i, j : dom \ S \mid i \neq j \bullet S \ i \cap S \ j = \varnothing)))
_ partition _
                             \vdash [I,
                                X]((\_partition\_)[I, X] \in (I \to \mathbb{P} X) \leftrightarrow \mathbb{P} X
                                   \wedge \ (\forall \ S: I \to \mathbb{P} \ X; \ T: \mathbb{P} \ X
                                      • (S, T) \in (\_partition\_)[I, X]
                                         \Leftrightarrow disjoint \ S \land \bigcup \{i : dom \ S \bullet S \ i\} = T)
```

9.1.12.6 Definitions

$$\begin{array}{lll} \mathbf{seq} & \vdash [X](seq \ X = \{f : \mathbb{N} \ \# \ X \mid dom \ f = 1 \ .. \ \# \ f\}) \\ \mathbf{seq}_1 & \vdash [X](seq_1 \ X = \{f : seq \ X \mid \# \ f > 0\}) \end{array}$$

 $\mathbf{iseq}\ _ \qquad \qquad \vdash [X](\mathit{iseq}\ X = \mathit{seq}\ X \,\cap\, (\mathbb{N} \,\leadsto\, X))$

The Z Theory z_sequences1 9.1.13

9.1.13.1 Parents

 $z_{-}sequences$ $z_numbers1$

9.1.13.2Children

 $z_{-}library$

9.1.13.3

9.1.13.3 Theorems
$$\mathbf{z}_{-} \mathbf{seq}_{-} \mathbf{thm} \qquad \vdash \forall \ X : \mathbb{U} \bullet seq \ X = \bigcup \left\{n : \mathbb{N} \bullet 1 \dots n \to X\right\}$$

$$\mathbf{z}_{-} \mathbf{prim}_{-} \mathbf{seq}_{-} \mathbf{induction}_{-} \mathbf{thm}$$

$$\vdash \neg \forall \ X \ p$$

$$\bullet \ p \ \overline{z} \left\{ \right\}^{\neg}$$

$$\land (\forall \ x \ n \ s \\ \bullet \ x \in X \land n \in \overline{z} \mathbb{N}^{\neg} \land s \in \overline{z} 1 \dots n \to X^{\neg} \land p \ s \\ \bullet \ p \ \overline{z} s \cup \left\{(n+1,x)\right\}^{\neg}\right)$$

$$\Rightarrow (\forall \ s \bullet \ s \in \overline{z}_{-} \mathbf{seq}_{-} \mathbf{X}^{\neg} \Rightarrow p \ s)^{\neg}$$

$$\mathbf{z}_{-} \mathbf{seq}_{-} \mathbf{thm} \mathbf{1}$$

$$\vdash \forall \ X : \mathbb{U}; \ n : \mathbb{U}$$

$$\bullet \ seq \ X = \left\{s : \mathbb{U} \mid \exists \ n : \mathbb{N} \bullet s \in 1 \dots n \to X\right\}$$

$$\mathbf{z}_{-} \mathbf{size}_{-} \mathbf{seq}_{-} \mathbf{thm} \mathbf{1}$$

$$\vdash \forall \ X : \mathbb{U}; \ s : \mathbb{U}; \ n : \mathbb{N}$$

$$\bullet \ s \in seq \ X \land \# \ s = n \Leftrightarrow s \in 1 \dots n \to X$$

$$\mathbf{z}_{-} \mathbf{size}_{-} \mathbf{seq}_{-} \mathbf{thm} \mathbf{1}$$

$$\vdash \forall \ x : \mathbb{U}; \ s : \mathbb{U}; \ n : \mathbb{N}$$

$$\bullet \ s \in seq \ X \land \# \ s = n \Leftrightarrow s \in 1 \dots n \to X$$

$$\mathbf{z}_{-} \mathbf{size}_{-} \mathbf{seq}_{-} \mathbf{thm} \mathbf{1}$$

$$\vdash \forall \ s : (seq \ _) \bullet \# \ s \in \mathbb{N}$$

$$\mathbf{z}_{-} \mathbf{singleton}_{-} \mathbf{seq}_{-} \mathbf{thm}$$

$$\vdash \forall \ s : (seq \ _) \bullet \# \ s \in \mathbb{N}$$

$$\mathbf{z}_{-} \mathbf{singleton}_{-} \mathbf{seq}_{-} \mathbf{thm}$$

$$\vdash \forall \ x : \mathbb{U} \bullet \forall \ s : seq \ X \bullet \ s \in (seq \ _)$$

$$\bullet \ s \land (x) \ 1 = x$$

$$\mathbf{z}_{-} \mathbf{seq}_{-} \mathbf{thm}$$

$$\vdash \forall \ X, \ Y : \mathbb{U} \bullet \forall \ s : seq \ X \bullet \ s \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s \land \ t \in (seq \ _)$$

$$\bullet \ s$$

 $\vdash \forall i : \mathbb{U}; t : (seq_{-})$

 \bullet {n : $dom\ t$

 \bullet $n + i \mapsto t \ n$ $= \{n : \mathbb{U}; x : \mathbb{U}\}$ $|(n, x) \in t$ \bullet (n + i, x)

 z_{-} _singleton_thm

 $z_{-}^{def_thm}$

• $x \in X \land s \in \mathbb{Z} seq X \land p s \Rightarrow p \mathbb{Z} \langle x \rangle \land s \urcorner$

 $\Rightarrow (\forall s \bullet s \in \Gamma seq X \Rightarrow p s)$

 $z_num_list_thm$

$$\vdash \neg \forall l \ n$$

$$\bullet \ \Box \neg Z' NumList \ (l, \ n) \neg \neg$$

$$= \ \Box \{i : \mathbb{U}; \ x : \mathbb{U}$$

$$\mid (i, \ x) \in \neg \$" Z' \langle \rangle" \ l \neg$$

$$\bullet \ (i + \neg Z' Int \ n \neg, \ x) \} \neg \neg$$

 $\mathbf{z}_{-}\mathbf{seqd}_{-}{\in}_{-}\mathbf{seq}_{-}\mathbf{thm}$

$$\vdash \ulcorner \forall \ l \bullet \ {\tt \tiny \'} \Box `` S" Z' \langle \rangle " \ l \urcorner \urcorner \in {\tt \tiny \'} (seq \ _) \urcorner \urcorner$$

 $\mathbf{z}_\mathbf{seqd}_^{\frown}_\mathbf{rw}_\mathbf{thm}$

$$\vdash \neg \forall \ a \ b \ l$$

$$\bullet \ \overline{\Sigma} \neg \$" Z' \langle \rangle" \ (Cons \ a \ (Cons \ b \ l)) \neg \neg$$

$$= \overline{\Sigma} \langle a \rangle \frown (\langle b \rangle \frown \neg \$" Z' \langle \rangle" \ l \neg) \neg \neg$$

 $z_{-} \in _{-}seq_{-}app_{-}eq_{-}thm$

$$\vdash \forall \ s : (seq \ _); \ m : \mathbb{U}; \ x : \mathbb{U} \bullet (m, \ x) \in s \Rightarrow s \ m = x$$

 $\mathbf{z}_{-}{\in}_{-}\mathbf{seqd}_{-}\mathbf{app}_{-}\mathbf{eq}_{-}\mathbf{thm}$

$$\vdash \ulcorner \forall \ l \ m \ x$$

$$\bullet \ {}^{\ulcorner}_{\mathbf{Z}}(m, \ x) \urcorner \in {}^{\ulcorner}_{\mathbf{Z}} \ulcorner \$" Z' \langle \rangle" \ l \urcorner \urcorner \Rightarrow {}^{\ulcorner}_{\mathbf{Z}} \ulcorner \$" Z' \langle \rangle" \ l \urcorner \ m \urcorner = x \urcorner$$

 $z_size_seqd_thm$

 ${\bf z_size_seqd_length_thm}$

$$\vdash \ulcorner \forall l \bullet \ulcorner \# \ulcorner "Z' \langle \rangle " l \urcorner \urcorner = \ulcorner \ulcorner Z' Int (Length l) \urcorner \urcorner \urcorner$$

 $z_dom_seqd_thm$

 $z_ran_seqd_thm$

$$\vdash \ulcorner \forall \ l \bullet \ \ulcorner ran \ \ulcorner \$"Z' \langle \rangle" \ \ l \urcorner \urcorner = \ulcorner \ulcorner Z' Setd \ \ l \urcorner \urcorner \urcorner \urcorner$$

 $\mathbf{z}_{-}\mathbf{seqd}_{-}^{\frown}_{-}\langle\rangle_{-}\mathbf{clauses}$

 $z_seqd_eq_thm$

$$\vdash \neg \forall x \ y \ l1 \ l2$$

$$\bullet \ \sqsubseteq \neg \S" Z' \langle \rangle" \ (Cons \ x \ l1) \urcorner \neg = \sqsubseteq \neg \S" Z' \langle \rangle" \ (Cons \ y \ l2) \urcorner \neg$$

$$\Leftrightarrow x = y \land \sqsubseteq \neg \S" Z' \langle \rangle" \ l1 \urcorner \neg = \sqsubseteq \neg \S" Z' \langle \rangle" \ l2 \urcorner \neg \neg$$

9.1.14 The Z Theory z_sets

9.1.14.1 Parents

 $z_language_ps$

9.1.14.2 Children

 $z_relations$

9.1.14.3 Global Variables

9.1.14.4 Fixity

fun 0 rightassoc

(if _? then _! else _!) (_
$$\stackrel{\oplus}{\oplus}$$
 _) (\ll _! \gg) (Π _?)

fun 25 leftassoc

(- ⊖ -)

fun 30 leftassoc

(_ \ _) (_ ∪ _)

```
490
fun 40 leftassoc
                              (- \cap -)
gen 5 rightassoc
                             (\_\leftrightarrow\_) (\_\to\_)
gen 70 rightassoc
                              (\mathbb{P}_1 \ \_)
                              (- \notin -)(- \subset -)(- \neq -)(- - -)
rel
9.1.14.5
                  Axioms
- ∉ -
                             \vdash [X](((\_ \neq \_)[X] \in X \leftrightarrow X)
- ≠ -
                                    \wedge \ (_{-} \not\in _{-})[X] \in X \leftrightarrow \mathbb{P} \ X)
                                   \land (\forall x, y : X \bullet (x, y) \in (\_ \neq \_)[X] \Leftrightarrow \neg x = y)
                                   \wedge \ (\forall \ x : X; \ S : \mathbb{P} \ X)
                                      • (x, S) \in (\_ \not\in \_)[X] \Leftrightarrow \neg x \in S)
                              \vdash [X]((\_ \subset \_)[X] \in \mathbb{P} \ X \leftrightarrow \mathbb{P} \ X
_{-} \subset _{-}
                                    \wedge \ (\forall S, T : \mathbb{P} X)
                                      • (S, T) \in (\_ \subset \_)[X] \Leftrightarrow S \subseteq T \land S \neq T)
_ U _
_ \ _
_ \ominus _
                             \vdash [X](\{(\_ \cup \_)[X], (\_ \cap \_)[X], (\_ \setminus \_)[X], (\_ \ominus \_)[X]\}
                                         \subseteq \mathbb{P}\ X\ \times\ \mathbb{P}\ X\ \to\ \mathbb{P}\ X
                                    \wedge \ (\forall \ S, \ T : \mathbb{P} \ X)
                                      • ( \cup )[X](S, T) = \{x : X \mid x \in S \lor x \in T\}
                                         \land (\_ \cap \_)[X] (S, T) = \{x : X \mid x \in S \land x \in T\}
                                         \wedge (\_ \setminus \_)[X] (S, T) = \{x : X \mid x \in S \land x \notin T\}
                                         \wedge \ (\_ \ominus \_)[X] \ (S, \ T)
                                            = \{x : X
                                              | ¬
                                            (x \in S \Leftrightarrow x \in T)\})
\cap
                              \vdash [X](\{\bigcup [X], \cap [X]\} \subseteq \mathbb{P} (\mathbb{P} X) \to \mathbb{P} X
                                    \wedge (\forall A : \mathbb{P} \mathbb{P} X)
                                      \bullet \bigcup [X] \ A = \{x : X \mid \exists \ S : A \bullet x \in S\}
                                         \land \bigcap [X] \ A = \{x : X \mid \forall \ S : A \bullet x \in S\})
second
first
                             \vdash [X,
                                 Y]((first[X, Y] \in X \times Y \to X
                                   \land second[X, Y] \in X \times Y \rightarrow Y)
                                   \land (\forall x : X; y : Y)
```

if _? then _! else _! $\vdash [X]((if _? then _! else _!)[X] \in \mathbb{B} \times X \times X \to X$ $\wedge (\forall x, y : X)$

• first[X, Y](x, y) = x

 $\land second[X, Y](x, y) = y)$

```
 \bullet \ (if \ \_? \ then \ \_! \ else \ \_!)[X] \ (true, x, y) = x \\  \land \ (if \ \_? \ then \ \_! \ else \ \_!)[X] \ (false, x, y) \\  = y)) \\ \vdash [X]((\_ \ ^\oplus \_)[X] \in X \times \mathbb{P} \ X \to X \wedge (\_ \ ^\oplus \_)[X] = first) \\ \blacksquare \ \_? \qquad \vdash (\Pi \ \_?) \in \mathbb{B} \to \mathbb{B} \wedge (\forall \ x : \mathbb{B} \bullet \Pi \ x \Leftrightarrow x) \\ \vdash [X]((\ll \_! \gg)[X] \in X \to X \\  \land \ (\forall \ x : X \bullet (\ll \_! \gg)[X] \ x = x)) \\ \vdash [X, \\ Y]((\_ \ \_\_)[X, \ Y] \in \mathbb{P} \ (X \times \mathbb{P} \ (X \times Y) \times Y) \\ \land \ (\forall \ x : X; \ R : \mathbb{P} \ (X \times Y); \ y : Y) \\ \bullet \ (x, R, y) \in (\_ \ \_\_)[X, \ Y] \Leftrightarrow (x, y) \in R))
```

9.1.14.6 Definitions

9.1.14.7 Theorems

```
z_{-}\neq_{-}thm
                                         \vdash \forall \ x : \mathbb{U}; \ y : \mathbb{U} \bullet x \neq y \Leftrightarrow \neg \ x = y
\mathbf{z}_{-} \notin \mathsf{thm}
                                         \vdash \forall \ x : \mathbb{U}; \ S : \mathbb{U} \bullet x \not\in S \Leftrightarrow \neg \ x \in S
z_{-}\emptyset_{-}thm
                                         \vdash \forall x1 : \mathbb{U} \bullet \neg x1 \in \varnothing
                                         \vdash \varnothing = \{\}
z_{-}\emptyset_{-}thm1
                                         \vdash \forall \ X : \mathbb{U} \bullet \mathbb{P}_1 \ X = \{S : \mathbb{P} \ X \mid S \neq \emptyset\}
\mathbf{z}_{-}\mathbb{P}_{1-}\mathbf{thm}
\mathbf{z}_- \cup_- \mathbf{thm}
                                         \vdash \forall \ z : \mathbb{U}; \ s : \mathbb{U}; \ t : \mathbb{U} \bullet z \in s \cup t \Leftrightarrow z \in s \lor z \in t
z_-\cap_- thm
                                         \vdash \forall z : \mathbb{U}; s : \mathbb{U}; t : \mathbb{U} \bullet z \in s \cap t \Leftrightarrow z \in s \wedge z \in t
z_set_dif_thm
                                         \vdash \forall z : \mathbb{U}; s : \mathbb{U}; t : \mathbb{U} \bullet z \in s \setminus t \Leftrightarrow z \in s \wedge z \notin t
z_-\ominus_-thm
                                         \vdash \forall z : \mathbb{U}; s : \mathbb{U}; t : \mathbb{U} \bullet z \in s \ominus t \Leftrightarrow \neg (z \in s \Leftrightarrow z \in t)
                                         \vdash \vdash \forall X
z_{-}\subseteq thm1
                                             \bullet \ {}^{\vdash}_{\mathsf{Z}}(\ \_\ \subseteq\ \_)[X] {}^{\lnot} \in {}^{\vdash}_{\mathsf{Z}}\mathbb{P} \ X \leftrightarrow \mathbb{P} \ X {}^{\lnot}
                                                      \wedge \ \Xi \forall \ S, \ T : \mathbb{P} \ X
                                                          \bullet (S, T) \in (\_ \subseteq \_)[X]
                                                              \Leftrightarrow (\forall x : X \bullet x \in S \Rightarrow x \in T)^{\neg \neg}
                                         \vdash \forall \ s : \mathbb{U}; \ t : \mathbb{U} \bullet s \subseteq t \Leftrightarrow (\forall \ x : \mathbb{U} \bullet x \in s \Rightarrow x \in t)
\mathbf{z}_{-} \subset \mathbf{thm}
\mathbf{z}_-{\in}_-\mathbb{P}_-\mathbf{thm}
                                         \vdash \forall \ s : \mathbb{U}; \ t : \mathbb{U} \bullet s \in \mathbb{P} \ t \Leftrightarrow s \subseteq t
\mathbf{z}_{-} \subset thm
                                         \vdash \forall \ s : \mathbb{U}; \ t : \mathbb{U} \bullet s \subset t \Leftrightarrow s \subseteq t \land s \neq t
                                         \vdash \forall z : \mathbb{U}; a : \mathbb{U} \bullet z \in \bigcup a \Leftrightarrow (\exists S : \mathbb{U} \bullet S \in a \land z \in S)
z_-\bigcup_-thm
                                         \vdash \forall z : \mathbb{U}; a : \mathbb{U} \bullet z \in \bigcap a \Leftrightarrow (\forall S : \mathbb{U} \bullet S \in a \Rightarrow z \in S)
z_-\cap_-thm
                                         \vdash \forall \ x : \mathbb{U} \bullet first \ x = x.1
z_first_thm
\mathbf{z}_{-}\mathbf{second\_thm} \vdash \forall \ x : \mathbb{U} \bullet second \ x = x.2
z_if_thm
                                         \vdash \forall x, y : \mathbb{U}
                                                  • if true then x else y = x
                                                     \wedge if false then x else y = y
z_guillemets_thm
                                         \vdash \forall \ x : \mathbb{U} \bullet \ll x \gg = x
```

```
z_underlining_brackets_thm
                                       \vdash \forall \ x : \mathbb{U}; \ R : \mathbb{U}; \ y : \mathbb{U} \bullet x \ \underline{R} \ y \Leftrightarrow (x, y) \in R
z_- \cup_{clauses}
                                       \vdash \forall \ a : \mathbb{U}
                                               \bullet \ a \cup \{\} = a
                                                   \land \{\} \cup a = a
                                                   \wedge \ a \cup \mathbb{U} = \mathbb{U}
                                                   \wedge \ \mathbb{U} \cup a = \mathbb{U}
                                                   \wedge a \cup a = a
z_-\cap_clauses
                                       \vdash \ \forall \ a : \mathbb{U}
                                               • a \cap \{\} = \{\}
                                                   \land \{\} \cap a = \{\}
                                                   \wedge a \cap \mathbb{U} = a
                                                   \wedge \ \mathbb{U} \ \cap \ a = a
                                                   \wedge a \cap a = a
z_set_dif_clauses
                                       \vdash \forall \ a : \mathbb{U}
                                               \bullet a \setminus \{\} = a
                                                   \land \{\} \setminus a = \{\}
                                                   \land a \setminus \mathbb{U} = \{\}
                                                   \land a \setminus a = \{\}
                                       \vdash \forall \ a : \mathbb{U}
z_-\ominus_-clauses
                                               \bullet \ a \ominus \{\} = a
                                                   \land \{\} \ominus a = a
                                                   \wedge \ a \ominus \mathbb{U} = \mathbb{U} \setminus a
                                                   \wedge \ \mathbb{U} \ominus a = \mathbb{U} \setminus a
                                                   \land a \ominus a = \{\}
                                       \vdash \forall \ a: \mathbb{U} \, \bullet \, a \subseteq a \, \land \, \{\} \subseteq a \, \land \, a \subseteq \mathbb{U}
z_{-}\subseteq_{-}clauses
\mathbf{z}_-{\subset}_-\mathbf{clauses}
                                       \vdash \forall \ a : \mathbb{U} \bullet \neg \ a \subset a \land \neg \ a \subset \{\} \land \{\} \subset \mathbb{U}
                                       \vdash \cap \{\} = \mathbb{U} \land \cap \mathbb{U} = \{\}
z_{-}\cap_{-}clauses
z_{-} | J_{-} clauses
                                       \vdash \bigcup \{\} = \{\} \land \bigcup \mathbb{U} = \mathbb{U}
\mathbf{z}_{-}\mathbb{P}_{-}\mathbf{clauses}
                                       \vdash \forall \ a : \mathbb{U} \bullet \mathbb{P} \{\} = \{\{\}\} \land \mathbb{P} \mathbb{U} = \mathbb{U} \land a \in \mathbb{P} \ a \land \{\} \in \mathbb{P} \ a
z_{-}\mathbb{P}_{1-}clauses
                                       \vdash \forall \ a : \mathbb{U}
                                               • \mathbb{P}_1 {} = {} \land (a \in \mathbb{P}_1 a \Leftrightarrow a \neq {}) \land \neg {} \in \mathbb{P}_1 a
                                       \vdash \forall \ a : \mathbb{U} \bullet a \times \{\} = \{\} \land \{\} \times a = \{\} \land \mathbb{U} \times \mathbb{U} = \mathbb{U}
z_{-}\times_{-}clauses
z_sets_ext_clauses
                                       \vdash \forall s, t : \mathbb{U}
                                               • (s = t \Leftrightarrow (\forall \ x : \mathbb{U} \bullet x \in s \Leftrightarrow x \in t))
                                                   \wedge \ (s \subseteq t \Leftrightarrow (\forall \ x : \mathbb{U} \bullet x \in s \Rightarrow x \in t))
                                                   \wedge (s \subset t)
                                                       \Leftrightarrow (\forall \ x : \mathbb{U} \bullet x \in s \Rightarrow x \in t)
                                                          \wedge (\exists y : \mathbb{U} \bullet y \in t \land \neg y \in s))
```

9.2 Theory Related ML Values

This section contains various theory related ML values (e.g. the value of theorems bound to ML names, or special tactics of proof contexts associated with the theory). Where a theorem or definition is bound to an ML name the value of the theorem is to be found in the theory listing, only the ML name is given below.

9.2.1 Z Sets

 $|signature \ \mathbf{ZSets} = sig$

Description This provides the Z library sets material. It creates the theory z_sets .

 $|(*Proof\ Context: '\mathbf{z}_{-} \in \mathbf{set_lib}\ *)|$

Description A component proof context for handling the membership of expressions created by Z set operations of the Z library.

Predicates and expressions treated by this proof context are constructs formed from:

$$| \cap, \cup, \cap, \cup, \setminus, \ominus, \mathbb{P}_1, \varnothing |$$

Contents

Rewriting:

Stripping theorems:

Stripping conclusions:

All three of the above have theorems concerning the membership (\in) of terms generated by the following operators:

$$|\bigcap, \bigcup, \cap, \cup, \setminus, \ominus, \mathbb{P}_1, \varnothing$$

Stripping also contains the above in negated forms.

Rewriting canonicalisation:

 \mathbb{U} simplification has the definition of \leftrightarrow added.

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory z_sets . It is intended to be used with proof context " z_set_lang " and " z_normal " It is not intended to be mixed with HOL proof contexts.

See Also 'z_sets_ext_lib

```
| (* Proof Context: 'z_normal *)
```

Description A component proof context for normalising certain constructs of the Z library. The normalisation is done to fix on, in each case, one of two possible equivalent representations of the same concept. These constructs are:

Contents

Rewriting:

```
|z \in \mathbb{P}_{-}thm, z = \emptyset_{-}thm1, z \notin thm, z \neq thm, z = thm, z = thm
```

Stripping theorems:

```
z_{-}\in \mathbb{P}_{-}thm, z_{-}\varnothing_{-}thm, z_{-}\not\in thm, z_{-}\not= thm, z_{-}if_{-}thm
and these all pushed through \neg
```

Stripping conclusions:

```
z_{-}\in \mathbb{P}_{-}thm, z_{-}\varnothing_{-}thm, z_{-}\not\in thm, z_{-}\not= thm, z_{-}if_{-}thm
and these all pushed through \neg
```

Rewriting canonicalisation:

 \mathbb{U} simplification has the definition of \leftrightarrow added.

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory z_sets . It is intended to be used with proof contexts " z_set_lib " or " z_set_alg ".

```
|(*Proof\ Context: 'z_sets_alg *)|
```

Description A component proof context for handling algebraic reasoning of expressions created by Z set operations of the Z library.

Predicates and expressions treated by this proof context are constructs formed from:

```
|\in, \cap, \cup, \setminus, \ominus, \subseteq, \subset, \cap, \bigcup, \mathbb{P}, \mathbb{P}_1, \{D \mid false \bullet V\}, \times
```

Contents

Rewriting:

```
 \begin{array}{l} z\_\cup\_clauses,\ z\_\cap\_clauses,\ z\_set\_dif\_clauses,\ z\_\ominus\_clauses,\\ z\_\subseteq\_clauses,\ z\_\cup\_clauses,\ z\_\cup\_clauses,\ z\_\cap\_clauses,\\ z_\square\square\_clauses,\ z_\square\square\_clauses,\ z\_seta\_false\_conv,\\ z_-\times\_clauses \end{array}
```

Stripping theorems:

```
 \begin{array}{l} z\_\cup\_{clauses},\ z\_\cap\_{clauses},\ z\_\mathit{set\_dif\_{clauses}},\ z\_\ominus\_{clauses}, \\ z\_\subseteq\_{clauses},\ z\_\cup\_{clauses},\ z\_\cap\_{clauses}, \\ z_\square\cap\_{clauses},\ z_\square\cap\_{clauses}, \\ z_\square\cap\_{clauses}, \\ z_\square\cap\_{clauses}, \\ z_\square\cap\_{clauses}, \\ z_\square\cap\_{clauses}, \\ z_\square\cap\_{clauses}, \\ z_\square\cap\_
```

Stripping conclusions:

```
z_-\cup_- clauses, z_-\cap_- clauses, z_- set_- dif_- clauses, z_-\ominus_- clauses, z_-\subseteq_- clauses, z_-\Box_- clauses, z_-
```

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory z_sets . It is intended to usable with proof context " $z_\in_set_$ lib", and always with " z_normal ". The proof context ensures that its simplifications will be attempted before more general rules concerned membership of set operators are used.

It is not intended to be mixed with HOL proof contexts.

```
(* Proof Context: 'z_sets_ext_lib *)
```

Description An aggressive component proof context for handling the manipulation of Z set expressions, by breaking them into predicate calculus, within the Z library.

Predicates treated by this proof context are constructs formed from:

```
\subseteq, \subset
```

Contents

Rewriting:

```
|z\_\subseteq\_conv, z\_\subseteq\_thm, z\_setd\_\subseteq\_conv|
```

Stripping theorems:

```
|z \subseteq conv, z \subseteq thm, z \_setd \subseteq conv,
plus these all pushed in through \neg
```

Stripping conclusions:

```
|z \subseteq conv, z \subseteq thm, z \_setd \subseteq conv,
plus these all pushed in through \neg
```

In all of the above $z_{-}setd_{-}\subseteq_{-}conv$, which does the conversion:

```
|\{x1, x2, ...\} \subseteq y ---> x1 \in y \land x2 \in y \land ...
```

is used, where applicable, in preference to $z_{-}\subseteq conv$, which, in the simplest cases, does the conversion:

```
p \subseteq q \longrightarrow \forall x1 \bullet x1 \in p \Rightarrow xx1 \in q
```

Rewriting canonicalisation:

Automatic proof procedures are respectively z_basic_prove_tac, z_basic_prove_conv, and no existence prover.

Usage Notes It requires theory z_{-sets} . It is intended to always be used in conjunction with "z_set_lib" and "z_set_ext_lang". If used with "z_sets_alg" then the simplification in that proof context will take precedence over the extensionality effects of this proof context.

It is not intended to be mixed with HOL proof contexts.

See Also $z \in set_lib$

```
val \ \mathbf{mk_-z_-if} : (TERM * TERM * TERM) \longrightarrow TERM;
|val \ \mathbf{dest_z_if} : TERM \rightarrow (TERM * TERM * TERM);
|val \ \mathbf{is}_{-}\mathbf{z}_{-}\mathbf{if} : TERM -> bool;
Description Constructor, destructor and discriminator functions for Z conditional terms.
```

```
78003 ?0 is not a Z conditional term
78004 ?0 and ?1 do not have the same types
78005 ?0 is not of type \lceil :BOOL \rceil
```

```
| val \ \mathbf{mk_{-z}} \subseteq : (TERM * TERM) -> TERM; | val \ \mathbf{dest_{-z}} \subseteq : TERM -> (TERM * TERM); | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool; | val \ \mathbf{is_{-z}} \subseteq : TERM -> bool
```

```
|val \ \mathbf{z}\_\subseteq_{\mathbf{conv}} : CONV;
```

Description Use $z_{-}\subseteq_{-}thm$ in combination with knowledge about tuples. Given as input an equality of the form $v\subseteq w$ then:

If w is of type ty SET where ty is not a tuple type:

where xn is the first variable in the list x1, x2,... that doesn't appear in v or w (free or bound).

If w is of type ty SET where ty is an n-tuple type, or binding type, then sufficient $x_{-}i$ will be introduced, instead of just xn, to allow xn to be replaced by a construct of bindings and tuples of the $x_{-}i$, such that no $x_{-}i$ has a binding or tuple type and appears exactly once in the construct.

```
Example  \begin{vmatrix} z \_ \subseteq \_conv \ _{\mathbb{Z}}p \subseteq r \times [a,b:X] \times x2 \rceil = \\ \vdash p \subseteq r \times [a, b:X] \times x2 \\ \Leftrightarrow (\forall x1:\mathbb{U}; x3:\mathbb{U}; x4:\mathbb{U}; x5:\mathbb{U} \\ \bullet (x1, (a \triangleq x3, b \triangleq x4), x5) \in p \\ \Rightarrow (x1, (a \triangleq x3, b \triangleq x4), x5) \in r \times [a, b:X] \times x2)
```

Notice how the introduced universal quantification "skips" x2 which is present in the input term.

```
See Also z_{-}\subseteq thm, z_{-}\in \mathbb{P}_{-}conv.
```

Figure 1. Errors |78001|? 0 is not of the form $[v] \subseteq w$

```
| val z_+def : THM; | val z'\pi_def : THM; | val z'\pi_def : THM; | val z'\text{if_def} : THM; | val z'\text{guillemets_def} : THM; | val z'\text{guillemets_def} : THM; | val z'\text{underlining_brackets_def} : THM; | Description | These are the ML bindings of the definitions of built-in global variables that support the use of the ProofPower-Z language.
```

```
SML
val \ \mathbf{z}_{-} \neq_{-} \mathbf{def} : THM;
val \ \mathbf{z}_{-} \not\in_{-} \mathbf{def} : THM;
val \ \mathbf{z}_{-}\varnothing_{-}\mathbf{def} : THM;
val \ \mathbf{z}_{-} \subset \mathbf{def} : THM;
val \ \mathbf{z}_{-} \mathbb{P}_{1-} \mathbf{def} : THM;
val \ \mathbf{z}_{-} \cup_{-} \mathbf{def} : THM;
|val \mathbf{z}_{-} \cap_{-} \mathbf{def} : THM;
val \ \mathbf{z}_{-}\mathbf{setdif}_{-}\mathbf{def} : THM;
|val \ \mathbf{z}_{-} \ominus_{-} \mathbf{def} : THM;
 val \ \mathbf{z}_{-} \bigcup_{-} \mathbf{def} : THM;
val \mathbf{z}_{-} \cap_{-} \mathbf{def} : THM;
|val \ \mathbf{z}_{-}\mathbf{first}_{-}\mathbf{def} : THM;
|val \ \mathbf{z}_{-}\mathbf{second}_{-}\mathbf{def} : THM;
|val \ \mathbf{z}_{-} \leftrightarrow_{-} \mathbf{def} : THM;
|val \mathbf{z}_{-} \rightarrow_{-} \mathbf{def} : THM;
Description These are the ML bindings of the definitions of the theory z\_sets.
```

```
SML
 val \mathbf{z}_{-} \neq_{-} \mathbf{thm} : THM;
val \ \mathbf{z}_{-} \not\in \mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\varnothing_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-} \subseteq \mathbf{thm} : THM;
val \ \mathbf{z}_{-} \subseteq \mathbf{thm1}: THM;
 val \ \mathbf{z}_{-} \subset_{-} \mathbf{thm} : THM;
val \ \mathbf{z}_{-} \in \mathbb{P}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{P}_{1}-thm: THM;
val \ \mathbf{z}_{-} \cup_{-} \mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \cap_{-} \mathbf{thm} : THM;
val z_set_dif_thm: THM;
val \ \mathbf{z}_{-} \ominus_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \bigcup_{-} \mathbf{thm} : THM;
val \mathbf{z}_{-} \cap_{-} \mathbf{thm} : THM;
 val z_first_thm: THM;
 val z_second_thm: THM;
val \ \mathbf{z}_{-} \cup_{-} \mathbf{clauses} : THM;
val \mathbf{z}_{-} \cap_{-} \mathbf{clauses} : THM;
|val \ \mathbf{z}_{-}\mathbf{set}_{-}\mathbf{dif}_{-}\mathbf{clauses}: THM;
 val \ \mathbf{z}_{-} \ominus_{-} \mathbf{clauses} : THM;
val \mathbf{z}_{-} \subset \mathbf{clauses} : THM;
val \ \mathbf{z}_{-} \subset \mathbf{clauses} : THM;
val \ \mathbf{z}_{-} \bigcup_{-} \mathbf{clauses} : THM;
val \mathbf{z}_{-} \cap_{-} \mathbf{clauses} : THM;
 val \ \mathbf{z}_{-}\mathbb{P}_{-}\mathbf{clauses} : THM;
val \ \mathbf{z}_{-}\mathbb{P}_{1}-clauses: THM;
 val \ \mathbf{z}_{-} \times_{-} \mathbf{clauses} : THM;
val \ \mathbf{z_-if_-thm}: THM;
|val \ \mathbf{z}_{-}\mathbf{guillemets}_{-}\mathbf{thm}: THM;
val z_underlining_brackets_thm: THM;
val z_{sets_{ext_{clauses:}}} THM;
Description
                          These are the ML bindings of the theorems of the theory z_{-}sets.
```

9.2.2 Z Relations

```
| signature \ \mathbf{ZRelations} = sig
| \mathbf{Description} | This provides the basic proof support for the Z library relations. It creates the theory z_-relations.
```

```
|(*Proof\ Context: '\mathbf{z}_{-} \in \mathbf{rel}\ *)|
```

Description A component proof context for handling the membership of Z relations created by Z library operations.

Predicates treated by this proof context are constructs formed from:

$$| \mapsto, \oplus, - +, - *, - \sim, - (-), \triangleright, \triangleleft, \triangleright, \triangleleft, \triangleright, \triangleleft, | o, \frac{o}{g}, id, ran, dom, \leftrightarrow$$

Contents

Rewriting:

$$|z \longrightarrow thm|$$

Stripping theorems:

Stripping conclusions:

All three of the above also have theorems concerning the membership of terms generated by the following operators:

$$\begin{vmatrix} \oplus, & +, & +, & *, & \sim, & - & & - & & \\ o, & g, & id, & ran, & dom, & \leftrightarrow & & & & & \\ \end{vmatrix}$$

Stripping also contains the above in negated forms.

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory $z_{relations}$. It is intended to be used with proof contexts "z_sets_ext" and "z_sets_alg". It is not intended to be mixed with HOL proof contexts.

```
| (* Proof Context: 'z_rel_alg *)
```

Description A component proof context for the simplification of Z relations created by Z library operations.

Predicates treated by this proof context are constructs formed from:

Contents

Rewriting:

```
 \begin{vmatrix} z_- \leftrightarrow_- clauses, \ z_- dom_- clauses, \ z_- ran_- clauses, z_- id_- clauses, \\ z_- \circ_- clauses, \ z_- \circ_- clauses, \ z_- \circ_- clauses, \\ z_- \leftrightarrow_- clauses, \ z_- \rhd_- clauses, \ z_- rel_- inv_- clauses, \ z_- rel_- image_- clauses, \\ z_- trans_- closure_- clauses, \ z_- reflex_- closure_- clauses, \\ z_- \ominus_- clauses
```

Stripping theorems:

```
 \begin{array}{l} z_{-} \leftrightarrow_{-} clauses, \ z_{-} dom_{-} clauses, \ z_{-} ran_{-} clauses, z_{-} id_{-} clauses, \\ z_{-} \circ_{-} clauses, \ z_{-} \circ_{-} clauses, \ z_{-} \circ_{-} clauses, \\ z_{-} \leftarrow_{-} clauses, \ z_{-} \circ_{-} clauses, \ z_{-} rel_{-} inv_{-} clauses, \ z_{-} rel_{-} image_{-} clauses, \\ z_{-} \leftarrow_{-} clauses, \ z_{-} reflex_{-} closure_{-} clauses, \\ z_{-} \leftarrow_{-} clauses \\ Expressed \ as \ memberships, \ as \ necessary, \ using \in_{-} C \\ All \ also \ pushed \ through \ \neg \end{array}
```

Stripping conclusions:

```
 \begin{array}{l} z_- \leftrightarrow_- clauses, \ z_- dom_- clauses, \ z_- ran_- clauses, z_- id_- clauses, \\ z_- \circ_- clauses, \ z_- \circ_- clauses, \ z_- \leftarrow_- clauses, \\ z_- \leftarrow_- clauses, \ z_- \leftarrow_- clauses, \ z_- rel_- inv_- clauses, \ z_- rel_- image_- clauses, \\ z_- \leftarrow_- clauses, \ z_- reflex_- closure_- clauses, \\ z_- \leftarrow_- clauses \\ Expressed \ as \ memberships, \ as \ necessary, \ using \in_- C \\ All \ also \ pushed \ through \ \neg \end{array}
```

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory $z_relations$. It is intended to be used with proof contexts "z_sets_ext" and "z_sets_alg". There are clashes of effects if merged with "z_ \in _rel", resolved in favour of "z_ \in _rel", though the resulting merge has its uses. It is not intended to be mixed with HOL proof contexts.

```
| (* Proof Context: 'z_tuples *)
```

Description A component proof context for handling the manipulation of Z tuples and cartesian products within the Z language and library.

Expressions and predicates treated by this proof context are constructs formed from:

```
(membership\ of) \times, equations of tuple displays, selection from tuple displays, first, second, \mapsto
```

Contents

Rewriting:

```
\begin{vmatrix} z_{-} \in \times_{-} conv, \\ z_{-} tuple_{-} eq_{-} conv, z_{-} sel_{t_{-}} conv, \\ z_{-} second_{-} thm, z_{-} first_{-} thm \end{vmatrix}
```

Stripping theorems:

```
 \begin{vmatrix} z_- \in -\times_- conv, \\ z_- tuple_- eq_- conv, \in _- C \ z_- sel_{t-} conv, \\ z_- sel_{t-} conv \ (where \ component \ of \ tuple \ is \ boolean), \\ plus \ these \ all \ pushed \ in \ through \ \neg
```

Stripping conclusions:

```
|z_{-} \in \times conv|,

|z_{-} tuple_{-} eq_{-} conv|, \in C z_{-} sel_{t_{-}} conv|,

|z_{-} sel_{t_{-}} conv| (where component of tuple is boolean),

|plus these all pushed in through \neg
```

Stripping also contains the above in negated forms.

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $_basic_prove_conv$, and no existence prover (1-tuples and 2-tuples are handled in proof context "z_predicates").

Usage Notes It requires theory $z_relations$. It is intended to be used with proof contexts "z_sets_ext" and "z_sets_alg". It should not be used with "z_tuples_lang". It is not intended to be mixed with HOL proof contexts.

```
|(*Proof\ Context: 'z_elementwise_eq *)|
```

Description A aggressive component proof context for forcing the elementwise comparison of any two items of tuple or binding types.

Predicates and expressions treated by this proof context are:

```
x = y where x has a tuple type

x = y where x has the type of a bidning display
```

Contents

Rewriting:

```
|z\_binding\_eq\_conv3, z\_tuple\_eq\_conv1|
```

Stripping theorems:

```
z\_binding\_eq\_conv3, z\_tuple\_eq\_conv1
plus these all pushed in through \neg
```

Stripping conclusions:

```
z\_binding\_eq\_conv3, z\_tuple\_eq\_conv1, plus these all pushed in through \neg
```

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory z_{-} relations. It is intended to be used with proof context " z_{-} language". It is not intended to be mixed with HOL proof contexts.

```
| (* Proof Context: z_language *)
```

Description A mild complete proof context for reasoning in the Z language. It will also do some minor peices of Z Library reasoning - in particular, it "understands" maplets and \subseteq .

It consists of the merge of the proof contexts:

```
"z-predicates",
"'z-\in-set_lang",
"'z-bindings",
"'z-schemas",
"'z-tuples"
```

Usage Notes It requires theory z_relations (rather than z_language_ps as one might expect). This is because we wish to provide a proof context that can be added to to provide Library reasoning facilities. This means that we cannot use the Z language proof context "z_tuples_lang", asthisisincompatible with "z_tuples", its library extension. This is why this proof context understands maplets, which are Z Library contructs.

```
| (* Proof Context: z_language_ext *)
```

Description An aggressive complete proof context for reasoning in the Z language. It uses the extensionality of sets, and will also decompose any equality of objects of schema or tuple type into a pairwise equality clause. It will also do some minor peices of Z Library reasoning - in particular, it "understands" maplets and \subseteq .

It consists of the merge of the proof contexts:

```
"z\_predicates",
"'z\_e\_set\_lang",
"'z\_sets\_ext\_lang",
"'z\_bindings",
"'z\_schemas",
"'z\_tuples",
"'z\_elementwise\_eq"
```

Usage Notes It requires theory $z_relations$ (rather than $z_language_ps$ as one might expect). This is because we wish to provide a proof context that can be added to to provide Library reasoning facilities. This means that we cannot use the Z language proof context " z_tuples_lang ", asthisisincompatible with " z_tuples ", its library extension. This is why this proof context understands maplets, which are Z Library contructs.

```
| (* Proof Context: z_sets_ext *)
```

Description An aggressive complete proof context for handling the manipulation of Z set expressions, by breaking them into predicate calculus.

It consists of the merge of the proof contexts:

```
"z\_language\_ext",
"'z\_\in\_set\_lib",
"'z\_sets\_ext\_lib",
"'z\_normal"
```

Usage Notes It requires theory z_{-} relations.

It is not intended to be mixed with HOL proof contexts or "z_sets_alg", which offers an alternative approach to reasoning about sets.

```
| (* Proof Context: z_sets_alg *)
```

Description A mild complete proof context for handling the manipulation of Z set expressions, by algebraic reasoning and knowledge of the set membership of the set operators.

It consists of the merge of the proof contexts:

```
"z\_language",
"'z\_e\_set\_lib",
"'z\_sets\_alg",
"'z\_normal"
```

Usage Notes It requires theory z-relations. The proof context ensures that its simplifications will be attempted before more general rules concerned membership of set operators are used (including extensionality rules).

It is not intended to be mixed with HOL proof contexts.

```
| (* Proof Context: z_rel_ext *)

Description An aggressive complete proof context for reasoning about Z relations. When stripping or rewriting it attempts to reduce any predicate concerning relational constructs to predicate calculus. As a side effect set constructs are also reduced to predicate calculus. The proof context is a merge of:

| z_sets_ext - extensional reasoning about sets | z_c=rel - membership of relational constructs | z_rel_alg - simplifications of relational constructs | z_rel_alg - simplifications of relational constructs | z_rel_alg - simplifications of relational constructs | z_relations |
```

```
SML
|val\ z_{-} \leftrightarrow_{-} thm:\ THM;
val \ z_{-} \mapsto_{-} thm : THM;
val\ z\_dom\_thm:\ THM;
|val\ z\_ran\_thm:\ THM;
val\ z_{-}id_{-}thm: THM;
val \ z_{-q}thm: THM;
val \ z_{-} \circ_{-} thm : THM;
val z_{-} \triangleleft_{-} thm: THM;
val z \rightarrow thm: THM;
val \ z_{-} \leftarrow thm: THM;
val z_{\rightarrow}thm: THM;
val \ z\_rel\_inv\_thm: \ THM;
|val\ z\_rel\_image\_thm:\ THM;
val\ z\_trans\_closure\_thm:\ THM;
val\ z\_reflex\_trans\_closure\_thm:\ THM;
val z_- \oplus_- thm: THM;
val \ z_{-} \leftrightarrow_{-} clauses: THM;
|val\ z_dom_clauses:\ THM;
val\ z\_ran\_clauses:\ THM;
val\ z_id_clauses:\ THM;
val\ z_{-a}^{o}-clauses:\ THM;
val z_{-} \circ_{-} clauses: THM;
val \ z\_ \lhd\_ clauses: THM;
val \ z_{\neg} \rhd_{\neg} clauses: THM;
val \ z_{-} \triangleleft_{-} clauses: THM;
val z_{-} \triangleright_{-} clauses: THM;
val\ z_rel_inv_clauses:\ THM;
val\ z\_rel\_image\_clauses:\ THM;
val z_trans_closure_clauses: THM;
|val\ z\_reflex\_closure\_clauses:\ THM;
val \ z_- \oplus_- clauses: THM;
Description The ML bindings of the theorems (other than consistency ones) in theory z-
```

 $\begin{vmatrix} val \ \mathbf{z_binding_eq_conv3} \end{vmatrix} : CONV;$

Description A conversion for eliminating equations of bindings to an elementwise equality clause. In general this does:

However, it will expand on either side θ -terms into binding displays, and also use $z_-sel_{s-}conv$ on selections from binding displays (whether from θ -terms or otherwise).

Errors

|42013|?0 is not of the form $\frac{1}{2}$ binding = binding

 $|val \ \mathbf{z_{-sel_{t-}conv}}: CONV;$

Description This conversion carries out the selection from a tuple display.

 $x \mapsto y$ will be treated as a 2-tuple.

See Also $z_-sel_{t-}lang_-conv$

Errors

| 47185 ?0 is not a Z tuple selection | 42006 ?0 is not of the form $\overline{\Sigma}(x,...).i$

 $\begin{vmatrix} val \ \mathbf{z}_{-}\mathbf{tuple}_{-}\mathbf{eq}_{-}\mathbf{conv} : CONV; \end{vmatrix}$

Description A conversion for eliminating tuples over equality.

 $x \mapsto y$ will be treated as a 2-tuple.

See Also $z_tuple_lang_eq_conv$

Error

|42003| ?0 is not of the form: [(x1,...) = (y1,...)]

```
| val z_tuple_eq_conv1 : CONV;

| Description | A conversion for eliminating tuples over equality to an elementwise equality clause.

| Conversion | z_tuple_eq_conv | \overline{\phantom{a}}_{\overline{\phantom{a}}}t1 = t2 | This will then use z_-sel_t_-conv to eliminate explicit tuples. x \mapsto y will be treated as a 2-tuple.

| See Also | z_tuple_lang_eq_conv | Errors | 83001 | ?0 | is not of the form: \overline{\phantom{a}}_{\overline{\phantom{a}}}tuple1 = tuple2
```

```
| val z_tuple_intro_conv : CONV;

| Description | This conversion carries out the elimination of a tuple display of tuple selections from the same tuple.

| Conversion | z_tuple_intro_conv | \overline{z}(t.1,...,t.n) | where n is the arity of t. x \mapsto y will be treated as a 2-tuple.

| See Also | z_tuple_lang_intro_conv | \overline{z}(t.1,...,t.n) | Errors | 42005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 | 2005 |
```

```
val \ \mathbf{z}_{-} \mapsto_{-} \mathbf{def} : THM;
val \ \mathbf{z}_{-}\mathbf{dom}_{-}\mathbf{def} : THM;
val \mathbf{z}_{-}\mathbf{ran}_{-}\mathbf{def} : THM;
val \ \mathbf{z_{-id_{-}def}} : THM;
|val \mathbf{z}_{-g} - \mathbf{def} : THM;
 val \ \mathbf{z}\_ \circ \_\mathbf{def} : THM;
val \ \mathbf{z}_{-} \triangleleft_{-} \mathbf{def} : THM;
|val \mathbf{z}_{-} \triangleright_{-} \mathbf{def} : THM;
val \ \mathbf{z}_{-} \triangleleft_{-} \mathbf{def} : THM;
|val \mathbf{z}_{-} \triangleright_{-} \mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbf{rel}_{-}\mathbf{inv}_{-}\mathbf{def} : THM;
val z_rel_image_def : THM;
val \ \mathbf{z_-tc_-def} : THM;
|val \ \mathbf{z}_{-}\mathbf{rtc}_{-}\mathbf{def} : THM;
|val \ \mathbf{z}_{-} \oplus_{-} \mathbf{def} : THM;
Description These are the definitions of the theory z-relations.
```

9.2.3 Z Functions

```
\left| signature \ \mathbf{ZFunctions} \right| = sig
```

Description This provides the basic proof support for the Z library functions. It creates the theory z-functions.

 $|(*Proof\ Context: '\mathbf{z}_{-} \in \mathbf{fun}\ *)|$

Description A component proof context for handling the membership of Z functions created by Z library operations. Expressions and predicates treated by this proof context are constructs formed from:

$$| \twoheadrightarrow, \ \twoheadrightarrow, \ \rightarrowtail, \ \rightarrowtail, \ \rightarrowtail, \ \rightarrow$$

Contents

Rewriting:

Stripping theorems:

Stripping conclusions:

All three of the above also have theorems concerning the membership of terms generated by the following operators:

$$| \rightarrow \rangle, \rightarrow \rangle, \rightarrow \rangle, \rightarrow \rangle, \rightarrow \rangle, \rightarrow \rangle$$

Stripping also contains the above in negated forms.

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory z_sets . It is intended to be used with proof context " $z_∈_rel$ ". It is not intended to be mixed with HOL proof contexts.

```
| (* Proof Context: 'z_fun_alg *)
```

Description A component proof context for handling the simplification of Z functions created by Z library operations. Expressions and predicates treated by this proof context are constructs formed from:

Contents

Rewriting:

Stripping theorems:

```
 \begin{array}{l} z\_ +\_ clauses, \ z\_ -\_ clauses, \ z\_ +\_ clauses, \\ z\_ +\_ clauses, \ z\_ +\_ clauses, \ z\_ +\_ clauses, \\ z\_ +\_ clauses, \ z\_ +\_ clauses, \ z\_ +\_ clauses, \\ Expressed \ as \ membership \ statements \ as \ necessary, \ using \in \_C. \\ All \ also \ pushed \ through \ \neg. \end{array}
```

Stripping conclusions:

Rewriting canonicalisation:

Automatic proof procedures are respectively $z_basic_prove_tac$, $z_basic_prove_conv$, and no existence prover.

Usage Notes It requires theory z_sets . The proof context ensures that its simplifications will be attempted before more general rules concerned membership of set operators are used (including extensionality rules).

It is not intended to be mixed with HOL proof contexts.

```
| (* Proof Context: z_fun_ext *)
```

Description An aggressive complete proof context for reasoning about Z functions. When stripping or rewriting it attempts to reduce any predicate concerning function constructs to predicate calculus. As a side effect relational and set constructs are also reduced to predicate calculus. The proof context is a merge of:

```
|z\_rel\_ext - extensional reasoning about relations (and sets)
|z\_e\_fun - membership of function constructs
|z\_fun\_alg - simplifications of function constructs
```

It requires the theory "z_functions".

Description These are the ML bindings of the defining theorems in the theory z-functions.

```
SML
 |val \mathbf{z}_{-} \rightarrow_{-} \mathbf{thm} : THM;
                                                                                      val \ \mathbf{z}_{-} \rightarrow_{-} \mathbf{app\_thm} : THM;
val \ \mathbf{z}_{\rightarrow} + \mathbf{thm} : THM;
                                                                                       val \ \mathbf{z}_{-} \rightarrow_{-} \mathbf{thm} : THM;
val \ \mathbf{z}_{-} + \mathbf{b}_{\mathbf{m}} : THM;
                                                                                      val \ \mathbf{z}_{-} \rightarrow \mathbf{thm} : THM;
                                                                                      val \ \mathbf{z}_{-} \in \mathbf{first\_thm} : THM;
val \ \mathbf{z} \rightarrow \mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \in \mathbf{second\_thm} : THM;
                                                                                      val \ \mathbf{z}_{-} \rightarrow_{-} \mathbf{app}_{-} \in_{-} \mathbf{rel}_{-} \mathbf{thm} : THM;
val \ \mathbf{z}_{-} \rightarrow \mathbf{app}_{-} \mathbf{eq}_{-} \Leftrightarrow - \in \mathbf{rel}_{-} \mathbf{thm} : THM; \ val \ \mathbf{z}_{-} \rightarrow - \in -\mathbf{rel}_{-} \Leftrightarrow -\mathbf{app}_{-} \mathbf{eq}_{-} \mathbf{thm} : THM;
val \ \mathbf{z}_{-} \rightarrow -\mathbf{clauses} : THM;
                                                                       val \ \mathbf{z}_{-} \rightarrow_{-} \mathbf{clauses} : THM;
                                                                                      val \ \mathbf{z}_{-} \rightarrow -\mathbf{clauses} : THM;
val \ \mathbf{z}_{\rightarrow} \rightarrow -\mathbf{clauses} : THM;
val \ \mathbf{z}_{-} + \mathbf{z}_{-} \mathbf{clauses} : THM;
                                                                                      val \ \mathbf{z}_{-} \rightarrow_{-} \mathbf{clauses} : THM;
val \ \mathbf{z} \rightarrow \mathbf{z} = \mathbf{z}  clauses : THM;
                                                                        val z_fun_app_clauses : THM;
val \mathbf{z}_{-}\mathbf{fun}_{-} \in \mathbf{clauses} : THM;
                                                                                      val z_fun_dom_clauses : THM;
|val \ \mathbf{z}_{-}\mathbf{fun}_{-}\mathbf{ran}_{-}\mathbf{clauses} : THM;
Description
                            These are the ML bindings of the theorems in the theory z-functions.
```

9.2.4 Z Numbers

```
\begin{vmatrix} s_{\text{ML}} \\ signature \ \mathbf{ZNumbers} = sig \end{vmatrix}
```

Description This provides the basic proof support for the Z library relations. It creates the theory $z_numbers$.

```
|(*Proof\ Context: 'z_numbers *)|
```

Description A component proof context for handling the basic arithmetic operations for Z.

Expressions and predicates treated by this proof context are constructs formed from:

$$|+, *, -, abs, div, mod, \mathbb{Z}, \leq, <, \geq, >, =, \mathbb{N}$$

Contents

Rewriting:

```
 \begin{aligned} &z\_plus\_conv,\ z\_times\_conv,\ z\_subtract\_minus\_conv\\ &z\_abs\_conv,\ z\_div\_conv,\ z\_mod\_conv\\ &z_\square z\_eq\_conv,\ z_\le\_conv,\ z\_less\_conv\\ &z_-\ge_-\le\_conv,\ z\_greater\_less\_conv,\ z_-\in_\square N\_conv\\ &z\_plus\_clauses,\ z\_minus\_clauses,\ z_-\le\_clauses\\ &z\_less\_clauses,\ z_-\neg_-\le\_thm,\ z_-\neg\_less\_thm,\\ &z_-\in_\square N_1\_thm,\ simple\_z\_dot\_conv,\ z_-\in\_dot\_dot\_conv \end{aligned}
```

Stripping theorems:

```
 \begin{array}{l} z_-\mathbb{Z}\_eq\_conv,\; z_-\leq\_conv,\; z_-less\_conv\\ z_-\geq\_\leq\_conv,\; z_-greater\_less\_conv,\; z_-\in\_\mathbb{N}\_conv\\ z_-plus\_clauses,\; z_-minus\_clauses,\; z_-\leq\_clauses\\ z_-less\_clauses,\; z_-\in\_\mathbb{N}_1\_thm,\; z_-\in\_dot\_dot\_conv\\ and\; all\; the\; above\; pushed\; through\; \neg \end{array}
```

$$|z_{\neg} \le thm, z_{\neg} = less_{thm}, z_{\neg} \le conv, z_{\neg} = less_{\neg} = conv$$

Stripping conclusions: as for stripping theorems.

Rewriting canonicalisation: blank.

 \mathbb{U} -simplification:

$$\vdash \mathbb{Z} = \mathbb{U}$$

Automatic proof procedures: $z_basic_prove_tac$, $z_basic_prove_conv$.

Automatic existence prover: blank.

See Also Proof context 'z_numbers1

```
|(*Proof\ Context: '\mathbf{z_numbers1}\ *)
```

Description A component proof context for handling the basic arithmetic operations for Z. It is distinct from $'z_numbers$ by its normalising all inequalities to \leq .

Expressions and predicates treated by this proof context are constructs formed from:

```
|+, *, -, abs, div, mod, \mathbb{Z}, \leq, <, \geq, >, =, \mathbb{N}
```

Contents

Rewriting:

```
 \begin{array}{l} z\_plus\_conv,\ z\_times\_conv,\ z\_subtract\_minus\_conv\\ z\_abs\_conv,\ z\_div\_conv,\ z\_mod\_conv\\ z\_\mathbb{Z}\_eq\_conv,\ z\_\leq\_conv,\ z\_less\_conv\\ z\_\geq\_\leq\_conv,\ z\_greater\_less\_conv,\ z\_\in\_\mathbb{N}\_conv\\ z\_plus\_clauses,\ z\_minus\_clauses,\ z\_\leq\_clauses\\ z\_less\_clauses,\ z\_\neg\_less\_thm,\\ z\_\in_\mathbb{N}_1\_thm,\ z\_simple\_dot\_dot\_conv,\ z\_\in\_dot\_dot\_conv,\\ conv\_rule\ (ONCE\_MAP\_C\ eq\_sym\_conv)\ z\_\neg\_\leq\_thm \end{array}
```

The final conversion to < to \le will only occur if no other rewriting applies.

Stripping theorems:

```
 \begin{split} z_- \mathbb{Z}_- & eq\_conv, \ z_- \leq\_conv, \ z_- less\_conv \\ z_- & \leq\_conv, \ z_- greater\_less\_conv, \ z_- \in\_\mathbb{N}\_conv \\ z_- plus\_clauses, \ z_- minus\_clauses, \ z_- \leq\_clauses \\ z_- less\_clauses, \ z_- \in\_\mathbb{N}_1\_thm, \ z_- \in\_dot\_dot\_conv \\ and \ all \ the \ above \ pushed \ through \ \neg \\ z_- \neg_- less\_thm, \ z_- \leq\_conv, \ z_- less\_conv, \\ conv\_rule \ (ONCE\_MAP\_C \ eq\_sym\_conv) \ z_- \neg\_ \leq\_thm \end{split}
```

Stripping conclusions: as for stripping theorems.

Rewriting canonicalisation: blank.

U-simplification:

```
\vdash \mathbb{Z} = \mathbb{U}
```

Automatic proof procedures: $z_basic_prove_tac$, $z_basic_prove_conv$.

Automatic existence prover: blank.

```
val dest_z_≤: TERM → TERM * TERM;
val dest_z_≥: TERM → TERM * TERM;
val dest_z_abs: TERM → TERM;
val dest_z_div: TERM → TERM * TERM;
val dest_z_greater: TERM → TERM * TERM;
val dest_z_less: TERM → TERM * TERM;
val dest_z_minus: TERM → TERM;
val dest_z_minus: TERM → TERM;
val dest_z_mod: TERM → TERM * TERM;
val dest_z_plus: TERM → TERM * TERM;
val dest_z_signed_int: TERM → TERM;
val dest_z_signed_int: TERM → TERM * TERM;
val dest_z_subtract: TERM → TERM * TERM;
val dest_z_subtract: TERM → TERM * TERM;
val dest_z_subtract: TERM → TERM * TERM;
val dest_z_times: TERM → TERM * TERM;
```

Description These are derived destructor functions for the Z basic arithmetic operations. An optionally signed integer literal, $signed_int$, is taken to be either a numeric literal or the result of applying (\sim _) to a numeric literal. The other constructors correspond directly to the arithmetic operations of the theory $z_numbers$ with alphabetic names assigned to give a valid ML name as needed (greater:>, less:<, $minus:\sim$, plus:+, subtract:-, times:*).

As usual, there are also corresponding discriminator $(is_{-}...)$ and constructor functions $(mk_{-}...)$. For programming convenience, $dest_{-}z_{-}signed_{-}int$ returns θ and $is_{-}z_{-}signed_{-}int$ returns true when applied to $\sim \theta$, but $mk_{-}z_{-}signed_{-}int$ cannot be used to construct such a term.

```
Errors

86101 \quad ?0 \text{ is not of the form } \overline{z}i \leq j \rceil

86102 \quad ?0 \text{ is not of the form } \overline{z}i \geq j \rceil

86103 \quad ?0 \text{ is not of the form } \overline{z}abs i \rceil

86104 \quad ?0 \text{ is not of the form } \overline{z}i \text{ div } j \rceil

86105 \quad ?0 \text{ is not of the form } \overline{z}i < j \rceil

86106 \quad ?0 \text{ is not of the form } \overline{z}i < j \rceil

86107 \quad ?0 \text{ is not of the form } \overline{z}i < j \rceil

86108 \quad ?0 \text{ is not of the form } \overline{z}i \text{ mod } j \rceil

86109 \quad ?0 \text{ is not of the form } \overline{z}i + j \rceil

86110 \quad ?0 \text{ is not on on optionally signed integer literal}

86111 \quad ?0 \text{ is not of the form } \overline{z}i - j \rceil

86112 \quad ?0 \text{ is not of the form } \overline{z}i * j \rceil
```

```
| val is_z_ \leq : TERM -> bool;
| val is_z_ \geq : TERM -> bool;
| val is_z_abs : TERM -> bool;
| val is_z_div : TERM -> bool;
| val is_z_greater : TERM -> bool;
| val is_z_less : TERM -> bool;
| val is_z_minus : TERM -> bool;
| val is_z_mod : TERM -> bool;
| val is_z_plus : TERM -> bool;
| val is_z_signed_int : TERM -> bool;
| val is_z_subtract : TERM -> bool;
| val is_z_subtract : TERM -> bool;
| val is_z_times : TERM -> bool;
```

Description These are derived discriminator functions for the Z basic arithmetic operations. See the documentation for the destructor functions ($dest_z_plus$ etc.) for more information.

```
val mk_z_≤ : TERM * TERM -> TERM;
val mk_z_≥ : TERM * TERM -> TERM;
val mk_z_abs : TERM -> TERM;
val mk_z_div : TERM * TERM -> TERM;
val mk_z_greater : TERM * TERM -> TERM;
val mk_z_less : TERM * TERM -> TERM;
val mk_z_minus : TERM -> TERM;
val mk_z_minus : TERM -> TERM;
val mk_z_mod : TERM * TERM -> TERM;
val mk_z_plus : TERM * TERM -> TERM;
val mk_z_signed_int : INTEGER -> TERM;
val mk_z_signed_int : TERM * TERM -> TERM;
val mk_z_subtract : TERM * TERM -> TERM;
val mk_z_subtract : TERM * TERM -> TERM;
val mk_z_subtract : TERM * TERM -> TERM;
```

Description These are derived constructor functions for the Z basic arithmetic operations. See the documentation for the destructor functions ($dest_{-}z_{-}plus$ etc.) for more information.

Errors

|86201| ?0 does not have type \mathbb{Z}

```
\begin{vmatrix} val & \mathbf{z_{-cov\_induction\_tac}} \end{vmatrix} : TERM -> TACTIC
```

Description A course of values induction tactic for a subset of the integers. To prove $j \le x \Rightarrow t$, it suffices to prove t[i/x] on the assumptions that $j \le i$ and $\forall k \bullet j \le k \land k < i \Rightarrow t[k/x]$.

(Course of values induction is sometimes called complete induction.) The term argument must appear free in the conclusion of the goal. It must also appear once, and only once, in the assumptions, in an assumption of the form $j \le x$.

```
\frac{\left\{\begin{array}{c} \Gamma,\; j\leq x\right\}\; t[x]}{\left\{\begin{array}{c} \Gamma,\; j\leq x\right\}\; t[x] \end{array}} \quad z\_cov\_induction\_tac\; \left[x^{\gamma}\right] \\ strip\; \left\{j\leq i,\; \left[y\neq k\bullet\; j\leq k\; \wedge\; k< x\; \Rightarrow\; t[k]^{\gamma},\; \Gamma\right\}\; t[x] \end{array}\right.
```

See Also $z_{-}\mathbb{Z}_{-}cases_{-}thm$, $z_{-}intro_{-}\forall_{-}tac$, $z_{-}\mathbb{N}_{-}induction_{-}tac$,

 $z_{-}\mathbb{Z}_{-}induction_{-}tac, z_{-}\leq_{-}induction_{-}tac$

Errors As for $z_{\leq induction_tac}$.

 $egin{array}{ll} val & \mathbf{z}_{-} \mathbf{simple_dot_dot_conv} : CONV; \\ val & \mathbf{z}_{-} \mathbf{c}_{-} \mathbf{dot_dot_conv} : CONV; \\ \end{array}$

Description The first of these two conversions simplifies certain *dots* terms, the second, given a membership of a *dodts* expression, first tries the simplifications, and whether or not that succeeds, expands the membership.

and

 $\begin{array}{c|c} & z_simple_dot_dot_conv \\ \hline & \vdash (n1 \dots n2) = \{\} \end{array}$

where n1 is a numeric literal less than the numeric literal n2.

 $\begin{array}{c|c} & z_{-\in_}dot_dot_conv \\ \hline & + x \in n1 \dots n2 \Leftrightarrow false \end{array}$

where n1 is a numeric literal less than the numeric literal n2.

See Also $z_{-}dot_{-}dot_{-}conv$

Errors

86001 ?0 is not of the form: \(\subseteq low \) .. high\(\tau \) where the expression can be simplified 86002 ?0 is not of the form: \(\subseteq x \in \) low ... high\(\Tau \)

```
SML
val \ \mathbf{z}_{-} \in \mathbb{N}_{-}\mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{\neg} \neg \leq \mathbf{thm} : THM;
val \ \mathbf{z}_{-} \neg_{-} \mathbb{N}_{-} \mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{\neg} \neg \mathbf{less\_thm} : THM;
val \ \mathbf{z}_{-} \leq_{-} \leq_{-} \mathbf{0}_{-} \mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{-} \leq \mathbf{ntisym\_thm} : THM;
val \ \mathbf{z}_{-} \leq \mathbf{cases\_thm} : THM;
                                                                     val \ \mathbf{z}_{-} \leq \mathbf{clauses} : THM;
val \ \mathbf{z}_{-} \leq -induction\_thm : THM;
                                                                     val \ \mathbf{z}_{-} \leq -\mathbf{less}_{-}\mathbf{trans}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-} \leq_{-} \mathbf{plus}_{-} \mathbb{N}_{-} \mathbf{thm} : THM;
                                                                     val \mathbf{z}_{-} \leq_{-} \mathbf{refl}_{-} \mathbf{thm} : THM;
val \ \mathbf{z}_{-} \leq \mathsf{_{-}trans}_{-} \mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{-}\mathbb{N}_{-}\neg_{-}\mathbf{minus}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{N}_{-}\neg_{-}\mathbf{plus1}_{-}\mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{-}\mathbb{N}_{-}\mathbf{abs}_{-}\mathbf{minus}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{N}_{-}\mathbf{cases\_thm} : THM;
                                                                     val \ \mathbf{z}_{-}\mathbb{N}_{-}induction_{-}thm : THM;
val \ \mathbf{z}_{-}\mathbb{N}_{-}\mathbf{plus1}_{-}\mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{-}\mathbb{N}_{-}\mathbf{plus}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{N}_{-}\mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{-}\mathbb{N}_{-}\mathbf{times}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{Z}_{-}\mathbf{cases\_thm} : THM;
                                                                     val \ \mathbf{z}_{-}\mathbb{Z}_{-}\mathbf{cases\_thm1} : THM;
val \ \mathbf{z}_{-}\mathbb{Z}_{-}\mathbf{eq}_{-}\mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{-}\mathbb{Z}_{-}induction_{-}thm : THM;
val \ \mathbf{z}_{-}\mathbf{0}_{-}\mathbb{N}_{-}\mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{-}\mathbf{abs}_{-}\mathbb{N}_{-}\mathbf{thm} : THM;
val z_abs_eq_0-thm : THM;
                                                                     val z_abs_minus_thm : THM;
val z_abs_plus_thm : THM;
                                                                     val \ \mathbf{z_-abs\_thm} : THM;
val z_abs_times_thm : THM;
                                                                     val z_cov_induction_thm : THM;
val z_div_mod_unique_thm : THM;
                                                                     val z_int_homomorphism_thm : THM;
val z_{less} \leq trans_{thm} : THM;
                                                                     val z_less_clauses : THM;
val z_less_irrefl_thm : THM;
                                                                     val z_less_trans_thm : THM;
val \ \mathbf{z}_{-}\mathbf{minus}_{-}\mathbb{N}_{-} <_{-}\mathbf{thm} : THM;
                                                                     val z_minus_clauses : THM;
val \ \mathbf{z}_{-}\mathbf{minus}_{-}\mathbf{thm} : THM;
                                                                     val z_minus_times_thm : THM;
val \ \mathbf{z_-plus0\_thm} : THM;
                                                                     val z_plus_assoc_thm : THM;
val z_plus_assoc_thm1 : THM;
                                                                     val z_plus_clauses : THM;
                                                                     val z_plus_cyclic_group_thm : THM;
val z_plus_comm_thm : THM;
val z_plus_minus_thm : THM;
                                                                     val z_plus_order_thm : THM;
val \ \mathbf{z_-times0\_thm} : THM;
                                                                     val \ \mathbf{z_-times1\_thm} : THM;
val z_times_assoc_thm : THM;
                                                                     val z_times_assoc_thm1 : THM;
val z_times_clauses : THM;
                                                                     val z_times_comm_thm : THM;
val \ \mathbf{z_-times\_eq\_0\_thm} : THM;
                                                                     val z_times_order_thm : THM;
val z_times_plus_distrib_thm : THM;
                                                                     val \ \mathbf{z}_{-} \leq -\mathbf{less}_{-} \mathbf{eq}_{-} \mathbf{thm} : THM;
                                                                     val \ \mathbf{z}_{-}\mathbb{F}_{1}-thm : THM;
val \ \mathbf{z}_{-}\mathbb{F}_{-}\mathbf{thm} : THM:
|val \ \mathbf{z}_{-}\mathbb{F}_{-}\mathbf{empty\_thm} : THM;
                                                                                 val \ \mathbf{z}_{-} \in \mathbb{N}_{1} \text{-thm} : THM;
Description These are the ML value bindings for the theorems saved in the theory z<sub>-</sub>numbers.
```

 $\begin{vmatrix} val & \mathbf{z}_{-} \leq_{-} \mathbf{induction_tac} : TERM -> TACTIC \end{vmatrix}$

Description An induction tactic for a subset of the integers. To prove $j \le x \Rightarrow t$, it suffices to prove t[j/x] and to prove t[x+1/x] on the assumptions t and $j \le x$. The term argument must be a variable of type $\lceil : \mathbb{Z} \rceil$ and must appear free in the conclusion of the goal. It must also appear once, and only once in the assumptions, in an assumption of the form $j \le x$.

$$\left| \begin{array}{c} \left\{ \begin{array}{c} \Gamma, \ j \leq x \right\} \ t[x] \\ \hline \left\{ \begin{array}{c} \Gamma, \ j \leq x \right\} \ t[x] \end{array} \right. \\ \left\{ \begin{array}{c} \Gamma, \ j \leq x \right\} \ t[x], \ j \leq x, \ \Gamma \right\} \ t[x+1] \end{array} \right. \\ z_{-} \leq_{-} induction_tac \ \lceil_{\mathbf{Z}} x \rceil \\ \end{array}$$

See Also $z_{\mathbb{Z}}$ -cases_thm, z_{intro} - \forall_{tac} , $z_{\mathbb{N}}$ -induction_tac,

 $z_{\mathbb{Z}}$ -induction_tac, $z_{\mathbb{Z}}$ -cov_induction_tac

Errors

86401 ?0 is not a variable of type $\lceil:\mathbb{Z}\rceil$

86402 A term of the form $\exists j \leq i \rceil$ where i is the induction variable could not be found in the assumptions

86403 ?0 appears free in more than one assumption of the goal

86404 ?0 does not appear free in the conclusions of the goal

SML

 $|val \ \mathbf{z}_{-}\mathbb{N}_{-}$ induction_tac : TACTIC

Description This tactic implements induction over the natural numbers in Z: to prove $x \in \mathbb{N} \Rightarrow t$, it suffices to prove $t[\theta/x]$ and to prove t[x+1/x] on the assumption that t. The conclusion of the goal must have the form $x \in \mathbb{N} \Rightarrow t$.

Tactic

$$\frac{ \{ \Gamma \} x \in \mathbb{N} \Rightarrow t}{ \{ \Gamma \} t[0/x] ; strip\{t, \Gamma\} t[x+1/x]} \qquad z_{\mathbb{N}}_induction_tac$$

See Also $z_{\mathbb{Z}}$ cases_thm, $z_{\text{intro}} \forall z_{\text{tac}}$, $z_{\mathbb{Z}}$ induction_tac,

 $z_{-} \leq induction_tac, z_{-}cov_induction_tac$

Errors As for *qen_induction_tac1*.

Description These conversions are used to perform evaluation of arithmetic expressions involving numeric literal operands. The normal interface to the conversion is via the proof context $'z_numbers$ and other proof contexts which contain it.

The first block above gives conversions to evaluate expressions of the form i op j where i and j are numeric literals and op is one of + or *. The second block gives conversions to transform terms of the form i-j, i>j, i>j and $i\in\mathbb{N}$ into $i+\sim j$, j< i, $j\leq i$ and $0\leq i$ respectively. The third block give conversions which evaluate expressions of the form i op j or abs i, where op is one of +, *, div, mod, \leq , <, or =, and where i and j are signed integer literals (i.e., either numeric literals or of the form $\sim k$, where k is a numeric literal). Thus the second block of conversions transform expressions of the form i-j, i>j, $i\geq j$ and $i\in\mathbb{N}$ into a form which can be evaluated by the conversions in the third block if i and j are signed literals.

```
Errors 86301 ?0 is not of the form ?1 where \lceil i \rceil and \lceil j \rceil are numeric literals 86302 ?0 is not of the form ?1 86303 ?0 is not of the form ?1 where \lceil i \rceil and \lceil j \rceil are optionally signed numeric literals
```

```
val \ \mathbf{z}_{-} \mathbb{Z}_{-} \mathbf{def} : THM;
                                                                                                  val \ \mathbf{z}_{-}\mathbb{N}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbf{arith}_{-}\mathbf{def} : THM;
                                                                                                  val z_inequality_def : THM;
val \ \mathbf{z}_{-} \mathbb{N}_{1-} \mathbf{def} : THM;
                                                                                                  val \ \mathbf{z\_succ\_def} : THM;
val \ \mathbf{z_iiter_def} : THM;
                                                                                                  val \ \mathbf{z}_{-}\mathbf{dot}_{-}\mathbf{dof} : THM;
val \ \mathbf{z}_{-}\mathbb{F}_{-}\mathbf{def} : THM;
                                                                                                  val \ \mathbf{z}_{-}\mathbb{F}_{1-}\mathbf{def} : THM;
|val \mathbf{z}_{-}\mathbf{hash}_{-}\mathbf{def} : THM;
                                                                                                  val \ \mathbf{z}_{-} + \!\!\!\! + \!\!\!\! - \mathbf{def} : THM;
val \ \mathbf{z}_{-} + \mathbf{def} : THM;
                                                                                                  val \ \mathbf{z}_{-}\mathbf{min}_{-}\mathbf{def} : THM;
val \mathbf{z}_{-}\mathbf{max}_{-}\mathbf{def} : THM;
                                                                                                  val \ \mathbf{z'int\_def} : THM
Description These are the ML bindings of the definitions of the theory z<sub>-</sub>numbers.
```

```
|val \ \mathbf{z}_{-}\mathbb{Z}_{-}induction_tac : TERM -> TACTIC
```

Description An induction-like tactic for the integers, based on the fact that any subset of the integers containing 1 and closed under negation and addition must contain every integer.

See Also $z_{\mathbb{Z}}$ -cases_thm, z_{intro} - \forall_{tac} , $z_{\mathbb{N}}$ -induction_tac,

 $z_{-} \leq induction_tac, z_cov_induction_tac$

Errors As for gen_induction_tac.

9.2.5 Z Arithmetic Proof Support

```
|signature \ \mathbf{ZArithmeticTools}| = sig
```

Description This is the signature of a structure containing arithmetic and an automatic linear arithmetic prover for the integers in Z.

```
| (* Proof Context: z_lin_arith *)
| (* Proof Context: z_lin_arith1 *)
```

Description " z_lin_arith " is a proof context whose main purpose is to supply a decision procedure for problems in linear arithmetic in Z. " z_lin_arith1 " differs from it only by using " $z_numbers1$ ". The proof context provides an interface to the proof context ' \mathbb{Z}_lin_arith which provides the analogous facilities for the HOL integers.

Contents The proof context is the result of merging $z_predicates$, $'z_numbers(1)$ and $'z_lin_arith$.

Examples $PC_{-}T1"z_{-}lin_{-}arith"prove_{-}tac[]$ will prove any of the following goals:

In the following example, an induction reduces the problem to linear arithmetic, and then the automatic proof tactic in $z_{-}lin_{-}arith$ completes the proof.

```
 \begin{array}{l} set\_goal([], \, \ulcorner \forall b : \mathbb{N} \bullet (b + 1) * (b + 1) > 0 \, \urcorner); \\ a(PC\_T1 \, "z\_library" \, REPEAT \, strip\_tac); \\ a(\,\, z\_\leq\_induction\_tac \ulcorner b \, \urcorner \, THEN \, PC\_T1 \, "z\_lin\_arith" \, asm\_prove\_tac[]); \\ pop\_thm(); \end{array}
```

See Also 'z_lin_arith

Errors The errors reported by the automatic proof tactic are as for $\mathbb{Z}_{-}lin_{-}arith$.

```
| (* Proof Context: 'z_lin_arith *)
| (* Proof Context: 'z_lin_arith1 *)
```

Description " z_lin_arith " is a component proof context whose purpose is to supply a decision procedure for problems in linear arithmetic for the integers in Z. " z_lin_arith1 " i a copy, only differing in using " $z_numbers1$ ".

Contents The rewriting, theorem stripping and conclusion stripping components are those from $'z_numbers$ augmented with the following transformations:

(where all variables are of type \mathbb{Z}). The effect of the above scheme is to transformed any Z equation or inequality in \leq or < into an equivalent inequality over the HOL integers. The automatic proof procedures for the proof context are (slight adaptations of) the ones in the proof context \mathbb{Z}_-lin_-arith , which can then automatically prove the transformed form if it is a theorem of linear arithmetic.

The automatic proof components is an interface to the one for \mathbb{Z}_{-lin_arith} . Other components are as for $\mathbb{Z}_{-numbers}$.

Examples A typical use of the proof context would be to solve problems containing a mixture of (linear) arithmetic and set theory.

For example, $MERGE_PCS_T1["z_sets_ext", "'z_lin_arith"]prove_tac[]$ will prove any of the following goals:

See Also z_lin_arith , $z_numbers$, $z_numbers$

Errors The errors reported by the automatic proof tactic are as for $\mathbb{Z}_{-}lin_{-}arith$.

```
val \mathbf{z\_anf\_conv} : CONV;
```

Description $z_a anf_c conv$ is a conversion which proves theorems of the form $\vdash t1 = t2$ where t1 is a Z expression formed from atoms of type \mathbb{Z} and t2 is in what we may call additive normal form, i.e. it has the form: $t_1 + t_2 + ...$, where the t_i have the form $s_1 * s_2 * ...$ where the s_i are atoms. Here, by atom we mean an expression which is not of the form $t_1 + t_2 + ...$ or $s_1 * s_2 * ...$

The summands t_i and, within them, the factors s_j are given in increasing order with respect to the ordering on terms analogous to that given by the function z_term_order , q.v. Arithmetic computation is carried out on atoms to ensure that at most one of the summands is a numeric literal and that, within each summand, at most one factor is a numeric literal. Any literal appears at the beginning of its factor or summand and addition of θ or multiplication by θ is simplified out. Any signs are moved to the first factor in each summand.

The conversion fails with error number 106010 if there no changes can be made to the term.

```
Errors
```

|106010?0 is not of type $\lceil:\mathbb{Z}\rceil$ or is already in additive normal form

Description In the theory z_{-} arithmetic_tools, isomorphisms, $z_{-}\mathbb{Z}$ and $\mathbb{Z}_{-}z$, are defined between the Z integers and the HOL integers. These may be used to translate an arithmetic problem in Z into one in HOL. These conversions implement this translation and its inverse.

The operators handled by the conversions are +, *, \sim and -.

The translation to HOL is carried out according to the following scheme:

- $z_-\mathbb{Z}_- conv$ implements the above scheme recursively to translate the result of applying $z_-\mathbb{Z}$ to a Z arithmetic expression into HOL.
- $\mathbb{Z}_{-}z_{-}conv$ is the analogue of $z_{-}\mathbb{Z}_{-}conv$, performing the translation of $\mathbb{Z}_{-}z$ applied to a HOL integer arithmetic expression into Z.

Uses Tactic programming.

```
See Also z_anf_conv, z_lin_arith, 'z_lin_arith
```

```
Errors 106001?0 is not of the form \lceil z\_\mathbb{Z} \lceil zt \rceil \rceil where \lceil zt \rceil is constructed from +, \sim, -, * or integer constants 106002?0 is not of the form \lceil \mathbb{Z}\_z \lceil t \rceil \rceil where \lceil t \rceil is constructed from +, \sim, -, * or integer constants
```

Description These are the Standard ML bindings for the theorems saved in the theory $z_arithmetic_tools$ which provides isomorphisms between the ring of integers in HOL and the ring of integers in Z. The main purpose of this theory is to allow proof procedures for HOL integers to be adapted to work with Z. The most common way of using these isomorphisms is via the proof context z_lin_arith , q.v.

9.2.6 Z Sequences

```
\left| signature \ \mathbf{ZSequences} \right| = sig
```

Description This provides the basic proof support for the Z library sequences. It creates the theory z-sequences.

```
SML
 val \ \mathbf{z}_{-}\mathbf{seq}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbf{seq}_{1}_{-}\mathbf{def} : THM;
val \ \mathbf{z_iiseq\_def} : THM;
 val \mathbf{z}_{-} \mathbf{def} : THM;
val \ \mathbf{z}_{-}\mathbf{head}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-} \mathbf{last}_{-} \mathbf{def} : THM;
|val \ \mathbf{z_-tail\_def} : THM;
 val z_front_def : THM;
val \ \mathbf{z}_{-}\mathbf{rev}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbf{squash}_{-}\mathbf{def} : THM;
val \mathbf{z}_{-} = \mathbf{def} : THM;
val \mathbf{z}_{-} \cap \mathbf{def} : THM;
val \mathbf{z}_{-} /_{-} \mathbf{def} : THM;
val z_disjoint_def : THM;
|val \mathbf{z}_{-}\mathbf{partition}_{-}\mathbf{def} : THM;
Description
                         These are the ML bindings of the definitions of the theory of z-sequences.
```

9.2.7 Z Finiteness and Sequences

```
\left| \begin{array}{c} 	ext{SML} \\ signature \ 	extbf{ZFunctions1} = sig \end{array} \right|
```

Description This provides additional proof support for the Z library functions. It creates the theory $z_{-}functions1$.

```
\begin{vmatrix} s_{\text{ML}} \\ signature \ \mathbf{ZNumbers1} = sig \end{vmatrix}
```

Description This provides additional proof support for the Z library functions. It creates the theory z-functions1.

```
\left| signature \ \mathbf{ZSequences1} \right| = sig
```

Description This provides additional proof support for the Z library sequences. It creates the theory $z_sequences1$.

```
val \ \mathbf{z}_{-}\mathbf{dot}_{-}\mathbf{dot}_{-}\mathbf{clauses} : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbf{dot}_{-}\mathbf{dot}_{-}\mathbf{plus}_{-}\mathbf{thm} : THM;
val z_{less\_cases\_thm} : THM;
                                                                                                    val \ \mathbf{z}_{-} \leq_{-} \mathbf{plus1\_thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{dot}_{-}\mathbf{dot}_{-}\mathbf{diff}_{-}\mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbf{dot}_{-}\mathbf{dot}_{-}\cup_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{dot}_{-}\mathbf{dot}_{-}\cap_{-}\mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbf{empty}_{-}\mathbb{F}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{F}_{-}\cup_{-\mathbf{singleton\_thm}}: THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbb{F}_{-}\mathbf{thm1} : THM;
 val \ \mathbf{z}_{-}\mathbb{F}_{-}induction\_thm : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbb{F}_{-}\mathbf{size}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{F}_{-}\mathbf{size}_{-}\mathbf{thm1} : THM;
                                                                                                    val \ \mathbf{z}_{-} \subseteq \mathbb{F}_{-}\mathbf{thm} : THM;
 val z_size_empty_thm : THM;
                                                                                                    val z_size_singleton_thm : THM;
 val \ \mathbf{z}_{-}\mathbf{size}_{-}\mathbf{dot}_{-}\mathbf{dot}_{-}\mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbf{size}_{-} + \mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z\_size\_} \cup \mathbf{\_singleton\_thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{size}_{-}\mathbf{seq}_{-}\mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbb{F}_{-}\mathbf{diff}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{F}_{-}\cap_{-}\mathbf{thm} : THM;
val \ \mathbf{z\_size\_} \cup \mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z}_{-}[ \ J_{-}\mathbb{F}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{size}_{-}\mathbf{diff}_{-}\mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbf{size}_{-}\mathbb{N}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbf{size}_{-}\mathbf{mono}_{-}\mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z\_size\_} \cup \_ \leq \_\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{size}_{-}\mathbf{eq}_{-}\mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbf{size}_{-}\mathbf{0}_{-}\mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z\_size\_2\_thm} : THM;
 val \mathbf{z}_{-}\mathbf{size}_{-}\mathbf{1}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z\_size\_pair\_thm} : THM;
                                                                                                    val \ \mathbf{z\_size\_} \times \mathbf{thm} : THM;
 val \ \mathbf{z\_size\_} \leq \mathbf{1\_thm} : THM;
                                                                                                    val \ \mathbf{z\_size\_dot\_dot\_thm1} : THM;
val z_pigeon_hole_thm : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbb{F}_{-}\mathbb{P}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{div}_{-}\mathbf{thm} : THM;
                                                                                                    val \ \mathbf{z}_{-}\mathbf{mod}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{abs}_{-}\mathbf{pos}_{-}\mathbf{thm} : THM;
                                                                                                    val z_abs_neg_thm : THM;
 val \ \mathbf{z}_{-}\mathbf{abs}_{-} \leq_{-}\mathbf{times}_{-}\mathbf{thm} : THM;
                                                                                                    val z_abs_0_less_thm : THM;
 val \ \mathbf{z}_{-}\mathbf{0}_{-} \mathbf{less}_{-} \mathbf{times}_{-} \mathbf{thm} : THM;
                                                                                                    val z_times_less_0_thm : THM;
                                                                                                    val \ \mathbf{z\_succ^0\_thm} : THM;
|val \mathbf{z}_{-} \in \mathbf{succ}_{-}\mathbf{thm} : THM;
                                                                                                    val z_succ<sup>minus_n</sup>_thm : THM;
|val \ \mathbf{z_-succ^n_-thm} : THM;
Description These are the ML bindings of the theorems in the theory z_numbers1.
```

```
val \ \mathbf{z}_{-}\mathbf{seqd}_{-}\mathbf{app}_{-}\mathbf{conv} : CONV;
val \ \mathbf{z}_{-}\mathbf{size}_{-}\mathbf{seqd}_{-}\mathbf{conv} : CONV;
val \ \mathbf{z}_{-}\mathbf{seqd}_{-}\mathbf{eq}_{-}\mathbf{conv} : CONV;
```

Description Conversions for sequence displays.

 $z_{-}seqd_{-}app_{-}conv$ applies to terms of the form sm, where s is a sequence display and m is a numeric literal.

 $z_size_seqd_conv$

Description applies to terms of the form #s, where s is a sequence display.

 $z_seqd_eq_conv$

Description applies to terms of the form $s_{-}1 = s_{-}2$, where $s_{-}1$ and $s_{-}2$ are sequence displays.

```
Errors 107011?0 is not of the form \lceil \langle t1, ... \rangle m \rceil 107012?0 is not a positive integer literal 107013?0 is not a valid index for the sequence ?1 107020?0 is not of the form \lceil \langle t1, ... \rangle = \langle u1, ... \rangle \rceil 107021?0 is not of the form \lceil \# \langle t1, ... \rangle \rceil
```

```
egin{array}{ll} val & \mathbf{z_seq_induction\_tac} : TERM -> TACTIC; \\ val & \mathbf{z_seq_induction\_tac1} : TERM -> TACTIC; \\ \end{array}
```

Description Induction tactics for Z sequences. To prove $s \in seq A \Rightarrow t$, it suffices to prove $t[\langle \rangle/s]$ and to prove $t[s \cap \langle x \rangle/s]$ (or $t[\langle x \rangle \cap s/s]$) on the assumptions $t, s \in seq A$ and $x \in A$. The term argument must be a variable of the same type as a Z sequence and must appear free in the conclusion of the goal. It must also appear once, and only once, in an assumption of the form $s \in seq A$.

$$\frac{\{ \Gamma, s \in seq \ A\} \ t[s]}{\{ \Gamma \} \ t[\langle \rangle/s] \ ;} z_seq_induction_tac \ z s \rceil$$

$$strip \ \{t, s \in seq \ A, \ x \in A, \ \Gamma\} \ t[s \cap \langle x \rangle/s]$$

```
| 107031 A term of the form \sum s \in seq A^{\neg} where s is the induction variable could not be found in the assumptions | 107032?0 is not a variable
```

```
SML | val z_size_dot_dot_conv : CONV;

Description This conversion will calculate the size of a range between two integer literals, including the empty range case when the end of the range is less than the start.

Example | z_size_dot_dot_conv \( \frac{7}{2}\)# \( (1 \ldots 5) \) \( \text{gives} \) \( \text{\text{$+$}} \) \( (1 \ldots 5) \) \( \text{$= 5$} \) \( z_size_dot_dot_conv \( \frac{7}{2}\)# \( (10 \ldots 1) \) \( \text{$\text{gives}} \) \( \text{\text{$+$}} \) \( (10 \ldots 1) \) \( \text{$\text{$-$}} \) \( \text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\t
```

```
val \ \mathbf{z}_{\neg}^{-} = \mathbf{mpty}_{\mathsf{thm}} : THM;
                                                                              val \ \mathbf{z}_{-}\mathbf{dom}_{-} \cap_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbf{dom}_{-}\mathbf{seqd}_{-}\mathbf{thm} : THM;
                                                                              val \ \mathbf{z}_{-}\mathbf{dom}_{-}\mathbf{seq}_{-}\mathbf{thm} : THM;
                                                                              val \ \mathbf{z}_{-} \cap \mathbf{assoc_thm} : THM;
val \ \mathbf{z}_{-} \cap \mathbf{assoc\_thm1} : THM;
val \mathbf{z}_{-} \cap \mathbf{def}_{-}\mathbf{thm} : THM;
                                                                              val \ \mathbf{z}_{-} \cap \mathbf{one\_one\_thm} : THM;
|val \mathbf{z}_{-} \cap \in \mathbf{seq\_thm1} : THM;
                                                                              val \mathbf{z}_{-} \subset \mathbf{seq\_thm} : THM;
val \mathbf{z}_{-} \mathbf{seq}_{-} \mathbf{x}_{-} \mathbf{thm} : THM;
                                                                              val \ \mathbf{z}_{-} \cap \mathbf{singleton\_thm1} : THM;
val \ \mathbf{z}_{-}^{} - \mathbf{singleton}_{-}\mathbf{thm} : THM;
                                                                              val \ \mathbf{z}_{-}\langle\rangle_{-} \cap_{\mathbf{thm}} : THM;
val \mathbf{z}_{-}^{} \langle \rangle_{-} \mathbf{thm} : THM;
                                                                              val \mathbf{z}_{-} \mathbf{thm} : THM;
val z_prim_seq_induction_thm : THM;
                                                                             val \ \mathbf{z}_{-}\mathbf{ran}_{-}\mathbf{seqd}_{-}\mathbf{thm} : THM;
val \mathbf{z}_{-} \in \mathbf{seq}_{-} \mathbf{app}_{-} \mathbf{eq}_{-} \mathbf{thm} : THM;
                                                                              val \ \mathbf{z}_{-}\mathbf{seq}_{-}\mathbf{cases}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \in -\mathbf{seqd}_{-}\mathbf{app}_{-}\mathbf{eq}_{-}\mathbf{thm} : THM;
                                                                              val \ \mathbf{z}_{-} \mathbf{seqd}_{-} \cap_{-} \langle \rangle_{-} \mathbf{clauses} : THM;
                                                                              val \ \mathbf{z}_{-}\mathbf{seqd}_{-}^{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{seqd}_{-}^{-}\mathbf{rw}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbf{seqd}_{-} \in \mathbf{seq}_{-}\mathbf{thm} : THM;
                                                                              val z_seq_induction_thm1 : THM;
 val z_seq_induction_thm : THM;
                                                                              val z_{seq_seq_x_thm} : THM;
val \ \mathbf{z}_{-}\mathbf{seq}_{-}\mathbf{thm1} : THM;
                                                                              val \mathbf{z}_{-}\langle\rangle_{-}\mathbf{seq\_thm}: THM;
val \ \mathbf{z}_{-}\mathbf{seq}_{-}\mathbf{thm} : THM;
                                                                              val \ \mathbf{z}_{-}\mathbf{seq}_{-}\mathbf{u}_{-}\mathbf{thm} : THM;
val z_singleton_seq_thm : THM;
                                                                              val z_singleton_seq_x_thm : THM;
 val \ \mathbf{z}_{-}\mathbf{size}_{-}^{-}\mathbf{thm} : THM;
                                                                              val z_size_seqd_length_thm: THM;
 val \ \mathbf{z\_size\_seqd\_thm} : THM;
                                                                              val \ \mathbf{z\_size\_seq\_N\_thm} : THM;
val z_size_seq_thm1 : THM;
                                                                              val z_size_seq_thm2 : THM;
val z_size_singleton_seq_thm : THM;
                                                                              val \ \mathbf{z}_{-}\langle\rangle_{-}\mathbf{thm} : THM;
|val \ \mathbf{z}_{-}\mathbf{seqd}_{-}\mathbf{eq}_{-}\mathbf{thm} : THM;
Description These are the ML bindings of the theorems in the theory z<sub>-</sub>sequences1.
```

```
\begin{vmatrix} val \ \mathbf{z}_{-}\mathbb{F}_{-}\mathbf{induction\_tac} : TERM -> TACTIC; \end{vmatrix}
```

Description An induction tactic for Z finite sets. To prove $s \in \mathbb{F}$ $A \Rightarrow t$, it suffices to prove $t[\{\}/s]$ and to prove $t[s \cup \{x\}/s]$ on the assumptions $t, s \in \mathbb{F}$ $A, x \in A$ and $\neg x \in s$. The term argument must be a variable of the same type as a Z set and must appear free in the conclusion of the goal. It must also appear once, and only once, in an assumption of the form $s \in \mathbb{F}$ A.

```
\frac{ \left\{ \begin{array}{c} \Gamma, \ s \in \mathbb{F} \ A \right\} \ t[s] }{ \left\{ \begin{array}{c} \Gamma, \ s \in \mathbb{F} \ A \right\} \ t[s] \end{array} \right.} \quad z_{\mathbb{F}_{-}induction\_tac} \ {}_{\mathbb{Z}}z^{\neg} \\ strip \ \{t, \ s \in \mathbb{F} \ A, \ x \in A, \ \neg x \in s, \ \Gamma \} \ t[s \ \cup \ \{x\}/s] \end{array}
```

Errors

107033 A term of the form $\mathbb{Z}s \in \mathbb{F}$ A \mathbb{T} where s is the induction variable could not be found in the assumptions

```
val \ \mathbf{z}_{-} \triangleleft_{-} \rightarrow_{-} \mathbf{thm} : THM;
                                                                                                                        val \mathbf{z}_{-}\mathbf{ran}_{-} \triangleleft_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \in \_ \rightarrow \_ \mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-} \rightarrow_{-} \mathbf{ran}_{-} \mathbf{eq}_{-} \rightarrow_{-} \mathbf{thm} : THM;
 val \ \mathbf{z}_{\rightarrow} \rightarrow \mathbf{ran}_{eq} \rightarrow \mathbf{thm} : THM;
                                                                                                                        val z_ran_mono_thm : THM;
 val \ \mathbf{z}_{-} \rightarrow \mathbf{thm1} : THM;
|val \ \mathbf{z}_{-} \rightarrow \mathbf{thm1} : THM;
                                                                                                                        val \ \mathbf{z}_{-} \rightarrow_{-} \mathbf{dom}_{-} \mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \rightarrow \mathbf{thm1} : THM;
                                                                                                                        val \ \mathbf{z}_{-} \cup_{-} \leftrightarrow_{-} \mathbf{thm} : THM;
 val \mathbf{z}_{-}\mathbf{ran}_{-}\cup_{-}\mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-} \cup_{-} \rightarrow_{-} \mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-} \cup_{-} \rightarrow_{-} \mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \cup_{-} \rightarrow_{-} \mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \cup_{-} \rightarrow \mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}\_ \circ\_ \to\_ \mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \circ_{-} \rightarrow_{-} \mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}\_\circ\_\rightarrowtail\_\mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \circ_{-} \rightarrow_{-} \mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-}\mathbf{rel}_{-}\mathbf{inv}_{-} \rightarrow \mathbf{thm} : THM;
 val \ \mathbf{z_-id_-thm1} : THM;
                                                                                                                        val \ \mathbf{z_-id_-} \rightarrow \mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{simple}_{-}\mathbf{swap}_{-} \rightarrow \mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-}\mathbf{swap}_{-} \rightarrow \mathbf{thm} : THM;
 val \ \mathbf{z} \rightarrow \mathbf{trans\_thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-}\mathbf{dom}_{-}\mathbf{f}_{-}\leftrightarrow_{-}\mathbf{f}_{-}\mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-}\mathbf{dom}_{-}\mathbf{f}_{-} \rightarrow \mathbf{f}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{dom}_{-}\mathbf{f}_{-}\rightarrow_{-}\mathbf{f}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbf{dom}_{-}\mathbf{f}_{-} \rightarrow _{-}\mathbf{f}_{-}\mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-}\mathbf{dom}_{-}\mathbf{f}_{-} \rightarrow \mathbf{f}_{-}\mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-} \leftrightarrow_{-} \mathbf{ran}_{-} \mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \cap_{-} \leftrightarrow_{-} \mathbf{thm} : THM;
 val \mathbf{z}_{-} \rightarrow_{-} \mathbf{ran}_{-} \mathbf{thm} : THM:
                                                                                                                        val \mathbf{z}_{-} \cap_{-} \rightarrow_{-} \mathbf{thm} : THM:
 val \ \mathbf{z}_{-} \cap_{-} \rightarrow_{-} \mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-} \rightarrow \mathbf{ran}_{-} \mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \cap_{-} \twoheadrightarrow_{-} \mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-} \cap \longrightarrow \mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \rightarrow_{-} \mathbf{diff}_{-} \mathbf{singleton}_{-} \mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z} \rightarrow \mathbf{diff\_singleton\_thm} : THM;
|val \ \mathbf{z}_{-}\mathbf{singleton}_{-}\mathbf{app}_{-}\mathbf{thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-}\mathbf{empty}_{-} \rightarrow _{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \rightarrow_{-} \mathbf{empty\_thm} : THM;
                                                                                                                        val \ \mathbf{z}_{-} \oplus_{-} \mapsto_{-} \mathbf{app\_thm} : THM;
 val \ \mathbf{z}_{-} \oplus_{-} \mapsto_{-} \mathbf{app\_thm1} : THM;
                                                                                                                        val \ \mathbf{z}_{-}\mathbf{dom}_{-} \oplus_{-} \mapsto_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-} \oplus_{-} \mapsto_{-} \in_{-} \rightarrow_{-} \mathbf{thm} : THM;
Description These are the ML bindings of the theorems in the theory z-functions1.
```

9.2.8 Z Bags

```
\left| signature \ \mathbf{ZBags} = sig \right|
```

Description This provides the basic proof support for the Z library bags. It creates the theory $z_{-}bags$.

```
|signature \ \mathbf{ZLibrary}| = sig
```

Description This provides a "marker" theory, indicating the "top" of the Z library theories. It creates the theory $z_library$.

As a side effect, loading this structure will set the current theory to $z_library$, the current proof context to "z_library", and tidies the subgoal package and proof context stacks.

```
| (* Proof Context: z_library *)
```

Description A mild complete proof context for handling the manipulation of Z language and library expressions and predicates. Its contents are chosen to be "uncontroversial". That is, any effect is considered to be "almost always the correct thing".

It consists of the merge of the proof contexts:

```
"z\_sets\_alg", — simplification of set contructs, and Z language "'z\_rel\_alg", — simplification of relational contructs "'z\_fun\_alg", — simplification of function contructs "'z\_numbers" — simplification of numeric contructs
```

Usage Notes It requires theory z_bags .

It is not intended to be mixed with HOL proof contexts or "z_library_ext", which offers an aggressive approach.

```
| (* Proof Context: z_library_ext *)
```

Description A agressive complete proof context for handling the manipulation of Z language and library expressions and predicates. Its purpose is to strip or rewrite its input into the Z predicate calculus.

It consists of the merge of the proof contexts:

```
"z_fun_ext", — extensional reasoning about functions (and realtions and sets)

"'z_numbers" — simplification of numeric contructs
```

Usage Notes It requires theory $z_{-}bags$.

It is not intended to be mixed with HOL proof contexts or "z_library_ext", which offers an aggressive approach.

```
| (* Proof Context: z_library1 *)
```

Description A mild complete proof context for handling the manipulation of Z language and library expressions and predicates. Its contents are chosen to be "uncontroversial". That is, any effect is considered to be "almost always the correct thing".

It differs from z-library only in using z-numbers 1.

It consists of the merge of the proof contexts:

```
"z\_sets\_alg", — simplification of set contructs, and Z language "'z\_rel\_alg", — simplification of relational contructs "'z\_fun\_alg", — simplification of function contructs "'z\_numbers1" — simplification of numeric contructs
```

Usage Notes It requires theory $z_{-}bags$.

It is not intended to be mixed with HOL proof contexts or "z_library_ext", which offers an aggressive approach.

```
| (* Proof Context: z_library1_ext *)
```

Description A agressive complete proof context for handling the manipulation of Z language and library expressions and predicates. Its purpose is to strip or rewrite its input into the Z predicate calculus.

It differs from $z_{-}library$ only in using $z_{-}numbers1$.

It consists of the merge of the proof contexts:

```
"z_fun_ext", — extensional reasoning about functions (and realtions and sets)

"'z_numbers1" — simplification of numeric contructs
```

Usage Notes It requires theory $z_{-}bags$.

It is not intended to be mixed with HOL proof contexts or "z_library_ext", which offers an aggressive approach.

```
| val z_bag_def : THM; val z_count_def : THM; val z_in_def : THM; val z_in_def : THM; val z_items_def : THM; val z_items_def : THM;

| Description | These are the definitions of the Z bag theory.
```

9.2.9 Z Reals

| (* Proof Context: 'z_reals *)

Description A component proof context for handling the basic arithmetic operations for real numbers in Z.

Expressions and predicates treated by this proof context are constructs formed from:

$$|+_R, *_R, -_R, /_R, \leq_R, <_R, \geq_R, >_R, ^2, =$$

Contents

Rewriting:

```
 \begin{array}{l} z_{\mathbb{R}_{-}}plus_{-}conv,\ z_{\mathbb{R}_{-}}times_{-}conv,\ z_{\mathbb{R}_{-}}subtract_{-}conv\\ z_{\mathbb{R}_{-}}abs_{-}conv,\ z_{\mathbb{R}_{-}}div_{-}conv,\ z_{\mathbb{R}_{-}}mod_{-}conv\\ z_{\mathbb{R}_{-}}eq_{-}conv,\ z_{\mathbb{R}_{-}}\leq_{-}conv,\ z_{\mathbb{R}_{-}}less_{-}conv \end{array}
```

 $|z_{\mathbb{R}}| > conv, z_{\mathbb{R}} = qreater_{conv},$

 $z_{\mathbb{R}_{plus}}$ clauses, $z_{\mathbb{R}_{plus}}$ minus_clauses, $z_{\mathbb{R}_{plus}} \leq clauses$

 $|z_{\mathbb{R}}| less_{clauses}, z_{\mathbb{R}}| lit_{norm_{conv}}$

Stripping theorems:

```
 \begin{vmatrix} z_-\mathbb{R}\_eq\_conv, \ z_-\mathbb{R}\_\leq\_conv, \ z_-\mathbb{R}\_less\_conv \\ z_-\mathbb{R}\_\geq\_conv, \ z_-\mathbb{R}\_greater\_conv, \\ z_-\mathbb{R}\_plus\_clauses, \ z_-\mathbb{R}\_minus\_clauses, \ z_-\mathbb{R}\_\leq\_clauses \\ z_-\mathbb{R}\_less\_clauses, \\ and \ all \ the \ above \ pushed \ through \ \neg
```

Stripping conclusions: as for stripping theorems.

Rewriting canonicalisation: blank.

Automatic proof procedures: $z_basic_prove_tac$, $z_basic_prove_conv$.

Automatic existence prover: blank.

```
|(*Proof\ Context: \mathbf{z}_{\mathbb{R}}\|
```

Description This is a component proof context whose main purpose is to supply a decision procedure for problems in linear arithmetic for the real numbers in Z.

Contents The rewriting components converts Z real arithmetic expressions into equivalent HOL ones and the automatic proof tactic then uses the HOL linear arithmetic proof context to attempt the proof.

```
val dest_z_R_≤: TERM → TERM * TERM;
val dest_z_R_≥: TERM → TERM * TERM;
val dest_z_R_Z_exp: TERM → TERM * TERM;
val dest_z_R_abs: TERM → TERM;
val dest_z_R_frac: TERM → TERM * TERM;
val dest_z_R_greater: TERM → TERM * TERM;
val dest_z_R_less: TERM → TERM * TERM;
val dest_z_R_minus: TERM → TERM;
val dest_z_R_minus: TERM → TERM;
val dest_z_R_over: TERM → TERM * TERM;
val dest_z_R_plus: TERM → TERM * TERM;
val dest_z_R_plus: TERM → TERM * TERM;
val dest_z_R_subtract: TERM → TERM;
val dest_z_R_subtract: TERM → TERM * TERM;
val dest_z_R_subtract: TERM → TERM * TERM;
val dest_z_R_subtract: TERM → TERM * TERM;
```

Description These are derived destructor functions for the Z basic arithmetic operations. An optionally signed integer literal, $signed_int$, is taken to be either a numeric literal or the result of applying (\sim _) to a numeric literal. The other constructors correspond directly to the arithmetic operations of the theory $z_numbers$ with alphabetic names assigned to give a valid ML name as needed (greater:>, less:<, $minus:\sim$, plus:+, subtract:-, times:*).

As usual, there are also corresponding discriminator $(is_{-}...)$ and constructor functions $(mk_{-}...)$.

```
| val is_z_R_≤ : TERM → bool;
| val is_z_R_≥ : TERM → bool;
| val is_z_R_Z_exp : TERM → bool;
| val is_z_R_abs : TERM → bool;
| val is_z_R_frac : TERM → bool;
| val is_z_R_greater : TERM → bool;
| val is_z_R_less : TERM → bool;
| val is_z_R_minus : TERM → bool;
| val is_z_R_over : TERM → bool;
| val is_z_R_plus : TERM → bool;
| val is_z_R_plus : TERM → bool;
| val is_z_real : TERM → bool;
| val is_z_R_subtract : TERM → bool;
```

Description These are derived discriminator functions for the Z basic arithmetic operations. See the documentation for the destructor functions ($dest_z_plus$ etc.) for more information.

```
val \ \mathbf{mk}_{-}\mathbf{z}_{-}\mathbb{R}_{-} \leq : TERM * TERM \longrightarrow TERM;
val \ \mathbf{mk}_{\mathbf{z}} = \mathbb{R}_{-} \geq : TERM * TERM -> TERM;
val \ \mathbf{mk}_{\mathbf{z}} \mathbb{R}_{\mathbb{Z}} \exp : TERM * TERM \longrightarrow TERM;
val \ \mathbf{mk}_{\mathbf{z}} \mathbb{R}_{\mathbf{abs}} : TERM \longrightarrow TERM;
val \ \mathbf{mk_z}_{-}\mathbb{R}_{-}\mathbf{frac} : TERM * TERM \longrightarrow TERM;
val \ \mathbf{mk_{-z}}_{-}\mathbb{R}_{-}\mathbf{greater} : TERM * TERM -> TERM;
val \ \mathbf{mk_{-z}}_{-} \mathbb{R}_{-} \mathbf{less} : TERM * TERM \longrightarrow TERM;
val \ \mathbf{mk}_{\mathbf{z}} \mathbb{R}_{\mathbf{over}} : TERM * TERM \longrightarrow TERM;
val \ \mathbf{mk_z} = \mathbb{R} - \mathbf{minus} : TERM \longrightarrow TERM;
val \ \mathbf{mk}_{-}\mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus} : TERM * TERM -> TERM;
val \ \mathbf{mk_zreal} : TERM \longrightarrow TERM;
|val \ \mathbf{mk_z_R_subtract} : TERM * TERM -> TERM;
|val \ \mathbf{mk_-z_-} \mathbb{R}_- \mathbf{times} : TERM * TERM -> TERM;
Description These are derived constructor functions for the Z basic arithmetic operations. See
the documentation for the destructor functions (dest_{-}z_{-}plus etc.) for more information.
|117201?0 | does not have type \mathbb{R}
```

```
| val z_R_complete_thm: THM; | val z_R_unbounded_above_thm: THM; | val z_R_unbounded_below_thm: THM; | val z_R_less_antisym_thm: THM; | val z_R_less_cases_thm: THM; | val z_R_less_cases_thm: THM; | val z_R_less_clauses: THM; | val z_R_less_dense_thm: THM; | val z_R_less_irrefl_thm: THM; | val z_R_less_trans_thm: THM; | val z_R_less_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_trans_tr
```

```
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{eq}_{-} \leq_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{eq}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{less}_{-}\leq_{-}\mathbf{trans}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-} \mathbb{R}_{-} \mathbf{less}_{-} \neg_{-} \mathbf{eq}_{-} \mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq \neg_{-} \mathbf{less\_thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq -\mathbf{antisym}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq \mathbf{cases\_thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq -\mathbf{clauses} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq -\mathbf{less\_cases\_thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq -\mathbf{less\_trans\_thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-} < \mathbf{refl_thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq_{-} \mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq -\mathbf{trans}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\neg_{-}\leq_{-}\mathbf{less\_thm}: THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\neg_{-}\mathbf{less}_{-}<_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{0}_{-}\mathbf{less}_{-}\mathbf{0}_{-}\mathbf{less}_{-}\mathbf{times}_{-}\mathbf{thm} : THM;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{greater}_{-}\mathbf{thm} : THM;
|val \ \mathbf{z}_{-}\mathbb{R}_{-} \geq_{-} \mathbf{thm} : THM;
```

Description These are ML bindings for theorems that deal with the equality and ordering relations.

```
\begin{vmatrix} val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{eval\_conv} : CONV; \end{vmatrix} val \ \mathbf{Z}_{-}\mathbb{R}_{-}\mathbf{EVAL_{-}C} : CONV \longrightarrow CONV;
```

Description $z_{\mathbb{R}}eval_conv$ computes theorems of the form $\vdash t1 = t2$ where t1 is an expression made up from rational literals (see $z_{\mathbb{R}}plus_conv$) using real addition, subtraction, multiplication, division, reciprocal, absolute value and unary negation. t2 will be an optionally signed rational literal in normal form. The conversion fails if the expression cannot be evaluated (e.g., because it contains variables).

 $z_{\mathbb{R}}EVAL_{C}$ conv is similar to $\mathbb{R}_{-}eval_{-}conv$ but it also applies conv to any subterm that cannot be evaluated using the conversions for the arithmetic operations listed above. E.g., $z_{\mathbb{R}}EVAL_{C}$ $z_{\mathbb{R}}\mathbb{Z}_{-}exp_{-}conv$ will evaluate expressions involving the usual arithmetic operations and also exponentiation of rational literals by natural number literals.

```
Errors | 117020?0 cannot be evaluated
```

```
\begin{vmatrix} val & \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{lin}_{-}\mathbf{arith}_{-}\mathbf{prove}_{-}\mathbf{conv} : THM & list -> CONV; \\ val & \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{lin}_{-}\mathbf{arith}_{-}\mathbf{prove}_{-}\mathbf{tac} : THM & list -> TACTIC; \end{vmatrix}
```

Description This conversion and tactic implement the linear arithmetic decision procedure for real numbers. The usual interface to these is via the proof context $z_{-}reals$, q.v.

real numbers.

```
SML
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{minus\_clauses} : THM;
|val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{minus}_{-}\mathbf{eq}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{minus}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{0}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{assoc}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{assoc}_{-}\mathbf{thm1} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{clauses} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{comm}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{minus}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{mono}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{mono}_{-}\mathbf{thm1} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{mono}_{-}\mathbf{thm2} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{order}_{-}\mathbf{thm} : THM;
|val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{thm} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{unit}_{-}\mathbf{thm} : THM;
|val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{subtract}_{-}\mathbf{thm} : THM;
Description ML bindings for theorems about addition, unary minus and subtraction for the
```

```
| val z_R_real_NR_thm : THM; | val z_R_real_0_thm : THM; | val z_float_thm : THM; | val z_float_thm : THM; | Description | ML bindings for theorems concerning Z integer and floating point real literals.
```

```
| val z_R_times_assoc_thm: THM; | val z_R_times_assoc_thm1: THM; | val z_R_times_clauses: THM; | val z_R_times_comm_thm: THM; | val z_R_times_comm_thm: THM; | val z_R_times_order_thm: THM; | val z_R_times_plus_distrib_thm: THM; | val z_R_times_thm: THM; | val z_R_times_unit_thm: THM; | val z_R_times_unit_thm: THM; | val z_R_over_thm: THM; | val z_R_over_thm: THM; | val z_R_over_clauses: THM
```

```
val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq_{-} \mathbf{conv} : CONV;
                                                                           (* - \leq_R - *)
                                                                           (* _{-} = _{-} *)
|val \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{eq}_{-}\mathbf{conv} : CONV;
                                                                           (* - <_R - *)
val \ \mathbf{z}_{-} \mathbf{R}_{-} \mathbf{less\_conv} : CONV;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{minus\_conv} : CONV;
                                                                                        (* \sim_R *)
                                                                                          (* - /_{R} - *)
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{over}_{-}\mathbf{conv} : CONV;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{conv} : CONV;
                                                                                          (* - +_R - *)
                                                                                         (* - *R - *)
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{times\_conv} : CONV;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbb{Z}_{-}\mathbf{exp\_conv} : CONV;
                                                                          (* abs_Z - *)
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{abs}_{-}\mathbf{conv} : CONV;
                                                                        (* - >_R - *)
(* - \ge_R - *)
val \ \mathbf{z}_{\mathbb{R}}_greater_conv : CONV;
val \ \mathbf{z}_{-}\mathbb{R}_{-} \geq_{-} \mathbf{conv} : CONV;
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{subtract}_{-}\mathbf{conv} : CONV; \ (*_{-} -_{R} \ _{+} *)
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{lit}_{-}\mathbf{norm}_{-}\mathbf{conv} : CONV:
|val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{lit}_{-}\mathbf{conv} : CONV;
                                                                          val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{lit}_{-}\mathbf{conv1} : CONV;
```

Description These are conversions for carrying out real arithmetic computation. The first and second blocks of conversions deal with expressions of the form c op d, where c and d are real literal expressions (see below) and where op is the operator given in the ML comment alongside the conversion above. The conversions in the first block actually carry out the computation to give a theorem c op d = e or c op $d \Leftrightarrow v$ where e and v are a real literal expression or a truth value as appropriate.

The conversions in the second block rewrite their argument in terms of the operators supported by the conversions in the first block.

The conversion $z_{\mathbb{R}}$ -lit_norm_conv normalises real literal expressions, i.e., expressions of either of the forms real i or i/z j, where i and j are optionally signed integer literals. The conversion puts the result in a normal form, where the sign if any is moved to the outside, where real is used whenever possible and where if the form i/z j has to be used, i and it j are taken to be coprime. This conversion fails if its argument cannot be normalised or is already in the normal form.

The final two conversions $z_{\mathbb{R}}lit_{conv}$ and $z_{\mathbb{R}}lit_{conv}1$ convert to and from Z and HOL real literal expressions.

```
Errors 117001?0 is not a Z real fraction with integer literal operands 117002?0 is not an HOL real fraction with literal operands 117003?0 is not of the form ?1 where x and y are real literal expressions 117004?0 is not of the form ?1 where x is a real literal expression 117005?0 is not of the form x \ge 1 where x is a real literal expression and i is an integer literal
```

```
val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbb{Z}_{-}\mathbf{exp}_{-}\mathbf{def} : THM;
|val \mathbf{z}_{-}\mathbb{R}_{-} \geq_{-} \mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-} \leq_{-} \mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{abs}_{-}\mathbf{def} : THM;
val \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{dot}_{-}\mathbf{dof} : THM;
|val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{frac}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{greater}_{-}\mathbf{def} : THM;
|val \ \mathbf{z}_{-} \mathbb{R}_{-} \mathbf{less}_{-} \mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{minus}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{over}_{-}\mathbf{def} : THM;
|val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{plus}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{real}_{-}\mathbf{def} : THM;
|val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{subtract}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{times}_{-}\mathbf{def} : THM;
 val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{lb}_{-}\mathbf{def} : THM;
|val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{glb}_{-}\mathbf{def} : THM;
|val \ \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{ub}_{-}\mathbf{def} : THM;
|val \mathbf{z}_{-}\mathbb{R}_{-}\mathbf{lub}_{-}\mathbf{def} : THM;
Description ML bindings for the definitions in the theory of real numbers.
```

REFERENCES

- [1] Michael J.C. Gordon and Tom F. Melham, editors. *Introduction to HOL*. Cambridge University Press, 1993.
- [2] Michael J.C. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. *Edinburgh LCF. Lecture Notes in Computer Science. Vol. 78.* Springer-Verlag, 1979.
- [3] DS/FMU/IED/USR001. ProofPower Document Preparation. Lemma 1 Ltd.
- [4] DS/FMU/IED/USR004. ProofPower Tutorial Manual. Lemma 1 Ltd., http://www.lemma-one.com.
- [5] DS/FMU/IED/USR007. ProofPower Installation and Operation. Lemma 1 Ltd., http://www.lemma-one.com.
- [6] DS/FMU/IED/USR011. ProofPower Z Tutorial. Lemma 1 Ltd., http://www.lemma-one.com.

538 INDEX

'basic_prove_∃_conv	2/1	(- <u>-</u> -)[X, Y]	180
'char		(- <u>-</u> -)[A, I]	
'combin		(- * -) · · · · · · · · · · · · · · · · · ·	
$fun_e ext$		(- + R -) · · · · · · · · · · · · · · · · · ·	
'list		(- + -) · · · · · · · · · · · · · · · · · ·	
'mmp1		(- + R -) · · · · · · · · · · · · · · · · · ·	
'mmp2		(R -)	
'one		(R -) · · · · · · · · · · · · · · · · · ·	
'pair1		(- ·· -) · · · · · · · · · · · · · · · ·	
'paired_abstractions		(- ······ -) · · · · · · · · · · · · · ·	
'pair		(- / R -) · · · · · · · · · · · · · · · · · ·	
$^{\prime}propositions$		(- / 2 -)	
$'prop_eq_pair$		$(- < -) \cdots $	
'prop_eq		(- > R -)	
'sets_alg		$(->_R-)$	
'sets_ext1		(_ div _)	
'sets_ext		$(in \ in \)[X] \dots \dots$	
'sho_rw	. 349	$(-lb_R)$	
$'simple_abstractions \dots \dots \dots \dots \dots \dots$		(_ mod _)	462
'sum'	. 350	$(_partition_)[I, X] \dots \dots$	483
$^{\prime}z_{-}bindings\dots\dots\dots$		$(\underline{} ub_R \underline{}) \ldots \ldots \ldots$	
'z_decl	. 380	(-(-1))[X, Y]	478
$'z_{-}elementwise_{-}eq\dots$. 503	$(-\cap -)[X]$	
'z_fc	. 380	$(- \circ -)[X, Y, Z] \dots \dots$	478
'zfunalg	. 509	$(_ \cup _)[X]$	489
$^{\prime}z_lin_arith1$		$(- \setminus -)[X]$	
$'z_lin_arith$		$(_ \lhd _)[X, Y]$	
$^{\prime}z$ _normal		$(- \ge -)$	
$^{\prime}z$ _numbers1		$(-\geq_R -)$	
$^{\prime}z$ _numbers		$(- \le -)$	
$^{\prime}z_{-}predicates$		$(- \leq_R -) \dots \dots$	472
'z_reals		$(-\frac{g}{g})[X, Y, Z]$	
'z_rel_alg		$(- \mapsto -)[X, Y] \dots$	
'z_schemas		$(_ \triangleleft _)[X, Y]$	
'z_sets_alg		$(_ \triangleright _)[X, Y] \dots$	
'z_sets_ext_lang		$(- \cap -)[X]$	
'z_sets_ext_lib		(- ^Z -)	
$'z_{tuples_{lang}} \dots $ $'z_{tuples} \dots $		$(- \uparrow -)[X]$	
z _tuples $z \in fun$		$(-\stackrel{\oplus}{-})[X]$	
$z \in Jah$		$(- \neq -)[X]$	
$z \in set_lang$		$(-\not\in -)[X]$	
$z \in set_lib$		$(-\ominus -)[X]$	
'N_lit		$(-\oplus -)[X, Y]$	
'N		$(- \triangleright -)[X, Y] \dots $	
(abs _)		$(- \subset -)[X]$	
(abs_{R-})		$(_ \uplus _)[X]$	
$(disjoint \ _)[I, \ X] \ldots \ldots$		(-1)[X]	
(if \cdot ? then \cdot ! else \cdot !)[X]		(-*)[X]	
/[]		(- ')[A] · · · · · · · · · · · · · · · · · · ·	410

$(-)[X] \dots 462$	$all_subterm_tt$	152
$(-^{\sim})[X, Y] \dots $	$ALL_{-}VAR_{-}ELIM_{-}ASM_{-}T1$	232
$(\llbracket \dots \rrbracket)[X] \dots \dots$	$all_var_elim_asm_tac1$	232
$(\ll _! \gg)[X] \ldots 489$	$all_var_elim_asm_tac$	232
$(\Pi_{-}?)$	$ALL_{-}VAR_{-}ELIM_{-}ASM_{-}T$	232
$(\sim _) \dots $	$all_{-}z_{-}\forall_{-}intro$	381
$(\sim_{R} \ _) \ \ldots \ 472$	$all_{-}\beta_{-}conv$	
**	$all_{-}\beta_{-}rule$	
=: 81	$all_{-}\beta_{-}tac$	
$= \# \dots $	$all_{-}\epsilon_{-}tac$	
= \$ 80	$ALL_{-\epsilon}T$	
$= - \dots 132$	$all_\exists_uncurry_conv$	
@*	$all_\forall_arb_elim$	
<u>@</u> + 39	all_\forall_elim	
@ 39	$all_ \forall_intro$	
@ <=	$all_ \forall_uncurry_conv$	
@ <	$ALL \land _C$	
@ >=	$ALL_{-}\lor_{-}C$	
© >	$all_{-} \Rightarrow_{-} intro$	
@@	all	
@~	$AND_{-}OR_{-}C$	
$abandon_reader_writer$	anf_conv	
abs	$ANF_{-}C$	
abs_R	ante_tac	
$accept_tac$	$any_submatch_tt$	
add_error_codes	any_substring_tt	
add_error_code	$any_subterm_tt$	
$add_general_reader$	any	
add_named_reader	$apply_tactic$	
add_new_symbols	app_arg_rule	
add_rw_thms	$APP_{-}C$	
add_sc_thms	app_fun_rule	
add_specific_reader	app_if_conv	
add_st_thms	<i>app</i>	
$add_{-}\exists_{-}cd_{-}thms$	$App \dots $	
advance	area_of	
$all_asm_ante_tac$	array	
ALL_ASM_FC_T1	array	
$all_{-}asm_{-}fc_{-}tac$	$ask_at_terminal$	
$ALL_ASM_FC_T$	asms	
$ALL_ASM_FORWARD_CHAIN_T1$	asmantetac	
$all_asm_forward_chain_tac$	asmelim	
$ALL_{-}ASM_{-}FORWARD_{-}CHAIN_{-}T$	$ASM_{-}FC_{-}T1$	
alldifferent	$asm_{-}fc_{-}tac_{-}$	
all_distinct	ASM_FC_T	
<i>ALL_FC_T1</i>	ASM_FORWARD_CHAIN_T1	
$all_{-}fc_{-}tac_{-}$	$asm_forward_chain_tac$	
<i>ALL_FC_T</i>	$ASM_FORWARD_CHAIN_T$	
ALL_FORWARD_CHAIN_T1 247	$asm_inst_term_rule$	
all_forward_chain_tac	$asm_inst_type_rule$	
ALL_FORWARD_CHAIN_T246	asm_intro	
$all_simple_\beta_conv$	$ASM_{-}PROP_{-}EQ_{-}T$	
$all_simple_\beta_rule$	asm_prove_tac	
$ALL_SIMPLE_\exists_C$	$asm_prove_\exists_tac$	
$ALL_SIMPLE_\forall_C$	asm_rewrite_rule	
$all_simple_ \forall_elim \dots 154$	$asm_rewrite_tac$	
$all_submatch_tt$	$asm_rewrite_thm_tac$	
$all_substring_tt$	asm_rule	160

$asm_{-}tac$	234	checkpoint	132
<i>ASSOC</i>	. 69	$check_asm_tac$	238
$ASYM_{-}C$	297	$check_is_z_conv_result$	381
a	223	$check_is_z_goal$	381
$back_chain_tac$	235	$check_is_z_term$	
$back_chain_thm_tac \dots \dots$	236	$check_is_z_thm \dots \dots \dots \dots \dots \dots$	
bad_proof		$CHECK_IS_Z_T$	
$bag \stackrel{\cdot}{X} \cdots \cdots$		check_is_z	
bag		clear_compactification_cache	130
BasicError		close_in	
BasicIO		close_out	
$basic_dest_z_term$		cnf_conv	
$basic_hol1$		Combinators	
$basic_hol.$		combine	
$basic_prove_conv$		comment	
$basic_prove_tac$		$commit_pc$	
BASIC_RESOLUTION_T1		$compactification_mask$	
BASIC_RESOLUTION_T		compact_term	
basic_resolve_rule		compact_thm	
basic_res_extract		compact_type	
		$conplact_type$	
basic_res_next_to_process			
basic_res_post		concl	
basic_res_pre		$COND_{-}C$	
basic_res_resolver		cond_thm	
basic_res_rule		$COND_{-}T$	
$basic_res_subsumption \dots \dots \dots \dots \dots$		Const	
$basic_res_tac1$		contains	
$basic_res_tac2$		contr_rule	
$basic_res_tac3$		$contr_{-}tac$	
$basic_res_tac4$		CONTR_T	
$basic_res_tac$		conv_ascii	
$BASIC_RES_TYPE$		$conv_extended$	
$bc_{-}tac$		$conv_rule$	
bcthmtac		$conv_tac$	
BdzFail	359	CONV_THEN	
BdzFArgc	359	<i>CONV</i>	119
BdzFCode	359	counts	. 53
BdzFCompc	359	$count[X] \dots \dots$	450
BdzNotZ	359	$count \dots \dots$	450
BdzOk	359	$cthm_eqn_cxt$	161
BDZ	359	Ctype	. 79
$before_kernel_state_change \dots \dots \dots \dots$	133	cup	. 20
BINDER_C		$current_ad_cs_\exists_conv$	
Binder	. 69	$current_ad_mmp_rule$	317
bin_bool_op	. 81	$current_ad_nd_net$	
BOOL		$current_ad_pr_conv$	317
CANON	153	$current_ad_pr_tac$	
$can_input \dots \dots$. 41	$current_ad_rw_canon$	
CASES_T2		$current_ad_rw_eqm_rule$	
cases_tac		current_ad_rw_net	
CASES_T		$current_ad_sc_conv$	
CHANGED_C		$current_ad_st_conv$	
CHANGED_T		$current_ad_\exists_cd_thms$	
Character Utilities		$current_ad_\exists_vs_thms$	
$char_conv$		curry	
Char		c_contr_rule	
CHAR		DApp	
CHECKPOINT		DChar	
UIIIUMI UIIVI	104	DONAL	. 00

DConst	. 80	$dest_simple_\forall$	
declare_alias	122	$dest_simple_\lambda$. 86
$declare_binder$	122	$dest_string \dots \dots$	
$declare_const_language \dots \dots \dots$	122	$DEST_TERM$. 80
$declare_infix$	123	$dest_term$. 86
$declare_left_infix \dots \dots \dots \dots \dots$	123	dest_thm	136
$declare_nonfix$	123	$dest_{-}t$. 86
$declare_post fix \dots \dots \dots \dots \dots \dots$	123	$dest_{-}u$	363
declare_prefix	124	$dest_vartype$. 87
$declare_right_infix$	123	$dest_var$. 87
$declare_terminator \dots \dots \dots \dots \dots$	124	$dest_{-}z_{-}abs$	513
declare_type_abbrev	124	$dest_zapp$	363
DeleteAxiom		$dest_z_binding$	
$DeleteConst \dots \dots \dots \dots$	131	$dest_z_decl$	
Delete Theory	131	$dest_{-}z_{-}decor_{s}$	364
DeleteThm	131	$dest_{-}z_{-}dec$	365
Delete Type	131	$dest_z_div$	513
$delete_all_conjectures$	150	$dest_z_eq$	365
$delete_axiom$		dest_z_float	
$delete_conjecture$		$dest_z_given_type$	
$delete_const$		$dest_z_greater$	
$delete_pc_fields$		$dest_{-}z_{-}gvar$	
$delete_pc$		$dest_{-}z_{-}hide_{s}$	
delete_theory		$dest_z_h_schema$	
$delete_thm$		$dest_{-}z_{-}if$	
$delete_to_level \dots \dots$		dest_z_int	
$delete_type$		$dest_z_less$	
DEmptyList		$dest_z_let$	
DEnumSet		$dest_z_lvar$	
$DEq\dots$		$dest_z_minus$	
DerivedRules1		$dest_z_mod$	
DerivedRules2		$dest_z_name1$	
$dest_app$		$dest_z_name2$	
$dest_binder$		$dest_{-}z_{-}name$	
$dest_bin_op$		$dest_{-}z_{-}plus$	
dest_char		$dest_{-}z_{-}power_{-}type$	
$dest_const$		$dest_{-}z_{-}pre_{s}$	
dest_ctype		dest z real	
$dest_dollar_quoted_string \dots \dots \dots$		$dest_z_rename_s$	368
$dest_empty_list \dots \dots$		$dest_z_schema_dec\ldots$	
$dest_enum_set\dots$			
$dest_eq$			
$dest_float$		$dest_{-}z_{-}sel_{s}$	
$dest_{-}f$		$dest_{-}z_{-}sel_{t}$	
dest_if		-	
$dest_let$			
$dest_list$		$dest_z_signed_int$	
$dest_mon_op$		$dest_z_string$	
$dest_multi_\lnot$			
dest_pair			
$dest_set_comp$			
$dest_simple_binder \dots \dots \dots \dots$		$dest_z_times$	
DEST_SIMPLE_TERM			
$dest_simple_term$			
DEST_SIMPLE_TYPE		-	
$dest_simple_type$		*-	
$dest_simple_\exists_1$		$dest_{-}z_{-}\langle\rangle$	
$dest_simple_\exists$		$dest_{-}z_{-}\Delta_{s}$	
· r · · · · · · · · · · · · · · · · · ·			

$dest_{-}z_{-}\exists_{1s}$		diff	
$dest_{-}z_{-}\exists_{1}$		<i>DIf</i>	
$dest_{-}z_{-}\exists_{s}$		$discard_tac\dots$	
$dest_{-}z_{-}\exists$		$disch_rule$	
$dest_{-}z_{-}\mathbb{P}\dots$		disjoint	
$dest_{-}z_{-}\mathbb{R}_{-}abs\dots$		divert	
$dest_{-}z_{-}\mathbb{R}_{-}frac$		DLet	
$dest_z_R_greater \dots \dots \dots \dots$		DList	
$dest_z_R_{less}$		dnf_conv	
$dest_z_\mathbb{R}$ minus		docdvi	
$dest_{-}z_{-}\mathbb{R}_{-}over\dots$		docpr	
$dest_{-}z_{-}\mathbb{R}_{-}plus$		docsml	
$dest_z_\mathbb{R}_subtract$		doctex	
$dest_{-}z_{-}\mathbb{R}_{-}times\dots$		dom[X, Y]	
$dest_{-}z_{-}\mathbb{R}_{-}\mathbb{Z}_{-}exp$		$dom \dots \dots$	
$dest_{-}z_{-}\mathbb{R}_{-}\geq \dots$		do_in_theory	
$dest_z_\mathbb{R} \le \dots$		DPair	
$dest_{-}z_{-}\forall_{s}$		$DROP_ASMS_T$	
$dest_{-}z_{-}\forall \dots \dots$		$DROP_ASM_T$	
$dest_{-}z_{-} \geq \dots $		$DROP_FILTER_ASMS_T$	
$dest_{-}z_{-} \in \dots $		$drop_main_goal\ldots$	
$dest_{-}z_{-}\lambda \dots \dots$		$DROP_NTH_ASM_T$	
$dest_{-}z_{-}\wedge_{s}\dots\dots\dots\dots$		$drop \dots \dots$	
$dest_{-}z_{-}\wedge \dots \dots$		DSetComp	
$dest_{-}z_{-} \Leftrightarrow_{s} \dots \dots \dots \dots \dots \dots$		DString	
$dest_{-}z_{-} \Leftrightarrow \dots \dots$		DT	
$dest_{-}z_{-} \leq \dots \dots \dots \dots \dots \dots \dots$		Duplicate Theory	
$dest_{-}z_{-}\neg_{s}$		$duplicate_theory$	
$dest_{-}z_{-}\neg \dots \dots$		DVar	
$dest_{-}z_{-}\vee_{s}\dots\dots\dots$		DynamicArray	
$dest_{-}z_{-}\vee \dots \dots$		DYNAMIC_ARRAY	
$dest_{-}z_{-gs}$		$D\varnothing$	
$dest_{-}z_{-}\upharpoonright_{s}$		$D\epsilon$	
$dest_{-}z_{-}\mu$		$D\exists_1$	
$dest_{-}z_{-} \Rightarrow_{s} \dots \dots$		<i>D</i> ∃	
$dest_{-}z_{-} \Rightarrow \dots \dots$		$D\mathbb{N}$	
$dest_z \subseteq \dots \dots$		Dorall	
$dest_{-}z_{-}\theta$		$D\lambda$	
$dest_{-}z_{-}\times$		$D \land \dots $	
$dest_{-}z_{-}\Xi_{s}$		$D\Leftrightarrow\dots\dots\dots\dots\dots\dots$	
$dest_{-}\emptyset$		$D\neg$	
$dest_{-\epsilon}$		$D\lor \dots \dots$	
$dest_{-}\exists_{1}$		$D\Rightarrow\dots\dots$	
dest_∃		Efficient Dictionary	
$dest_{-}\mathbb{N}$		elaborate	
$dest_{-}\forall$		empty_net	
$dest_{-}\lambda$		Ending	
$dest_{-} \wedge \dots $		end_of_stream	
$dest_{-} \Leftrightarrow \dots $		eqn_cxt_conv	
dest_¬		EQN_CXT	
$dest_{-}\lor\dots$		equality	
$dest_{-} \rightarrow_{-} type$		eq_match_conv1	
$dest_{-} \Rightarrow \dots$		eq_match_conv	
dest_×_type		eq_rewrite_thm	
DFloat		$eq_sym_asm_tac$	
<i>DF</i>		eq_sym_conv	
diag_line		$eq_sym_nth_asm_tac$	
$diag_string \dots \dots \dots \dots \dots$. 60	eq_sym_rule	165

eq_trans_rule	$fc\Leftrightarrow_canon$	170
<i>Error</i> 16	$FC_{-} \Leftrightarrow_{-} CAN$	169
<i>error</i>	filter	21
<i>Error</i> 70	$find_char$	61
EVERY_CAN 165	$find_name$	61
EVERY_C 165	findthm	151
EVERY_TTCL	find	21
EVERY_T 243	first[X, Y]	489
EVERY 243	FIRST_CAN	166
exit 50	$FIRST_{-}C$	167
expand_symbol 60	$FIRST_TTCL$	244
$expand_type_abbrev$	FIRST_T	244
ExtendedIO	FIRST	244
EXTEND_PCS_C1 319	first	490
EXTEND_PCS_C 319	FIXITY	69
extend_pcs_rule1 320	flat	21
$extend_pcs_rule$	flush_out	41
EXTEND_PCS_T1 321	fold	21
EXTEND_PCS_T 321	force_delete_theory	322
EXTEND_PC_C1 319	force_value	21
EXTEND_PC_C 319	$format_list$	67
extend_pc_rule1 320	format_term1	73
extend_pc_rule 320	format_term	73
EXTEND_PC_T1 321	format_thm1	73
EXTEND_PC_T 321	format_thm	73
<i>ext_rule</i> 166	format_type1	74
$e_{-}delete$	$format_type \dots \dots$	74
$e_dict_of_oe_dict$	$forward_chain_canon1$	168
$E_{-}DICT$	$forward_chain_canon \dots $	168
eenter	FORWARD_CHAIN_CAN	167
$e_{-}extend \dots 33$	$forward_chain_rule$	
e_{-} flatten	FORWARD_CHAIN_T1	
egetkey	$forward_chain_tac$	
$e_{-}key_{-}delete$	FORWARD_CHAIN_T	
$e_k ey_e nter$	$forward_chain_\Leftrightarrow_canon$	
e_{key_extend}	$FORWARD_CHAIN_\Leftrightarrow_CAN$	
$e_{-}key_{-}lookup$	frees	00
$E_{-}KEY$	from	22
E_KEY		22
	from	22 483
$\begin{array}{cccc} e_lookup & . & . & . & . & . & . & . & . & . & $	from $front[X]$	22 483 484 28
e_lookup	from	22 483 484 28 28
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166	from	22 483 484 28 28 28
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22 483 484 28 28 28 28
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243 $FAIL_THEN$ 243	$ from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ $	22 483 484 28 28 28 28 28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ fun_or \\ . $	22 483 484 28 28 28 28 28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ fun_or \\ fun_pow \\ $	22 483 484 28 28 28 28 28 28
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243 $FAIL_THEN$ 243 $fail_with_canon$ 166 $fail_with_conv$ 166 $fail_with_tac$ 243	$ from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ fun_or \\ fun_pow \\ fun_true \\ $	22 483 484 28 28 28 28 28 28 28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ fun_pow \\ fun_pow \\ fun_true \\ fun 0 \ rightassoc $	22 483 484 28 28 28 28 28 28 28 450
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ fun_pow \\ fun_pow \\ fun_true \\ fun_0 rightassoc \\ fun_0 rig$	22 483 484 28 28 28 28 28 28 450 489
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243 $FAIL_THEN$ 243 $fail_with_canon$ 166 $fail_with_conv$ 166 $fail_with_tac$ 243 $FAIL_WITH_THEN$ 243 $Fail$ 16 $fail$ 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 483 484 28 28 28 28 28 28 28 450 489 478
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243 $FAIL_THEN$ 243 $fail_with_canon$ 166 $fail_with_conv$ 166 $fail_with_tac$ 243 $FAIL_WITH_THEN$ 243 $Fail$ 16 $fail$ 17 fc_canon1 168	$from \ front[X] \ front \ fst \ FunctionUtilities \ fun_and \ fun_false \ fun_not \ fun_or \ fun_or \ fun_or \ fun_true \ fun \ 0 \ rightassoc \ fun \ 0 \ rightassoc \ fun \ 10 \ leftassoc \ fun \ 20 \ leftassoc \ 20 \ left$	22 483 484 28 28 28 28 28 28 450 489 478
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243 $FAIL_THEN$ 243 $fail_with_canon$ 166 $fail_with_conv$ 166 $fail_with_tac$ 243 $FAIL_WITH_THEN$ 243 $Fail$ 16 $fail$ 17 fc_canon1 168 fc_canon 168	$ from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ fun_or \\ fun_pow \\ fun_true \\ fun \ 0 \ rightassoc \\ fun \ 0 \ rightassoc \\ fun \ 10 \ leftassoc \\ fun \ 20 \ leftassoc$	22 483 484 28 28 28 28 28 28 450 489 478 462
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243 $FAIL_THEN$ 243 $fail_with_canon$ 166 $fail_with_conv$ 166 $fail_with_tac$ 243 $FAIL_WITH_THEN$ 243 $Fail$ 16 $fail$ 17 fc_canon1 168 fc_canon 168 FC_CAN 167	$from$ $front[X]$ $front[X]$ $front$ fst fst $functionUtilities$ fun_and fun_false fun_not fun_not fun_pow fun_pow fun_true </td <td>22 483 484 28 28 28 28 28 28 450 489 478 462 472 489</td>	22 483 484 28 28 28 28 28 28 450 489 478 462 472 489
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243 $FAIL_THEN$ 243 $fail_with_canon$ 166 $fail_with_conv$ 166 $fail_with_tac$ 243 $FAIL_WITH_THEN$ 243 $Fail$ 16 $fail$ 17 fc_canon1 168 fc_canon 168 FC_CAN 167 fc_rule 169	$from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ fun_pow \\ fun_pow \\ fun_true \\ fun 0 \ rightassoc \\ fun 0 \ rightassoc \\ fun 10 \ leftassoc \\ fun 20 \ leftassoc \\ fun 20 \ leftassoc \\ fun 25 \ leftassoc \\ fun 30 \ leftassoc \\ fun 40 \ leftassoc$	22 483 484 28 28 28 28 28 450 489 472 489 450
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243 $FAIL_THEN$ 243 $fail_with_canon$ 166 $fail_with_canov$ 166 $fail_with_tac$ 243 $FAIL_WITH_THEN$ 243 $Fail$ 16 $fail$ 17 fc_canon1 168 fc_canon1 168 fc_canon 168 FC_CAN 167 fc_rule 169 FC_T1 247	$from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ fun_pow \\ fun_true \\ fun 0 \ rightassoc \\ fun 0 \ rightassoc \\ fun 10 \ leftassoc \\ fun 20 \ leftassoc \\ fun 25 \ leftassoc \\ fun 30 $	22 483 484 28 28 28 28 28 28 450 489 478 462 472 489 462
e_lookup 34 e_merge 34 e_stats 34 $fail_canon$ 166 $fail_conv$ 166 $fail_tac$ 243 $FAIL_THEN$ 243 $fail_with_canon$ 166 $fail_with_conv$ 166 $fail_with_tac$ 243 $FAIL_WITH_THEN$ 243 $Fail$ 16 $fail$ 17 fc_canon1 168 fc_canon 168 FC_CAN 167 fc_rule 169	$from \\ front[X] \\ front \\ fst \\ FunctionUtilities \\ fun_and \\ fun_false \\ fun_not \\ fun_pow \\ fun_pow \\ fun_true \\ fun 0 \ rightassoc \\ fun 0 \ rightassoc \\ fun 10 \ leftassoc \\ fun 20 \ leftassoc \\ fun 20 \ leftassoc \\ fun 25 \ leftassoc \\ fun 30 \ leftassoc \\ fun 40 \ leftassoc$	22 483 484 28 28 28 28 28 450 489 472 489 450 462 472

fun 30 leftassoc	$get_const_language \dots \dots$	125
fun 40 leftassoc	get_const_theory	139
fun 40 leftassoc	$get_const_type \dots \dots$	139
fun 40 leftassoc	$get_controls$	
fun 40 leftassoc	$get_cs_\exists_convs$	335
fun 40 leftassoc	get_curly_braces	. 62
fun 45 rightassoc	$get_current_language \dots$	125
fun 50 leftassoc	$get_current_pc$	
fun 50 rightassoc	$get_current_terminators$	
fun 50 rightassoc	$get_current_theory_name$	
fun 60 leftassoc	$get_current_theory_status \dots \dots \dots \dots \dots$	
fun 60 rightassoc	getdefns	
fun 65 rightassoc	get_defn_dict	
fun 70 rightassoc	$get_{-}defn$	
fun 70 rightassoc	$get_descendants$	
f_rewrite_canon	get_env	
f_thm_tac	get_error_messages	
fthm	get_error_message	
<i>gc_messages</i>	GET_FILTER_ASMS_T	
general_quotation	get_fixity	
$GEN_{-}ASYM_{-}C$	get_flags	
$gen_find_thm_in_theories$	get_flag	
gen_find_thm	get_HOL_any	
$GEN_INDUCTION_T1$	get_init_funs	
$gen_induction_tac1$	$get_int_controls$	
$gen_induction_tac$	$get_int_control$	
$GEN_INDUCTION_T$	$get_language$	
gen_term_order	get_left_infixes	
$gen_theory_lister1$	get_line_length	. 67
gen_theory_lister	get_message_text	. 18
$gen_{-}vars$	$get_message$	
gen 5 rightassoc	get_ML_any	
gen 5 rightassoc	get_ML_string	
gen 5 rightassoc	$get_{-}mmp_{-}rule$	
gen 70 rightassoc	get_nd_entry	
gen 70 rightassoc	$get_nonfixes$	
gen 70 rightassoc	$GET_NTH_ASM_T$	
gen 70 rightassoc	$get_parents$	
gen 70 rightassoc	get_pcs	
$get_aliases$	$get_percent_name \dots \dots$. 63
get_alias_info	$get_postfixes$	126
get_alias	$get_prefixes$	126
$get_ancestors$	$get_primed_string \dots \dots$. 63
GET_ASMS_T	$get_proved_conjectures$	149
GET_ASM_T	$get_pr_conv1 \dots get_pr_conv1 \dots$	
get_asm	$get_{-}pr_{-}conv \dots get_{-}pr_{-}conv \dots get_$	336
get_axioms	$get_{-}pr_{-}tac1$	337
get_axiom_dict	getprtac	337
get_axiom	$get_right_infixes$	126
$get_binders$	get_round_braces	. 62
get_box_braces	get_rw_canons	337
get_children	$get_rw_eqm_rule$	338
$get_compactification_cache \dots 130$	$get_rw_eqn_cxt$	338
$get_conjectures$	get_save_funs	. 48
$get_conjecture$	$get_sc_eqn_cxt$	338
get_consts	get_shell_var	. 48
	900_0110000_0001	
get_const_info	get_stack_pcs	

$get_string_controls$	46	$HTIn \dots HTIn \dots$	70
$get_string_control \dots \dots$		HTLbrace	70
$get_st_eqn_cxt$	339	$HTLbrack \dots HTLbrack \dots$	70
$get_terminators \dots \dots$	126	$\mathit{HTLet} \ldots \ldots \ldots \ldots \ldots \ldots$	70
get_theory_info	141	HTLsqbrack	70
get_theory_names	140	<i>HTName</i>	70
get_theory_status	140	HTNumLit	70
get_theory	141	HTPostOp	70
get_thms	141	$HTPreOp \dots HTPreOp \dots$	70
get_thm_dict	141	$HTRbrace \dots \dots$	70
get_thm	141	HTRbrack	70
get_types	141	HTRsqbrack	70
get_type_abbrevs	127	HTSemi	70
get_type_abbrev	126	HTString	70
get_type_arity	141	HTThen	70
get_type_info	127	HTVert	70
get_type_keys	141	$iabs \dots \dots$	39
get_type_theory	142	ICL'DATABASE_INFO_TYPE	48
$get_undeclared_aliases \dots $	127	idiv	39
$get_undeclared_terminators$	127	id_canon	170
$get_undeclared_type_abbrevs \dots \dots \dots$		$id_conv \dots \dots$	170
get_unproved_conjectures		id_tac	250
get_user_datum		ID_THEN	250
get_use_extended_chars_flag	63	$id X \dots \dots \dots \dots \dots$	478
$get_u_simp_eqn_cxt$		id	480
$get_variant_suffix \dots \dots \dots \dots \dots \dots$		if_app_conv	170
$get_\exists_cd_thms$		<i>if_else_elim</i>	171
$get_\exists_vs_thms$		<i>if_intro</i>	171
$glb_R \dots \dots$		if_rewrite_thm	
glb_R		$\stackrel{\circ}{IF}_{-}T2\dots$	
GOAL_STATE		<i>if_tac</i>	251
GOAL	231	<i>IF_THEN2</i>	251
$grab \dots \dots grab \dots \dots$		<i>if_then_elim</i>	
$qvar_subst$	362	<i>IF_THEN</i>	251
$\overset{\circ}{h}d$		<i>if_thm</i>	289
head[X]	483	$\stackrel{\circ}{IF}_{-}T$	252
head		if _? then _! else _!	490
hol1	355	$\stackrel{\circ}{Ignore} \dots \dots$	56
hol2		illformed_rewrite_warning	153
HOLReaderWriter		imod	
<i>HOLSystem</i>	48	<i>Infix</i>	69
$HOL_lab_prod_reader$		Initialisation	48
hol_list	. 7	initialedict	34
$HOL_reader \dots \dots$	64	$initial_oe_dict$	40
HOL_TOKEN	70	$initial_rw_canon \dots \dots \dots \dots \dots$	172
$hol\ldots hol\ldots hol\ldots hol\ldots hol\ldots hol\ldots hol\ldots hol\ldots $. 7	$initial_s_dict$	32
hol	354	initial	315
HTAnd	70	$init_stats$	53
HTAqTm	70	init	48
HTAqTy	70	$input_line \dots \dots$	41
HTBinder		$input \dots \dots$	41
$HTBlob \dots HTBlob \dots$	70	INPUT	70
HTChar	70	insert	22
HTColon	70	instream	41
<i>HTElse</i>	70	$inst_term_rule$	172
HTEos	70	$inst_type_rule$	173
<i>HTIf</i>	70	$inst_type$	90
HTInOp	70	inst	90

$integer_of_int$	$is_z_binding$	
$integer_of_string$	$is_{-}z_{-}decl\dots$	
$integer_order$	$iszdecor_s$	
<i>INTEGER</i> 39	iszdec	365
<i>Integer</i> 39	iszdiv	513
interval	iszeq	365
$intro_\forall_tac1$	iszfalse	365
$intro_\forall_tac$	is_z -float	365
<i>int_of_integer</i>	$is_z given_type \dots$	366
Invalid	$is_z = greater \dots \dots$	513
<i>Io</i>	$is_{-}z_{-}gvar$	366
iseq X	$is_{-}z_{-}hide_{s}$	366
iseq	$is_z_h_schema$	
$is_all_decimal$	iszif	496
<i>is_all_z_type</i>	iszint	
<i>is_app</i>	is_z_less	
<i>is_binder</i> 91	is_z_let	367
<i>is_bin_op</i>	<i>is_z_lvar</i>	
<i>is_char</i> 91	is_z_minus	
<i>is_const</i>	is_z_mod	
<i>is_ctype</i>	is_z_plus	
$is_dollar_quoted_string$	$is_z_power_type$	
<i>is_empty_list</i>	$is_z_pre_s$	
<i>is_enum_set</i>	is_z_real	
<i>is_eq</i>	$is_z_rename_s$	
<i>is_float</i>	$is_z_schema_dec$	
<i>is_free_in</i>	$is_z_schema_pred$	
<i>is_free_var_in</i>	$is_z_schema_type$	
<i>is_f</i>	$iszsel_s$	
<i>is_if</i>	$is_{-}z_{-}sel_{t}$	
<i>is_let</i>	is_z_seta	
<i>is_list</i>	is_z_setd	
<i>is_mon_op</i>	$is_z_signed_int$	
<i>is_Nil</i>	is_z_string	
<i>is_nil</i>	$is_z_subtract$	
<i>is_pair</i>	is_z_term1	
<i>is_proved_conjecture</i>	is_z_term	
is same symbol		513
<i>is_set_comp</i>	is_z_true	
<i>is_simple_binder</i>	$is_z_tuple_type$	
$is_simple_\exists_1$	$is_{-}z_{-}tuple$	
$is_simple_\exists 1$	is_z_type	
is_simple_\forall	$is_z z_v a r_z t y p e$	
is_simple_λ	$is_{-}z_{-}\langle \rangle$	
<i>is_special_char</i>	$is_{-}z_{-}\Delta_{s}$	
<i>is_string</i>	$is_{-z} = \exists_{1s}$	
<i>is_term_in</i>	$is_{-z} = \exists_1 \dots is_{-z} = \exists_$	
<i>is_term_out</i>	$is_{-}z_{-}\exists_{s}$	
<i>is_theory_ancestor</i>	$is_z_\exists s$	
is_type_abbrev	$is_z_\mathbb{P}$	
<i>is_type_instance</i>	$is_z_\mathbb{R}_abs$	
$is_type_tnstance$	$is_{-}z_{-}$ R $_{-}$ rac	
<i>is_u</i>	$is_z = \mathbb{R}_g reater$	
<i>is_vartype</i>	$is_z = \mathbb{R} - less$	
<i>is_var</i>	$is_z = \mathbb{R} - minus$	
<i>is_white</i>	$is_z = \mathbb{R} - over$	
<i>is_z_abs</i>	$is_z = \mathbb{R} - plus$	
<i>is_z_app</i>	$is_z = \mathbb{R} - pids$	
$\iota \delta_{-} \lambda_{-} u p p \dots \dots$	t5_&_W_5u0t1act	აას

$is_z_\mathbb{R}_times$		KICharConv	
$is_z_\mathbb{Z}_\mathbb{R}_\mathbb{Z}_e exp$		KIEqSymRule	
$is_{-}z_{-}\mathbb{R}_{-}\geq \dots$		KIEqTransRule	
$is_{-}z_{-}\mathbb{R}_{-} \leq \dots$		KIInstTermRule	
$isz \forall_s$		KIInstTypeRule	
$isz \forall \dots $		$KIListSimple \forall Elim$	
$isz \ge \dots $		KIMkAppRule	
$isz\in\dots\dots\dots\dots$		KIPlus Conv	
is_z_λ		KIReflConv	
<i>is_z_</i> ^s		KISimpleβConv	
$isz\wedge \dots isz\Leftrightarrow_s \dots$		$KISimple \forall Intro$ $KISimple \lambda EqRule$	
$isz\Leftrightarrow_s$		KIStringConv	
$is_zz_{-} \Leftrightarrow \dots \qquad \qquad$		KISubstRule	
$is_{-}z_{-} \leq \dots \qquad \qquad is_{-}z_{-} - \cdots \qquad is_{-}z_{-} $		KISucConv	
$is_{-z_{-}}\neg_{s}$		$KI \Leftrightarrow MPRule \dots$	
$is_{-z_{-}}$		$KI \Leftrightarrow MI \land Mi$ $KI \Rightarrow Elim \dots \dots$	
$is_{-z_{-}} \lor_{s} \cdots is_{-z_{-}} \lor$		$KI \Rightarrow Ettint$ $KI \Rightarrow Intro$	
$is_{-z_{-os}}$		$k_{-}id_{-}tac$	
$is_{-z_{-gs}}$		K	
$is_{-z_{-} s}$ $is_{-z_{-} u}$		lassoc1	
$is_{-z} \rightarrow s$		lassoc2	
<i>is_z_</i> ⇒		lassoc3	
<i>is</i> - <i>z</i> -⊆		lassoc4	
$is_{-}z_{-}\theta$		lassoc5	
$isz imes\dots$		last[X]	
$is_{-}z_{-}$		last	
is_z		LeftAssoc	
is_\varnothing		$\vec{LEFT}_{-}C$	
$is_{-\epsilon}$. 95	$lemma_tac$	253
$is_\exists_1 \ldots \ldots \ldots$. 94	LEMMA_T	253
is_\exists	. 95	length	. 23
$is_\mathbb{N}$		<i>less</i>	. 23
is_\forall	. 94	let_conv	173
$is_{-}\lambda$		<i>lex</i>	
$is_\land\ldots\ldots$		lindex	
$is_{-} \Leftrightarrow \dots \dots \dots \dots \dots$		$line_length$	
is _¬		ListerSupport	. 75
$is_{-}\lor\dots\dots$		LISTER_SECTION	
$is_ \rightarrow _type$		listing_indent	
<i>is</i> _⇒		ListSaveThm	
is_×_type		ListUtilities	_
$items[X] \dots \dots \dots$		list_asm_ante_tac	
$items \dots \dots$		list_cup	
iterate		list_diag_string	
iter[X]		$list_divert$	
i_contr_tac		LIST_DROP_ASM_T	
$egin{array}{lll} I & \dots &$		$list_e_enter$	
KERNEL_INFERENCE		LIST_GET_ASM_T	
$kernel_interface_diagnostics$		LIST_GET_ASM_T LIST_GET_NTH_ASM_T	
KERNEL_STATE_CHANGE		$list_mk_app$	
key_dest_const		$list_mk_app$	
key_dest_ctype		$list_mk_bin_op$	
key_mk_const		$list_mk_let$	
key_mk_ctype		$list_mk_simple_\exists$	
KIAsmRule		$list_mk_simple_$ \forall	
1111101101101000	140	vvov_nove_ovnopvc_v	. 91

$listmksimple\lambda$	96	LSParents	
$listmk\epsilon$		LSTerminators	. 75
$listmk\exists$	98	LSThms	. 75
$listmk \forall \dots $	98	LSTrailer	
$listmk\lambda$	98	LSTypeAbbrevs	. 75
$listmk\wedge \dots \dots$	97	LSTypes	. 75
$listmk\lor \dots \dots$	97	LSUndeclaredAliases	. 75
$listmk \rightarrow type \dots$	97	$LSUndeclared Terminators \dots \dots \dots \dots$. 75
$listmk \Rightarrow \dots $	98	$LSUndeclaredTypeAbbrevs\dots\dots$. 75
$list_net_enter$. 117	$lub_R \dots \dots $	472
<i>list_oe_merge</i>	40	$lub_R \dots \dots$	474
$list_overwrite \dots \dots$	24	make_net	117
$list_raw_diag_string \dots \dots$	67	make_term_order	300
list_roverwrite	24	$map filter \dots \dots$. 24
$list_save_thm \dots \dots$. 142	$MAP_{-}C$	175
$list_simple_\exists_intro$. 174	MAP_EVERY_T	257
$list_simple_\exists_tac$. 255	MAP_EVERY	257
$list_simple_\forall_elim$		MAP_FIRST_T	257
$list_simple_\forall_intro$		<i>MAP_FIRST</i>	
$list_spec_asm_tac$		map_shape	
LIST_SPEC_ASM_T		$max \dots \dots$	
$list_spec_nth_asm_tac$		max	
LIST_SPEC_NTH_ASM_T		mem	
$list_swap_asm_concl_tac \dots \dots \dots \dots \dots$		MERGE_PCS_C1	
LIST_SWAP_ASM_CONCL_T		MERGE_PCS_C	
$list_swap_nth_asm_concl_tac\dots$		merge_pcs_rule1	
LIST_SWAP_NTH_ASM_CONCL_T		merge_pcs_rule	
$list_term_union$		MERGE_PCS_T1	
list_union		MERGE_PCS_T	
$list_variant$		merge_pcs	
$list_{-} \forall a lim$		merge_pc_fields	
$list_ orall _intro$		merge	
$list_ \land _intro$		MESSAGE	
load_files		Microseconds	
local_error		Middle	
local_warn		Milliseconds	
LockTheory		min	
lock theory		min	
lookahead		mk_app_rule	
$look_at_next$		mk_app_raie	
$look_up_general_reader$		mk_app	
- •			
look_up_named_reader		mk_bin_op	
$look_up_specific_reader$		mk_cnst	
LSADNesteustructure			
		mk_ctype	
LSADStrings		mk_dollar_quoted_string	
LSADString		mk_empty_list	
LSADTables		mk_enum_set	
LSADTerms		mk_eq	
LSADThms		mk-float	
LSADTypes		$mk_{-}f$	
LSAliases		mk- if	
LSAxioms		$mk_let\dots$	
LSBanner		mk_list	
LSChildren		$mk_mon_op \dots \dots$	
LSConsts		$mk_multi_\neg \dots \dots$	
LSDefns		$mk_{-}pair$	
LSFixity	75	mk_set_comp	103

mk_simple_binder	103	$mkz\Delta_s$	371
mk_simple_term	104	$mkz\exists_{1s}\ldots\ldots\ldots\ldots$	374
$mk_simple_type \dots \dots \dots \dots \dots \dots$	104	$mkz\exists_1\ldots\ldots\ldots$	375
$mk_simple_\exists_1 \ldots \ldots$	104	$mkz\exists_s$	
mk_simple_\exists	105	$mkz\exists$	
mk_simple_\forall	104	$mkz\mathbb{P}$	
mk_simple_λ	105	$mk_{-}z_{-}\mathbb{R}_{-}abs$	
$mk_string \dots \dots \dots \dots \dots \dots$		$mk_{-}z_{-}R_{-}frac$	
mk_term		$mk_{-}z_{-}R_{-}greater$	
mkt		$mk_{-}z_{-}R_{-}less$	
mku		$mk_{-}z_{-}R_{-}minus$	
$mk_vartype$		$mk_{-}z_{-}\mathbb{R}_{-}over$	
$mk_{-}var$		$mk_{-}z_{-}\mathbb{R}_{-}plus$	
mkzabs		$mk_{-}z_{-}R_{-}subtract$	
mkzapp		$mk_{-}z_{-}\mathbb{R}_{-}times$	
mkz binding		$mk_{-}z_{-}\mathbb{R}_{-}\mathbb{Z}_{-}exp$	
mkzdecl		$mkz\mathbb{R} \ge \dots$	
$mkzdecor_s$		$mk_{-}z_{-}\mathbb{R}_{-}\leq\dots$	
mkzdec		$mkz\forall_s$	
mkzdiv		mkz \forall	
mkzeq		$mkz \ge \dots$	
mkzfalse		$mkz\in$	
mkzfloat		$mkz\lambda$	
mkzgiventype		$mkz \wedge_s$	
mkzgreater		$mkz \land \dots $	
$mk_{-}z_{-}gvar$		$mkz \Leftrightarrow_s$	
$mk_z z_n nue_s$ $mk_z z_n t_s chema$		$mkz\Leftrightarrow$ $mkz\leq$	
mkzitschema		$mk_{-}z_{-} \leq mk_{-}z_{-} - mk_{-}z_{-} = mk_{-}z_{-} + $	
mkzij		mkz's mkz ¬	
mk_z_less		$mk_{-}z_{-}$ \\ $mk_{-}z_{-}$	
mkzless		$mkz \lor s$	
mkzlet		$mk_{-}z_{-}v$	
mkzminus		$mk_{-z-\lceil s \rceil}$	
mkzmod		$mkz _s$	
mkzplus		$mkz\Rightarrow_s$	
$mk_z z_p ower_t type$		$mkz \Rightarrow \dots \dots \dots \dots \dots$	
$mkzpe_s$		$mkz\subseteq\dots\dots\dots$	
mkzreal		$mkz\theta$	
$mkzrename_s$		$mkz imes \dots \dots$	
mkzschemadec		$mkz\Xi_s$	
mkzschemapred		$mk\varnothing$	
mkzschematype		$mk_{-\epsilon}$	
$mkzsel_s$		$mk_{-}\exists_{1}\ldots\ldots\ldots\ldots$	
$mkzsel_t$		mk _ \exists	
mkzseta		$mk_{-}\mathbb{N}$	108
mkzsetd	369	$mk_{-}\forall \ldots \ldots \ldots$	
mkzsignedint	514	$mk_{-}\lambda$	108
mkz string		$mk \wedge \dots \dots \dots \dots \dots$	106
mkzsubtract		$mk \Leftrightarrow \dots $	106
mkzterm	370	mk_{-}	107
mkztimes	514	$mk\lor$	106
mkztrue	370	mk_{\rightarrow}_type	106
$mk_{-}z_{-}tuple_{-}type$	370	$mk_{-} \Rightarrow \dots$	
mkztuple		$mk \times type \dots$	
mkztype		$modify_goal_state_thm$	
$mk_{-}z_{-}var_{-}type$		$modus_tollens_rule \dots \dots \dots \dots$	
$mkz\langle\rangle$	372	$named_quotation$. 61

<i>NAME_CLASS</i>	$once_rewrite_thm_tac$	263
natural_of_string 39	one	39
nat_of_string	on_kernel_inference	
<i>NetTools</i>	$on_kernel_state_change \dots \dots \dots$	
<i>net_enter</i>	OpenTheory	
net_lookup	$open_append$	
<i>NET</i>	$open_{-}in$	
<i>NewAxiom</i>	$open_out$	
<i>NewConst</i>	$open_theory$	
<i>NewParent</i>	OPT	
<i>NewSpec</i>	ORELSE_CAN	
NewTheory 131	ORELSE_C	
NewTypeDefn 131	ORELSE_TTCL	
NewType 131	ORELSE_T	
new_axiom 143	ORELSE	
new_conjecture 150	$output_theory1$	
new_const 143	$output_theory$	
new_error_message	$output \dots \dots$	
new_flaq 46	outstream	
new_init_fun	overwrite	
$new_int_control$	pair_eq_conv	
new_parent 143	pair_rw_canon	
new_pc	pass_on	
new_pe	PC_C1	
· · · · · · · · · · · · · · · · · · ·	$PC_{-}C$	
new_spec 144 new_string_control 46	pc_rule1	
· ·	pc_rule	
<i>new_theory</i>	<i>PC_T11</i>	
new_type_defn	$PC_{-}T$	
<i>new_type</i>		
Nil	pending_push_extend_pcs	
Nonfix	$pending_push_extend_pc$	
Normalisation	pending_push_merge_pcs	
not_z_subterms	pending_push_pc	
no_submatch_tt	pending_reset_control_state	
no_substring_tt	pending_reset_error_messages	
no_subterm_tt	pending_reset_kernel_interface	
nth	pending_reset_pc_database	
num_lit_of_string	pending_reset_pc_evaluators	328
oe_delete	pending_reset_pc_stack	
<i>OE_DICT</i>	$pending_reset_subgoal_package$	
oe_enter	plus_conv	
oe_extend	poly_conv	
oe_flatten	$POP_{-}ASM_{-}T$	
oe_key_delete	pop_pc	
oe_key_enter	pop_thm	
oe_key_extend	Postfix	
oe_key_flatten	pp'change_error_message	
oe_key_lookup	$pp'database_info$	
oe_lookup	pp'error_init	
oe_merge	$pp'reset_database_info$	
once_asm_rewrite_rule	pp'set_banner	
$once_asm_rewrite_tac$	$pp'set_database_info$	
$once_asm_rewrite_thm_tac$	$pp'set_eval_ad_cs_\exists_convs$	
$ONCE_MAP_C$	$pp'set_eval_ad_nd_net$	
$ONCE_MAP_WARN_C$	$pp'set_eval_ad_rw_canon$	
once_rewrite_conv	$pp'set_eval_ad_rw_net$	
once_rewrite_rule	$pp'set_eval_ad_sc_conv \dots \dots$	
$once_rewrite_tac \dots 263$	$pp'set_eval_ad_st_conv \dots \dots \dots \dots \dots \dots$	329

$pp'set_eval_ad_\exists_cd_thms$	$pure_asm_rewrite_thm_tac \dots 265$
$pp'set_eval_ad_\exists_vs_thms$	$pure_once_asm_rewrite_rule$
$pp'theory_hierarchy$ 50	$pure_once_asm_rewrite_tac \dots 263$
pp' TS	$pure_once_asm_rewrite_thm_tac \dots 265$
<i>pp' TypesAndTerms</i>	pure_once_rewrite_conv
PPArray	pure_once_rewrite_rule 184
<i>PPString</i>	pure_once_rewrite_tac
<i>PPVector</i>	$pure_once_rewrite_thm_tac$
<i>pp_format_depth</i>	pure_rewrite_conv
pp_init	pure_rewrite_rule
<i>pp_list</i>	pure_rewrite_tac
$pp_make_database$	$pure_rewrite_thm_tac$
$pp_print_assumptions$	push_back
$pp_print_ussumptions$ 73 $pp_top_level_depth$	push_extend_pcs
pp	$push_extend_pc$
predicates1	push_goal_state_thm
predicates	push_goal_state
<i>Prefix</i>	push_goal
present	push_merge_pcs
PrettyNames 57	$push_pc$
<i>PrettyPrinter</i>	<i>quantifier</i>
<i>PRETTY_NAME</i>	$quit \dots \dots$
prim_res_rule 313	$RANDS_{-}C$
$prim_rewrite_conv$	$RAND_{-}C$
$prim_rewrite_rule$	ran[X, Y]
$prim_rewrite_tac$	ran
<i>prim_suc_conv</i> 180	rassoc1 25
<i>print_banner</i>	rassoc2
print_current_goal	rassoc3
print_goal_state	rassoc4
$print_goal$	rassoc5
$print_stats$	$RATOR_{-}C$
$print_status$	raw_diag_line
$print_theory$	raw_diag_string
Profiling	ReaderWriterSupport
profiling	ReaderWriter 55
prof	READER_ENV
prompt1	
prompt2	READER_FUNCTION
ProofContexts1	read_stopwatch
ProofContext 341 315	read_symbol
· ·	
PROOF	real
Propositional Equality	real
prop_eq_pair 293	$redo \dots 226$
prop_eq_prove_tac	refl_conv
prop_eq_rule	rel
$PROP_EQ_T$	rel
propeq	rel
prove_asm_rule	rel
prove_conv	rel
prove_rule 331	$rename_tac$
prove_tac	rename
prove_thm 260	REPEAT_C1 182
<i>prove</i> _∃_ <i>conv</i>	REPEAT_CAN 182
<i>prove</i> _∃_ <i>rule</i>	$REPEAT_{-}C$
$prove_\exists_tac$	$REPEAT_MAP_C$
pure_asm_rewrite_rule	$REPEAT_N_T$
$pure_asm_rewrite_tac$	REPEAT_N

REPEAT_TTCL 262	sets_ext	354
<i>REPEAT_T</i> 262	SetUserDatum	131
REPEAT_UNTIL1 262	$set_check_is_z$	381
REPEAT_UNTIL_T1 262	$set_compactification_cache$	130
$REPEAT_UNTIL_T$	$set_controls$	
<i>REPEAT_UNTIL</i>	$set_cs_\exists_convs$	
repeat	$set_current_language \dots \dots \dots \dots \dots$	
<i>REPEAT</i> 262	set_error_messages	
reraise	set_extend_pcs	
reset_controls	set_extend_pc	
reset_flags	set_flags	
reset_flag	set_flag	
reset_int_controls	set_goal	
reset_int_control	set_int_controls	
reset_stopwatch	set_int_control	
reset_string_controls	set_labelled_goal	
reset_string_control	set_line_length	
reset_use_terminal	set_merge_pcs	
Resolution	set_mmp_rule	
resolve_alias	set_nd_entry	
$restore_defaults$	set_pc	
RES_DB_TIFE 303 revfold 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
rev[X]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
rev	$set_rw_eqm_rule$	
$REWRITE_CAN$	$set_rw_eqn_cxt$	
rewrite_conv	$set_sc_eqn_cxt$	
$REWRITE_MAP_C$	set_stats	
rewrite_rule	$set_string_controls$	
rewrite_tac	set_string_control	
$rewrite_thm_tac$	$set_st_eqn_cxt$	
Rewriting 153	set_user_datum	
RightAssoc 69	$set_u_simp_eqn_cxt$	
<i>RIGHT_C</i>	$set_variant_suffix$	
rollback	$set_\exists_cd_thms$	
ROTATE_T 264	$set_\exists_vs_thms$	
roverwrite	$show_term$	
$RW_diagnostics$	$show_thm \dots \dots$	
Save Thm	$show_type$	
save_and_exit	Simple Dictionary	
save_and_quit	SimpleNewDefn	
save_as	SimpleOutput	
save_pop_thm 227	$SIMPLE_BINDER_C$	185
save_thm 146	$simple_eq_match_conv1 \dots \dots \dots \dots \dots$	186
save	$simple_eq_match_conv\ldots\ldots$	185
scratch 36	$simple_ho_eq_match_conv1$	187
scratch	$simple_ho_eq_match_conv\dots$	186
Seconds	$simple_ho_thm_eqn_cxt$	340
second[X, Y]	$simple_new_defn\dots$	147
second	$simple_tac_proof$	264
Separator	$simple_taut_tac\dots$	
$seq X \dots 483$	$simple_\alpha_conv\ldots$	
seq	$simple_\beta_conv$	
$seq_1 X \dots 483$	$simple_{-}\beta_{-}\eta_{-}conv\dots$	
seq_1	$simple_{-}\beta_{-}\eta_{-}norm_{-}conv$	
SEQ	$simple_\epsilon_elim_rule$	
sets_ext1	$simple _ \exists _elim $	
sets_ext 353	$simple_\exists_intro$	190

$simple_\exists_tac$	267	$string_of_e_key$. 33
$SIMPLE_\exists_THEN$	268	string_of_float	. 39
$simple_\exists_\epsilon_conv$	190	$string_of_int3$. 65
$simple_\exists_\epsilon_rule$	191	$string_of_integer$. 39
$simple_\exists_\forall_conv1$	190	$string_of_int$	
$simple _ \exists _ \forall _ conv \dots \dots$	190	$string_of_term$	
$simple_{-}\exists_{1-}conv$	268	$string_of_thm$	147
$simple_\exists_1_elim$		$string_of_type$	
$simple_\exists_1_intro$		$string_variant$	
$simple_\exists_1_tac$		String	
$SIMPLE_\exists_1_THEN$		STRING	
$simple_\forall_elim$		$strip_app$	
$simple _ \forall _intro \dots \dots$		$strip_asm_conv$	
$simple_\forall_rewrite_canon\dots$		$strip_asm_tac$	
$simple_\forall_tac$		$strip_binder$	
$simple _ \forall _ \exists _conv \dots$		$strip_bin_op$	
$SIMPLE_{-}\lambda_{-}C$		$strip_concl_conv$	
$simple_{-}\lambda_{-}eq_{-}rule$		strip_concl_tac	
$simple_\Leftrightarrow_match_mp_rule1$		STRIP_CONCL_T	
$simple_\Leftrightarrow_match_mp_rule$		strip_leaves	
$simple_\lnot_in_conv$		strip_let	
simple_¬_in_tac		strip_simple_binder	
$SIMPLE_\lnot_IN_THEN$		$strip_simple_\exists$	
$simple_\neg_rewrite_canon$		$strip_simple_orall$	
$simple \rightarrow match_mp_rule1$		strip_spine_left	
simple ⇒ match mp_rule2		$strip_spine_right \dots \dots$	
$simple_\Rightarrow_match_mp_rule$		STRIP_THM_THEN	
Simple		STRIP_T	
$simple:$ $simplify_goal_state_thm$		$strip_{-\epsilon}$	
skip_and_look_at_next		$strip_{-}$ \exists	
skip_comment		$strip_{-} \forall$	
SML97BasisLibrary		$strip_{-}\lambda$	
SML_recogniser		$strip_ \land_rule \dots$	
snd		$strip \land \dots $	
SOLVED_T		$strip_{-}\lor$	
sorted_listings		$strip_\Rightarrow_rule$	
sort_conv		$strip_\rightarrow_type$	
Sort		$strip_{-} \Rightarrow \dots $	
sort		$SubgoalPackage \dots \dots$	
SparseArray		$subgoal_package_quiet$	
SPARSE_ARRAY		$subgoal_package_size$	
specific_quotation		$subgoal_package_ti_context \dots \dots \dots \dots$	
$spec_asm_tac$		subset	
SPEC_ASM_T		$subst_conv$	195
$spec_nth_asm_tac$	270	$subst_rule \dots \dots$	196
$\widehat{SPEC}_{-}NTH_{-}ASM_{-}T$		subst	113
<i>split3</i>	. 26	<i>SUB_C1</i>	197
$split \dots \dots$. 26	SUBC	197
squash[X]		sub_opt	. 36
squash		sub_opt	
Starting		$sub \dots \dots$	
std_err	. 41	$sub \dots \dots$. 38
std_in	. 41	succ	462
std_out	. 41	$succ\dots$	464
$step_strip_asm_tac \dots \dots$		suc_conv	
$step_strip_tac$		$swap_asm_concl_tac$	
string_conv	194	$SWAP_ASM_CONCL_T$	276

$swap_nth_asm_concl_tac$	75	<i>Text</i>	70
$SWAP_NTH_ASM_CONCL_T$ 2	76	<i>TFun</i>	151
$swap_ \lor_ tac \ldots 2$		THEN1	
swap		THEN_CAN	
switch		$THEN_{-}C$	
SymbolTable		$THEN_LIST_CAN$	
SYMBOL		THEN_LIST_T	
SymCharacter		THEN_LIST	
SymDoublePercent		THEN_T1	
v .		THEN_TRY_C	
SymEndOfInput			
SymKnown		THEN_TRY_LIST_T	
SymUnknownChar		THEN_TRY_LIST	
SymUnknownKw		THEN_TRY_TTCL	
SymWhite		$THEN_{-}TRY_{-}T$	
SystemControl		$THEN_{-}TRY$	
$system_banner$		THEN_TTCL	
system		$THEN_{-}T$	
$s_{-}delete$	32	THEN	280
$S_{-}DICT$	19	THEORY_INFO	120
senter	32	theory_names	140
s_extend	32	THEORY_STATUS	119
s_lookup	32	$theory_u_simp_eqn_cxt$	383
<i>s_merge</i>		THEORY	
S		thmeqncxt	
<i>Tactics1</i>		$thm_{-}fail$	
Tactics2		THM_INFO_TEST	
Tactics3		THM_INFO	
$tactic_subgoal_warning$		thm_level	
TACTIC 2		THM_TACTICAL	
tac_proof		THM_TACTIC	
tail[X]4		thm_theory	
tail		$THM_{\perp}TYPE$	
<i>TAll</i>		THM	
		TIMED	
<i>TAny</i>			
taut_conv		TIMER_UNITS	
taut_rule		time_app	
taut_tac		Timing	
term_any 1		<i>tl</i>	
term_consts		TNone	
$term_{-}diff$		$TooManyReadEmpties \dots \dots \dots \dots \dots$	
$term_{-}fail \dots 1$		TOP_ASM_T	
$term_{-}fold$		$top_current_label$	
$term_{-}grab$		top_goals	
term_less 1	14	$top_goal_state_thm \dots \dots \dots \dots \dots \dots$	228
$term_map$	14	top_goal_state	229
$term_match \dots 1$	14	top_goal	229
$term_mem$	14	$top_labelled_goal \dots \dots \dots \dots \dots \dots$	229
term_order	02	top_main_goal	229
<i>term_tycons</i>		TOP_MAP_C	
<i>term_types</i>		<i>top_thm</i>	229
term_tyvars		to_ML_string	
$term_unify$		to	
$term_union$		$translate_for_output$	
$term_vars$		$TRY_{-}C$	
Term		TRY_TTCL	
TERM		$TRY_{-}T$	
<i>TEST</i>		TRY	
texdvi		TSAncestor	
<i></i>	τO	I D211000001	$_{\perp}_{\perp}_{\mathcal{J}}$

TSDeleted	119	var_subst	116
TSLocked	119	Var	
TSNormal	119	$v_{-}\exists_{-}intro$	200
<i>TTAxiom</i>	151	<i>Warning</i>	. 52
<i>TTDefn</i>	151	warn	. 52
<i>TTSaved</i>	151	which	. 27
TypesAndTerms	. 79	<i>xpp</i>	. 11
<i>type_any</i>	115	$X \rightarrow Y \dots \dots \dots$	452
type_fail	115	$X \leftrightarrow Y$	489
$type_map$		$X \rightarrowtail Y \dots \dots \dots \dots$	452
type_match1		$X \to Y$	489
type_match	115	$X \twoheadrightarrow Y \dots \dots \dots$	
type_of		$X \rightarrowtail Y$	
type_order		$X \rightarrowtail Y \dots$	
type_tycons		$X \Rightarrow Y$	
type_tyvars		$X \rightarrow Y$	
Type		$X \twoheadrightarrow Y$	
TYPE		Z'Float	
$t_{-}tac$		Z' Float	
$t_{-}thm$		z' quillemets_def	
UD_Int		z' if $_{-}$ def	
UD_String		z' int_def	
<i>UD_Term</i>		z' int def	
$UD_{-}Type$		Z'Int	
uindex		z' underlining_brackets_def	
uindex		z unaernning_orackets_aef	
uncurry		ZApp	
		ZArithmetic Tools	
undeclare_alias			
undeclare_terminator		ZBags	
undeclare_type_abbrev		ZBinding	
undisch_rule		ZDecl	
$undo_buffer_length \dots \dots \dots \dots \dots$		$ZDecor_s$	
undo		ZDec	
union		zed_list	
UnlockTheory		zed	
unlock_theory		$ZEq \dots \dots \dots$	
$update \dots \dots$		zero	
update		ZExpressions	
$user_banner$		ZFalse	
USER_DATA		ZFloat	
USER_DATUM		ZFunctions1	522
$use_extended_chars$		ZFunctions	
use_file1		$ZGivenType \dots ZGivenType \dots$	360
$use_file_non_stop_mode$		ZGVar	
use_file	. 66	$ZHide_s$	360
use_string	. 66	ZHSchema	360
$use_terminal$. 66	ZInt	360
UtilitySharedTypes	. 19	zip	. 27
$u_simp_eqn_cxt$	384	ZLet	360
$valid_thm \dots \dots$	148	ZLibrary	527
Value	. 19	ZLVar	360
$variant \dots \dots$	116	ZNumbers1	522
$varstruct_variant$	200	ZNumbers	510
<i>Vartype</i>	. 79	$ZPowerType\dots$	360
$var_elim_asm_tac$		ZPredicateCalculus	
	281	$ZPre_s$	360
$var_elim_nth_asm_tac$	281	ZRelations	
VAR_ELIM_NTH_ASM_T		ZRename,	

ZSchemaCalculus	432	z_count_def	528
ZSchemaDec		$z_cov_induction_tac\dots$	514
ZSchemaPred	360	$z_cov_induction_thm \dots \dots \dots \dots$	468
ZSchemaType	360	$z_{-}cov_{-}induction_{-}thm \dots \dots \dots \dots \dots$	516
$ZSel_s \dots ZSel_s \dots$	360	ZDECLC	387
$ZSel_t \dots ZSel_t \dots$	360	ZDECLINTROC	387
ZSequences1	522	$z_{-}decl_{-}pred_{-}conv$	388
ZSequences	522	$z_{-}decor_{s-}conv$	433
ZSeta	360	$z_{-}dec_{-}pred_{-}conv \dots \dots$	389
ZSetd	360	$z_{-}dec_{-}rename_{s_{-}}conv$	433
ZSets	493	$z_{-}defn_{-}simp_{-}rule$	424
ZString	360	z_{-} disjoint_def	
ZTrue		zdivconv	
ZTupleType	360	$z_div_mod_unique_thm \dots$	468
ZTuple		$z_{-}div_{-}mod_{-}unique_{-}thm$	
ZTypesAndTerms		zdivthm	
ZVarType		zdivthm	
$z_0_{less_times_thm}$		$z_{-}dom_{-}clauses$	481
$z_0_{less_times_thm}$		$z_{-}dom_{-}def$	
z_0 _ $\mathbb{N}_t thm$		$zdomf \longrightarrow fthm \dots \dots$	
$z_0 = N_t + m$		$z_{-}dom_{-}f_{-} \rightarrow f_{-}thm \dots \dots$	
$z_abs_0-less_thm$		$zdomf\leftrightarrowfthm$	
$z_abs_0_les_thm \dots$		$z_{-}dom_{-}f_{-} \leftrightarrow_{-}f_{-}thm$	
z_abs_conv		$zdomf \longrightarrow fthm$	
$z_abs_eq_0_thm \dots \dots \dots \dots \dots$		$zdomf \longrightarrow fthm$	
$z_abs_eq_0thm \dots \dots \dots \dots \dots$		$z_{-}dom_{-}f_{-} \rightarrow f_{-}thm$	
$z_abs_minus_thm \dots \dots$		$z_{-}dom_{-}f_{-} \rightarrow f_{-}thm$	
$z_abs_minus_thm$		$z_{-}dom_{-}f_{-} \rightarrow f_{-}thm$	
$z_abs_neg_thm \dots \dots$		$z_{-}dom_{-}f_{-} \rightarrow f_{-}thm$	
$z_abs_neg_thm \dots \dots$		$z_{-}dom_{-}seqd_{-}thm$	
$z_abs_plus_thm \dots \dots$		$z_{-}dom_{-}seqd_{-}thm\dots$	
$z_abs_plus_thm \dots \dots$		$z_{-}dom_{-}seq_{-}thm\dots$	
$z_abs_pos_thm$		$z_{-}dom_{-}seq_{-}thm\dots$	
$z_abs_pos_thm$		$z_{-}dom_{-}thm$	
z_abs_thm		z_dom_^_thm	
z_abs_thm		z_dom_^_thm	
$z_abs_times_thm$		$z_{-}dom_{-}\oplus_{-}\mapsto_{-}thm$	
$z_abs_times_thm$		$z_{-}dom_{-}\oplus_{-}\mapsto_{-}thm$	
$z_abs_N_thm$		$z_dot_dot_clauses\dots$	
$z_abs_N_thm$		$z_dot_dot_clauses$	
$z_abs_{-} \leq _times_thm \dots$		$z_dot_dot_conv$	
$z_abs_{-} \leq times_thm$		$z_{-}dot_{-}dot_{-}def$	
$z_a n f_c conv$		$z_{-}dot_{-}dot_{-}diff_{-}thm$	
z_app_conv		$z_{-}dot_{-}dot_{-}diff_{-}thm$	
$z_app_eq_tac\dots$		$z_{-}dot_{-}dot_{-}plus_{-}thm$	
$z_app_thm \dots \dots$		$z_{-}dot_{-}dot_{-}plus_{-}thm$	
$z_app_=\in thm \dots$		$z_{-}dot_{-}dot_{-}\cap_{-}thm$	
$z_{-}app_{-}\lambda_{-}rule$		$z_{-}dot_{-}dot_{-}\cap_{-}thm$	
z arith def		$z_{-}dot_{-}dot_{-}\cup_{-}thm$	
z_bag_def		$z_{-}dot_{-}dot_{-}\cup_{-}thm$	
$z_{-}basic_{-}prove_{-}conv$		$zempty\mathbb{F}thm$	
$z_{-}basic_{-}prove_{-}tac$		$zempty\mathbb{F}thm$	
$z_bindingd_elim_conv$		$zempty \twoheadrightarrowthm \dots \dots$	
$z_bindingd_intro_conv$		$z_{-empty_} \rightarrow thm \dots$	
$z_binding_eq_conv1$		$z_{-fc_prove_conv}$	
$z_binding_eq_conv2$		$z_{-f}c_{-prove_tac}\dots$	
$z_binding_eq_conv3$		z_first_def	
$z_binding_eq_conv$		z_{-first_thm}	
J 1	-		

z_{-} first_thm	499	$z_{-}less_{-}trans_{-}thm$	467
$z_{-} float_{-} conv \dots \dots$	531	$z_less_trans_thm$	516
$z_{-} float_{-} thm \dots \dots$	477	$z_{less} \mathbb{Z}_{less}$ thm	449
$z_{-} float_{-} thm \dots \dots$	533	$z_{less} \mathbb{Z}_{less}$ thm	521
$z_{-}front_{-}def$	522	$z_less_ \leq _trans_thm \dots$	467
$z_{-}fun_{-}app_{-}clauses$	454	$z_less_ \leq _trans_thm \dots$	516
$z_{-}fun_{-}app_{-}clauses$	510	$z_{-}let_{-}conv1$	424
$z_{fun_dom_clauses}$	454	z_let_conv	424
z_{-} fun_dom_clauses	510	$z_library1_ext$	528
z_{-} fun_ext	509	$z_{-}library1$	528
$z_{-fun_ran_clauses}$	454	$z_{-library_ext}$	
$z_{-fun_ran_clauses}$		$z_{-}library$	
$z_{-}fun_{-} \in clauses \dots $		$z_{-}lin_{-}arith1$	
$z_{-}fun_{-} \in clauses \dots $		z_lin_arith	
$z_{-gen_pred_elim1} \dots \dots \dots \dots \dots \dots$		$z_{-}max_{-}def$	
$z_{-gen_pred_elim} \dots \dots$		$z_minus_clauses$	
$z_gen_pred_intro$		$z_minus_clauses$	
$z_gen_pred_tac$		z_minus_thm	
$z_{-gen_pred_u_elim} \dots \dots$		z_minus_thm	
z_{-get_spec}		$z_{-minus_times_thm} \dots \dots$	
$z_greater_less_conv$		$z_{-minus_times_thm}$	
$z_{-grither}$ z_{-thm} z_{-thm}		$z_{minus}N_{\leq thm}$	
z guillemets_thm		z_{-minus} $N \le thm$ z_{-minus}	
$zyautemets_tun$ $zhash_def$		z_{-min_def}	
z _hash_aej		z_{-min_aej}	
z-head-aej		z_mod_tome	
z h $schema$ $conv$		z_mod_thm	
z_{-h} -schema_pred_conv		z_moa_um $z_norm_h_schema_conv$	
z_{-id} -schema_prea_conv		$z_n n m_n s chema_c conv$ $z_n n m_l i s t_l t m$	
$z_{-}ia_{-}ciauses$		$z_num_nust_num$ $z_nutput_nust_num$	
$z_{-}ia_{-}aef$ $z_{-}id_{-}thm1$		-	
z_{-ia_thm1}		$z_{-}output_{-}theory$	
$z_i d_i thm \dots z_i d_i \cdots d_i d_i \cdots $		z_para_pred_conv	
$z_i d \rightarrow z_i d \rightarrow thm$		z_partition_def	
$z_i d \rightarrow -thm$		z_pigeon_hole_thm	
$z_{-}if_{-}thm$		$z_pigeon_hole_thm$	
$z_{-}if_{-}thm$		z_plus0_thm	
$z_{-inequality_def}$		z_plus0_thm	
$z_intro_gen_pred_tac \dots \dots$		zplusassocthm1	
$z_{-intro} - \forall_{-tac} \dots \dots$		zplusassocthm1	
$z_{-int_homomorphism_thm}$		zplusassocthm	
$z_{-int_homomorphism_thm}$		zplusassocthm	
$z_{-in_{-}}def$		$z_{-}plus_{-}clauses$	
$z_i seq_i def$		$z_plus_clauses$	
$z_{i}tems_{i}def$		$z_{-}plus_{-}comm_{-}thm$	
z_{-iter_def}		$z_{-}plus_{-}comm_{-}thm$	
z_language_ext		$z_{-}plus_{-}conv$	
$z_{-}language \dots \dots$		zpluscyclicgroupthm	
$z_{-}last_{-}def$		zpluscyclicgroupthm	
$Z_{-}LEFT_{-}C$		zplusminusthm	
$z_{-}less_{-}cases_{-}thm$		zplusminusthm	
$z_{-}less_{-}cases_{-}thm$		zplusorderthm	
$z_{-}less_{-}clauses$		$z_plus_order_thm \dots \dots$	
$z_{-}less_{-}clauses$	516	$z_{-}predicates \dots \dots$	
$z_{-}less_{-}conv$	518	$z_pred_decl_conv$	
$z_{-}less_{-}irrefl_{-}thm$	467	$z_pred_dec_conv$	
$z_{-}less_{-}irrefl_{-}thm$	516	$z_{-}pre_{s-}conv$	435
$z_{less_plus1_thm}$	468	$z_prim_seq_induction_thm \dots \dots \dots$	486

$z_prim_seq_induction_thm \dots \dots \dots$		$z_{-}seq_{-}def$	
z_print_fixity	. 78	$z_seq_induction_tac1$	524
z_print_theory		$z_seq_induction_tac \dots \dots$	524
$zpush_consistency_goal$	397	$z_seq_induction_thm1 \dots \dots \dots \dots$	487
$z_quantifiers_elim_tac\dots$	397	$zseqinduction_thm1 \dots \dots \dots \dots$	525
$Z_{-}RANDS_{-}C$	424	$zseqinductionthm \dots \dots \dots \dots \dots \dots$	487
$Z_{-}RAND_{-}C$	424	zseqinductionthm	525
$z_ran_clauses$	481	$z_seq_seq_x_thm$	487
z_ran_def	507	$z_seq_seq_x_thm$	525
$z_ran_mono_thm \dots \dots \dots \dots \dots \dots$	455	$z_seq_thm1 \dots \dots$	486
$z_ran_mono_thm \dots \dots$	526	$z_seq_thm1 \dots \dots$	525
$z_ran_seqd_thm \dots \dots$	488	$z_seq_thm \dots \dots$	486
$z_ran_seqd_thm \dots \dots$		$z_seq_thm \dots \dots$	
z_ran_thm		$z_{-seq_u_thm} \dots \dots$	
$z_ran\cupthm$		$z_{-seq_u_thm}$	
$z_ran\cupthm$		$z_{-seq_1-def} \dots \dots$	
$z_ran_{\prec} = thm$		$z_seta_false_conv$	
$z_ran_{-} \lhd_{-}thm$		z_setdif_def	
$z_reflex_closure_clauses$		$z_setd_\in \mathbb{P}_conv$	
z _reflex_trans_closure_thm		$z_setd_\subseteq_conv$	
z -rel_ext		z_sets_alg	
z _rel_image_clauses		$z_{-sets_ext_clauses}$	
$z_rel_image_def$		z_sets_ext_clauses	
z -rel_image_thm		$z_{-sets_ext_conv}$	
z -rel_inv_clauses		$z_{-sets_ext_thm}$	
z -rel_inv_def		z_sets_extz_sets_ext	
· ·		$z_set_dif_clauses$	
z_rel_inv_thm		· ·	
$z_rel_inv_\rightarrow _thm$		z_set_dif_clauses	
$z_rel_inv_{\rightarrow} thm \dots$		$z_{-}set_{-}dif_{-}thm$	
$z_rename_{s_r}conv$	436	$z_set_dif_thm \dots \dots$	
	F00	. 1 1 1 1	
z_rev_def		$z_simple_dot_dot_conv$	
Z_RIGHT_C	424	$z_simple_swap_\rightarrowtail_thm \dots \dots \dots$	456
Z_RIGHT_C z_rtc_def	$\begin{array}{c} 424 \\ 507 \end{array}$	$z_simple_swap_ \longrightarrow thm \dots z_simple_swap_ \longrightarrow thm z_simple_swap_ \longrightarrow thm z_simple_swap_ \longrightarrow thm z_simple_swap_ \longrightarrow thm z_simple_swap_ thm z_swap_ thm z_simple_swap_ thm z_simple_swap_ thm z_swap_ thm z_swa$	456 526
Z_RIGHT_C	424 507 398	$z_simple_swap_ \longrightarrow thm$	456 526 458
Z_RIGHT_C	424 507 398 436	$z_simple_swap_ \longrightarrow thm$	456 526 458 526
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	424 507 398 436 436	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	456 526 458 526 486
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	456 526 458 526 486 525
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	424 507 398 436 436 498 491	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	456 526 458 526 486 525 487
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498 491 499	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	456 526 458 526 486 525 487 525
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498 491 499 425	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	456 526 458 526 486 525 487 525 470
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498 491 499 425 506	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	456 526 458 526 486 525 487 525 470 523
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498 491 499 425 506 425	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	456 526 458 526 486 525 487 525 470 523 470
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498 491 499 425 506 425 425	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	456 526 458 526 486 525 487 525 470 523 470
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498 491 499 425 506 425 425 524	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	456 526 458 526 486 525 470 523 470 523 470
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498 491 499 425 506 425 425 524	$ \begin{array}{l} z_simple_swap \rightharpoonup \to thm \\ z_simple_swap \rightharpoonup \to thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_2_thm \\ \end{array} $	4566 5266 4588 5266 4867 5255 4700 5233 4700 5235 5236 5236 5236 5236 5236 5236 5236
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498 491 499 425 506 425 425 524 524	$ \begin{array}{l} z_simple_swap \rightharpoonup \to thm \\ z_simple_swap \rightharpoonup \to thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_0_thm \\ z_size_2_thm \\ z_size_0_thm \\ z_size_$	4566 5266 4588 5266 4866 5255 4700 5233 4700 5233 4700
Z_RIGHT_C z_rtc_def $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ $z_schema_pred_intro_conv$ z_second_def z_second_thm z_second_thm $z_sel_s_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_lang_conv$ $z_seqd_eq_conv$ $z_seqd_eq_thm$ $z_seqd_eq_thm$	424 507 398 436 436 498 491 499 425 506 425 425 524 488 525	$ \begin{array}{l} z_simple_swap \rightharpoonup \to thm \\ z_simple_swap \rightharpoonup \to thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_diff_thm \\ z_size_diff_thm \\ z_size_diff_thm \\ \end{array} $	456 526 458 526 486 525 470 523 470 523 470 523 523 470 523
Z_RIGHT_C z_rtc_def $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ $z_schema_pred_intro_conv$ z_second_def z_second_thm z_second_thm $z_sel_s_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_app_conv$ $z_seqd_app_conv$ $z_seqd_eq_conv$ $z_seqd_eq_thm$	424 507 398 436 436 498 491 499 425 506 425 425 524 488 525	$ \begin{array}{l} z_simple_swap \rightharpoonup \to thm \\ z_simple_swap \rightharpoonup \to thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_0_thm \\ z_size_2_thm \\ z_size_0_thm \\ z_size_$	456 526 458 526 486 525 470 523 470 523 470 523 523 470 523
Z_RIGHT_C z_rtc_def $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ $z_schema_pred_intro_conv$ z_second_def z_second_thm z_second_thm $z_sel_s_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_lang_conv$ $z_seqd_eq_conv$ $z_seqd_eq_thm$ $z_seqd_eq_thm$	424 507 398 436 436 498 491 499 425 506 425 425 524 524 488 525 488	$ \begin{array}{l} z_simple_swap \rightharpoonup \to thm \\ z_simple_swap \rightharpoonup \to thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_diff_thm \\ z_size_dot_dot_conv \\ z_size_dot_dot_thm1 \\ \end{array} $	456 526 458 526 486 525 487 523 470 523 470 523 470 523 470 523 470
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	424 507 398 436 436 498 491 499 425 506 425 425 524 488 525 488 525	$ \begin{array}{c} z_simple_swap \rightharpoonup thm \\ z_simple_swap \rightharpoonup thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_dot_dot_conv \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ \end{array} $	456 526 458 526 486 525 470 523 470 523 470 523 470 523 470 523 470 523 525 470 523
Z_RIGHT_C z_rtc_def $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ $z_schema_pred_intro_conv$ z_second_def z_second_thm z_second_thm $z_sel_s_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_lang_conv$ $z_seqd_eq_conv$ $z_seqd_eq_thm$ $z_seqd_eq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$	424 507 398 436 436 498 491 499 425 506 425 425 524 488 525 488 525 488	$ \begin{array}{l} z_simple_swap \rightharpoonup \to thm \\ z_simple_swap \rightharpoonup \to thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_diff_thm \\ z_size_dot_dot_conv \\ z_size_dot_dot_thm1 \\ \end{array} $	456 526 458 526 486 525 470 523 470 523 470 523 470 523 470 523 470 523 525 470 523
Z_RIGHT_C z_rtc_def $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ z_second_def z_second_thm z_second_thm $z_sel_s_conv$ $z_sel_t_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_lang_conv$ $z_seqd_app_conv$ $z_seqd_eq_thm$ $z_seqd_eq_thm$ $z_seqd_eq_thm$ $z_seqd_e_seq_thm$	424 507 398 436 436 498 491 499 425 506 425 425 524 488 525 488 525 488 525	$ \begin{array}{c} z_simple_swap \rightharpoonup thm \\ z_simple_swap \rightharpoonup thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_dot_dot_conv \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ \end{array} $	456 526 458 526 486 525 470 523 524 525 525 525 525 525 525 525
Z_RIGHT_C z_rtc_def $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ z_second_def z_second_thm z_second_thm $z_sel_s_conv$ $z_sel_t_conv$ $z_sel_t_intro_conv$ $z_sel_t_lang_conv$ $z_sel_t_lang_conv$ $z_seqd_eq_thm$ $z_seqd_eq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$	424 507 398 436 436 498 491 499 425 506 425 425 524 488 525 488 525 488	$ \begin{array}{c} z_simple_swap_ \rightarrowtail_thm \\ z_simple_swap_ \rightarrowtail_thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_dot_dot_conv \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm2 \\ z_size_dot_dot_dot_thm2 \\ z_size_dot_dot_dot_dot_dot_dot_dot_dot_dot_dot$	456 526 458 526 486 525 470 523 470 523 470 523 470 523 470 523 470 523 470 523
Z_RIGHT_C z_rtc_def $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ z_second_def z_second_thm z_seconv $z_sel_s_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_lang_conv$ $z_seqd_eq_conv$ $z_seqd_eq_thm$ $z_seqd_eq_thm$ $z_seqd_e_seq_thm$	424 507 398 436 436 498 491 499 425 506 425 425 524 488 525 488 525 488 525	$ \begin{array}{l} z_simple_swap \rightharpoonup thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_dot_dot_conv \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm \\ z_$	456 526 458 526 486 525 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470
Z_RIGHT_C z_rtc_def $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ z_second_def z_second_thm z_second_thm $z_sel_s_conv$ $z_sel_t_conv$ $z_sel_t_intro_conv$ $z_sel_t_lang_conv$ $z_sel_t_lang_conv$ $z_seqd_eq_thm$ $z_seqd_eq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_seq_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$ $z_seqd_e_rw_thm$	424 507 398 436 436 498 491 499 425 506 425 425 524 488 525 488 525 488 525	$ \begin{array}{c} z_simple_swap \rightharpoonup thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_dot_dot_conv \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm \\ z_size_empty_thm \\ \end{array} $	456 526 458 526 486 525 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 525 470 523 525 470 523 525 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 470 523 523 523 523 523 523 523 523 523 523
Z_RIGHT_C z_rtc_def $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ z_second_def z_second_thm z_seconv $z_sel_s_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_intro_conv$ $z_sel_t_lang_conv$ $z_seqd_eq_conv$ $z_seqd_eq_thm$ $z_seqd_eq_thm$ $z_seqd_e_seq_thm$	424 507 398 436 436 498 491 499 425 506 425 425 524 524 488 525 488 525 488 525 488	$ \begin{array}{c} z_simple_swap \rightharpoonup thm \\ z_simple_swap \rightharpoonup thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_dot_dot_conv \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm \\ z_size_dot_dot_thm \\ z_size_empty_thm \\ z_size_empty_empty_te$	456 526 458 526 486 525 470 523 470 524 525 525 527 527 527 527 527 527
Z_RIGHT_C $z_rtc_def \dots$ $z_schema_pred_conv1$ $z_schema_pred_intro_conv$ z_second_def z_second_thm $z_sel_s_conv$ z_sel_tconv $z_sel_tintro_conv$ $z_sel_tlangconv$ $z_seqd_appconv$ z_seqd_eqthm z_seqd_eqthm $z_seqd_e=cseqthm$	424 507 398 436 436 498 491 499 425 506 425 425 524 524 488 525 488 525 488 525 488 525	$ \begin{array}{c} z_simple_swap \rightharpoonup thm \\ z_simple_swap \rightharpoonup thm \\ z_singleton_app_thm \\ z_singleton_seq_thm \\ z_singleton_seq_thm \\ z_singleton_seq_x_thm \\ z_singleton_seq_x_thm \\ z_size_0_thm \\ z_size_0_thm \\ z_size_1_thm \\ z_size_1_thm \\ z_size_2_thm \\ z_size_2_thm \\ z_size_diff_thm \\ z_size_dot_dot_conv \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm1 \\ z_size_dot_dot_thm \\ z_size_empty_thm \\ z_size_empty_thm \\ z_size_empty_thm \\ z_size_eq_thm \\ \end{array} $	456 526 458 526 486 525 470 523 525 525 525 525 525 525 525

$z_size_pair_thm$		$z_times_assoc_thm1$	
$z_size_pair_thm$		$z_times_assoc_thm1$	516
$z_size_seqd_conv$	524	$z_times_assoc_thm$	
$z_size_seqd_length_thm \dots \dots \dots \dots \dots$	488	$z_times_assoc_thm \dots \dots$	516
$z_size_seqd_length_thm\$	525	$z_times_clauses\dots$	466
$z_size_seqd_thm$	488	$z_times_clauses\dots$	516
$z_size_seqd_thm$	525	$z_times_comm_thm \dots \dots \dots \dots \dots \dots \dots$	466
$z_size_seq_thm1$	486	$z_times_comm_thm$	516
$z_size_seq_thm1$	525	$z_times_conv \dots \dots$	518
$z_size_seq_thm2$	486	$z_times_eq_0_thm$	466
$z_size_seq_thm2$	525	$z_times_eq_0_thm$	516
$z_size_seq_thm$	470	$z_times_less_0_thm$	
$z_size_seq_thm$		$z_times_less_0_thm$	523
$z_size_seq_\mathbb{N}_thm \dots$		$z_times_order_thm \dots \dots$	466
z -size-seq_ \mathbb{N} -thm		$z_times_order_thm \dots \dots$	
z -size-singleton-seq_thm		$z_times_plus_distrib_thm$	
$z_size_singleton_seq_thm$		$z_times_plus_distrib_thm$	
$z_size_singleton_thm$		$z_trans_closure_clauses \dots $	
z -size_singleton_thm		$z_trans_closure_thm\dots$	
$z_size_\cup_singleton_thm$		z _tuple_eq_conv1	
$z_size_\cup_singleton_thm$		z _tuple_eq_conv	
$z_size_\cup_thm$		z _tuple_intro_conv	
z - $size$ - \cup - thm		$z_{tuple_lang_eq_conv}$	
$z_size\cup\leqthm$		z -tuple_lang_intro_conv	
z_{-size} $\cup_{-\leq -thm}$ \ldots z_{-size}		z-tuple-tung-tung-tung-cont z -type-of	
z_{-size} _N_thm		$Z_{-}TYPE$	
$z_{-}size_{-}\mathbb{N}_{-}thm$		$z_{-underlining_brackets_thm}$	
z_{-} size_ $\leq_{-}1_{-}$ th m		z_{-} underlining_brackets_thm	
$z_{-size} = 1_{-titm}$ $z_{-size} = 1_{-titm}$		$z_{-}\beta_{-}conv$	
		$z \beta con\theta$	
z_size_^_thm		$z_{- } = causes$	
z_size_^_thm		$z_{-} \cap def$	
z_size_×_thm		$z_{-} \cap thm$	
$z_size_\times_thm$		$z \cap thm$ $z \cap thm$	
z_size_++-thm		z_ _uun z_ _clauses	
$z_size_+++_thm$			
$z_spec_asm_tac$		$z\bigcup clauses$	
$z_spec_nth_asm_tac$		$z\bigcup def$	
z_squash_def		$\mathbf{\circ}$	
$zstring_conv$		z $\bigcup thm$	
zstriptac		$z_{-}\bigcup_{-}\mathbb{F}_{-}thm$	
$z_subtract_minus_conv$		z_{-} $\bigcup_{i} \mathbb{F}_{-}thm$	
z_succ_def		$z_{-}\cap_{-} clauses$	
$z_succ^0_thm$		$z_{-}\cap_{-} clauses$	
$z_succ^0_thm$		$z \cap def$	
$z_succ^{minus_n}_thm$		$z\cap thm$	
$z_succ^{minus_n}_thm$		$z\cap thm \dots$	
$z_{-}succ^{n}_{-}thm$		$z_{-}\cap_{-}\longrightarrow_{-}thm$	
$z_succ^n_thm$		$z\cap \longrightarrow thm$	
$z_swap_{\longrightarrow} thm \dots$		$z\cap \leftrightarrow thm$	
$z_swap_{\rightarrow} thm \dots$		$z\cap\leftrightarrowthm$	
$z_{-}tail_{-}def$		$z_{-} \longrightarrow thm \dots$	
$z_{-}tc_{-}def$		$z_{-} \longrightarrow thm \dots$	
$z_{-}term_{-}of_{-}type$		$z\cap \to thm$	
$Z_{-}TERM$		$z\cap \to thm \dots$	
z_times0_thm		$z\cap thm \dots$	
ztimes0thm	516	$z\cap thm \dots$	
$ztimes1_thm$	466	$z_{-} \circ _clauses$	
z_times1_thm	516	$z_{-} \circ_{-} def \dots$	507

z = 0.1 thm	481	$z_{-}\mathbb{F}_{-}induction_{-}tac$	
$z = \circ \longrightarrow thm \dots$		$z_{-}\mathbb{F}_{-}induction_{-}thm\dots$	
$z = \circ \longrightarrow thm \dots$		$z_{-}\mathbb{F}_{-}induction_{-}thm\dots$	523
$z = 0 \longrightarrow thm \dots$	456	$z_{-}\mathbb{F}_{-}size_{-}thm1$	
$z = 0 \longrightarrow thm \dots$	526	$z_{-}\mathbb{F}_{-}size_{-}thm1$	
$z_{-} \circ_{-} \rightarrow_{-} thm \dots \dots$	456	$z_{-}\mathbb{F}_{-}size_{-}thm\dots$	469
$z_{-} \circ_{-} \rightarrow_{-} thm \dots \dots$	526	$z_{-}\mathbb{F}_{-}size_{-}thm\dots$	
$z_{-} \circ_{-} \twoheadrightarrow_{-} thm \dots \dots$	456	$z_{-}\mathbb{F}_{-}thm1\dots\dots\dots$	469
$z_{-} \circ_{-} \twoheadrightarrow_{-} thm \dots \dots$	526	$z_{-}\mathbb{F}_{-}thm1\dots\dots\dots\dots\dots\dots$	523
$z\cup clauses$	492	$z_{-}\mathbb{F}_{-}thm$	468
$z\cup clauses$	499	$z_{-}\mathbb{F}_{-}thm$	516
$z\cup def$	498	$z_{-}\mathbb{F}_{-}\cap_{-}thm\dots$	470
$z \cup thm \dots \dots$	491	$z_{-}\mathbb{F}_{-}\cap_{-}thm\dots$	523
$z \cup thm \dots \dots$	499	$z_{-}\mathbb{F}_{-}\cup_{-}singleton_{-}thm$	469
$z \cup \longrightarrow thm \dots \dots$	456	$z_{-}\mathbb{F}_{-}\cup_{-}singleton_{-}thm$	
$z \cup \longrightarrow thm$	526	$z_{-}\mathbb{F}_{-}\mathbb{P}_{-}thm$	
$z \cup \leftrightarrow thm \dots$	456	$z_{\mathbb{F}_{-}\mathbb{P}_{-}thm}$	
$z \cup \leftrightarrow thm \dots$		$z_{-}\mathbb{F}_{1-}def$	
$z\cup_{\succ}$ thm		$z_{-}\mathbb{F}_{1-}thm$	
$z\cup_{\longrightarrow} thm \dots$		$z_{-}\mathbb{F}_{1-}thm\dots$	
$z\cup \to thm \dots$		z_{-} N_abs_minus_thm	
$z\cup\tothm$		$z_{-}N_{-}abs_{-}minus_{-}thm$	
$z\cup \twoheadrightarrow thm \dots$		$z_N_case_thm \dots$	
$z\cup \twoheadrightarrow thm \dots$		$z_{-}\mathbb{N}_{-}$ cases_thm	
$z\langle\rangle$ conv		$z\mathbb{N}def$	
$z_{-}\langle\rangle_{-}seq_{-}thm$		$z_{-}\mathbb{N}_{-}induction_{-}tac$	
$z_{-\langle\rangle} = eq_{-thm} \dots \dots$		z _N_induction_thm	
$z\langle\rangle thm \dots z\langle\rangle thm$		$z_{-}\mathbb{N}_{-}induction_{-}thm$	
$z\langle\rangle$ thm		z _N_plus1_thm	
··		$z\mathbb{N}$ plus 1 _ thm	
$z_{-}\langle\rangle_{-}$ thm		$z\mathbb{N}plusconv$	
$z\langle\rangle$ thm		z _N_plus_thm	
$z\Delta_{s-}conv$		z _N_plus_thm	
$z_{-} \triangleleft_{-} clauses \dots$		z _N_thm	
$z_{-} \triangleleft_{-} def \dots$		z _N_thm	
$z_{-} \triangleleft_{-} thm$		z _N_times_conv	
$z_{-} \triangleleft_{-} \rightarrow_{-} thm$		z _N_times_thm	
$z_{-} \triangleleft_{-} \rightarrow_{-} thm$		$z \mathbb{N} $ times thm	
$z\varnothingdef$		z _N_¬ $_minus$ _thm	
$z_{-}\varnothing_{-}thm1$	491	$z\mathbb{N}\neg_minus_thm$	
$z_{-}\varnothing_{-}thm$	491	z _N_¬ $_plus1$ _thm	
$z_{-}\varnothing_{-}thm$		z _N_¬ $_plus1$ _thm	
$z = \exists elim = conv1 \dots$		$z_{-1} N_{-1} - piasi_utim$ $z_{-1} N_{1} - def \dots$	
$z = \exists elim = conv2 \dots$	411	z_{-1} v_1 - uej z_{-p} - $clauses$	
$z = \exists elim = conv \dots$	412	$z_{-}\mathbb{P}_{-}$ clauses	
$z = \exists intro_conv1$	411	$z_{-\mathbb{P}_1_clauses}$	
$z = \exists intro conv \dots$	412		
$z = \exists inv = conv \dots \dots$	413	$z_{-}\mathbb{P}_{1-}$ clauses	
$z_{-}\exists_{-}tac$	414	$z\mathbb{P}_1$ _ def	
$z_{-}\exists_{1-}conv$	415	$z\mathbb{P}_1$ thm	
$z_{-}\exists_{1}_intro_conv$	415	$z_{-}\mathbb{P}_{1}$ thm	
$z = \exists_1 - tac \dots \dots$	416	$z_{\mathbb{R}}$ 0_less_0_less_times_thm	
$z_{-}\exists_{1s_{-}}conv$	442	$z_{\mathbb{R}}$ _0_less_0_less_times_thm	
$z_{-}\exists_{s-}conv$		$z_{\mathbb{R}}$ abs_conv	
$z_{-}\mathbb{F}_{-}def$	518	$z_{\mathbb{R}}$ abs_def	
$z_{-}\mathbb{F}_{-}diff_{-}thm\dots$		$z_{\mathbb{R}}$ complete thm	
$z_{-}\mathbb{F}_{-} diff_{-} thm \dots$		$z_{-}\mathbb{R}_{-}complete_{-}thm$	
$z_{-}\mathbb{F}_{-}empty_{-}thm$		$z_{-}\mathbb{R}_{-}$ def	
$z_{-}\mathbb{F}_{-}empty_{-}thm$		$z_{-}\mathbb{R}_{-}dot_{-}dot_{-}def$	535

$z_{\mathbb{R}}eq_{\mathbb{R}}conv$	534	$z_{\mathbb{R}}$ -plus_clauses	533
$z_{-}\mathbb{R}_{-}eq_{-}thm$		$z_{\mathbb{R}}$ plus_comm_thm	475
$z_{-}\mathbb{R}_{-}eq_{-}thm\dots$	532	$z_{\mathbb{R}_p}lus_{\mathbb{R}_p}comm_{\mathbb{R}_p}thm \dots$	533
$z_{-}\mathbb{R}_{-}eq_{-}\leq_{-}thm$	474	$z_{-}\mathbb{R}_{-}plus_{-}conv$	534
$z_{-}\mathbb{R}_{-}eq_{-}\leq_{-}thm$	532	$z_{-}\mathbb{R}_{-}plus_{-}def\dots$	535
$z_{\mathbb{R}} eval_conv$	532	$z_{-}\mathbb{R}_{-}plus_{-}minus_{-}thm\dots$	475
$Z_{-}\mathbb{R}_{-}EVAL_{-}C$	532	$z_{-}\mathbb{R}_{-}$ plus_minus_thm	
$z_{-}R_{-}frac_{-}def$	535	$z_{\mathbb{R}}plus_{mono_thm1} \dots \dots$	
$z_{\mathbb{R}}glb_{\mathbb{R}}def$		$z_{\mathbb{R}}plus_{mono_thm1} \dots \dots$	
$z_{\mathbb{R}}$ greater_conv		$z_{\mathbb{R}}plus_{mono_thm2} \dots \dots$	
$z_{\mathbb{R}}$ greater_def		$z_{\mathbb{R}_plus_mono_thm2} \dots \dots \dots$	
$z_{\mathbb{R}}$ greater_thm		$z_{\mathbb{R}_plus_mono_thm} \dots \dots \dots$	
$z_{\mathbb{R}} lb_{\mathbb{L}} def \dots$		$z_{-}\mathbb{R}_{-}plus_{-}mono_{-}thm$	
$z_{\mathbb{R}}less_{antisym_{thm}} \dots \dots$		$z_{-}\mathbb{R}_{-}plus_{-}order_{-}thm$	
$z_{-}\mathbb{R}_{-}less_{-}antisym_{-}thm$		$z_{-}\mathbb{R}_{-}plus_{-}order_{-}thm$	
$z_{-}\mathbb{R}_{-}less_{-}cases_{-}thm$		$z_{-}\mathbb{R}_{-}plus_{-}thm$	
$z_{\mathbb{R}}less_{cases_{thm}}$		$z_{\mathbb{R}}plus_{unit}thm$	
$z_{\mathbb{R}}less_{c}clauses$		$z_{\mathbb{R}_plus_unit_thm}$	
$z_{\mathbb{R}}less_{clauses}$		$z_{\mathbb{R}} real_0 thm \dots$	
$z_{\mathbb{R}}less_{conv}$		$z_{\mathbb{R}} real_def \dots$	
$z_{\mathbb{R}}less_{\mathbb{Q}}def$		$z_{\mathbb{R}} real_{\mathbb{N}} \mathbb{R}_{thm} \dots$	
$z_{\mathbb{R}}less_{dense_thm}$	474	$z_{\mathbb{R}}$ subtract_conv	534
$z_{\mathbb{R}}less_{dense_thm}$		$z_{\mathbb{R}}$ subtract_def	
$z_{\mathbb{R}}less_{irrefl_{thm}} \dots$		$z_{-}\mathbb{R}_{-}subtract_{-}thm\dots$	533
$z_{\mathbb{R}}less_{irrefl_{thm}} \dots$	531	$z_{-}\mathbb{R}_{-}times_{-}assoc_{-}thm1$	
$z_{\mathbb{R}}less_{thm}$	531	$z_{\mathbb{R}}_{times_assoc_thm1} \dots \dots$	533
$z_{\mathbb{R}}less_{trans_{thm}} \dots$	474	$z_{\mathbb{R}}_{times_assoc_thm} \dots \dots$	476
$z_{\mathbb{R}}less_{trans_{thm}} \dots$	531	$z_{\mathbb{R}}_{times_assoc_thm} \dots \dots$	533
$z_{\mathbb{R}}less_{\leq trans_{thm}} \dots$	474	$z_{\mathbb{R}}$ times_clauses	477
$z_{\mathbb{R}}less_{\leq trans_{thm}} \dots$	532	$z_{\mathbb{R}}$ times_clauses	533
$z_{-}\mathbb{R}_{-}less_{-}\neg_{-}eq_{-}thm$	474	$z_{\mathbb{R}}_{times_comm_thm}$	476
$z_{-}\mathbb{R}_{-}less_{-}\neg_{-}eq_{-}thm$	532	$z_{\mathbb{R}}_{times_comm_thm}$	533
$z_{-}\mathbb{R}_{-}lin_{-}arith_{-}prove_{-}conv\dots\dots\dots$	532	$z_{\mathbb{R}}_{times_conv}$	534
$z_{-}\mathbb{R}_{-}lin_{-}arith_{-}prove_{-}tac$	532	$z_{-}\mathbb{R}_{-}times_{-}def$	535
$z_{\mathbb{R}}$ lin_arith	529	$z_{\mathbb{R}}_{times_order_thm} \dots \dots$	477
$z_{-}\mathbb{R}_{-}lit_{-}conv1$	534	$z_{\mathbb{R}}_{times_order_thm} \dots \dots$	533
$z_{-}\mathbb{R}_{-}lit_{-}conv$		$z_{\mathbb{R}}_{times_plus_distrib_thm}$	
$z_{-}\mathbb{R}_{-}lit_{-}norm_{-}conv$	534	$z_{\mathbb{R}}_{times_plus_distrib_thm}$	533
$z_{-}\mathbb{R}_{-}lub_{-}def$	535	$z_{\mathbb{R}}$ times_thm	533
$z_{\mathbb{R}}$ minus_clauses	475	$z_{\mathbb{R}}_{times_unit_thm}$	476
$z_{-}\mathbb{R}_{-}$ minus_clauses	533	$z_{\mathbb{R}}_{times_unit_thm}$	533
$z_{-}\mathbb{R}_{-}minus_{-}conv\dots\dots\dots\dots$	534	$z_{-}\mathbb{R}_{-}ub_{-}def$	535
$z_{-}\mathbb{R}_{-}$ minus_def	535	$z_{\mathbb{R}}$ _unbounded_above_thm	474
$z_{\mathbb{R}}$ minus eq thm	475	$z_{\mathbb{R}}unbounded_above_thm$	531
$z_{\mathbb{R}}$ minus_eq_thm	533	$z_{\mathbb{R}}$ _unbounded_below_thm	474
$z_{\mathbb{R}}$ minus_thm		$z_{\mathbb{R}}$ _unbounded_below_thm	531
$z_{\mathbb{R}}$ over_clauses	477	$z_{\mathbb{R}} \mathbb{Z}_{-} exp_{-} conv \dots$	534
$z_{\mathbb{R}}$ over_clauses	533	$z_{\mathbb{R}} = \mathbb{Z}_{-} exp_{\mathbb{R}} def \dots$	
$z_{\mathbb{R}}$ over conv		$z_{\mathbb{R}} \geq conv$	
$z_{-}\mathbb{R}_{-}over_{-}def$	535	$z_{-}\mathbb{R}_{-} \geq_{-} def \dots$	
$z_{\mathbb{R}}$ over thm		$z_{-}\mathbb{R}_{-} \geq thm$	
$z_{-}\mathbb{R}_{-}plus_{-}\theta_{-}thm\dots\dots$		$z_{-}\mathbb{R}_{-} \subseteq antisym_{-}thm$	
$z_{\mathbb{R}}$ plus $0_{\mathbb{R}}$ thm		$z_{\mathbb{R}} \subseteq antisym_{thm} \dots \dots \dots \dots \dots$	
	555	~ = m = = another g m = ont m = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	
$z_{\mathbb{R}_plus_assoc_thm1} \dots \dots \dots \dots$		$z_{\mathbb{R}} \leq cases_thm$	474
	475		
$z_{-}\mathbb{R}_{-}plus_{-}assoc_{-}thm1$	$475 \\ 533$	$z_{-}\mathbb{R}_{-} \leq_{-} cases_{-} thm \dots$	532
	475 533 475	$z_{\mathbb{R}} \leq cases_thm \dots z_{\mathbb{R}} \leq cases_thm \dots z_{\mathbb{R}}$	532 476

$z_{\mathbb{R}} \leq def$		$z_{-} \in first_thm \dots \dots$	
$z_{\mathbb{R}} \leq less_cases_thm$		$z_{-} \in hide_{s-}conv$	
$z_{\mathbb{R}} \leq less_cases_thm$	532	$z = h_s chema_conv1$	
$z_{\mathbb{R}} \leq less_{trans_{thm}} \dots$	474	$z_{-} \in h_{-}schema_conv \dots \dots$	438
$z_{\mathbb{R}} \leq less_{trans_{thm}} \dots$	532	$z_{-} \in pre_{s-}conv$	435
$z_{-}\mathbb{R}_{-} \leq refl_{-}thm \dots$	474	$z_{-} \in rename_{s-}conv \dots z_{-}$	436
$z_{-}\mathbb{R}_{-} \leq refl_{-}thm \dots$	532	$z_{-} \in \underline{-second_thm} \ldots \ldots \ldots \ldots$	453
$z_{-}\mathbb{R}_{-} \leq thm \dots$	532	$z_{-} \in \underline{second_thm} \ldots \ldots \ldots \ldots$	510
$z_{\mathbb{R}} \leq trans_{thm}$	474	$z_{-} \in _seqd_app_eq_thm \dots \dots \dots \dots \dots \dots$	488
$z_{\mathbb{R}} \leq trans_{thm} \dots$	532	$z_{-} \in _seqd_app_eq_thm \dots$	525
$z_{\mathbb{R}} \leq \neg_{less_thm} \dots$	474	$z_{-} \in seq_a pp_e q_t hm \dots$	
$z_{\mathbb{R}} \leq \neg_{less_thm} \dots$	532	$z_{-} \in seq_a pp_e q_t hm \dots$	
$z_{\mathbb{R}}$ $\neg_{less} \leq thm \dots$	532	$z = seta_conv1$	
$z_{\mathbb{R}} - \leq less_{thm}$		$z_{-} \in seta_conv \dots \dots$	
$z_{\mathbb{R}}$ $\neg \leq less_thm \dots$		$z_{-} \in _setd_conv1 \dots \dots$	
$z_{-}\mathbb{Z}_{-}$ cases_thm1		$z_{-} \in _setd_conv \dots \dots$	
$z_{\mathbb{Z}_{-}} cases_{thm1} \dots \dots \dots \dots$		$z_{-} \in \underline{string_conv} \dots \dots \dots \dots \dots \dots$	
$z_{-}\mathbb{Z}_{-} cases_{-} thm \dots$		$z \in succ_thm \dots$	
$z_{-}\mathbb{Z}_{-}$ cases_thm		$z_{-} \in succ_{-}thm$	
$z_{-}\mathbb{Z}_{-}$ consistent		$z = \underbrace{-conv}$	
$z\mathbb{Z}conv$		$z = \in \langle \rangle = conv$	
$z\mathbb{Z}def$		$z = -\sqrt{-sonv} \dots z = -\Delta_{s-conv} \dots \dots$	
$z_{-}\mathbb{Z}_{-}def$		$z = \exists_{1s} = conv$	
$z \mathbb{Z} eq conv$		$z = \exists s = conv$	
$z \mathbb{Z} eq to m $		$z = \subseteq S = conv$	
$z \mathbb{Z} eq tim \dots z \mathbb{Z} eq thm \dots z \mathbb{Z} eq thm \dots \dots$		$z_{-}\in \mathbb{N}_{-}thm$	
z_{-} \mathbb{Z}_{-} induction_tac		$z_{-}\in \mathbb{N}_{-}thm$	
$z_{-}\mathbb{Z}_{-}$ induction_thm		$z = 10 - thm$ $z = -N_1 - thm \dots$	
$z \mathbb{Z}$ induction_thm		z = -1N ₁ - thm	
$z_{-}\mathbb{Z}_{-}minus_{-}thm$		$z_{-}\in \mathbb{P}_{-}conv$	
$z_{-}\mathbb{Z}_{-}minus_{-}thm$		$z \in \mathbb{P}_{-thm1}$	
$z_{-}\mathbb{Z}_{-}$ one_one_thm		$z \in \mathbb{P}_{-}thm \dots$	
$z_{-}\mathbb{Z}_{-}$ one_one_thm		$z = \mathbb{P}_{-}thm\dots$	
$z_{-}\mathbb{Z}_{-}$ plus_thm		$z_{-}\in V_{s-}conv$	
$z_{-}\mathbb{Z}_{-}$ plus_thm		$z_{-}\in -\lambda_{-}conv$	
$z_{-}\mathbb{Z}_{-}subtract_{-}thm$		$z_{-}\in -\wedge_{s-}conv$	
$z_{-}\mathbb{Z}_{-}subtract_{-}thm$		$z_{-} \in _{-} \Leftrightarrow_{s-} conv$	
$z_{-}Z_{-}times_{-}thm$		$z_{-}\in -\neg_{s-}conv$	
$z_{-}Z_{-}times_{-}thm$		$z_{-} \in V_{s-}conv$	
z_Z		$z_{-} \in -\frac{o}{g}s_{-}conv\dots$	
$z \forall elim_conv1 \dots \dots \dots \dots$		$z_{-} \in - \upharpoonright_{s-conv} \dots \dots$	
$z \forall elim_conv2 \dots \dots \dots \dots$		$z_{-} \in _ \to _thm \dots$	
$z \forall elim_conv \dots \dots$		$z_{-} \in \longrightarrow thm \dots$	
$z \forall elim \dots$		$z_{-} \in _{-} \Rightarrow_{s-} conv \dots \dots \dots \dots$	
$z_{-}\forall_{-}intro1$		$z_{-} \in \underline{\hspace{0.1cm}} \times \underline{\hspace{0.1cm}} conv \ldots \ldots \ldots \ldots$	
$z_{-}\forall_{-}intro_{-}conv1$		$z_{-}\in _{-}\Xi_{s-}conv\ldots\ldots\ldots$	
$z_{-}\forall_{-}intro_conv$		$z_{-} \rightarrow_{-} clauses \dots$	
$z_{-}\forall_{-}intro$		$z_{-} \rightarrow_{-} clauses \dots$	
$z_{-}\forall_{-}inv_{-}conv$	408	$z \longrightarrow def \dots$	509
$z_{-}\forall_{-}rewrite_{-}canon$	409	$z \longrightarrow ran_e q \longrightarrow thm \dots$	455
$z_{-}\forall_{-}tac$		$z_{-} \rightarrow ran_{-}eq_{-} \rightarrow ran_{-}eq_{-}e$	526
$z_{-}\forall_{s-}conv$	442	$z_{-} \rightarrow _{-} thm1 \dots \dots$	
$z_{-} \geq_{-} \leq_{-} conv$	518	$z_{-} \rightarrow _{-} thm1 \dots \dots$	526
$z_{-} \in app_{-}thm \dots$	460	$z_{-} \rightarrow _{-} thm \dots \dots$	453
$z_{-} \in \underline{-decor_{s-}conv} \dots \dots$	433	$z_{\rightarrowtail}_thm\dots$	510
$z_{-} \in _dot_dot_conv$	515	$z_{-}\lambda_{-}conv$	430
$Z_{-} \in _ELIM_{-}C$	427	$z \wedge_{s-} conv \dots \dots$	440
$z_{-} \in -first_thm \dots \dots$	453	$z_{-} \leftrightarrow_{-} clauses$	481

$z_{-} \leftrightarrow_{-} def \dots$	498	z_{-} \(\sigma_def\) \(\cdots\)	522
$z \leftarrow ran thm \dots$	457	$z_ \cap assoc_thm1 \dots \dots \dots$	487
$z \leftarrow ran thm \dots$	526	z_{-} assoc_thm1	
$z \leftarrow thm \dots$	481	z $assocthm$	
$z_{-} \Leftrightarrow_{s-} conv \dots \dots$	439	z $assocthm$	
$z_{-} \leq_{-} antisym_{-}thm \dots \dots$	467	z_{-} $def_{-}thm$	
$z_{-} \leq_{-} antisym_{-}thm \dots \dots$	516	z _ ^-defthm	
$z_{-} \leq_{-} cases_{-} thm \dots \dots$	467	·	
$z_{-} \leq_{-} cases_{-} thm \dots \dots$	516	zdef	
$z_{-} \leq_{-} clauses \dots $	467	z_{-} one_one_thm	
$z_{-} \leq_{-} clauses \dots $	516	z one_one_thm	
$z_{-} \leq_{-} conv \dots \dots$	518	z_{-} $seq_{-}x_{-}thm$	
$z_{-} \leq _{-} induction_{-} tac \dots \dots$	517	z_{-} _ $seq_{-}x_{-}thm$	525
$z_{-} \leq _{-} induction_{-} thm \dots \dots \dots \dots \dots$	468	z_{-} _singleton_thm1	487
$z_{-} \leq induction_thm \dots z_{-}$	516	z_{-} singleton_thm1	
$z_{-} \leq less_{-}eq_{-}thm \dots$	468	$z_^-$ singleton_thm	
$z_{-} \leq less_{-}eq_{-}thm \dots$	516		
$z_{\leq}less_{trans_{thm}}$	467	z_{-} singleton_thm	
$z_{-} \leq less_{-} trans_{-} thm \dots$	516	zthm	
$z_{-} \leq -plus_{-} \mathbb{N}_{-}thm \dots$	467	zthm	
$z_{-} \leq -plus_{-} \mathbb{N}_{-}thm \dots$		$z_{-} \cap_{-} \langle \rangle_{-} thm \dots$	487
$z_{-} \leq refl_{-}thm \dots$		$z_{-}^{}(\rangle_{-}thm \dots \dots$	525
$z_{-} \leq refl_{-}thm \dots$		$z_{-} \cap _{-} \in _{-}seq_thm1 \dots \dots$	486
$z_{-} \leq trans_{-}thm \dots$		$z_{-} \subset seq_thm1 \ldots$	
$z_{-} \leq trans_{-}thm \dots$		z	
$z_{-} \leq Z_{-} \leq thm \dots$			
$z_{-} \leq Z_{-} \leq thm \dots$	521	$z_{-} \cap \in seq_{-}thm$	
$z_{-} \leq_{-} \leq_{-} 0_{-} thm \dots$		$z \rightarrow \rightarrow -clauses$	
$z_{-} \leq_{-} \leq_{-} \theta_{-} thm \dots$		$z \rightarrow -clauses$	
$z_{-} \leq_{-} \leq_{-} plus1_{-}thm \dots$		$z \rightarrow -def$	
$z_{-} \leq _{-} \leq _{-} plus1_{-}thm$		$z \rightarrow -diff _singleton_thm \dots$	
$z_{\neg\neg gen_pred_conv}$		$z \rightarrow -diff _singleton_thm \dots$	
$z_{-}\neg_{-}in_{-}conv$	402	$z \rightarrow -thm$	
$z_{\neg}_less_thm \dots \dots$	467	$z \rightarrow -thm \dots$	
$z_{\neg}less_thm \dots$	516	$z \rightarrow -trans_thm$	
$z_{\neg}rewrite_canon \dots $	402	$z \rightarrow -trans_t hm$	
$z_{\neg\neg}\exists conv$	403	z_{-} \[- def \cdots \cdot	
$z_{\neg} \mathbb{N}_{-}thm$	465	z_{-} _s -conv	
$z_{\neg} \mathbb{N}_{-}thm$	516	$z_{-\oplus}^{\oplus} def$	
$z_{\neg} \neg \forall conv \dots$	403	$z_{-\mu}$ -rule	
$z_{\neg \neg -} \leq thm \dots$	467	$z_{-}\neq_{-} def$	
$z_{\neg \neg -} \leq thm \dots$	516	$z_{-}\neq_{-}thm\dots$	
$z_{\neg \neg} empty_thm \dots$	487	$z_{-}\neq_{-}thm$	
$z_{\neg \neg} = mpty_thm \dots$		$z_{-}\notin -def$	
$z \neg_{s-} conv$		$z_{-}\notin thm \dots$	
$z \lor_{s-conv} \dots \dots$		$z_{-}\notin thm \dots$	
$z_{-\overset{\circ}{g}-}$ clauses		$z_{-}\ominus_{-}$ clauses	
z_{-g} def		$z_{-}\ominus_{-}clauses$	
z_{-g-} thm $the constant of the constant$		$z_{-}\ominus_{-}def$	
$z_{-g-sol} = conv$		$z_{-}\ominus_{-}thm\dots$	
z_{-gs} conto		$z_{-\ominus_{-}}thm\dots$	
$z_{-}\mapsto thm$		$z_{-}\oplus_{-} clauses \dots $	
$z \leftarrow clauses$		$z_{-}\oplus_{-} def$	
$z \triangleleft def$		$z\oplusthm$	
$z \triangleleft thm$		$z_{-} \oplus_{-} \mapsto_{-} app_{-}thm1 \dots \dots$	
$z \Rightarrow clauses$		$z_{-} \oplus_{-} \mapsto_{-} app_{-}thm1 \dots$	
$z \triangleright def$		$z \oplus \mapsto app thm \dots$	
$z = \triangleright ucj$		$z \oplus \mapsto app thm \dots$	526
~	-U-		

$z \oplus \mapsto \in \to thm$		$z_{-} \times_{-} clauses \dots$	
$z \oplus \mapsto \in \to thm$		$z_{-} \times_{-} clauses \dots$	
$z_{-} \rightarrow_{-} app_{-} eq_{-} \Leftrightarrow_{-} \in_{-} rel_{-} thm \dots$		$z_{-} \times_{-} conv$	
$z_{-} \rightarrow_{-} app_{-} eq_{-} \Leftrightarrow_{-} \in_{-} rel_{-} thm \dots$		$z \uplus def$	
$z_{-} \rightarrow_{-} app_{-}thm \dots$		$z\Xi_{s-conv}$	
$z_{-} \rightarrow_{-} app_{-}thm$		z_{-1} def	
$z_{-} \rightarrow_{-} app_{-} \in_{-} rel_{-} thm \dots$		$z_{-} \mapsto def$	
$z_{-} \rightarrow_{-} app_{-} \in_{-} rel_{-} thm \dots$		$z_{-} \leftrightarrow_{-} clauses \dots$	
$z_{-} \rightarrow_{-} clauses \dots $		$z_{\rightarrow} \rightarrow_{-} clauses \dots $	
$z_{-} \rightarrow_{-} clauses$		$z \rightarrow \rightarrow -def$	
$z_{-} \rightarrow def$		$z \rightarrow thm1$	
$z_{-} \rightarrow diff_singleton_thm$		$z_{\rightarrow \mapsto_{-}} thm1 \dots \dots$	
$z_{-} \rightarrow_{-} diff_{-} singleton_{-} thm \dots z_{-} \rightarrow_{-} dom_{-} thm \dots z_{-}$		$z \rightarrow \rightarrow tmm$	
$z_{-} \rightarrow aom_{-}unm$ $z_{-} \rightarrow dom_{-}thm$		$z \rightarrow -um$ $z \rightarrow -def$	
$z \rightarrow empty thm \dots$		$z_{-} \rightarrow clauses$	
$z \rightarrow empty thm \dots$		$z_{-} + clauses$	
$z \rightarrow ran eq \Rightarrow thm$		$z \mapsto def$	
$z \rightarrow ran eq \Rightarrow thm$		$z \mapsto thm1$	
$z \rightarrow ran thm$		$z \mapsto thm1$	
$z \rightarrow ran thm$		z_{-} \rightarrow_{-} $thm2$	
$z_{-} \Rightarrow_{-} rewrite_{-} canon \dots$		$z_{-} \rightarrow thm2$	
$z_{-}\rightarrow_{-}thm$		$z \rightarrow thm$	
$z_{-} \rightarrow_{-} thm \dots$		$z \rightarrow thm \dots$	
$z_{-} \rightarrow_{-} \in rel_{-} \Leftrightarrow_{-} app_{-} eq_{-} thm \dots$	453	$z_{-} \rightarrow \!\!\!\! \rightarrow \!\!\!\! - clauses$	
$z_{-} \rightarrow_{-} \in rel_{-} \Leftrightarrow_{-} app_{-} eq_{-} thm \dots$	510	$z_{-} \rightarrow \!\!\!\! \rightarrow_{-} clauses \dots $	510
$z_{-} \Rightarrow_{s-} conv \dots \dots$	441	$z_{-} \rightarrow \!\!\!\! \rightarrow def \ldots \ldots$	509
$z_{\triangleright}_clauses$	481	$z_{-} + + + thm \dots$	453
$z_{-} \triangleright_{-} def$	507	$z_{-} + + + thm \dots$	
z_\rhd_thm		$Z\langle\rangle$	
$z_\subset_clauses$		$Z\Delta_s$	
$z_{\subset_clauses}$		$Z\exists_{1s}\ldots\ldots\ldots$	
$z_{-}\subset_{-} def$		$Z\exists_1\ldots\ldots\ldots\ldots$	
$z_{-}\subset thm \dots$		$Z\exists_s$	
$z_{-}\subset thm \dots \dots$		Z∃	
$z_{-\subseteq -clauses} \dots \dots$		$Z\mathbb{P}$	
$z_{-\subseteq -clauses}$		$Z\forall_s$	
z_⊆_conv		$Z\forall\ldots\ldots$	360
$z \subseteq thm1$		$Z \in \dots$	
$z_{-}\subseteq thm1$ $z_{-}\subseteq thm$		$Z\lambda$	
$z \subseteq thm \dots $		$Z \wedge_s \dots Z \wedge \dots \dots$	
$z\subseteq -ttm$ $z\subseteq -\mathbb{F}thm$		$Z \Leftrightarrow_s \dots \dots$	
$z = \subseteq \mathbb{F}_{-thm}$		$Z\Leftrightarrow\ldots\ldots$	
z_{-} - z_{-		$Z \neg_s$	
z op clauses		Z eg.	
z $\rightarrow def$		$Z \vee_s \dots \dots$	
z_{-} - $ran_{-}thm$		Z \vee	
$z_{-} \rightarrow -ran_{-}thm \dots$		Z_{qs}^{o}	360
$z \rightarrow thm1 \dots \dots$	456	$Z^{\lceil s \rceil}_s$	360
$z_{-} \rightarrow -thm1 \dots \dots$	526	$Z\mu$	360
$z \rightarrow -thm \dots \dots$	453	$\stackrel{\cdot}{Z} \Rightarrow_s \dots \dots$	360
$z \rightarrow thm \dots$	510	$Z\Rightarrow$	360
$z_{-}\theta_{-}conv1$	444	$Z\theta$	360
$z_{-}\theta_{-}conv$			
$z\thetaeqconv\dots$		$Z\Xi_s$	
$z_{-\theta_{-}} \in schema_conv \dots$		#[X]	
$z_{-}\theta_{-} \in _schema_intro_conv \dots \dots$	436	#	464

_		491	_ +	480
_	*	463		
_	* R	473	~	480
_	+	463		450
_	$+_R$	473	$\alpha_{-}conv$	216
_		463	$\alpha to z conv$	416
_	- R	473	$\alpha to z$	417
_		464	β -conv	217
_	··R - · · · · · · · · · · · · · · · · ·	473	β _rewrite_thm	164
	/		$\beta_{-}rule$	
	$Z = \cdots $		$\bigcap[X]$	
	<		<u></u>	
	< R			
	>		[]	
	> R		$\varnothing[X]$	
	div		Ø	
	<i>in</i>		$\epsilon elim rule$	
	lb_R		$\epsilon_{-}intro_{-}rule$	
	$mod_{-}\dots$		$\epsilon_{-}tac$	
	partition		$\epsilon_{-}T$	
	ub_R		\etaconv	
	(_)		$\exists _asm_rule$	
_	∩ - · · · · · · · · · · · · · · · · · ·	490	$\exists _elim \dots \dots $	213
_	0	479	\exists _intro_thm	213
_	U	490	\exists _intro	214
_	\	490	$\exists reorder_conv \dots$	214
_	√	479	$\exists _rewrite_thm \dots $	164
	≥		$\exists_{-}tac$	
	\geq_{R}		∃_ <i>THEN</i>	
	→		$\exists_{uncurry_conv}$	
	↔		\exists _ ϵ _conv	
			$\exists -\epsilon - rule$	
	_		\exists_{1-conv}	
	\leq_R		=	
	<i>g</i> - · · · · · · · · · · · · · · · · · ·		\exists_{1} - $elim$	
	→		$\exists_{1-intro}$	
	♦		\exists_{1} -tac	
-	₽		$\exists_{1-}THEN$	
-	=	-0-		216
			$\mathbb{F} X$	
_	\hat{Z}	473	F	464
			$\mathbb{F}_1 X \dots $	462
_	⊕ ⊕ - · · · · · · · · · · · · · · · · · ·	491	\mathbb{F}_1	464
_	<i>≠</i>	490	\mathbb{N}_1	462
	, ∉		\mathbb{N}_1	
	⊖		\mathbb{N}^{1}	
	Ф		\mathbb{N}	
	→		\mathbb{N}	
			$\mathbb{P}_1 X$	
	C		\mathbb{P}_1	
			1	
			R	
	⊎		R	
	1		$\mathbb{Z}_{-z_consistent}$	
	> ⊪>		\mathbb{Z}_{-z_conv}	
	> +>		$\mathbb{Z}_{-}z_{-}def$	
	#→		$\mathbb{Z}_{-}z_{-}minus_{-}thm$	449
_	+>	452	$\mathbb{Z}_{-}z_{-}minus_{-}thm$	521
_		452	$\mathbb{Z}_{-}z_{-}one_{-}one_{-}thm$	449
	*		$\mathbb{Z}_{-z_one_one_thm}$	

$\mathbb{Z}_{-}z_{-}plus_{-}thm$		$\neg_i in_c conv$	
$\mathbb{Z}_{-}z_{-}plus_{-}thm$	521	$\neg_{-}in_{-}tac$	
$\mathbb{Z}_{-z_subtract_thm} \dots \dots \dots$	449	$\neg_{-}IN_{-}THEN$	
$\mathbb{Z}_{-}z_{-}subtract_{-}thm \dots \dots$	521	\neg _rewrite_canon	287
$\mathbb{Z}_{-}z_{-}times_{-}thm \dots$	449	\neg _rewrite_thm	164
$\mathbb{Z}_{-}z_{-}times_{-}thm$	521	$\neg_simple_\exists_conv$	206
\mathbb{Z}_{-z}		$\neg_simple_\forall_conv\dots$	206
\mathbb{Z}	462	$\neg_T T2$	287
\mathbb{Z}	464	$\neg_{-}tac\dots$	288
$\forall_{-}arb_{-}elim$	210	$\neg_{-}thm1$	206
$\forall_{-}asm_{-}rule$	210	$\neg_{-}thm$	206
\forall _elim	211	$\neg_{-}t_{-}thm$	206
\forall _intro	211	$\neg_{-}T$	288
\forall _reorder_conv	212	¬_∃_conv	207
\forall _rewrite_canon	287	$\neg_{-}\exists_{-}thm$	208
\forall _rewrite_thm	164	$\neg \neg \forall \neg conv$	207
$\forall_{-}tac$	290	$\neg_{-}\forall_{-}thm$	207
$\forall_{uncurry_conv}$	212	$\neg _ \land _thm \dots$	289
$\forall _ \Leftrightarrow _rule$		$\neg _ \Leftrightarrow _thm \dots$	
$\in C$		¬_¬_conv	
$\lambda_{-}C$		¬_¬_elim	
$\lambda_{-}eq_{-}rule$		¬_¬_intro	
λ_{-pair_conv}		$\neg \neg \neg thm$	
λ _rule		\neg_\lor_thm	
λ -varstruct-conv		$\neg _\Rightarrow_thm$	
\wedge _intro		∨_ <i>cancel_rule</i>	
^_left_elim		V_ <i>elim</i>	
\land _rewrite_canon		∨_left_intro	
\land _rewrite_thm		∨_left_tac	
\land _right_elim		∨_rewrite_thm	
\wedge _tac		∨_right_intro	
\land _THEN2		\forall _right_tac	
\land _THEN \ldots		∨_ <i>THEN2</i>	
$\wedge_{-}thm$		∨_ <i>THEN</i>	
\wedge _ \Rightarrow _rule		∨_thm	
⇔_elim		γ [X]	
\Leftrightarrow _intro		, , ,	
\Leftrightarrow _match_mp_rule1		<u></u>	484
\Leftrightarrow _match_mp_rule		<i>П</i> -?	
\Leftrightarrow _m p _r u l e		⇒_elim	
\Leftrightarrow rewrite_thm		⇒_intro	
\Leftrightarrow $T2$		\Rightarrow _match_mp_rule1	
⇔_1z		\Rightarrow _match_mp_rule2	
\Leftrightarrow _tac \Leftrightarrow _THEN2		\Rightarrow _match_mp_rule	
\Leftrightarrow _THEN \ldots		<i>⇒_mp_rule</i>	
⇔_111EN ⇔_thm		\Rightarrow _rewrite_thm	
		<i>⇒</i> - <i>tac</i>	
⇔_t_elim		\Rightarrow THEN	
\Leftrightarrow _t_intro \Leftrightarrow _t_rewrite_canon		<i>⇒_thm_tac</i>	
		\Rightarrow _thm	
⇔_t_tac		\Rightarrow _trans_rule	
\Leftrightarrow _T		\Rightarrow T	
« .! »		\Rightarrow _ \land _rule	
¬_elim_tac		~ <=	
¬_elim		\sim = #	
¬_eq_sym_rule		$\sim = $ \$	
¬_f_thm		\sim = $ -$	
¬_if_thm		\sim =	
\neg_iintro	205	~	463

.6.0.1	11.7.1	400		F 00
if?then		490	z_{tuples}	502
if_{-} ?then		490	$z_{tuples_{tail}}$	420
(if?then)		489	$z_{-}\in fun$	508
	$\lfloor \cdot ! else_{-} !)[X]$	489	$z_{-} \in rel$	500
if_?then_!else_	!	490	$z_{-} \in set_lang$	418
if?then!else		490	$z_{-} \in set_lib$	493
% << %_		491	'N	346
	_!% >> %	491	N_lit	347
	!% >> %)[X]	489	(-*-)	462
*	!% >> %)[X]	489	(-* R-)	472
(if?then!else		489	(-+-)	462
$(if_?then_!else$	1 / 5 3	489	$(- + R_{-})$	472
	$ 'basic_prove_\exists_conv $	341	()	462
	char char	348	$\left(R_{-}\right)$	472
	'combin	351	()	462
	$\int fun_{-}ext$	344	$(-\cdot\cdot R-)$	472
	l'list	348	$\left(-/R-\right)$	472
	mmp1	349	$\left(-/Z-\right)$	472
	mmp2	349	(- < -)	462
	one 'one	351	$\left \left(- < R_{-} \right) \right $	472
	'pair	345	(->-)	462
	'pair1	346	$\left \left(->R_{-}\right) \right $	472
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	342	$(_div_)$	462
	$prop_{-}eq$	293	(-in)[X]	450
	$prop_eq_pair$	293	$(-lb_{R-})$	472
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	343	$(_mod_)$	462
	$'sets_alg$	352	$(_partition_)[I, X]$	483
	$'sets_ext$	353	$(-ub_{R-})$	472
	$'sets_ext1$	354	$\left \begin{pmatrix} - \end{pmatrix} [X] \right $	489
	$sho_{-}rw$	349	$\left(-\widehat{Z} - \right)$	472
	$ 'simple_abstractions $	342	$(-\triangleright_{-})[X, Y]$	478
	'sum	350	$(- \uplus_{-})[X]$	450
	$z_bindings$	421	$(\circ)[X, Y, Z]$	478
	$z_{-}decl$	380	$(-\not\in_{-})[X]$	489
	$z_elementwise_eq$	503	$(_\triangleright_)[X,Y]$	478
	z_{fc}	380	$\left \left(_ \subset _ \right) [X] \right $	489
	$z_{-}fun_{-}alg$	509	$(_{-}\cap_{-})[X]$	489
	z_lin_arith	520	$(-\ominus_{-})[X]$	489
	z_lin_arith1	520	(-(-))[X, Y]	478
	$z_n normal$	494	$(-\oplus_{-})[X,Y]$	478
	$z_numbers$	511	$\left(\begin{pmatrix} \oplus \\ -\oplus - \end{pmatrix} \right) [X]$	489
	$z_numbers1$	512	$\left \begin{pmatrix} -g \end{pmatrix} \left[X, Y, Z \right] \right $	478
	$z_predicates$	379	(_<_)	462
	z_reals	529	$\left(\begin{array}{c} - \\ - \\ \leq R \end{array}\right)$	472
	z_rel_alg	501	$(-\neq)[X]$	489
	$z_schemas$	432	(-≥-)	462
	z_sets_alg	495	$\left \left(-\geq_{R-} \right) \right $	472
	$z_sets_ext_lang$	419	$(-\cup_{-})[X]$	489
	$z_sets_ext_lib$	496	$(- \Leftrightarrow -)[X, Y]$	478
			· · · · · · · · · · · · · · · · · · ·	

```
462
                                                                                                                       462
           (-\nearrow_{-})[X]
                                                                             (_{<_{-}}|)
                                             478
                                                                              (_≤
                                                                                     |_)
                                                                                                                       462
           (\_/ * \uparrow)[X]
                                             478
                                                                                                                       472
           (-\nearrow + \uparrow)[X]
                                                                           (-\leq_{R-}
                                                                                     | )
                                             478
                                                                             (-\leq_R
                                                                                                                       472
           (-\nearrow \sim \uparrow)[X, Y]
                                                                             (_≥_
                                                                                                                       462
                                                                                     )
           (_{-}^{})[X]
                                             483
                                                                              (_≥
                                                                                                                       462
                                                                                     |_)
           (-1_{-})[X]
                                             483
                                                                                                                       472
                                                                           (-\geq_{R}
                                             478
           (-\mapsto_-)[X, Y]
                                                                             (-\geq_R
                                                                                     _)
                                                                                                                       472
           (\neg \triangleleft \neg)[X, Y]
                                             478
                                                                            (abs_{-}
                                                                                                                       462
           (_{-}(_{-})_{-})[X, Y]
                                             489
                                                                              (abs
                                                                                                                       462
                                                                                     _)
           (-\uparrow -)[X]
                                             483
                                                                           (abs_{R-}
                                                                                                                       472
                                                                                     )
                                             462
            (abs_{-})
                                                                            (abs_R
                                                                                                                       472
           (abs_{R-})
                                             472
                                                                                                                       462
                                                                               (\sim_{-}
                                                                                     )
           (disjoint_{-})[I,X]
                                             483
                                                                                (\sim
                                                                                                                       462
                                                                                     _)
           (if\_?then\_!else\_!)[X]
                                             489
                                                                                                                       472
                                                                             (\sim_{R}
           (\% << \%
                                                                              (\sim_R
                                                                                                                       472
              _{-}!\% >> \%)[X]
                                             489
                                                                    (\_partition\_
                                                                                                                       483
                                                                                     )[I,X]
                                             462
           (\sim_{-})
                                                                     (\_partition
                                                                                                                       483
                                                                                     _{-})[I,X]
                                             472
           (\sim_{R-})
                                                                       (disjoint_{-})
                                                                                     |)[I,X]
                                                                                                                       483
           (\Pi_{-}?)
                                             489
                                                                        (disjoint
                                                                                     _{-})[I,X]
                                                                                                                       483
           ([\![...]\!])[X]
                                             450
                                                                              (_0_
                                                                                    |)[X, Y, Z]
                                                                                                                       478
  (_ * _
                                             462
           (
                                                                                     |_{-})[X, Y, Z]
                                                                                                                       478
                                                                               (_0
                                             462
     (_*
           |_)
                                                                                    |)[X, Y, Z]
                                                                                                                       478
                                                                              (-9-
 (-* R-
                                             472
           (
                                                                                     | _{-})[X, Y, Z]
                                                                                (-9
                                                                                                                       478
  (-*R
                                             472
                                                                                     |)[X, Y]
                                                                                                                       478
                                                                             (_⊳_
  (_{-} + _{-}
                                             462
                                                                                                                       478
                                                                              (_⊳
                                                                                     | _{-})[X, Y]
    (-+
                                             462
                                                                                    |)[X, Y]
                                                                                                                       478
                                                                             (_>_
(_{-} + _{R-}
                                             472
                                                                              (_>
                                                                                     |_{-})[X, Y]
                                                                                                                       478
 (_{-} + _{R}
                                             472
                                                                             (_—_
                                                                                     |)[X, Y]
                                                                                                                       478
                                             462
                                                                              (_⊕
                                                                                     | _{\scriptscriptstyle -})[X, Y]
                                                                                                                       478
                                             462
    (_{-}-
                                                                                     (X, Y]
                                                                             (_┥_
                                                                                                                       478
   - <sub>R</sub>-
                                             472
                                                                                     |_{-})[X, Y]
                                                                                                                       478
                                                                              (_⊲
                                             472
    -R
                                                                                     |)[X, Y]
                                                                                                                       478
                                                                            (_⊢-
                                             462
                                                                                     _{-})[X, Y]
                                                                                                                       478
                                                                              (-\mapsto
                                             462
     (_...
           _)
                                                                             ( \neg \triangleleft \neg \mid )[X, Y]
                                                                                                                       478
                                             472
  (-..R-
                                                                              ( \neg \triangleleft | \neg )[X, Y]
                                                                                                                       478
                                             472
   (-..R
           | _)
                                                                            (_{-}(_{-})_{-}|)[X, Y]
                                                                                                                       489
                                             472
  (-/R-
           )
                                                                             (-(-)
                                                                                     _{-})[X, Y]
                                                                                                                       489
                                             472
   (-/R
           |_)
                                                                             (-in_{-})
                                                                                    |)[X]
                                                                                                                       450
                                             472
  (-/Z-
           )
                                                                              (-in \mid -)[X]
                                                                                                                       450
                                             472
   (-/Z
                                                                                     |)[X]
                                                                                                                       489
                                                                              (_ _
 (-<-
                                             462
                                                                                (_
                                                                                     _{-})[X]
                                                                                                                       489
                                             462
    (_ <
                                                                                     |)[X]
                                                                                                                       450
(_{-} < _{R-}
                                                                              (_₩_
                                             472
                                                                                                                       450
                                                                               (_₩
                                                                                     |_{-})[X]
                                             472
 (-<_R
                                                                              (-\not\in_-|)[X]
                                                                                                                       489
 (->-
                                             462
                                                                                                                       489
                                                                               (-\not\in | -)[X]
    (->
                                             462
           _)
                                                                                                                       489
(->R-
                                             472
                                                                             ( \subset ][X]
 (->_{R}
                                                                              ( \_ \subset
                                                                                    |_{-})[X]
                                                                                                                       489
                                             472
                                                                                                                       489
                                             462
                                                                              (-\cap_-|)[X]
 (_div_-
                                                                               (\_\cap |\_)[X]
                                                                                                                       489
  (_-div
                                             462
                                                                                     |)[X]
                                                                                                                       489
                                             472
                                                                             (_⊖_
 (-lb_{R-}|)
                                                                              (_⊖
                                                                                     |_{-})[X]
                                                                                                                       489
  (-lb_R)
                                             472
           | _ )
                                                                              (<u>-</u>⊕_
                                                                                     |)[X]
                                                                                                                       489
                                             462
(\_mod\_
 (\_mod \mid \_)
                                             462
                                                                               ( \stackrel{\oplus}{-} \mid -)[X]
                                                                                                                       489
(ub_{R})
                                             472
                                                                                     |)[X]
                                                                             (-≠-
                                                                                                                       489
  (ub_R)
                                             472
                                                                              (-\neq | -)[X]
                                                                                                                       489
  (\widehat{Z} - )
                                             472
                                                                                                                       489
                                                                              (-\cup_-|)[X]
                                             472
   (-\widehat{Z} | -)
                                                                               (\cup \cup \cup )[X]
                                                                                                                       489
```

و را چا					
(_^`-)[[X]	483		$0_less_times_thm$	532
(_^)	(X]	483	fun		450
(-1-1)	[X]	483	fun	0 right assoc	489
	\tilde{X}	483	$z_abs_eq_$	0_thm	468
1, 1	[X]	483	zabseq	0 _ thm	516
\ ' / "	X	483	$z_size_$	0 _ thm	470
_ *.		463	$z_size_$	0 _ thm	523
	*_	463	$z_times_eq_$	0_thm	466
_* _	· -	463	$z_times_eq_$	0_thm	516
(_ *.)	462	$z_times_less_$	θ_thm	471
(- *:	<i>'</i>	28	$z_times_less_$	0_thm	523
		473	$z\mathbb{R}plus$	θ _thm	475
	R -	473	$z\mathbb{R}$ $plus$	θ _thm	533
	* R-	473	$z \mathbb{R} real$	θ _thm	533
- * R -)	$473 \\ 472$	$z_{-}\leq_{-}\leq_{-}$	θthm	467
` .	R-)	463	z = z = z	θthm	516
- +			z_{-}	$0\mathbb{N}thm$	465
. -	+-	463	z	$\theta\mathbb{N}thm$	516
_+ _	\	463	$z_size_$	$1_{-}thm$	470
`)	462	$z_{-}size_{-}$	1thm	523
	-R-	473	$z_{-}size_{-} \le z_{-}size_{-} \le z_{-}size_{-$	1thm	470
	+ R -	473			523
- + _R -		473	$z_size_{-\leq}$	1_thm	
(_ +	- _R -)	472	$\displaystyle \mathop{fun}_{\cdot}$	10leftassoc	478
_ -	-	463	$z_size_$	2thm	470
-	- ₋	463	z size	2thm	523
_		463	fun	20leftassoc	462
(_ -)	462	fun	20leftassoc	472
_ -	- R -	473	fun	25leftassoc	489
-	- _R -	473	fun	30 left assoc	450
$_{-}{R}$		473	fun	30 left assoc	462
(_ -	- _R -)	472	fun	30 left assoc	472
	-	464	fun	30 left assoc	483
	••-	464	fun	30 left assoc	489
		464	fun	40 left assoc	462
(_	_)	462	fun	40 left assoc	472
`[]	. <u>ĺ</u>	450	fun	40 left assoc	478
$([\![]\!]$	$.\ddot{\rrbracket})[X]$	450	fun	40 left as soc	483
	R-	473	fun	40 left as soc	490
	··R-	473	fun	45 right assoc	483
-··R -	16-	473	gen	5right assoc	452
	R-)	472	gen	5right assoc	463
1 .	R-	473	gen	5right assoc	490
l l		473	fun	50 left assoc	478
-/ _R -/	/ R =	473	fun	50 right assoc	463
	$_{R-})$	472	fun	50 right assoc	472
		473	fun	60 left assoc	479
	Z - / -	473	fun	60 right assoc	472
-/z -/	/ Z -	473	fun	65 right assoc	479
)	$473 \\ 472$	fun	70 right assoc	463
_	Z-)	412	fun	70 right assoc	479
2_11\(\)_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$_{-less_0_less_times}$ $_{-thm}$	176	gen	70 right assoc	450
. ID)		476	gen	70rightassoc	463
$z\mathbb{R} \mid heta$	_less_0_less_times	520	gen	70 right assoc	479
1	_thm	532	gen	70rightassoc	483
	_less_thm	471	gen	70rightassoc	490
I	_less_thm	523	gen	_	463
	_less_times_thm	471	-	< _	463
	_less_times_thm	523		_ < _	463
$z_{-}\mathbb{R}_{-}\theta_{-}less_{-}\mid\theta$	$_{less_times_thm}$	476	_ <	=	400

(l	462	$is_z_$	$\mid abs$	513
(-	\ -	473	$is_z_\mathbb{R}$	$\begin{vmatrix} abs \\ abs \end{vmatrix}$	530
-	~ R-				
	_ < R_	473	<i>z</i> _	abs_minus_thm	468
- < R	_	473	Z_ 	abs_minus_thm	516
(-	$ <_{R-})$	472	$z\mathbb{N}$	abs_minus_thm	468
	=:	81	$z\mathbb{N}$	abs_minus_thm	516
	= #	132	mkz	abs	514
	=\$	80	$mkz\mathbb{R}$	abs	531
	= -	132	z_{-}	abs_neg_thm	471
_	> _	463	z_{-}	abs_neg_thm	523
	_ > _	463	z_{-}	abs_plus_thm	468
_ >		463	z_{-}	abs_plus_thm	516
-	-	462	z_{-}	abs_pos_thm	471
(-		473	z	abs_pos_thm	523
-	/ K-	473		$\begin{vmatrix} abs_pos_thm \\ abs_thm \end{vmatrix}$	468
~	- > R-		<i>z</i> _		
$->_R$	-	473	<i>z</i> _	abs_thm	516
(-	$ >_{R-})$	472	z_{-}	abs_times_thm	468
if_{-}	$?then_!else_!$	490	z_{-}	abs_times_thm	516
if	$_?then_!else_!$	490	z_{-}	$abs_ \leq _times_thm$	471
(if	$?then_!else_!)[X]$	489	z_{-}	$abs_ \leq _t times_thm$	523
(if	$[_?then_!else_!)[X]$	489	z_{-}	$abs_{-}\mathbb{N}_{-}thm$	468
Π	?	491	z_{-}	$abs_{-}\mathbb{N}_{-}thm$	516
Π	_?	491	$'paired_{-}$	abstractions	342
$(\Pi_{-}$?)	489	$'simple_$	abstractions	342
Π		489	1	abs_{R-}	473
(39	abs_R		473
	@+	39	N soon	$\begin{bmatrix} -accept_tac \end{bmatrix}$	231
	@_	39	eurrent	$ad_cs_\exists_conv$	330
	@ <		current_		
		39	$pp'set_eval_$	$ad_cs_\exists_convs$	330
	@ <=	39	current	ad_mmp_rule	317
	@ >	39	$current_{-}$	$ad_{-}nd_{-}net$	330
	@ >=	39	$pp'set_eval_$	$ad_n nd_n net$	330
	@@	39	current	ad_pr_conv	317
	@~	39	current	ad_pr_tac	317
	$\mid a \mid$	223	$current_$	ad_rw_canon	329
	$abandon_reader_writer$	59	$pp'set_eval_$	ad_rw_canon	329
$declare_type_$	abbrev	124	current	$ad_rw_eqm_rule$	317
$expand_type_$	abbrev	124	$current_$	ad_rw_net	328
$get_type_$	abbrev	126	$pp'set_eval_$	ad_rw_net	328
$is_type_$	abbrev	127	$current_{-}$	ad_sc_conv	329
$undeclare_type_$	abbrev	128	$pp'set_eval_$	ad_sc_conv	329
$get_type_$	abbrevs	127	$current_{-}$	$ad_{-}st_{-}conv$	329
$get_undeclared_type_$	abbrevs	127	$pp'set_eval_$	$ad_{-}st_{-}conv$	329
LSType	Abbrevs	75	$current_{-}$	$ad_{-}\exists_{-}cd_{-}thms$	330
LSUndeclaredType	Abbrevs	75	$pp'set_eval_$	$ad_{-}\exists_{-}cd_{-}thms$	330
$z_{-}\mathbb{R}_{-}unbounded_{-}$	$above_thm$	474	current	$ad_{-}\exists_{-}vs_{-}thms$	331
$z {{}_{-}}\mathbb{R}_{-}unbounded{{}_{-}}$	$\mid above_thm$	531	$pp'set_eval_$	$ad_{-}\exists_{-}vs_{-}thms$	331
	abs_{-}	464		add_error_code	59
abs	_	464		add_error_codes	59
z_{-}	$abs_0_less_thm$	471		$add_general_reader$	59
z_{-}	abs_0-less_thm	523		add_named_reader	59
z	abs_conv	518		$add_new_symbols$	60
$z\mathbb{R}$	$\begin{vmatrix} abs_conv \\ abs_conv \end{vmatrix}$	534		add_rw_thms	338
z _ \mathbb{R}	abs_conv abs_def	534		$\begin{vmatrix} add_rw_thms \\ add_sc_thms \end{vmatrix}$	338
	$\begin{vmatrix} aos_aej \\ abs \end{vmatrix}$				
$dest_{-}z_{-}$		513		add_specific_reader	59
$dest_z_\mathbb{R}$	abs	530		add_st_thms	339
z_{-}	$abs_eq_0_thm$	468		$add_{\exists} cd_{thms}$	339
z_{-}	$ abs_eq_0_thm $	516		$\mid advance$	58

$'sets_$	$\mid alg \mid$	352		ALL_\lor_C	155
$^{\prime}z_{-}fun_{-}$	alg	509		all_\Rightarrow_intro	155
z_{-j} z_{-rel}	alg	501		$all_ \forall_ arb_ elim$	155
z_{-sets}	alg	495		$all_{-}\forall_{-}elim$	155
$z_sets_$	alg	504		$all_ \forall_intro$	156
$declare$ _	alias	122		$all_{-} \forall_{-} uncurry_{-} conv$	156
get_{-}	alias	125		$all_\exists_uncurry_conv$	156
get get	$alias_info$	125		$all_{-}\beta_{-}conv$	157
$resolve_{-}$	alias	127		$all_{-}\beta_{-}rule$	157
$undeclare_$	alias	128		$all_{-}eta_{-}tac$	233
get_{-}	aliases	124		$ALL_{-\epsilon_{-}}T$	233
$get_undeclared_$	aliases	127		$all_{-\epsilon_{-}}tac$	233
LS	Aliases	75	$is_theory_$	ancestor	142
LSUndeclared	Aliases	75	TS	Ancestor	119
	all	20	get	ancestors	138
	$all_asm_ante_tac$	231	save	andexit	51
	$ALL_ASM_FC_T$	246	fun	and	28
	$ALL_ASM_FC_T1$	247	$^{''}HT$	And	70
	$all_asm_fc_tac$	245	$skip_{-}$	$and_look_at_next$	58
	ALL_ASM		•	AND_OR_C	157
	FORWARD		$save$	andquit	51
	_CHAIN_T	246	pp'Types	And Terms	79
	ALL_ASM		Types	And Terms	79
	_FORWARD		ZTypes	And Terms	359
	_CHAIN_T1	247	V-	$ANF_{-}C$	297
	$all_asm_forward$			anf_conv	297
	$_chain_tac$	245	z_{-}	anf_conv	520
$delete_$	$all_conjectures$	150		$ante_tac$	233
is	$all_decimal$	31	$all_asm_$	$ante_tac$	231
	$all_different$	20	asm_{-}	$ante_tac$	234
	$all_distinct$	20	$list_asm_$	$ante_tac$	254
	$ALL_{-}FC_{-}T$	246	$z \text{_} \mathbb{R} \text{_} less \text{_}$	$antisym_thm$	474
	$ALL_{-}FC_{-}T1$	247	$z_{-}\mathbb{R}_{-}less_{-}$	$antisym_thm$	531
	all fc tac	245	$z_{-}\mathbb{R}_{-}\leq_{-}$	$antisym_thm$	474
	$ALL_FORWARD$		$z_{-}\mathbb{R}_{-}\leq_{-}$	$antisym_thm$	532
	$_CHAIN_T$	246	$z_{-} \leq_{-}$	$antisym_thm$	467
	$ALL_FORWARD$		$z_{-} \leq_{-}$	$antisym_thm$	516
	$_CHAIN_T1$	247		any	20
	$ all_forward_chain_tac $	245	$get_HOL_$	any	62
	$ALL_SIMPLE_\forall_C$	153	get_ML_{-}	any	62
	$ all_simple_ \forall _elim$	154		$any_submatch_tt$	152
	$ALL_SIMPLE_∃_C$	154		$any_substring_tt$	152
	$all_simple_\beta_conv$	154		$any_subterm_tt$	152
	$all_simple_\beta_rule$	154	T	Any	151
	$all_submatch_tt$	152	$term_{-}$	any	113
	$all_substring_tt$	152	$type_{-}$	any	115
	$all_subterm_tt$	152		app	20
T	All	151		App	79
	ALL_VAR_ELIM	222		app_arg_rule	158
	_ASM_T	232	e.	$APP_{-}C$	158
	ALL_VAR_ELIM	000	$z_{-}fun_{-}$	app_clauses	454
	_ASM_T1	232	$z_{-}fun_{-}$	app_clauses	510
	all_var_elim_asm_tac	232	if_{-}	app_conv	170
	$all_var_elim_asm$	999	z_	app_conv	421
2.	_tac1	232	$z_seqd_$		524
is	$all_z type$	382	D	App	80
	$\begin{vmatrix} all_z - \forall_i intro \\ ALL \wedge C \end{vmatrix}$	$\frac{381}{155}$	$dest_{-}$	app	81 363
	$ALL_{-} \land _{-} C$	199	$dest_{-}z_{-}$	app	505

		400	n n	1.4	40
z_	1 1 1	422		Array	42
$z \in _seq$	app_eq_thm	488	Sparse	Array	36
$z_{-} \in _seq_{-}$		525	$SPARSE_{-}$	ARRAY	36
$z_{-} \in _seqd_{-}$		488	save	as	51
$z_{-} \in _seqd_{-}$		525	conv	ascii	12
$z \rightarrow \in -rel \Leftrightarrow$	11 1	453		$ask_at_terminal$	60
$z \rightarrow \in -rel \Leftrightarrow$		510	11	asm_ante_tac	234
$z \longrightarrow$	11 1	453	all_{-}	asm_ante_tac	231
$z \rightarrow$	* * *	510	list_	asm_ante_tac	254
	app_fun_rule	158	LIST_SWAP_	ASM_CONCL_T	256
	app_if_conv	158	LIST_SWAP_NTH_	ASM_CONCL_T	256
<i>is</i>	app	90	$SWAP_{-}$	ASM_CONCL_T	276
is_z_	app	363	SWAP_NTH_	ASM_CONCL_T	276
$list_mk_$	app	95	$list_swap_$	asm_concl_tac	256
mk_{-}	app	99	$list_swap_nth_$	asm_concl_tac	256
mkz	app	363	swap	asm_concl_tac	275
KIMk	AppRule	$\frac{129}{176}$	$swap_nth_$	asm_concl_tac	$\frac{275}{272}$
mk_{-}	app_rule		strip	asm_conv	273
$strip_{-}$	app	109 460		$egin{array}{l} asm_elim \ ASM_FC_T \end{array}$	$\frac{159}{246}$
z_ aimalatan	$egin{array}{c} app_thm \ app_thm \end{array}$	$450 \\ 458$	ALL_{-}	ASM_FC_T ASM_FC_T	$\frac{240}{246}$
$z_singleton_\ z_singleton_$	1 1 1	526	ALL_{-}	ASM_FC_T ASM_FC_T 1	$\frac{240}{247}$
		$\frac{320}{460}$	ALL_{-}	ASM_FC_T1 ASM_FC_T1	$\frac{247}{247}$
$z_{-}\in$	* *	455	ALL_{-}	asm_fc_tac	$\frac{247}{245}$
$z \oplus \mapsto$	$ app_thm $	526	all	asm_fc_tac	$\frac{245}{245}$
$z \oplus \mapsto \ z \to$	$\begin{vmatrix} app_ttttt \\ app_thm \end{vmatrix}$	453	<i>uu</i> -	$ASM_FORWARD$	240
$z \longrightarrow$ $z \longrightarrow$	$\begin{vmatrix} app_thm \\ app_thm \end{vmatrix}$	510		_CHAIN_T	246
$z \rightarrow z \mapsto$	app_thm1	455	ALL_{-}	ASM_FORWARD	240
$z \oplus \mapsto$		526	$\Pi B B_{-}$	_CHAIN_T	246
$time_{-}$	$\begin{vmatrix} app_tim1 \\ app \end{vmatrix}$	520		ASM_FORWARD	240
Z	$\begin{vmatrix} app \\ App \end{vmatrix}$	360		_CHAIN_T1	247
$z \rightarrow$	$app_{-} \in rel_{-}thm$	453	ALL_{-}	$ASM_FORWARD$	211
$z \rightarrow$		510	7100_	_CHAIN_T1	247
z_{-}	$app_{-} \in thm$	460		$asm_forward_chain$	211
z_{-}	$app_{-}\lambda_{-}rule$	422		$_{_}tac$	245
open	append	41	all	$asm_forward_chain$	
· F · · · =	$apply_tactic$	223		$_tac$	245
HT	AqTm	70	get	asm	223
HT	AqTy	70	J	$asm_inst_term_rule$	159
$all_{-} \forall_{-}$		155		$asm_inst_type_rule$	159
∀_	arb_elim	210		asm_intro	159
	$area_of$	16		$ASM_PROP_EQ_T$	294
app	$ arg_rule$	158		$ asm_prove_tac $	316
BdzF	Argc	359		$ asm_prove_\exists_tac $	316
$'z_lin_$	arith	520		$asm_rewrite_rule$	184
z_{-}	$arith_def$	518	$once_{-}$	$asm_rewrite_rule$	184
$z {} \mathbb{R}_{-} lin$	$ arith_prove_conv $	532	$pure_{-}$	$asm_rewrite_rule$	184
$z {}\mathbb{R}_{-}lin$	$ arith_prove_tac $	532	$pure_once_$	$asm_rewrite_rule$	184
$z_lin_$	arith	519		$asm_rewrite_tac$	263
$z\mathbb{R}lin$	arith	529	once	$asm_rewrite_tac$	263
$^{\prime}z_lin_$		520	pure	$asm_rewrite_tac$	263
$z_lin_$		519	$pure_once_$	$asm_rewrite_tac$	263
Z	Arithmetic Tools	519		$asm_rewrite_thm_tac$	263
$get_type_$	arity	141	$once_$	$asm_rewrite_thm_tac$	263
	array	36	$pure_$	$asm_rewrite_thm_tac$	263
	array	38	$pure_once_$	$asm_rewrite_thm_tac$	263
Dynamic		38		asm_rule	160
$DYNAMIC_{-}$	ARRAY	38	KI	AsmRule	129

$prove_{-}$	$ asm_rule $	180	$z_times_$		466
A^-	$ asm_rule $	210	$z_times_$		516
∃_	$ asm_rule $	213	$z \mathbb{R}_p lus$		475
$ALL_{-}VAR_{-}ELIM_{-}$	$ASM_{-}T$	232	$z\mathbb{R}plus$	$assoc_thm1$	533
$DROP_{-}$	$ASM_{-}T$	240	$z {\tt _R_times_}$	$assoc_thm1$	476
$DROP_NTH_$	$ASM_{-}T$	241	$z_{-}\mathbb{R}_{-}times_{-}$	$assoc_thm1$	533
GET	$ASM_{-}T$	249	z_{-}	$assoc_thm1$	487
$GET_NTH_$	$ASM_{-}T$	250	z _ $^-$	$assoc_thm1$	525
$LIST_DROP_$	$ASM_{-}T$	254			
$LIST_DROP_NTH_$	$ASM_{-}T$	254	$pp_print_$	assumptions	73
$LIST_GET_$	$ASM_{-}T$	255	CEM	$ASYM_{-}C$	297
$LIST_GET_NTH_$	$ASM_{-}T$	255	GEN_{-}	$ASYM_{-}C$	297
$LIST_SPEC_$	$ASM_{-}T$	271	look	at_next	58
$LIST_SPEC_NTH_$	$ASM_{-}T$	271	$skip_and_look_$	at_next	58
POP_{-}	$ASM_{-}T$	258	ask_{-}	$ at_{-}terminal $	60
$SPEC_{-}$	$ASM_{-}T$	271	Delete	Axiom	131
$SPEC_NTH_$	$ASM_{-}T$	271	delete	axiom	134
TOP_	$ASM_{-}T$	280	get	$axiom_dict$	138
VAR_ELIM_	$ASM_{-}T$	281	get	axiom	138
VAR_ELIM_NTH_	$ASM_{-}T$	281	New	Axiom	131
ALL_VAR_ELIM_	$ASM_{\perp}T1$	$\frac{231}{232}$	new	axiom	143
71DD_	$\begin{vmatrix} asm_{-}tac \end{vmatrix}$	234	TT	Axiom	151
$all_var_elim_$	$\begin{vmatrix} asm_{-}tac \\ asm_{-}tac \end{vmatrix}$	232	get	axioms	138
	$\begin{vmatrix} asm_{-}tac \\ asm_{-}tac \end{vmatrix}$	238	LS	Axioms	75
$check_{-}$				$back_chain_tac$	235
eqsym	asm_tac	242		$back_chain_thm_tac$	236
$eq_sym_nth_$	asm_tac	242	push	back	58
list_spec_	asm_tac	270		bad_proof	236
$list_spec_nth_$	$asm_{-}tac$	270		bag_{-}	451
$spec_{-}$	$asm_{-}tac$	270	bag	_	451
$spec_nth_$	$asm_{-}tac$	270	z_{-}	bag_def	528
$step_strip_$	$asm_{-}tac$	272		bagX	450
$strip_{-}$	$asm_{-}tac$	273	Z	Bags	526
$var_elim_$	$asm_{-}tac$	281	LS	Banner	75
$var_elim_nth_$	$asm_{-}tac$	281	pp'set	banner	49
$z_spec_$	$asm_{-}tac$	399	$print_{-}$	banner	50
$z_spec_nth_$	$asm_{-}tac$	399	$system_{-}$	banner	49
$all_var_elim_$	asm_tac1	232	$user_{-}$	banner	49
	asms	132	-	$basic_dest_z_term$	361
$DROP_{-}$	$ASMS_{-}T$	240		BasicError	16
$DROP_FILTER_$	$ASMS_{-}T$	241		$basic_hol$	349
GET_{-}	$ASMS_{-}T$	249		$basic_hol1$	349
$GET_FILTER_$	$ASMS_{-}T$	250		BasicIO	41
$concl_in_$	$asms_tac$	238		$basic_prove_conv$	356
	ASSOC	69	z_{-}	$basic_prove_conv$	385
Left	Assoc	69	£_	$basic_prove_tac$	357
Right	Assoc	69	~	_	386
$z_plus_$	$assoc_thm$	464	z_{-}	$basic_prove_tac \ basic_prove_\exists_conv$	341
$z_plus_$	$assoc_thm$	516		basic_res_extract	307
$z_times_$	$assoc_thm$	466			307
$z_times_$	$assoc_thm$	516		basic_res_next_to	308
$z_{-}\mathbb{R}_{-}plus_{-}$	$assoc_thm$	475		_process	
$z_{-}\mathbb{R}_{-}plus_{-}$	$assoc_thm$	533		basic_res_post	308
$z_{-}\mathbb{R}_{-}times_{-}$	$assoc_thm$	476		basic_res_pre	308
$z _ \mathbb{R}_times _$	$assoc_thm$	533		basic_res_resolver	308
z _ $^{-}$	$assoc_thm$	487		basic_res_rule	309
				$basic_res_subsumption$	309
z_{-}	$assoc_thm$	525		basic_res_tac	312
$z_{-}plus_{-}$	$assoc_thm1$	465		basic_res_tac1	310
zplus	$assoc_thm1$	516		$basic_res_tac2$	310

	basic_res_tac3	311	$get_curly_$	$ \ braces$	62
	$basic_res_tac4$	311	$get_round_$	braces	62
	BASIC_RES_TYPE	305	$z'underlining_{-}$	$brackets_def$	498
	BASIC	303	z underlining_ z	brackets_thm	492
	_RESOLUTION_T	306	$z_under lining_$	$brackets_thm$	499
	BASIC	300	v		222
		207	undo_	$buffer_length$	
	_RESOLUTION_T1	307	$ALL_SIMPLE_ \forall$ _	$egin{array}{c} C \ C \end{array}$	153
	basic_resolve_rule	307	$ALL_SIMPLE_\exists_$		154
	$bc_{-}tac$	235	$ALL \wedge$	C	155
	bc_thm_tac	236	$ALL_{-}\lor_{-}$	C	155
	BDZ	359	$AND_{-}OR_{-}$	C	157
	BARRICA	359	ANF_{-}	C	297
	BdzFCode	359	APP_{-}	C	158
	BdzFCompc	359	$ASYM_{-}$	C	297
	Bland	359	BINDER_	C	160
	BdzNotZ	359	$CHANGED_{-}$	C	160
	BdzOk	359	COND	C	161
	before_kernel_state	100	пиппи	c_contr_rule	162
TD 1 1 1	_change	133	EVERY_	C	165
$z_{-}\mathbb{R}_{-}unbounded_{-}$	$below_thm$	474	EXTEND_PC_	C	319
$z_{-}\mathbb{R}_{-}unbounded_{-}$	$below_thm$	531	EXTEND_PCS_	C	319
1 ,	bin_bool_op	81	FIRST_	C	167
dest	binop	82	$GEN_ASYM_$	C	297
<i>is</i>	binop	91	$LEFT_{-}$	C	173
$list_mk_$	bin_op	96	$MAP_ \\ MERGE_PCS_$	$egin{array}{c} C \ C \end{array}$	175
mk_{-}	bin_op	100		$C \subset C$	325
$strip_{-}$	bin_op	110	ONCE_MAP_		176
	$egin{array}{c} Binder \ BINDER_C \end{array}$	69 160	$ONCE_MAP$ $_WARN_$	C	177
$SIMPLE_{-}$	BINDER_C	185	ORELSE_	$C \subset C$	177 177
$declare_$	binder	122	PC_{-}	$C \subset C$	325
$dest_{-}$	binder	81	$RAND_{-}$	$C \subset C$	181
$dest_simple_$	binder	85	$RANDS_{-}$	$C \subset C$	181
$uest_stmpte_$ HT	Binder	70	$RATOR_{-}$	$C \subset C$	181
is_{-}	binder	91	$REPEAT_{-}$	$C \subset C$	182
$is_simple_$	binder	93	$REPEAT_MAP_$	$C \subset C$	182
$list_mk_$	binder	96	$REWRITE_MAP_$	$C \subset C$	183
mk_{-}	binder	99	RIGHT_	$C \subset C$	184
$mk_simple_$	binder	103	$SIMPLE_BINDER_$	$C \subset C$	185
$strip_{-}$	binder	110	$SIMPLE_{-}\lambda_{-}$	$C \subset C$	193
$strip_simple_$	binder	110	$SIMI\ EE = \lambda = SUB$	$C \subset C$	197
get_{-}	binders	125	$THEN_{-}$	$C \subset C$	198
$dest_{-}z_{-}$	binding	364	$THEN_{-}TRY_{-}$	$C \subset C$	199
z_{-}	$binding_eq_conv$	423	$TOP_MAP_$	$\stackrel{\circ}{C}$	199
z_{-}	$binding_eq_conv1$	423	TRY_{-}	$\stackrel{\circ}{C}$	199
z_{-}	$binding_eq_conv2$	423	$Z_{-}DECL_{-}$	$\stackrel{\circ}{C}$	387
z_{-}	$binding_eq_conv3$	506	$Z_DECL_INTRO_$	C	387
$is_z_$	binding	364	$Z_LEFT_$	C	424
mkz	binding	364	$Z_RAND_$	C	424
Z	Binding	360	$Z_{-}RANDS_{-}$	C	424
z_{-}	$bindingd_elim_conv$	422	$Z_{-}RIGHT_{-}$	C	424
z_{-}	$bindingd_intro_conv$	423	$Z_{-} \in _{-}ELIM_{-}$	C	427
z_{-}	bindings	421	$Z_{-}\mathbb{R}_{-}EVAL_{-}$	C	532
HT	Blob	70	€_	C	431
	BOOL	81	λ	C	219
bin	$bool_op$	81	$EXTEND_PC_$	C1	319
get	box_braces	62	$EXTEND_PCS_$	C1	319
$get_box_$	braces	62	$MERGE_PCS_$	C1	325
	•			-	

PC	C1	325	$z_\mathbb{R}_less_$	$cases_thm$	531
$REPEAT_{-}$	C1	182	$z_{-\mathbb{R}_{-}}$ $tess_{-}$ $tess_{-}$	cases_thm	474
SUB_{-}	C1	197	$z_{-\mathbb{R}} \leq z_{-\mathbb{R}}$	cases_thm	532
clear		101	$z_{-}\mathbb{R}_{-} \leq less_{-}$	$cases_thm$	474
$_compactification_$	cache	130	$z_{-}\mathbb{R}_{-}\leq_{-}less_{-}$	$cases_thm$	532
$get_compactification_$	cache	130	$z_{-\leq_{-}}$	$cases_thm$	467
$set_compactification_$	cache	130	$z_{-}\leq_{-}$	$cases_thm$	516
ZPredicate	Calculus	378	$z\mathbb{N}$	$cases_thm$	465
ZSchema	Calculus	432	$z\mathbb{N}$	$cases_thm$	516
$EVERY_{-}$	CAN	165	$z\mathbb{Z}$	$cases_thm$	465
FC	CAN	167	$z\mathbb{Z}$	$cases_thm$	516
$FC_{-} \Leftrightarrow_{-}$	CAN	169	$z\mathbb{Z}$	$cases_thm1$	466
FIRST	CAN	166	$z\mathbb{Z}$	$cases_thm1$	516
$FORWARD_CHAIN_$	CAN	167	$add_{-}\exists_{-}$	cd_thms	339
FORWARD			$current_ad_\exists_$	cd_thms	330
$_CHAIN _ \Leftrightarrow _$	CAN	169	$get_{-}\exists_{-}$	cd_thms	339
	can_input	41	$pp'set_eval_ad_\exists_$	cd_thms	330
$ORELSE_{-}$	CAN	177	$set_{-}\exists_{-}$	cd_thms	339
$REPEAT_{-}$	CAN	182	$FORWARD_{-}$	$CHAIN_CAN$	167
$REWRITE_{-}$	CAN	182	$forward$ _	$chain_canon$	168
$THEN_{-}$	CAN	198	$forward$ _	$chain_canon1$	168
$THEN_LIST_$	CAN	198	$forward_$	$chain_rule$	169
V_	$ cancel_rule $	204	ALL_ASM		
	CANON	153	$_{-}FORWARD_{-}$	$CHAIN_{-}T$	246
$current_ad_rw_$	canon	329	$ALL_FORWARD_$	$CHAIN_{-}T$	246
$f_rewrite_$	canon	203	$ASM_FORWARD_$	$CHAIN_{-}T$	246
fail	canon	166	$FORWARD_{-}$	$CHAIN_{-}T$	246
$fail_with_$	canon	166	ALL_ASM		
fc	canon	168	$_FORWARD_$	$CHAIN_{-}T1$	247
$fc \Leftrightarrow$	canon	170	$ALL_FORWARD_$	$CHAIN_{-}T1$	247
$forward_chain_$	canon	168	$ASM_FORWARD_$	$CHAIN_{-}T1$	247
$forward_chain_\Leftrightarrow_$	canon	170	$FORWARD_{-}$	CHAIN_T1	247
id	canon	170	$all_asm_forward_$	$chain_tac$	245
$initial_rw_$	canon	172	$all_forward_$	$chain_tac$	245
pair_rw_	canon	258	$asm_forward_$	$chain_tac$	245
$pp'set_eval_ad_rw_$	canon	329	$back_{-}$	$chain_tac$	235
$simple_\lnot_rewrite_$	canon	203	$forward_{-}$	chain_tac	245
$simple_\forall_rewrite_$	canon	203	back_	chain_thm_tac	236
$z_para_pred_p$	canon	395	$FORWARD_{\perp}$	CHAIN _⇔_CAN	169
$z_{-}\neg_{-}rewrite_{-}$	canon	402	forward_	chain_⇔_canon	170
$z \Rightarrow rewrite$ $z \forall rewrite$	canon	403 409	$before_kernel_state_$	change	133 19
$z_{-}v_{-}rewrite_{-}$ $\Leftrightarrow_{-}t_{-}rewrite_{-}$	canon	203	$pp' \ KERNEL_STATE_$	$change_error_message$ $CHANGE$	131
$ ightharpoonup_{-t-rewrite}$	$oxed{canon}{canon}$	203	$on_kernel_state_$	change	146
$\neg_rewrite_$	$\begin{vmatrix} canon \\ canon \end{vmatrix}$	287	OIL_NETITEL_STATE_	$CHANGED_{-}C$	160
$\forall _rewrite_$	canon	287		$CHANGED_T$	237
fc_{-}	$\begin{vmatrix} canon \\ canon 1 \end{vmatrix}$	168		Char	70
$forward_chain_$	$\begin{vmatrix} canon1 \\ canon1 \end{vmatrix}$	168		CHAR	81
$get_rw_$	canons	337	,	char	348
$set_rw_$	canons	337		$char_conv$	160
5001, W.	$CASES_{-}T$	237	KI	CharConv	129
	$CASES_{-}T2$	237	D	Char	80
	$cases_tac$	237	dest	char	82
$z_less_$	$cases_thm$	469	find	char	61
$z_less_$	$cases_thm$	523	HT	Char	70
$z_seq_$	$cases_thm$	487	is	char	91
$z_seq_$	$cases_thm$	525	$is_special_$	char	64
	$cases_thm$	474	mk	char	100

SymUnknown	Char	57	$z\cap$	clauses	492
Sym Onknown Sym		57	z_{-}	clauses	492
Sym	Character Utilities	31		clauses	$499 \\ 492$
act was entended	chars_flag	63	$z\ominus$	clauses	492 499
$get_use_extended_$ $use_extended_$	chars	56	$z\ominus$	clauses	$499 \\ 492$
use_extenueu_	$check_asm_tac$	238	$z\cap$	clauses	492
	$check_is_z$	$\frac{238}{381}$	z _() z _ \leftrightarrow _	clauses	481
	$ check_is_z_conv_result $	381	z \rightarrow z \rightarrow z \rightarrow z	clauses	482
	$check_is_z_conv_result$	381	$egin{array}{cccccccccccccccccccccccccccccccccccc$	clauses	454
set	$ check_is_z_goar $	381	$z \rightarrow \ z \rightarrow$	clauses	510
300_	CHECK_IS_Z	381	$z_\mathbb{R}_less_$	clauses	476
	$check_is_z_term$	381	z _ \mathbb{R} _ $less$ _ z _ \mathbb{R} _ $less$ _	clauses	531
	$ check_is_z_term $	381	z _ \mathbb{R} _ $minus$ _	clauses	475
	CHECKPOINT	132	z _ \mathbb{R} _ $minus$ _	clauses	533
	checkpoint	132	z _ \mathbb{R} _over_	clauses	477
get	children	$132 \\ 139$	z _R_over_	clauses	533
LS	Children	75	$z_{-}\mathbb{R}_{-}plus_{-}$	clauses	475
$NAME_{-}$	CLASS	56	z _ $\mathbb{R}plus$ _ z _ $\mathbb{R}plus$ _	clauses	533
$z_dom_$	clauses	481	z _ \mathbb{R} _ $times$ _	clauses	477
$z_dot_dot_$	clauses	469	z _ \mathbb{R} _ $times$ _ z _ \mathbb{R} _ $times$ _	clauses	533
$z_dot_dot_$	clauses	523	$z_{-\mathbb{R}_{-}}$ $z_{-\mathbb{R}_{-}}$	clauses	476
$z_aot_aot_$ $z_fun_app_$	clauses	454	$z_{-\mathbb{R}} \leq z_{-\mathbb{R}}$	clauses	532
$z_{-f}un_{-}app_{-}$ $z_{-f}un_{-}app_{-}$	clauses	510	z_n z_×_	clauses	492
$z_{-f}un_{-}upp_{-}$ $z_{-f}un_{-}dom_{-}$	clauses	454	$z \times$ $z \times$	clauses	499
$z_{-}fun_{-}dom_{-}$	clauses	510	z_{-} , z_{-}	clauses	481
$z_{-}fun_{-}ran_{-}$	clauses	454	$z_{-\tilde{g}_{-}}$ $z_{-\leq_{-}}$	clauses	467
$z_{-f}un_{-r}an_{-}$	clauses	510	$z_{-\leq -}$ $z_{-\leq -}$	clauses	516
$z_{-fun_{-} \in _}$	clauses	454	z- <u>S-</u> z ₋ U_	clauses	492
$z_{-}fun_{-} \in $ $z_{-}fun_{-} \in $	clauses	510	z_U_ z_U_	clauses	492
$z_{-j}un_{-} \in Z_{-i}d_{-}$	clauses	481	z z	clauses	459 454
$z_less_$	clauses	467	$z = - \cdots = z = - \cdots = z$	clauses	510
$z_less_$	clauses	516	z z J	clauses	492
$z_{-}iess_{-}$ $z_{-}minus_{-}$	clauses	465	z_U_ z_U_	clauses	492
$z_minus_$	clauses	516	z z $+$ z	clauses	459
$z_mmas_$ $z_plus_$	clauses	466	z z z	clauses	510
$z_plus_ \ z_plus_$	clauses	516	$z \mapsto $	clauses	454
z_{-} ran_{-}	clauses	481	$z \leftarrow z \sim z \leftarrow z \sim z $	clauses	510
$z_reflex_closure_$	clauses	482	z_{-} , z_{-}	clauses	482
$z_rel_image_$	clauses	482	$z \rightarrow z$	clauses	454
$z_rel_inv_$		482	$z \rightarrow z \rightarrow z$	clauses	510
			z _ z _ \mathbb{P}_{-}	clauses	492
$z_seqd_\frown_\langle\rangle_$	clauses	488	$z_{-\mathbb{P}}$ _ $z_{-\mathbb{P}}$ _	clauses	492 499
$z_{-}seqd_{-}^{\frown}_{-}\langle\rangle_{-}$		525	$z_{-\mathbb{P}_{1}}$	clauses	492
$z_set_dif_$		492	$z_{-\mathbb{P}_{1-}}$	clauses	499
$z_set_dif_$	clauses	499	z_m 1- z_<	clauses	481
$z_sets_ext_$	clauses	492	$z \rightarrow z \rightarrow + -$	clauses	454
$z_sets_ext_$	clauses	499	$z \rightarrow \rightarrow z$	clauses	510
$z_times_$	clauses	466	2_777_	$clear_compactification$	310
$z_times_$	clauses	516		_cache	130
$z_trans_closure_$	clauses	482		$close_in$	41
$z\subseteq$	clauses	492		$close_in$ $close_out$	41
$z\subseteq$		499	$z_reflex_$	closure_clauses	482
$z \triangleright$	clauses	482	$z_refiex_$ $z_trans_$	closure_clauses	482
$z_{-} \circ_{-}$	clauses	481	$z_trans_$ $z_reflex_trans_$	$closure_thm$	481
z ightharpoonup	clauses	454	$z_refrex_trans_$ $z_trans_$	$closure_thm$	481
$z ightharpoonup - \cdots -$	clauses	510	2_t1u1tS_	cnf_conv	298
$z \triangleright$	clauses	481	$add_error_$	code	298 59
$z\subset$	clauses	492	$aua_error_$ $BdzF$	Code	359
$z_{-}\subset_{-}$	clauses	499	$DuZ\Gamma$	Couc	999

$add_error_$	codes	59		Const	79
HT	Colon	70	D	Const	80
1	combin	351	Delete	Const	131
	Combinators	30	$delete_$	const	134
	combine	20	$dest_$	const	82
zplus	$comm_{-}thm$	464	get	$const_info$	125
zplus	$comm_{-}thm$	516	is	const	91
$z_times_$	$comm_thm$	466	$key_dest_$	const	95
$z_times_$	$comm_thm$	516	$key_mk_$	const	95
$z_{-}\mathbb{R}_{-}plus_{-}$	$comm_thm$	475	get	$const_keys$	139
$z_{-}\mathbb{R}_{-}plus_{-}$	$comm_thm$	533	$declare_$	$const_language$	122
$z_{-}\mathbb{R}_{-}times_{-}$	$comm_{-}thm$	476	get_{-}	$const_language$	125
$z_{-}\mathbb{R}_{-}times_{-}$	$comm_{-}thm$	533	mk_{-}	const	100
7 .	comment	52	New	Const	131
skip	comment	65	new	const	143
DC_{-1}	$commit_pc$	316	get_{-}	$const_theory$	139
DSet	Comp	80	get_{-}	$const_type$	139
$dest_set_$	comp	85 92	$egin{array}{c} get \ LS \end{array}$	consts $Consts$	139 75
$is_set_ \ mk_set_$	comp	103	$term_{-}$	consts	113
11th_58t_	$egin{array}{c} comp \ compact_term \end{array}$	103 133	term_	contains	20
	$ compact_thm $	133	Proof	Context	315
	$compact_type$	133	$subgoal_package_ti_$	context	$\frac{310}{222}$
$clear$ _	$compactification_cache$	130	Proof	Contexts1	341
get_{-}	$compactification_cache$	130	1,001	$contr_rule$	161
set_{-}	$compactification_cache$	130	c_{-}	$contr_rule$	162
	$compactification_mask$	130		CONTRT	239
BdzF	Compc	359		$contr_tac$	239
$z\mathbb{R}$	$complete_thm$	475	i	$contr_tac$	253
$z\mathbb{R}$	$complete_thm$	531	$get_int_$	control	46
	concl	133	$get_string_$	control	46
strip	$ concl_conv $	273	$new_int_$	control	46
	$concl_in_asms_tac$	238	$new_string_$	control	46
$LIST_SWAP_ASM_$	CONCL_T	256	$reset_int_$	control	47
$LIST_SWAP_NTH$			$reset_string_$	control	47
$_ASM_$	$CONCL_{-}T$	256	$set_int_$	control	47
STRIP_	CONCL_T	274	$set_string_$	control	47
SWAP_ASM_	CONCL_T	276	$pending_reset_$	$control_state$	47
$SWAP_NTH_ASM$	CONCL_T	276	System	Control	46
$list_swap_asm_$	$concl_{-}tac$	256	get	controls	46
$list_swap_nth_asm_$	$concl_{-}tac$	256	$get_int_$	controls	46
strip	concl_tac	274	$get_string_$	controls	46
$swap_asm_$	$egin{array}{c} concl_tac \ concl_tac \end{array}$	$\frac{275}{275}$	reset_	controls	47 47
$swap_nth_asm_$	$COND_{-}C$	$275 \\ 161$	$reset_int_$ $reset_string_$	controls	47
	$COND_{-}C$ $COND_{-}T$	$\frac{101}{238}$	$reset_string_$ $set_$	controls	47
	$ cond_thm $	161	$set_int_$	controls	47
$delete_$	conjecture	150	$set_string_$	controls	47
get_{-}	conjecture	150	300_301 ing_	CONV	119
$is_proved_$	conjecture	149	$'basic_prove_\exists_$	conv	341
new	conjecture	150	$all_simple_\beta_$	conv	154
$delete_all_$	conjectures	150	$all_{-}\forall_{-}uncurry_{-}$	conv	156
get_{-}	conjectures	150	$all_\exists_uncurry_$	conv	156
$get_proved_$	conjectures	149	all_eta	conv	157
$get_unproved_$	conjectures	149	anf	conv	297
$z_push_$	$consistency_goal$	397	$app_if_$	conv	158
$z_{-}\mathbb{Z}_{-}$	consistent	448		$conv_ascii$	12
$\mathbb{Z}_{-}z_{-}$	consistent	448	$basic_prove_$	conv	356

Courrent_ad_cs_l_ Courrent_ad_pr_ current_ad_pr_ current_ad_sc_ current_ad_sc_ current_ad_sc_ current_ad_sc_ displayed_pr_ displayed_pr_ fall_with_pr_ fall_with_pr_ fall_with_pr_ fall_with_pr_ fall_with_pr_ fall_with_pr_ fall_with_pr_ conv_ 166	$char_$	conv	160		$ CONV_THEN $	240
current_ad_sc conv 330 z_anf conv 520 current_ad_sc conv 317 z_app conv 421 current_ad_sc conv 329 z_binding_an conv 423 conv 423 conv 426 conv 4				2 ahs		
current_ad_sc_ conv 317 z_app. conv 325 z_basic_prove_ conv 329 z_basic_prove_ conv 385 conv 329 z_basic_prove_ conv 385 conv 299 z_basic_prove_ conv 422 conv 426 conv 427 conv 426 conv 427 conv 426 conv 427 conv 428 conv 429 conv 429 conv 429 conv 429 conv 429 conv 426 conv 434 conv 429 conv 426 conv 434 conv 426 conv 436						
current_ad_st_ conv 329 z_basic_prome_ conv 423 duf_ conv 299 z_binding_d_elin_ conv 163 z_binding_d_elin_ conv 163 z_binding_d_elin_ conv 164 z_dec_pred_ conv 318 z_dec_renume_ conv 166 z_decor_ conv 170 z_fc_prome_ down 170 z_fc_prome_ down 170 z_fc_prome_ down 170 z_fc_prome_ down 170 z_fc_prome_ conv 129 z_greater_less_ fill_with_ Conv 129 z_greater_less_ fill_with_ Conv 129 z_h.s.hema_ fill_with_ Conv 129 z_h.s.hema_ Kilchar Conv 129 z_h.s.hema_ Kilsting Conv 129 z_h.s.hema_ kilsting Conv 129 z_h.s.hema_ fill_with_ Conv 129 z_h.s.hema_ fill_with_ Conv 129 z_h.s.hema_ fill_with_ Conv 129 z_h.s.hema_ kilsting Conv 129 z_h.s.hema_ fill_with_ Conv 133 z_h.d. fill_with_ Conv 133 z_h.d. fill_with_ Conv 134 z_h.d. fill_with_ Conv 135 z_h.d. fill_with_ Conv 136 z_h.d. fill_with_ Conv 137 z_h.d. fill_with_ Conv 138 z_h.d. fill_with_ Conv 138 z_h.d. fill_with_ Conv 139 z_h.d. fill_with_ Conv 130 z_h.d.						
current.ad.st. conv 329 z.binding.eq. conv 423 cq.match. conv 163 z.binding.d.etim. conv 422 cq.sm. conv 164 z.dec.pred. conv 389 cq.sm. conv 318 z.dec.pred. conv 433 fail. conv. 166 z.decor. conv 433 fail. conv. 170 z.fc.prove. conv 523 id. conv. 170 z.fc.prove. conv 523 id. conv. 170 z.f.schema. conv 531 KIChar Conv. 129 z.h.schema. conv 518 KIString Conv. 129 z.h.schema. conv 434 KIString Conv. 129 z.h.schema. conv 434 May conv. 173 z.tet. conv 434 May conv. 173 z.tet. conv 424						
dnf conv 299 z.bindingd.elim conv 422 eq. surf. conv 164 z.dec. pred conv 389 conv 389 conv 388 z.dec. rename_* conv 388 full. conv 166 z.decor_* conv 388 full. double fu						
eq. match. conv 163 z_bindingd_intro_conv 339 eqn.cxt. conv 318 z_dec_rename_s conv 339 executeded 12 z_dec_rename_s conv 339 executeded 12 z_dec_rename_s conv 338 full. conv 166 z_dec_rename_s conv 338 executeded 12 z_dec_rename_s conv 338 executeded 12 z_dec_rename_s conv 338 executeded 12 z_dec_rename_s conv 389 full. conv 166 z_dec_rename_s conv 333 executeded 12 z_dec_rename_s conv 338 executeded 12 z_dec_rename_s conv 343 executeded 12 z_dec_rename_s conv 343 executeded 12 z_dec_rename_s conv 389 executeded 12 z_dec_rename_s conv 343 executeded 12 z_dec_rename_s conv 343 executeded 12 z_dec_rename_s conv 344 executeded 12 z_d						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					
conv						
fail conv 166 z.deors, conv 533 fail. conv 1336 z.dot.dot. conv 523 id. conv 170 z.fc.prove conv 381 id. op. conv 170 z.fc.prove conv 381 id. op. conv 170 z.f.ot.conv 381 KIChar Conv 129 z.greater.less. conv 434 KIPlus Conv 129 z.h.schema. conv 434 KIShring Conv 129 z.h.schema. conv 434 KIShring Conv 129 z.h.schema. conv 434 MCSuc Conv 183 z.mod. conv 518 pers.e., eventic. conv 133 z.nor. conv 424 one., e.g., poly. conv 178 z.para.pred. conv 335 pyf.et.eval. ad. sc. conv 329 z.pred.dec. conv 336 <t< td=""><td>04112 02012</td><td></td><td></td><td></td><td></td><td></td></t<>	04112 02012					
fail_with_ get_pr_ conv 166 z_div_ conv 518 get_pr_ conv 336 z_dot_dot_ conv 523 id_ conv 170 z_f_[c_prove_ conv 389 if_app_ conv 170 z_f_[cat conv 531 KIChar Conv 129 z_greater_less_ conv 531 KIPlus KIPlus Conv 129 z_h_schema_ red_ conv 434 KIReft Conv 129 z_h_schema_ red_ conv 434 KIString Conv 129 z_h_schema_ red_ conv 434 KIString Conv 129 z_h_schema_ red_ conv 434 KIString Conv 129 z_h_schema_ red_ conv 518 conv 173 z_let_ conv 518 conv 518 conv 173 z_let_ conv 518 conv 518 conv 518 conv 518 conv 518 conv 301 z_plus_ conv 305 conv 305 conv 306 conv 306 conv 307 conv 308 conv 309 con	fail			-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	*					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Mathematical National State Mathematical National N						
KIPlus Conv						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				e e		
$KIString$ Conv 129 z_hide_s conv 518 conv 129 z_less conv 518 conv 183 z_let_ conv 518 conv 183 z_let_ conv 518 conv 178 z_let_ conv 395 conv 395 conv 395 conv 396 conv 396 conv 399 z_let_ conv 396 conv 396 conv 396 conv 396 conv 399 z_let_ conv 396						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$once_rewrite_$	conv			conv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		conv			conv	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		conv	178	$z_para_pred_$	conv	395
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	poly	conv	301		conv	518
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		conv	329	_	conv	396
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		conv	329	$z_pred_decl_$	conv	396
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$prim_rewrite_$	conv	179	$zpre_s$	conv	435
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$prim_suc_$	conv	180	$z_rename_s_$	conv	436
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		conv	331	$z_schema_pred_$	conv	436
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$prove_\exists_$	conv	332	$z_schema_pred_intro_$	conv	436
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$pure_once_rewrite_$	conv	183	$z_sel_{s}_$	conv	425
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		conv	183	$zsel_{t-}$	conv	506
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	refl	conv	181	$z_sel_{t_}intro_$	conv	425
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$check_is_z_$	$conv_result$	381	$z_sel_{t_}lang_$	conv	425
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rewrite	conv	183	$z_seqd_app_$	conv	524
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ conv_rule $			conv	524
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$set_pr_$	conv	336	$z_seta_false_$	conv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		conv			conv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		conv			conv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		conv			conv	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		conv		_	conv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	conv			conv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					conv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				=	conv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_				conv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_					
$ conv_tac $ 239 $z_\in_h_schema_$ $ conv $ 438						
	suc					
$taut_{-} \mid conv$ 211 $z_{-} \in -niae_{s-} \mid conv$ 434	1 - 1					
	ιuut_{-}	Conto	211	$z \subset mue_s$	CORU	454

$z_{-} \in pre_{s-}$	conv	435	$z_{-}\exists_{1-}intro_{-}$	conv	415
$z_{-} \in rename_{s-}$	conv	436	$z_{-}\exists_{1s}$	conv	442
$z_{-} \in seta_{-}$	conv	428	$z_{-}\exists_{s}$	conv	443
$z_{-} \in _setd_{-}$	conv	400	$z_{-} = z_{-} \times z_{-}$	conv	430
$z_{-} \in string_{-}$	conv	426	$z_{-\overset{\circ}{g}s}$	conv	443
$z_{-} \in u_{-}$	conv	401	$z - gs - z \le 1$	conv	518
$z_{-}\in _{-}\Delta _{s-}$	conv	437	$z_{-} \geq - \leq -$	conv	518
$z = \Xi_s = z = \Xi_s = z$	conv	439	$z_{-}\beta_{-}$	conv	430
$z \in \Leftrightarrow_{s}$	conv	439	z heta	conv	444
$z \in \langle \rangle$	conv	429	z heta eq	conv	444
$z_{-} \in _{-} \wedge_{s_{-}}$	conv	440	$z\theta \in schema$	conv	444
$z_{-} \in V_{s-}$	conv	440	$z\theta \in _schema_intro_$	conv	436
$z_{-} \in \neg \neg s_{-}$	conv	441	$z\lambda$	conv	430
$z_{-} \in \Rightarrow_{s-}$	conv	441	$z_{-}\mathbb{N}_{-}plus_{-}$	conv	518
$z \in \neg \forall_s$	conv	442	$z\mathbb{N}times$	conv	518
$z_{-} \in \exists_{1s}$	conv	442	$z _{s-}$	conv	445
$z = \exists_s$	conv	443	$z_{-}\mathbb{Z}_{-}$	conv	521
$z_{-}\in _{-}\times _{-}$	conv	428	$z\mathbb{Z}eq$	conv	518
$z \in {}_{-gs}^o$	conv	443	$\neg_{-}in_{-}$	conv	285
$z \in \bar{\lambda}$	conv	430	$\neg_simple_\forall_$	conv	206
$z_{-} \in \mathbb{N}_{-}$	conv	518	$\neg_simple_\exists_$	conv	206
$z \in \mathbb{P}$	conv	429		conv	206
$z \in _ \upharpoonright_{s}$	conv	445	$\neg _ \forall _$	conv	207
$z \stackrel{\cdot}{\Xi}_{s-}^{-}$	conv	439	¬_∃_	conv	207
$z \rightarrow \Leftrightarrow_{s}$	conv	439	$\forall_{-}reorder_{-}$	conv	212
$z\langle angle$	conv	429	$\forall_{-}uncurry_{-}$	conv	212
$z \mathbb{R}_a b s$	conv	534	$\exists _reorder_$	conv	214
$z\mathbb{R}eq$	conv	534	$\exists_{-}uncurry_{-}$	conv	214
$z\mathbb{R}eval$	conv	532	$\exists_{-}\epsilon_{-}$	conv	215
$z {\tt _R} {\tt _} greater {\tt _}$	conv	534	\exists_{1} -	conv	215
$z \mathbb{R}_{-} less$	conv	534	α_{-}	conv	216
$z_{-}\mathbb{R}_{-}lin_{-}arith_{-}prove_{-}$	conv	532	$\alpha to z$	conv	416
$z\mathbb{R}lit$	conv	534	β	conv	217
$z\mathbb{R}litnorm$	conv	534	η	conv	218
$z_{-}\mathbb{R}_{-}minus_{-}$	conv	534	$\lambda_{-}pair_{-}$	conv	219
$z_{-}\mathbb{R}_{-}over_{-}$	conv	534	$\lambda_{-}varstruct_{-}$	conv	220
$z_{-}\mathbb{R}_{-}plus_{-}$	conv	534	$\mathbb{Z}_{-}z_{-}$	conv	521
$z_{-}\mathbb{R}_{-}subtract_{-}$	conv	534	$eq_match_$	conv1	162
$z \mathbb{R}_{-} times$	conv	534	getpr	conv1	336
$z_{-}\mathbb{R}_{-}\leq_{-}$	conv	534	$simple_eq_match_$	conv1	186
$z_{-}\mathbb{R}_{-}\geq_{-}$	conv	534	$simple_ho_eq_match_$	conv1	187
$z\mathbb{R}\mathbb{Z}exp$	conv	534	$simple _ \exists _ \forall _$	conv1	190
$z \wedge_{s}$	conv	440	$z_binding_eq_$	conv1	423
$z_{-} \vee_{s_{-}}$	conv	440	$z_{-}let_{-}$	conv1	424
$z_{-}\neg_{-}gen_{-}pred_{-}$	conv	402	$z_schema_pred_$	conv1	398
$z_{-}\neg_{-}in_{-}$	conv	402	$z_{-}tuple_{-}eq_{-}$	conv1	507
z_¬_∀_	conv	403	$z_{-}\in _{-}h_{-}schema_{-}$	conv1	438
z_¬_∃_	conv	403	$z_{-} \in _seta_{-}$	conv1	428
$z_{-}\neg_{s-}$	conv	441	$z_{-} \in _setd_{-}$	conv1	428
$z \Rightarrow_{s-}$	conv	441	$z\mathbb{R}lit$	conv1	534
$z_{-}\forall_{-}elim_{-}$	conv	405	$z_{-}\forall_{-}elim_{-}$	conv1	404
$z_{-}\forall_{-}intro_{-}$	conv	407	$z_{-}\forall_{-}intro_{-}$	conv1	405
$z_{-}\forall_{-}inv_{-}$	conv	$408 \\ 442$	$z_{-}\exists_{-}elim_{-}$ $z_{-}\exists_{-}intro_{-}$	conv1	410
$z_{-}\forall_{s-} \ z_{-}\exists_{-}elim_{-}$	$egin{array}{c} conv \\ conv \end{array}$	$\frac{442}{412}$	$z_ \exists _intro_ \ z_ \theta_$	$egin{array}{c} conv1 \ conv1 \end{array}$	411 444
$z_{-} \exists_{-} intro_{-}$	$\begin{vmatrix} conv \\ conv \end{vmatrix}$	412 412	$z_{binding_eq_}$	conv1	444 423
$z_{-}\exists_{-}inv_{-}$ $z_{-}\exists_{-}inv_{-}$	$\begin{vmatrix} conv \\ conv \end{vmatrix}$	412	$z_\textit{oinainy_eq}_$ $z_\forall_\textit{elim}_$	convz	425 405
$z_{-} \exists_{-} inv_{-}$ $z_{-} \exists_{1}$	I .	$415 \\ 415$	$z_ elim$ $z_\exists elim$	convz	411
%-⊐1-	conv	410	<i>z</i> _⊐_ <i>eum</i> _	CO1102	411

	l -			ı	
$z_binding_eq_$	conv3	506	$simple_ho_thm_eqn_$	cxt	340
$get_cs_\exists_$	convs	335	$theory_u_simp_eqn_$	cxt	383
$pp'set_eval_ad_cs_\exists_$	convs	330	$thm_eqn_$	cxt	341
$set_cs_\exists_$	convs	335	usimpeqn	cxt	384
	count	450	$z_{-}plus_{-}$	$cyclic_group_thm$	465
z_{-}	countdef	528	$z_plus_$	$cyclic_group_thm$	516
	counts	53		DApp	80
	count[X]	450		DChar	80
z_	cov_induction_tac	514		DConst	80
<i>z_</i>	cov_induction_thm	468		DEmptyList	80
Z_	$cov_induction_thm$	$\frac{516}{330}$		DEnumSet	80
$current_ad_$	cs_\exists_conv	335		$DEq \ DFloat$	80 80
$get_{-} \\ pp'set_{-}eval_{-}ad_{-}$	cs_\exists_convs cs_\exists_convs	330		DI tout DIf	80
$pp\ set_evat_aa_$ $set_$	cs = convs	335		DI_{j} $DLet$	80
Set_	$cthm_eqn_cxt$	355 161		DList	80
	Ctype	79		DEist DPair	80
dest	ctype	82		DSetComp	80
is_{-}	ctype	91		DSerComp $DString$	80
$key_dest_$	ctype	95		DVar	80
$key_mk_$	ctype	95	$USER_{-}$	DATA	121
mk_{-}	ctype	100	pp'	$database_info$	48
11616 =	$\begin{vmatrix} cvgpc \\ cup \end{vmatrix}$	20	$pp'reset_{-}$	$database_info$	49
list	$\begin{vmatrix} cup \\ cup \end{vmatrix}$	$\frac{20}{24}$	pp'reset	$database_info$	49
get_{-}	$\begin{bmatrix} curly_braces \end{bmatrix}$	62	ICL'	DATABASE_INFO	10
gete	$\begin{bmatrix} current_ad_cs_\exists_conv \end{bmatrix}$	330	ICE	_TYPE	48
	$ current_ad_mmp_rule $	317	$pending_reset_pc_$	database	328
	$current_ad_nd_net$	330	$pp_make_$	database	9
	$current_ad_pr_conv$	317	$get_user_$	datum	142
	$current_ad_pr_tac$	317	SetUser	Datum	131
	$current_ad_rw_canon$	329	$set_user_$	datum	147
	$current_ad_rw_eqm$		USER	DATUM	119
	_rule	317	RES	DB_TYPE	305
	$ current_ad_rw_net $	328	$z_pred_$	dec_conv	396
	current_ad_sc_conv	329	$dest_{-}z_{-}$	dec	365
	$ current_ad_st_conv $	329	$dest_z_schema_$	dec	368
	$current_ad_\exists cd_thms$	330	isz	dec	365
	$current_ad_\exists_vs_thms$	331	$is_z_schema_$	dec	368
print	$current_goal$	225	mkz	dec	365
top	$ current_label $	228	$mk_z_schema_$	dec	368
get	$ current_language $	125	z_{-}	dec_pred_conv	389
set	$ current_language $	128	z_{-}	$dec_rename_s_conv$	433
get	$current_pc$	322	Z	Dec	360
get	$current_terminators$	125	ZSchema	Dec	360
get	$current_theory_name$	139	$is_all_$	decimal	31
get	$current_theory_status$	139	'z_	decl	380
	curry	28	Z_{-}	$DECL_{-}C$	387
eqn_{-}	cxt_conv	318	$z_pred_$	$decl_conv$	396
$cthm_eqn_$	cxt	161	$dest_{-}z_{-}$	decl	364
EQN_{-}	CXT	315	Z_{-}	$DECL_INTRO_C$	387
$get_rw_eqn_$	cxt	338	isz	decl	364
getsceqn	cxt	338	mkz	decl	364
$get_st_eqn_$	cxt	339	z_{-}	$decl_pred_conv$	388
$get_u_simp_eqn_$	cxt	383	Z	Decl	360
$set_rw_eqn_$	cxt	338		declare_alias	122
set_sc_eqn_	cxt	338		declare_binder	122
$set_st_eqn_$	cxt	339		declare_const	100
$set_u_simp_eqn_$	$\mid cxt \mid$	383		$_language$	122

	$ declare_infix$	123	z _>#+>_	def	518
	declare_left_infix	123	$z +\!\!\!+\!\!\!+\!\!\!-$	def	518
	$declare_nonfix$	123	$z_{-}\subset_{-}$	def	498
	declare_postfix	123	$z\cap$	def	498
	$declare_prefix$	124	$z\ominus$	def	498
	$declare_right_infix$	123	$z\cap$	def	498
	$declare_terminator$	124	$z_{-} \leftrightarrow_{-}$	def	498
	$declare_type_abbrev$	124	$z \oplus$	def	507
z_{-}	$decor_{s-}conv$	433	$z \rightarrow$	def	498
$z_{-}\in$ _	$decor_{s-}conv$	433	$z\mathbb{R}$	def	535
$dest_{-}z_{-}$	$decor_s$	364	$z_{-}\mathbb{R}_{-}abs_{-}$	def	535
isz		364	$z\mathbb{R}dotdot$	def	535
mkz	$decor_s$	364	$z_{-}\mathbb{R}_{-}frac_{-}$	def	535
Z	$Decor_s$	360	$z\mathbb{R}glb$	def	535
z_{-}	def _ thm	486	$z_{-}\mathbb{R}_{-}greater_{-}$	def	535
z_{-}	def _ thm	525	$egin{array}{c} z\mathbb{R}lb\ z\mathbb{R}less \end{array}$	def	535 535
$z_arith_$	def	518	$z_{-\mathbb{R}_lub}$	$egin{array}{c} def \ def \end{array}$	535 535
$z_bag_$	def	528	z _ \mathbb{R} _ tuo _ z _ \mathbb{R} _ $minus$ _	$\left egin{array}{l} ae_f \ def \end{array} ight $	535 535
$z_count_$	def	528	z _ \mathbb{R} _ $over$ _	$\left egin{array}{l} ae_f \ def \end{array} ight $	535
$z_disjoint_$	def	522	z _R_plus_	$\left egin{array}{l} ae_f \ def \end{array} ight $	535
$z_{-}dom_{-}$	def	507	z _ \mathbb{R} _ $pius$ _ z _ \mathbb{R} _ $real$ _	$\left egin{array}{l} ae_f \ def \end{array} ight $	535
zdotdot	def	518	z _R_subtract_	$\left egin{array}{l} ae_f \ def \end{array} ight $	535
zfirst	def	498	z _ \mathbb{R}_{-} times_	$\left egin{array}{l} ae_f \ def \end{array} ight $	535
$z_front_$	def	522	z _ $\mathbb{R}ub$ _	$\left egin{array}{l} ae_f \ def \end{array} ight $	535
zhash	def	518	$z_{-\mathbb{R}} = u \sigma_{-}$	$\left egin{array}{l} ae_f \ def \end{array} ight $	535
$z_head_$	def	522	z _ \mathbb{R} _ \geq _	$\left egin{array}{l} acf \ def \end{array} ight $	535
$z_{-}id_{-}$	def	507	$z\mathbb{R}\mathbb{Z}exp$	$\left egin{array}{l} acf \ def \end{array} ight $	535
zin	def	528	$z_{-\mathbb{R}^{2}} z_{-\mathbb{C}^{2}} = z_{-\mathbb{C}^{2}}$	def	498
$z_inequality_$	def	518			507
$z_iseq_$	def	522	Z _ ^o g _ ~	$egin{array}{c} def \ def \end{array}$	498
$z_items_$	def	528	$z_{-} eq_{-}$	$\left egin{array}{l} ae_f \ def \end{array} ight $	498
ziter	def	518	z_{-}	$\left egin{array}{l} ae_f \ def \end{array} ight $	509
$z_last_$	def	522	z z	$\left egin{array}{l} aef \end{array} ight $	498
$z_{-}max_{-}$	def	518	z-U- z-+-	$\left egin{array}{l} ae_f \ def \end{array} ight $	509
zmin	def	518	$z \mapsto $	$\left egin{array}{l} acf \\ def \end{array} ight $	509
zpartition	def	522	z_{-}	$\left egin{array}{l} acf \\ def \end{array} ight $	507
$z_{-}ran_{-}$	def	507	z _ \mathbb{F}_{-}	def	518
$z_rel_image_i$	def	507	$z_{-}\mathbb{F}_{1-}$	def	518
$z_{-}rel_{-}inv_{-}$	def	507	z_{-}		522
$z_rev_$	def	522		def	522 522
zrtc	def	507	z_1_	def	507
$z_second_$	def	498	$egin{array}{c} z & \mapsto \ z \mathbb{N} \end{array}$	$egin{array}{c} def \ def \end{array}$	518
$z_seq_$	def	522	z _ \mathbb{N}_{1} _	$\left egin{array}{l} ae_f \ def \end{array} ight $	518
$z_{-}seq_{1-}$	def	522	z_{-1} \lambda_1 = z_{-} \rightarrow	$\left egin{array}{l} ae_f \ def \end{array} ight $	509
zsetdif	def	498	z _ \mathbb{P}_1 _	$\left egin{array}{l} ae_f \ def \end{array} ight $	498
$z_squash_$	def	522	z_{-1} 1 $z_{-} \triangleleft_{-}$	$\left egin{array}{l} aef \end{array} ight $	507
$z_succ_ \\ z_tail_$	def	$518 \\ 522$	$z \setminus$	$\left egin{array}{l} acf \ def \end{array} ight $	522
	def	$\frac{522}{507}$	z z \mathbb{Z}	def	518
ztc	$egin{array}{c} def \ def \end{array}$	507 507	z Z	$\left egin{array}{l} aef \end{array} ight $	521
$z \triangleright$ $z \uplus$	-	$\frac{507}{528}$	z_{-} z_{-} \rightarrow z_{-}	$\left egin{array}{l} acf \\ def \end{array} ight $	509
z \oplus z \circ	$egin{array}{c} def \ def \end{array}$	528 507	$z'guillemets_{-}$	$\left egin{array}{l} acf \\ def \end{array} ight $	498
			z y a m c m c t s z' i f $$	$\left egin{array}{l} acf \\ def \end{array} ight $	498
z_{-}	def	522	$z'int_{-}$	def	463
z otin	def	498	z'int	def	518
z_→→		509	z'underlining		010
$z \triangleright$		507	_brackets_	def	498
$z\varnothing$	aeJ	498	$z'\Pi$		498
			~ ==	I - ₹	100

$\mathbb{Z}_{-}z_{-}$	def	521	$ dest_list$	84
$restore_{-}$	defaults	128	$dest_mon_op$	84
get_{-}	$defn_dict$	140	$dest_multi_\neg$	84
get	defn	140	$dest_pair$	84
NewType	Defn	131	$dest_set_comp$	85
$new_type_$	defn	145	$dest_simple_binder$	85
z_{-}	$defn_simp_rule$	424	DEST_SIMPLE	
SimpleNew	Defn	131	_ TERM	79
$simple_new_$	defn	147	$dest_simple_term$	85
TT	Defn	151	DEST_SIMPLE	
get	defns	140	$_{\perp}TYPE$	79
LS	Defns	75	$dest_simple_type$	85
	$delete_all_conjectures$	150	$dest_simple_\forall$	85
	DeleteAxiom	131	$dest_simple_\exists$	86
	$delete_axiom$	134	$dest_simple_\exists_1$	85
	$delete_conjecture$	150	$dest_simple_\lambda$	86
	DeleteConst	131	$dest_string$	86
	$delete_const$	134	$dest_{-}t$	86
e_{-}	delete	33	$DEST_TERM$	80
$e_{-}key_{-}$	delete	33	$dest_term$	86
oe_	delete	40	$dest_thm$	136
$oe_key_$	delete	40	$dest_u$	363
	$delete_pc$	318	$dest_{-}var$	87
	$delete_pc_fields$	318	dest_vartype	87
S_	delete	32	$dest_z_abs$	513
	DeleteTheory	131	$dest_z = app$	363
¢	$delete_theory$	135	$dest_z_binding$	364
force	$delete_theory \ DeleteThm$	$322 \\ 131$	dest_z_dec	$\frac{365}{364}$
	$delete_thm$	131 135	dest_z_decl	$\frac{364}{364}$
	$egin{array}{c} aelete_tnm \ delete_to_level \end{array}$	135 135	$\begin{vmatrix} dest_z_decor_s \\ dest_z_div \end{vmatrix}$	$\frac{504}{513}$
	DeleteType	131	$\begin{vmatrix} dest_{-}z_{-}aiv \\ dest_{-}z_{-}eq \end{vmatrix}$	$\frac{315}{365}$
	$delete_type$	136	$\begin{vmatrix} dest_{-}z_{-}eq \\ dest_{-}z_{-}float \end{vmatrix}$	365
TS	Deleted	119	$\begin{vmatrix} dest_{-}z_{-} & dest_{-}z_{-} \\ dest_{-}z_{-} & dest_{-}z_{-} \end{vmatrix}$	366
$z_{-}\mathbb{R}_{-}less_{-}$	$dense_thm$	474	$\begin{vmatrix} dest_z = green_z type \\ dest_z = greater \end{vmatrix}$	513
z _ \mathbb{R}_less _	$dense_thm$	531	$\begin{vmatrix} dest_{-}z_{-}gvar \end{vmatrix}$	366
$pp_format_$	depth	73	$dest_z_h_schema$	366
$pp_top_level_$	depth	73	$dest_z_hide_s$	366
III	DerivedRules1	153	$dest_z_if$	496
	DerivedRules2	153	$dest_z_{int}$	366
get	descendants	140	$dest_zless$	513
	$dest_app$	81	$dest_z_{let}$	367
	$dest_bin_op$	82	$dest_zlvar$	367
	$dest_binder$	81	$dest_z_minus$	513
	$dest_char$	82	$dest_z_mod$	513
	$dest_const$	82	$dest_z_name$	361
key	$dest_const$	95	$dest_z_name1$	361
	$dest_ctype$	82	$dest_z_name2$	361
key	$dest_ctype$	95	$dest_z_plus$	513
	$dest_dollar_quoted$	0.62	$dest_z_power_type$	367
	string	363	$dest_{-}z_{-}pre_{s}$	367
	$dest_empty_list$	82	$dest_z_real$	530
	dest_enum_set	82	$dest_z_rename_s$	368
	$dest_eq$	83	dest_z_schema_dec	368
	dest_f	83 83	dest_z_schema_pred	$\frac{368}{368}$
	$\left egin{array}{l} dest_float \ dest_if \end{array} ight $	83	$\begin{vmatrix} dest_z_schema_type \\ dest_z_sel_s \end{vmatrix}$	368 369
	$\begin{vmatrix} aest_ij \\ dest_let \end{vmatrix}$	84	$\begin{vmatrix} dest_{-}z_{-}set_{s} \\ dest_{-}z_{-}set_{t} \end{vmatrix}$	$\frac{369}{369}$
	w000_000	04	west_2_set	909

	$dest_z_seta$	369		$dest_{-} \wedge$	87
	$dest_z_setd$	369		$dest_{-}\vee$	88
	$dest_z_signed_int$	513		$dest_{-} \neg$	88
	$dest_z_string$	370		$dest_{-} \Rightarrow$	88
	$dest_z_subtract$	513		$dest_{-} \forall$	88
	$dest_z_term$	362		$dest_{-}\exists$	89
basic	$dest_zterm$	361		$dest_{-}\exists_{1}$	88
ousic_	$dest_z_term1$	382		$\begin{vmatrix} dest_ \bot_1 \\ dest_ \times _type \end{vmatrix}$	89
	$dest_z_termi$ $dest_z_times$	513		$dest_{-\epsilon}$	89
		370		$\begin{vmatrix} dest_{-}\epsilon \\ dest_{-}\lambda \end{vmatrix}$	89
	dest_z_tuple				
	$dest_z_tuple_type$	370		$dest_{-}\mathbb{N}$	89
	$dest_z_type$	362		DF	80
	$dest_z_var_type$	370		$diag_line$	60
	$dest_z \subseteq$	497	raw	$diag_line$	67
	$dest_{-}z_{-}\Delta_{s}$	371		$ diag_string$	60
	$dest_z \in$	371	list	$diag_string$	64
	$dest_{-}z_{-}\Xi_{s}$	371	$list_raw_$	$diag_string$	67
	$dest_z_{\rightarrow}$	372	raw	$diag_string$	68
	$dest_{-}z_{-} \Leftrightarrow_{s}$	371	$kernel_interface_$	diagnostics	142
	$ dest_z_{-}\langle\rangle$	372	RW_{-}	diagnostics	56
	$dest_z_{\mathbb{R}}abs$	530	E_{-}	DICT	33
	$dest_z_R_{frac}$	530	$e_dict_of_oe_$	dict	40
	$dest_z_\mathbb{R}_greater$	530	$get_axiom_$	dict	138
	$dest_z = \mathbb{R}_less$	530	$get_defn_$	dict	140
	$dest_z = \mathbb{R} minus$	530	$get_thm_$	$\begin{vmatrix} dict \\ dict \end{vmatrix}$	141
	$dest_z = \mathbb{R}_o ver$	530	$initial_e_$	$\begin{vmatrix} aici \\ dict \end{vmatrix}$	34
	$dest_z = \mathbb{R}_{-} plus$	530	$initial_oe_$	$\begin{vmatrix} aici \\ dict \end{vmatrix}$	40
	$dest_z_R_subtract$	530	$initial_s_$	dict	32
	$dest_z_{\mathbb{R}}times$	530	OE_{-}	DICT	40
	$dest_z_\mathbb{R} \le$	530	e_	$dict_of_oe_dict$	40
	$dest_z_\mathbb{R} \ge$	530	S_{-}	DICT	19
	$dest_z_R_z = exp$	530	Efficient		33
	$dest_z_\wedge$	372	Simple	Dictionary	32
	$dest_{-}z_{-}\wedge_{s}$	372	$z_set_$	$dif_clauses$	492
	$dest_z \sim$	373	$z_set_$	$dif_clauses$	499
	$dest_z \sim_s$	373	$z_set_$	$\int difthm$	491
	$dest_z_\neg$	373	$z_set_$	$dif_{-}thm$	499
	$dest_{-}z_{-}\neg_{s}$	373		diff	21
	$dest_z \Rightarrow$	374	$z \rightarrow \longrightarrow$	1.00 . 1	458
	$dest_{-}z_{-} \Rightarrow_{s}$	373	$z \rightarrow \longrightarrow$	$diff_singleton_thm$	526
	$dest_z \forall$	374		$diff_singleton_thm$	457
	$dest_{-}z_{-}\forall_{s}$	374		$diff_singleton_thm$	526
	$dest_{-}z_{-}\exists$	375	$term_{-}$		113
	$\begin{vmatrix} dest_{-z} - \exists \\ dest_{-z} - \exists_{1} \end{vmatrix}$	375	$z_dot_dot_$		469
	$\begin{vmatrix} dest_{-}z_{-} \exists_{1} s \end{vmatrix}$	374	$z_dot_dot_$	diffthm	523
		375	$z_aot_aot_$ $z_size_$	I	470
	$dest_{-}z_{-}\exists_{s}$			diff_thm	
	$dest_z \times$	375	$z_size_$	00	523
	$dest_{-}z_{-\frac{o}{g}s}$	376	z _ \mathbb{F}_{-}	$diff_{-}thm$	470
	$dest_z \le$	513	$z_{-}\mathbb{F}_{-}$	$diff_{-}thm$	523
	$dest_{-}z_{-} \ge$	513	all	different	20
	$dest_z_\theta$	376		$discard_tac$	240
	$dest_{-}z_{-}\lambda$	376		$disch_rule$	162
	$dest_z_\mu$	376		$disjoint_{-}$	484
	$dest_z_\mathbb{P}$	377	disjoint	_	484
	$dest_z_s$	377	z_{-}	$disjoint_def$	522
	$dest_{-}\varnothing$	87	all	distinct	20
	$dest_{-} \Leftrightarrow$	87	$z_times_plus_$	$distrib_thm$	466
	$dest_{\leftarrow}_type$	87	$z_times_plus_$		516
		Ŭ.	p	1	010

II			•		
$z_{\mathbb{R}}_{times_{pluu_p}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$distrib_thm$	476	$z_{-}dot_{-}$		518
$z_{-}\mathbb{R}_{-}times_{-}plus_{-}$	$distrib_{-}thm$	533	$z\mathbb{R}dot$	dotdef	535
-	div_{-}	464	$z_{-}dot_{-}$	dot_diff_thm	469
1.	_ <i>div</i> _	464	$z_dot_$	dot_diff_thm	523
$_{-}div$	- -	464	z_{-}	$dot_dot_clauses$	469
(-	div_{-}	462	z_{-}	$dot_dot_clauses$	523
Z_	div_conv	518	Z_	dot_dot_conv	523
$dest_{-}z_{-}$	$egin{pmatrix} div \ div \end{pmatrix}$	$513 \\ 513$	$z_simple_$	$dot_dot_conv \ dot_dot_conv$	$515 \\ 525$
$is_z_\ mk_z_$	$egin{array}{c} aiv \ div \end{array}$	513 514	$z_size_$	dot_dot_conv	525 515
	$egin{array}{c} aiv \ div_mod_unique_thm \end{array}$	$\frac{314}{468}$	$z_{-}\in$	dot_dot_def	518
$egin{array}{c} z \ z \end{array}$	$div_mod_unique_thm$	516	$egin{array}{c} z \ z \mathbb{R} \end{array}$	dot_dot_def	535
z	$\begin{vmatrix} aiv_moa_amiqae_imm \\ div_thm \end{vmatrix}$	470	z_11z_ z_	dot_dot_def $dot_dot_diff_thm$	469
z	$\begin{vmatrix} div thm \\ div thm \end{vmatrix}$	523	z	$dot_dot_diff_thm$	523
<i>&</i> _	$\begin{vmatrix} aivzinm \\ divert \end{vmatrix}$	$\frac{525}{16}$	z	$dot_dot_plus_thm$	469
list	$\begin{vmatrix} aivert \\ divert \end{vmatrix}$	16	z	$dot_dot_plus_thm$	523
0000=	dnf_conv	299	$z_size_$	dot_dot_thm	470
	do_in_theory	137	$z_size_$	dot_dot_thm	523
	docdvi	12	$z_size_$	dot_dot_thm1	470
	docpr	12	$z_size_$	dot_dot_thm1	523
	docsml	13	z_{-}	$dot_dot_\cap_thm$	469
	doctex	13	z_{-}	$dot_dot_\cap_thm$	523
dest	$dollar_quoted_string$	363	z_{-}	$dot_dot_\cup_thm$	469
is	$dollar_quoted_string$	363	z_{-}	$dot_dot_\cup_thm$	523
mk	$dollar_quoted_string$	363	$z_dot_$	dot_plus_thm	469
	dom	479	$z_dot_$	dot_plus_thm	523
z_{-}	$dom_clauses$	481	$z_size_dot_$	dot_thm	470
$z_fun_$	$dom_clauses$	454	$z_size_dot_$	dot_thm	523
z fun	$dom_clauses$	510	$z_size_dot_$	dot_thm1	470
z_{-}	$dom_{-}def$	507	$z_size_dot_$	dot_thm1	523
z_{-}	$ domf\longrightarrowfthm $	457	$z_dot_$	dot_\cap_thm	469
z_{-}	$ dom_{-}f_{-} \rightarrow \rightarrow _{-}f_{-}thm $	526	$z_dot_$	dot_\cap_thm	523
Z _	$dom_{-}f_{-} \leftrightarrow_{-}f_{-}thm$	456	$z_{-}dot_{-}$	$dot \cup thm$	469
z_{-}	$dom_{-}f_{-}\leftrightarrow_{-}f_{-}thm$	526	$z_{-}dot_{-}$	$dot \cup thm$	523
z_{-}	$dom_{-f_{-}} \rightarrow f_{-}thm$	457	Sym	Double Percent	57
z_{-}	$dom_{-f} \longrightarrow f_{-}thm$	526		drop	21
z_{-}	$dom_{-}f_{-} \rightarrow -f_{-}thm$	457	I IOT	$DROP_ASM_T$	240
z_	$dom_{-}f_{-} \rightarrow -f_{-}thm$	526	$LIST_{-}$	$DROP_ASM_T$	254
z_	$dom_{-}f_{-} \rightarrow -f_{-}thm$	457		$DROP_ASMS_T$ $DROP_FILTER$	240
z_ ~	$\begin{vmatrix} domf \rightarrowfthm \\ domseqthm \end{vmatrix}$	$\frac{526}{487}$		$_ASMS_T$	241
$egin{array}{c} z \ z \end{array}$	dom_seq_thm	525		$drop_main_goal$	$\frac{241}{223}$
z	dom_seq_thm	488		$DROP_NTH_ASM_T$	$\frac{223}{241}$
z z	dom_seqd_thm	525	LIST	$DROP_NTH_ASM_T$	254
z_{-}	dom_thm	481	2101	DT	80
$z \longrightarrow$	$dom_{-}thm$	456		Duplicate Theory	131
$z \!$	$dom_{-}thm$	526		$duplicate_theory$	138
z_{-}	$dom \oplus \mapsto thm$	455		DynamicArray	38
z_{-}	$dom \oplus \mapsto thm$	526		$DYNAMIC_ARRAY$	38
z_{-}	dom_\frown_thm	487		$D\varnothing$	80
				$D \Leftrightarrow$	80
z_{-}	$dom_{-} thm$	$\frac{525}{478}$		$D \wedge$	80
$z_dot_$	$egin{array}{c} dom[X, Y] \ dot_clauses \end{array}$	$\frac{478}{469}$		$D \lor$	80
$egin{array}{c} z aot \ z dot \end{array}$	$dot_clauses$ $dot_clauses$	523		$D\neg$	80
$z_dot_$	dot_conv	523		$D \Rightarrow$	80
$z_aot_ \ z_simple_dot_$	dot_conv dot_conv	515		$D\forall$	80
$z_simple_dot_$ $z_size_dot_$	dot_conv	525		$D\exists$	80
$z_{-} \in dot_{-}$		515		$D\exists_1$	80
2-2-400	1 450-00100	010			

	$ D\epsilon $	80	z orall	elim	406
	$D\lambda$	80	<i>≈</i> _v_ ⇔_	elim	200
	$D\mathbb{N}$	80	$\Leftrightarrow_{-}t_{-}$	elim	202
	$e_{-}delete$	33	\land_left	elim	202
	$E_{-}DICT$	33	\wedge _right_	elim	203
initial	$e_{-}dict$	34	V_	elim	204
	$e_{-}dict_{-}of_{-}oe_{-}dict$	40	¬_	elim	205
	$e_{-}enter$	33	¬_¬_	elim	207
list	eenter	34	\Rightarrow_{-}	elim	208
	$e_{-}extend$	33	\forall_{-}	elim	211
	e_{-} flatten	34	$\forall arb$	elim	210
	$e_{-}get_{-}key$	33	∃_	elim	213
	$\mid E_{-}KEY$	33	\exists_{1} –	elim	216
	$e_{-}key_{-}delete$	33	$z_gen_pred_$	elim1	391
	$e_{-}key_{-}enter$	33	if?then!	$else_{-}!$	490
	$e_{-}key_{-}extend$	33	$(if_?then_!$	$else_!)[X]$	489
	$e_{-}key_{-}lookup$	33	if_{-}	$else_elim$	171
$string_of_$	$e_{-}key$	33	HT	Else	70
	e_lookup	34	TooManyRead	Empties	57
1. ,	e_merge	34	D	EmptyList	80
list	e_merge	34	$dest_{-}$	$empty_list$	82
	e_stats	34	is_	$empty_list$	91
	$egin{array}{l} Efficient Dictionary \\ elaborate \\ \end{array}$	33 16	mk	empty_list	101 117
'z_	$ elementwise_eq $	503	$z_size_$	empty_net	469
$all_simple_$ \forall _	elim	154	$z_size_$ $z_size_$	$empty_thm \\ empty_thm$	523
all_\forall _	elim	154	z_{-3}	$empty_thm$	458
$all_\forall_arb_$	elim	155	$z \rightarrow$	$empty_thm$	526
asm_{-}	elim	159	z_¬_^_		487
$ALL_{-}VAR_{-}$	$ELIM_ASM_T$	232		$empty_thm$	
VAR_{-}	$ELIM_ASM_T$	281	z_¬	$empty_thm$	525
$ALL_{-}VAR_{-}$	ELIM_ASM_T1	232	z $_{\mathbb{F}}_{-}$	$empty_thm$	468
$all_var_$	$elim_asm_tac$	232	z _ \mathbb{F}	$empty_thm$	516
var_{-}	$ elim_asm_tac $	281	z_{-}	$empty_\mathbb{F}_thm$	469 523
$all_var_$	elim_asm_tac1	232	z _ ~	$empty_\mathbb{F}_thm$ $empty_\multimap_thm$	525 458
$Z_{-}\in$	$ELIM_{-}C$	427	$egin{array}{c} z \ z \end{array}$	$empty_ \rightarrow _thm$	526
$z_bindingd_$	$elim_conv$	422		EndOfInput	57
$z \forall$	$elim_conv$	405	$\mathcal{D}gm$	end_of_stream	41
$z_{-}\exists_{-}$	$ elim_conv $	412		Ending	56
$z \lrcorner \forall \lrcorner$	$ elim_conv1 $	404	e	enter	33
$z_{-}\exists_{-}$	$elim_conv1$	410	$e_{-}key_{-}$	enter	33
$z \forall$	$elim_conv2$	405	liste	enter	34
$z_{-}\exists_{-}$	$elim_conv2$	411	$list_net_$	enter	117
$if_else_$	$elim$	171	net	enter	117
ifthen	elim	171	oe_	enter	40
$list_simple_ \forall _$	elim	174	$oe_key_$	enter	40
$list_{-}\forall_{-}$	elim	175	S	enter	32
VAR_	ELIM_NTH_ASM_T	281	$get_nd_$	entry	336
var_	$egin{array}{c} elim_nth_asm_tac \ elim_rule \end{array}$	$\frac{281}{192}$	$set_nd_$	entry	336
$simple_\epsilon_$	$ elim_rule $	$\frac{192}{218}$	D	EnumSet	80
$\epsilon \ simple orall$	elim	188	dest	$enum_set$	82
$simple_ \exists_$	elim	189	is	$enum_set$	91
$simple_\exists_1$	elim	191	mk_{-}	$enum_set$	101
$z_{-}quantifiers_{-}$	$elim_{-}tac$	397	get	env	41
~_qaanugusis	$elim_{-}tac$	285	$READER_{-}$	ENV	58 70
$z_gen_pred_$	elim	391	HT	Eos	70
$z_gen_pred_u_$	elim	392	'prop_	eq	293
	1		'zelementwise	eq	503

$z_abs_$	$ eq_0_thm $	468	$z_\mathbb{R}_less_\lnot_$	$\mid eq_{-}thm \mid$	474
$z_abs_$	$\begin{vmatrix} eq\theta thm \\ eq\theta thm \end{vmatrix}$	516	z _ \mathbb{R} _ $less$ _ \neg _	eq_thm	532
$z_uos_$ $z_times_$	$\begin{vmatrix} eq\theta thm \end{vmatrix}$	466	z _ \mathbb{R} _ $minus$ _	$eq_{-}thm$	475
$z_times_$	$\begin{vmatrix} eq\theta thm \end{vmatrix}$	516	z _ \mathbb{R} _ $minus$ _	$eq_{-}thm$	533
$pair_{-}$	$ eq_conv $	294	$z_{-} \leq less_{-}$	eq_thm	468
$z_binding_$	$ eq_conv $	423	$z_{-} \leq less_{-}$	$eq_{-}thm$	516
$z_seqd_$	$ eq_conv $	524	z_{-} _= c_{-} z_{-} \mathbb{Z}_{-}	$eq_{-}thm$	465
$z_sequ_$ $z_tuple_$	$ eq_conv $	506	z Z	$eq_{-}thm$	516
$z_tuple_lang_$	eq_conv	427	~ <u>_ 11.3 _</u>	eq_trans_rule	165
z _ z _ \mathbb{R}_{-}	eq_conv	534	KI	EqTransRule	129
z heta	eq_conv	444	Z	Eq	360
$z \mathbb{Z}$	eq_conv	518	$z_{-} \rightarrow _ran_{-}$	eq_{\longrightarrow}_thm	455
$z_binding_$	$ eq_conv1 $	423	$z_{-} \rightarrow _ran_{-}$	$eq_ \longrightarrow thm$	526
$z_{-}tuple_{-}$	eq_conv1	507	$z \rightarrow app$	$eq \Leftrightarrow \in rel thm$	453
$z_binding_$	$ eq_conv2 $	423	$z \rightarrow app$	$eq \Leftrightarrow \in rel thm$	510
$z_binding_$	eq_conv3	506	$z \mathbb{R}$	$eq_{-} \leq_{-} thm$	474
D	Eq	80	$z\mathbb{R}$	$eq_{-} \leq_{-} thm$	532
dest	eq	83	$z \rightarrow ran$	$eq \rightarrow thm$	455
$dest_{-}z_{-}$	eq	365	$z \rightarrow _ran$	$eq \rightarrow thm$	526
is	eq	91	$current_ad_rw_$	eqm_rule	317
isz	eq	365	$get_rw_$	eqm_rule	338
	$eq_{-}match_{-}conv$	163	$set_rw_$	eqm_rule	338
$simple_$	$eq_{-}match_{-}conv$	185		EQN_CXT	315
$simple_ho_$	$eq_{-}match_{-}conv$	186		eqn_cxt_conv	318
1	$eq_{-}match_{-}conv1$	162	cthm	eqn_cxt	161
$simple_$	$eq_{-}match_{-}conv1$	186	$get_rw_$	eqn_cxt	338
$simple_ho_$	$eq_{-}match_{-}conv1$	187	$get_sc_$	eqn_cxt	338
mk_{-}	eq	101	$get_st_$	eqn_cxt	339
mkz	eq	365	$get_u_simp_$	eqn_cxt	383
'prop	$ eq_pair $	293	$set_rw_$	eqn_cxt	338
$prop_{-}$	eq_pair	293	$set_sc_$	eqn_cxt	338
$prop_{-}$	eq	293	$set_st_$	eqn_cxt	339
prop	eq_prove_tac	295	$set_u_simp_$	eqn_cxt	383
	$eq_rewrite_thm$	164	$simple_ho_thm_$	eqn_cxt	340
prop	eq_rule	296	$theory_u_simp_$	eqn_cxt	383
$simple_\lambda_$	$eq_{-}rule$	193	thm	eqn_cxt	341
λ	$ eq_{-}rule $	219	$u_simp_$	eqn_cxt	384
	$eq_sym_asm_tac$	242		equality	89
	eq_sym_conv	164	Propositional	Equality	293
	$eq_sym_nth_asm_tac$	242	std	err	41
	eq_sym_rule	165		Error	16
KI	$\mid EqSymRule$	129		error	17
7_	eq_sym_rule	205	_	Error	70
$ASM_PROP_$	$EQ_{-}T$	294	Basic	Error	16
$PROP_{-}$	$EQ_{-}T$	294	add	$error_code$	59
zapp	$eq_{-}tac$	422	add_{-}	$error_codes$	59
$z_seqd_$	$eq_{-}thm$	488	pp'	$error_init$	19
$z_seqd_$	$eq_{-}thm$	525	local	error	64
z size	eqthm	470	get	$error_message$	17
$z_size_$	eqthm	523	new	$error_message$	18
$z \in _seqapp$	eqthm	488	$pp'change_{-}$	$error_message$	19
$z_{-} \in _seq_app_$	eqthm	525	get_{-}	$error_messages$	17
$z_{-} \in _seqd_app_$	eqthm	488	$pending_reset_$	$error_messages$	18
$z_{-} \in _seqd_app_$	eqthm	525	set_{-}	$error_messages$	17
$z_{-} \rightarrow_{-} \in -rel_{-} \Leftrightarrow_{-} app_{-}$	eqthm	453	$pp'set_{-}$	$eval_ad_cs_\exists_convs$	330
$z \rightarrow \in _rel \Leftrightarrow _app$	eqthm	510	$pp'set_{-}$	$eval_ad_nd_net$	330
$z\mathbb{R}$	eq_thm	475	$pp'set_{-}$	eval_ad_rw_canon	329
$z\mathbb{R}$	$\mid eqthm$	532	pp'set	$ eval_ad_rw_net$	328

$pp'set_{-}$	$ eval_ad_sc_conv $	329	$pending_push_$	$extend_pcs$	327
	$eval_ad_st_conv$	329	$push_{-}$	$extend_pcs$	333
	$eval_ad_\exists_cd_thms$	330	F *****	$extend_pcs_rule$	320
	$eval_ad_\exists_vs_thms$	331		$extend_pcs_rule1$	320
$Z\mathbb{R}$		532	set	$extend_pcs$	333
$z _ \mathbb{R}$	$eval_conv$	532		$EXTEND_PCS_T$	321
$pending_reset_pc_$	evaluators	328		EXTEND_PCS_T1	321
<i>T</i> · · · · · · <i>J</i> · · · · · · <i>T</i> ·	EVERY	243	s_{-}	extend	32
	$ EVERY_C $	165	$get_use_$	$extended_chars_flag$	63
	EVERY_CAN	165	use	$extended_chars$	56
MAP_{-}	EVERY	257	conv	extended	12
	$ EVERY_T $	243		ExtendedIO	41
MAP_{-}	$EVERY_T$	257	$basic_res_$	extract	307
	$EVERY_TTCL$	242	Bdz	FArgc	359
	exit	50	Bdz	FCode	359
$save_and_$	exit	51	Bdz	FCompc	359
$z\mathbb{R}\mathbb{Z}$	$ exp_conv $	534	dest	f	83
$z\mathbb{R}\mathbb{Z}$	exp_def	535	is	f	92
$dest_{-}z_{-}\mathbb{R}_{-}\mathbb{Z}_{-}$	exp	530	mk	f	101
$isz\mathbb{R}\mathbb{Z}$	exp	530		$f_rewrite_canon$	203
$mkz\mathbb{R}\mathbb{Z}$	exp	531		fthm	170
	$expand_symbol$	60		f_thm_tac	247
	$expand_type_abbrev$	124	$z_dom_f_\rightarrowtail_$	fthm	457
Z	Expressions	418	$zdomf \rightarrowtail$	fthm	526
'fun	ext	344	$zdomf\leftrightarrow$	fthm	456
$'sets_$	ext	353	$zdomf\leftrightarrow$	fthm	526
$z_sets_$	ext_clauses	492	$z_dom_f_{\longrightarrow}_$	fthm	457
$z_sets_$	ext_clauses	499	$zdomf \rightarrow$	fthm	526
	ext_conv	426	$z_dom_f_\rightarrowtail_$	fthm	457
	ext_lang	419	$z_dom_f_\rightarrowtail_$	-	526
$'z_sets_$	<u> </u>	496	$zdomf \rightarrow -$	-	457
	$ ext_rule $	166	$zdomf \rightarrow -$	-	526
$sets$ _	ext	353			289
$sets$ _	ext	354		$f \longrightarrow -f -thm$	457
$z_sets_$	$ext_{-}thm$	460		$f \longrightarrow f_t thm$	526
$z_fun_$	ext	509		$f \leftrightarrow f thm$	456
$z_language_$	ext	504		$f_{-} \leftrightarrow_{-} f_{-} thm$	526
$z_library_$	ext	527		$f_{-} \rightarrow_{-} f_{-} thm$	457
$z_library1_$	ext	528		$f_{-} \rightarrow_{-} f_{-} thm$	526
$z_rel_$	ext	505		$f_{-} \rightarrow -f_{-}thm$	457
$z_sets_$	ext	504		$f_{-} \rightarrow -f_{-}thm$	526
'sets		354		$f \rightarrow -f thm$	457
sets	ext1	354	$z_{-}dom_{-}$	$f \rightarrow f thm$	526
e_{-}	extend	33		Fail	16
$e_{-}key_{-}$	extend	33	D 1	fail	17
0e_		40	Bdz	Fail	359
$oe_key_$	extend	40		fail_canon	166
	EXTEND_PC_C	319		$fail_conv$	166
1. 1	EXTEND_PC_C1	319	,	$fail_{-}tac$	243
$pending_push_$	extend_pc	327	$term_{-}$	fail	113
push	extend_pc	333	11	FAIL_THEN	243
	extend_pc_rule	320	thm	fail	147
221	$egin{array}{l} extend_pc_rule1 \ extend_pc \end{array}$	320 333	$type_{-}$	fail with samon	$\begin{array}{c} 115 \\ 166 \end{array}$
set	$egin{array}{c} extena_pc \ EXTEND_PC_T \end{array}$	333 321		$fail_with_canon$ $fail_with_conv$	
	EXTEND_PC_T1 EXTEND_PC_T1	$\frac{321}{321}$		•	$\frac{166}{243}$
	EXTEND_PC_II	$\frac{321}{319}$		$fail_with_tac$ $FAIL_WITH_THEN$	$\frac{243}{243}$
	EXTEND_PCS_C1		~ 0040		
	EAIEND_FUS_UI	319	$z_seta_$	$false_conv$	497

	6 1	20		l a	4.0
$\underset{\cdot}{fun}$	false	28	get_{-}	flag	46
is_z_	false	365	$get_use_extended$	g	e o
$mk_{-}z_{-}$	false	365	_chars_	$ flag _{g_{\alpha,\alpha}}$	63 46
$Z \\ 'z$	False	$\frac{360}{380}$	new	f ag	46 47
Z _	$egin{array}{c} fc \\ FC_CAN \end{array}$	360 167	$reset_{-}$	f ag	$\frac{47}{47}$
		168	set	flag	46
	f_{c_canon}	168	get	flags	
~	fc_canon1	389	$reset_{-}$	flags	47 47
z_ ~	fc_prove_conv	390	set	ig flags $ig flat$	21
<i>z</i> _	$egin{array}{ccc} fc_prove_tac \ fc_rule \end{array}$	390 169		flatten	34
	$FC_{-}T$	$\frac{109}{246}$	e_	flatten	40
ALL_{-}	$FC_{-}T$	$\frac{240}{246}$	oe_ oe_key_	flatten	40
$ALL_ASM_$	$FC_{-}T$	$\frac{240}{246}$	*	$ float_conv $	531
$ALL_{\perp}ASM_{\perp}$ ASM_{\perp}	$FC_{-}T$	$\frac{240}{246}$	$egin{array}{c} z \ D \end{array}$	Float	80
ADM =	$FC_{-}T1$	$\frac{240}{247}$	$dest_{-}$	float	83
ALL_{-}	$FC_{-}T1$	$\frac{247}{247}$	$dest_z_$	float	365
$ALL_ASM_$	$FC_{-}T1$	247	$aest_z_is_$	float	91
ADD_ASM	$FC_{-}T1$	247	$is_z_$	float	365
ADM _	$ fc_tac $	$\frac{247}{245}$	mk_{-}	float	101
all	fc_tac	$\frac{245}{245}$	$mk_z_$	float	365
$all_asm_$	fc_tac	$\frac{245}{245}$	$string_of_$	float	39
$am_{-}asm_{-}$	$ fc_tac $	$\frac{245}{245}$		$ float_thm $	477
usm_	$FC\LeftrightarrowCAN$	169	$egin{array}{c} z \ z \end{array}$	$ float_thm $	533
	$fc_{\leftarrow}\Leftrightarrow_{-}canon$	170	$\stackrel{\sim}{Z}$	Float	360
$delete_pc_$	fields	318	Z'	Float	472
$merge_pc_$	fields	324	Z'	Float	474
use_{-}	$ file_non_stop_mode $	56	Z	$flush_out$	41
use	file	66		fold	21
use_{-}	file1	66	$term_{-}$	fold	113
$load_{-}$	files	49	$translate_{-}$	$ for_output $	66
1044	filter	21	transtate_	$ force_delete_theory $	322
DROP	$ FILTER_ASMS_T $	$\frac{21}{241}$		force_value	21
GET_{-}	FILTER_ASMS_T	250	pp	$format_depth$	73
OLI -	find	21	PP-	$format_list$	67
	$ find_char $	61		$format_term$	73
	$find_name$	61		$format_term1$	73
	$find_{-}thm$	151		$format_thm$	73
gen	$find_{-}thm$	152		$format_thm1$	73
gen_{-}	$find_thm_in_theories$	152		$ format_type $	74
gene	FIRST	244		$ format_type1 $	74
	first	490		FORWARD_CHAIN	• •
	$FIRST_{-}C$	167		_CAN	167
	FIRST_CAN	166		$forward_chain_canon$	168
z_{-}	$first_def$	498		$forward_chain_canon1$	168
MAP	FIRST	257		$forward_chain_rule$	169
	$FIRST_{-}T$	244		FORWARD_CHAIN	
MAP_{-}	FIRST_T	257		-T	246
z_{-}	$first_thm$	491	ALL_{-}	FORWARD_CHAIN	
z_{-}	$first_thm$	499		-T	246
$z \in$	$first_thm$	453	$ALL_ASM_$	FORWARD_CHAIN	
$z \in$	$\int_{0}^{\pi} first_{-}thm$	510		_ T	246
	$FIRST_TTCL$	244	ASM	FORWARD_CHAIN	
	first[X, Y]	489		_ T	246
	FIXITY	69		FORWARD_CHAIN	
get	fixity	125		_ <i>T1</i>	247
LS	Fixity	75	ALL_{-}	FORWARD_CHAIN	
zprint	fixity	78		_ T1	247
	•			-	

$ALL_ASM_$	FORWARD_CHAIN			$ fun_false $	28
1133311211	_T1	247	$new_init_$	$\int fun$	49
ASM_{-}	FORWARD_CHAIN		$new_save_$	$\int_{0}^{\infty} fun$	49
112111	_T1	247		$\int_{0}^{\infty} fun_{-}not$	28
	$forward_chain_tac$	245		$\int fun_{-}or$	28
all	$forward_chain_tac$	$\frac{245}{245}$		$\int fun_{-}pow$	28
$all_asm_$	$forward_chain_tac$	$\frac{245}{245}$	z_{-}	$fun_ran_clauses$	454
asm_{-}	$forward_chain_tac$	$\frac{245}{245}$	z_{-}	$fun_ran_clauses$	510
wo	FORWARD_CHAIN	-10	app_{-}	$ fun_rule $	158
	_⇔_CAN	169	T	$ Fun ^{fun}$	151
	$ forward_chain_\Leftrightarrow$	100	-	$\int_{0}^{2\pi} fun_{-}true$	28
	canon	170	z{-}	$fun_{-} \in _clauses$	454
$z\mathbb{R}$	$frac_def$	535	z_{-}	$fun_{-} \in _clauses$	510
$dest_{-}z_{-}\mathbb{R}_{-}$	frac	530	$READER_{-}$	FUNCTION	58
$is_z_\mathbb{R}$	frac	530	$READER_{-}$	FUNCTION	59
$mkz\mathbb{R}$	frac	531		Function Utilities	28
is	$ free_in $	92	Z	Functions	507
is	$free_var_in$	92	Z	Functions1	522
	frees	90	$get_init_$	funs	48
	from	22	$get_save_$	funs	48
	front	484	J · · · · · · ·	$gc_messages$	48
z_{-}	$front_def$	522		gen5rightassoc	452
	front[X]	483		gen5rightassoc	463
	$\int_{0}^{t} fst$	28		gen5rightassoc	490
'z_∈_	$\int_{0}^{\infty} fun$	508		gen70 right assoc	450
	$\int_{0}^{\infty} fun \theta right assoc$	450		gen70rightassoc	463
	$\int fun0right assoc$	489		gen70rightassoc	479
	$\int fun10 left assoc$	478		gen70rightassoc	483
	$\int fun20 leftassoc$	462		gen70 right assoc	490
	fun20leftassoc	472		GEN_ASYM_C	297
	fun25leftassoc	489		gen_find_thm	152
	fun30leftassoc	450		$gen_find_thm_in$	
	fun30leftassoc	462		$_{_theories}$	152
	fun30leftassoc	472		$GEN_INDUCTION$	
	fun30leftassoc	483		_ T	248
	fun30leftassoc	489		$GEN_INDUCTION$	
	fun40leftassoc	462		_ <i>T1</i>	249
	fun40leftassoc	472		$gen_induction_tac$	248
	fun40leftassoc	478		$gen_induction_tac1$	249
	fun40leftassoc	483	$z_{-}\neg_{-}$	gen_pred_conv	402
	fun40leftassoc	490	z_{-}	gen_pred_elim	391
	fun 45 right assoc	483	z_{-}	gen_pred_elim1	391
	fun 50 left assoc	478	z_{-}	gen_pred_intro	391
	fun 50 right assoc	463	z_{-}	gen_pred_tac	391
	fun 50 right assoc	472	$z_intro_$	gen_pred_tac	394
	fun 60 left assoc	479	z_{-}	$gen_pred_u_elim$	392
	fun60 right assoc	472		gen_term_order	300
	fun 65 right assoc	479		gen_theory_lister	76
	$\int fun 70 right assoc$	463		$gen_theory_lister1$	76
	$\int fun 70 right assoc$	479		$gen_{-}vars$	90
'z_	$\int fun_{-}alg$	509		$\Big general_quotation$	61
	$\int fun_{-}and$	28	add	$general_reader$	59
z_{-}	$\int funappclauses$	454	$look_up_$	$general_reader$	64
z_{-}	$\int funappclauses$	510		get_alias	125
z_{-}	$\int fun_{-}dom_{-}clauses$	454		get_alias_info	125
z_{-}	$fun_dom_clauses$	510		$get_aliases$	124
,	$\int fun ext$	344		$get_ancestors$	138
z_{-}	$\int fun ext$	509		$ get_asm $	223

	$\mid GET_ASM_T$	249	$LIST_{-}$	$\mid GET_NTH_ASM_T$	255
$LIST_{-}$	GET_ASM_T	255		$get_parents$	140
	GET_ASMS_T	249		get_pcs	322
	get_axiom	138		$\left \begin{array}{c} get_percent_name \end{array} \right $	63
	get_axiom_dict	138		$get_postfixes$	126
	$ get_axioms $	138		$\begin{vmatrix} get_pr_conv \end{vmatrix}$	336
	$ get_binders $	125		$\begin{vmatrix} get_pr_conv1 \end{vmatrix}$	336
	$ get_box_braces $	62		$\begin{vmatrix} get_pr_t & get_pr_t \\ get_pr_t & get_pr_t \end{vmatrix}$	337
	$ get_children $	139		$\begin{vmatrix} get_pr_tac1 \end{vmatrix}$	337
	$ get_compactification $			$get_prefixes$	126
	_cache	130		$\left \begin{array}{c} get_primed_string \end{array} \right $	63
	$get_conjecture$	150		$get_proved_conjectures$	149
	$ get_conjectures $	150		$ get_right_infixes $	126
	get_const_info	125		$ get_round_braces $	62
	get_const_keys	139		$ get_rw_canons $	337
	$ get_const_language $	125		$\left \begin{array}{c} get_rw_eqm_rule \end{array} \right $	338
	$\left \begin{array}{c} get_const_tanguage \\ get_const_theory \end{array} \right $	139		$\left \begin{array}{c} get_rw_eqn_cxt \end{array} \right $	338
	$ get_const_type $	139		$\left \begin{array}{c} get_save_funs \end{array} \right $	48
	$ get_consts $	139		$\left \begin{array}{l} get_sc_eqn_cxt \end{array} \right $	338
	$ get_controls $	46		$ get_shell_var $	48
	$get_cs_\exists_convs$	335	z_{-}	$\left \begin{array}{c} get_snett_var \\ get_spec \end{array} \right $	393
	$ get_curly_braces $	62	~ -	$\left \begin{array}{c} get_spec \\ get_st_eqn_cxt \end{array} \right $	339
	$\left \begin{array}{c} get_current_language \end{array} \right $	125		$\left \begin{array}{c} get_st_eqn_ext \\ get_stack_pcs \end{array} \right $	323
	$\left \begin{array}{c} get_current_vanguage \\ get_current_pc \end{array} \right $	322		$\left \begin{array}{c} get_stats \\ get_stats \end{array} \right $	53
	$ get_current $	022		$\left \begin{array}{c} get_states \\ get_string_control \end{array} \right $	46
	_terminators	125		$\left \begin{array}{c} get_string_controls \end{array} \right $	46
	$get_current_theory$	120		$\left \begin{array}{c} get_terminators \end{array} \right $	126
	_name	139		$\left \begin{array}{c} get_theory \end{array} \right $	141
	$get_current_theory$	100		$\left \begin{array}{l} get_theory_info \end{array} \right $	141
	_status	139		$ get_theory_names $	140
	get_defn	140		$ get_theory_status $	140
	$\left \begin{array}{l} get_defn_dict \end{array} \right $	140		get_thm	141
	$ get_defns $	140		$\left \begin{array}{l} get_thm \\ get_thm_dict \end{array} \right $	141
	$ get_descendants $	140		$\left \begin{array}{c} get_thms \end{array} \right $	141
	$ get_env $	41		$\left egin{array}{ll} get_type_abbrev \end{array} ight $	126
	$ get_error_message $	17		$\left \begin{array}{c} get_type_abbrevs \end{array} \right $	127
	$ get_error_messages $	17		$\begin{vmatrix} get_type_arity \end{vmatrix}$	141
	GET_FILTER_ASMS			$\left \begin{array}{c} get_type_info \end{array} \right $	127
		250		$ get_type_keys $	141
	get_fixity	125		get_type_theory	142
	$\left egin{array}{l} get_flag \end{array} \right $	46		$ get_types $	141
	$\left \begin{array}{c} get_flags \end{array} \right $	46		$\begin{vmatrix} getu_simpeqncxt \end{vmatrix}$	383
	get_HOL_any	62		$ get_undeclared_aliases $	127
	$ get_init_funs $	48		$ get_undeclared $	
	$get_int_control$	46		_terminators	127
	$get_int_controls$	46		$ get_undeclared_type $	121
e_{-}	$ get_key $	33		_abbrevs	127
0_	$ get_language $	126		$ get_unproved $	
	$get_left_infixes$	126		_conjectures	149
	$ get_line_length $	67		$ get_use_extended $	110
	$ get_message $	18		_chars_flag	63
	$ get_message_text $	18		$\left \begin{array}{c} ettars_{-}tag \\ get_{-}user_{-}datum \end{array} \right $	142
	$ get_ML_any $	62		$\left \begin{array}{l} get_user_uavam \\ get_variant_suffix \end{array} \right $	90
	$\left \begin{array}{c} get_ML_witg \\ get_ML_string \end{array} \right $	63		$get_{\exists cd_thms}$	339
	$ get_mp_string $ $ get_mmp_rule $	335		$get_{\exists \exists vs_thms}$	340
	$ get_nd_entry $	336	$dest_z_$	$ given_type $	366
	$ get_na_entrg $ $ get_nonfixes $	126	$is_{-}z_{-}$	$ given_type $	366
	GET_NTH_ASM_T	250	$mk_{-}z_{-}$	1 -	366
		200	11010 = 2 =	g.com_ugpc	500

Z	Given Type	360		head[X]	483
$z_{-}\mathbb{R}_{-}$	glb_def	535	z_{-}	$hide_{s-}conv$	434
	$\begin{vmatrix} g & b & a \\ g & b & a \end{vmatrix}$	472	$z \in$	$hide_{s-}conv$	434
	$\begin{vmatrix} g & R \\ glb_R \end{vmatrix}$	473	destz	$hide_s$	366
	GOAL	231	$is_z_$	$hide_s$	366
$check_is_z_$	goal	381	mkz	$hide_s$	366
$drop_main_$	goal	223	Z	$Hide_s$	360
print	goal	225	$pp'theory_$	hierarchy	50
$print_current_$	goal	225	$simple_$	$ho_eq_match_conv$	186
push	goal	226	$simple_$	•	187
set	goal	227	$simple_{-}$	_	340
$set_labelled_$	goal	227		hol	7
	$GOAL_STATE$	222		hol	354
$print_{-}$	$goal_state$	225	get_{-}	$HOL_{-}any$	62
$push_{-}$	$goal_state$	226	basic	hol	349
$modify_{-}$	$goal_state_thm$	224		$HOL_lab_prod_reader$	63
$push_{-}$	goal_state_thm	226		hol_list	7
$simplify_{-}$	$goal_state_thm$	228		HOL-reader	64
top_{-}	goal_state_thm	228		HOLReaderWriter	55 49
top	$goal_state$	$\frac{229}{229}$		$HOLSystem \ HOL_TOKEN$	48 70
$top_labelled_$	$egin{array}{c} goal \ goal \end{array}$	$\frac{229}{229}$		hol1	355
$top_tabetitea_$ $top_main_$	goal	$\frac{229}{229}$	basic	hol1	349
$zpush_consistency_$	goal	$\frac{229}{397}$	ousic_	hol2	355
top	goals	$\frac{337}{228}$	$z_pigeon_$	$hole_thm$	470
vop_	grab	22	$z_{-}pigeon_{-}$	$hole_thm$	523
$term_{-}$	$\begin{vmatrix} grab \end{vmatrix}$	113	$z_{-}int_{-}$	$homomorphism_thm$	465
$z_{-}\mathbb{R}_{-}$	$greater_conv$	534	$z_int_$	$homomorphism_thm$	516
$z_{-}\mathbb{R}_{-}$	$greater_def$	535		HTAnd	70
$dest_{-}z_{-}$	greater	513		HTAqTm	70
$dest_z_\mathbb{R}$	greater	530		HTAqTy	70
isz	greater	513		HTBinder	70
$isz\mathbb{R}$	greater	530		HTBlob	70
z_{-}	$greater_less_conv$	518		HTChar	70
mkz	greater	514		HTColon	70
$mkz\mathbb{R}$	greater	531		HTElse	70
z _ \mathbb{R}_{-}	$greater_thm$	532		HTEos	70
zpluscyclic	$group_thm$	465		HTIf	70
$z_{-}plus_{-}cyclic_{-}$	$group_thm$	516		HTIn	70
z'	$guillemets_def$	498		HTInOp	70
z_{-}	$guillemets_thm$	491		HTLbrace	70
Z_	$guillemets_thm$	499		HTLbrack	70
$dest_{-}z_{-}$	gvar	$\frac{366}{366}$		HTLet	70 70
$is_z_\ mk_z_$	gvar	366		$HTLsqbrack \ HTName$	70 70
711K_Z_	$\left \begin{array}{l} gvar \\ gvar_subst \end{array} \right $	362		HTNumLit	70 70
z_{-}	, ,	434		HTPostOp	70 70
	h_schema_conv	435		HTPreOp	70
	h_schema_conv	438		HTRbrace	70
	h_schema_conv1	438		HTRbrack	70
	h_schema	366		HTRsqbrack	70
	$h_{-}schema$	366		HTSemi	70
	h_schema	366		HTString	70
	$h_schema_pred_conv$	434		HTThen	70
z_{-}	, , , , -	518		HTVert	70
	hd	22		I	30
	head	484		i_contr_tac	253
z_{-}	$head_def$	522		iabs	39

	ICL' DATABASE		¬_	$ in_conv $	285
	_INFO_TYPE	48	z_{-}	in_def	528
	$ id_{-} $	480	HT	In	70
id	_	480	$is_free_$	$\mid in \mid$	92
	$ id_{-}canon $	170	$is_free_var_$	$\mid in \mid$	92
z_{-}	$id_{-}clauses$	481	$is_term_$	in	41
	$ id_conv $	170	HT	InOp	70
z_{-}	$id_{-}def$	507	open	$ in ^{2}$	41
	$id_{-}tac$	250	std	$\mid in \mid$	41
k_{-}	$id_{-}tac$	240	$simple_\lnot_$	$in_{-}tac$	266
	$ID_{-}THEN$	250		$in_{-}tac$	286
z_{-}	idthm	481	$SIMPLE_\lnot_$	IN_THEN	266
z_{-}	idthm1	456	¬_	IN_THEN	286
z_{-}	idthm1	526	$gen_find_thm_$	$in_theories$	152
	idX	478	do	in_theory	137
z_{-}	$id \rightarrow -thm$	456	listing	indent	75
z_{-}	$id \rightarrow -thm$	526	\overrightarrow{GEN}_{-}	$INDUCTION_T$	248
	idiv	39	GEN	$INDUCTION_T1$	249
	$if_?then_!else_!$	490	gen	$induction_tac$	248
	$ if_app_conv $	170	$z_cov_$	$induction_tac$	514
app	$\int if_{-}conv$	158	$z_seq_$	$induction_tac$	524
D	If	80	$z \leq$	$induction_tac$	517
z'	ifdef	498	$z_{-}\mathbb{F}_{-}$	$induction_tac$	526
$dest$ _	$\mid if$	83	$z\mathbb{N}$	$induction_tac$	517
destz	$\mid if$	496	$z\mathbb{Z}$	$induction_tac$	519
	$ if_else_elim $	171	gen	$induction_tac1$	249
HT	If	70	zseq	$induction_tac1$	524
	$ if_intro $	171	$z_cov_$	$induction_thm$	468
is	$\mid if$	92	$z_cov_$	$induction_thm$	516
isz	$\mid if$	496	$z_prim_seq_$	$induction_thm$	486
mk	$\mid if$	102	$z_prim_seq_$	$induction_thm$	525
mkz	$\mid if$	496	$z_seq_$	$induction_thm$	487
	$if_rewrite_thm$	164	zseq	$induction_thm$	525
	IF_T	252	$z \leq$	$induction_thm$	468
	IF _ T2	251	$z \leq$	$induction_thm$	516
	if_tac	251	$z_{-}\mathbb{F}_{-}$	$induction_thm$	469
	IF_THEN	251	z _ \mathbb{F}_{-}	$induction_thm$	523
	if_then_elim	171	$z\mathbb{N}$	$induction_thm$	465
	IF_THEN2	251	$z\mathbb{N}$	$induction_thm$	516
	if_thm	289	$z\mathbb{Z}$	$induction_thm$	465
z_{-}	$\int ifthm$	491	$z_{-}\mathbb{Z}_{-}$	$induction_thm$	516
z_	if _ thm	499	zseq	induction_thm1	487
	if_thm	$\frac{289}{56}$	zseq	induction_thm1	525 510
	$ Ignore $ $ illformed_rewrite $	90	$z_{-} \ KERNEL_{-}$	$inequality_def \ INFERENCE$	518 129
	"	153	n_{kernel} on_{kernel}	inference	129
~ mol	$_warning \\ image_clauses$	482	$on_{-}\kappa ernet_{-}$		69
$z_rel_$	_	402 507	$declare_$	Infix infix	123
$z_rel_ \ z_rel_$	$egin{array}{l} image_def \ image_thm \end{array}$	481	$declare_left_$	infix	123
2_161_		39		infix	123
	$egin{array}{c} imod \ in \end{array}$	59 450	$declare_right_ \\ get_left_$	infixes	123
-	$\begin{bmatrix} in \\ -in \end{bmatrix}$	450 - 450	$egin{array}{c} get_ieji_ \ get_right_ \end{array}$	infixes	126
$_{\it -}in$	_ 616_	450 - 450	$egin{array}{c} get_rignt_ \ get_alias_ \end{array}$	info	$\frac{120}{125}$
(_	$ \stackrel{-}{in}_{-})[X]$	450	$egin{array}{c} get_anas_ \ get_const_ \end{array}$	info	125 125
$concl_{-}$	$\begin{bmatrix} m_{-})[A_{\perp}] \\ in_{-}asms_{-}tac \end{bmatrix}$	$\frac{430}{238}$	$get_theory_$	info	141
$close_{-}$	$\begin{vmatrix} in_{-}asms_{-}tac \\ in \end{vmatrix}$	41	$get_tneorg_$ $get_type_$	info	127
$simple_\lnot_$	$\begin{vmatrix} in \\ in_conv \end{vmatrix}$	265	$pp'database_{\perp}$	info	48
$z_{-}\neg_{-}$	in_conv	402	$pp'aatabase_$ $pp'reset_database_$	info	49
~_ '_	1 010 - 00100	402	pp reser_aaravase_	1000	49

$pp'set_database_$	info	49	$string_of_$	int3	65
THM_	INFO_TEST	151	string_oj_	INTEGER	39
$THEORY_{-}$	INFO	120		Integer	39
THM_{-}	INFO	151	$int_of_$	integer	39
ICL'DATABASE_	INFO_TYPE	48	1111_0j_	$integer_of_int$	39
ICL DATADASE -	init	48			39
		48 49		integer_of_string	39 39
new_	init_fun		atring of	integer_order	39 39
get_{-}	init_funs	48	$string_of_$	integer	
<i>pp</i> _	init	74	kernel_	$interface_diagnostics$	142
$pp'error_{-}$	init	19	Kernel	Interface	129
	init_stats	53	$pending_reset_kernel_$	interface	146
	initial	315	11 \/	interval	22
	$initial_{-}e_{-}dict$	34	$all_z_orall_$	intro	381
	initial_oe_dict	40	$all_{-} \Rightarrow_{-}$	intro	155
	initial_rw_canon	172	$all_{-} \forall_{-}$	intro	156
	initial_s_dict	32	asm	intro	159
	Initialisation	48	$Z_{-}DECL_{-}$	$INTRO_{-}C$	387
	input	41	$z_bindingd_$	$intro_conv$	423
	INPUT	70	$z_schema_pred_$	$intro_conv$	436
can_{-}	input	41	$zsel_{t-}$	$intro_conv$	425
	$ input_line $	41	$z_tuple_$	$intro_conv$	507
SymEndOf	Input	57	$z_tuple_lang_$	$intro_conv$	427
	insert	22	$z \forall$	$intro_conv$	407
	inst	90	$z_{-}\exists_{-}$	$intro_conv$	412
	$ inst_term_rule $	172	$z_{-}\exists_{1}$	$intro_conv$	415
asm	$ inst_term_rule $	159	$z\theta \in _schema$	$intro_conv$	436
KI	InstTermRule	129	$z \forall$	$intro_conv1$	405
	$ inst_type $	90	$z_{-}\exists_{-}$	$intro_conv1$	411
	$ inst_type_rule $	173	z_{-}	$intro_gen_pred_tac$	394
asm	$ inst_type_rule $	159	if	intro	171
KI	InstTypeRule	129	$list_simple_ orall _$	intro	174
$is_type_$	instance	93	$list_simple_\exists_$	intro	174
	instream	41	$list_ \land _$	intro	174
get	$int_control$	46	$list \forall$	intro	175
new	$int_control$	46	ϵ	$intro_rule$	218
$reset_$	$int_control$	47	$simple _ \forall _$	intro	189
set	$int_control$	47	$simple _ \exists _$	intro	190
get	$int_controls$	46	$simple _ \exists_{1} _$	intro	191
reset	$int_controls$	47	3_	$intro_thm$	213
set	$int_controls$	47	$v_{-}\exists_{-}$	intro	200
z'	$ int_{-}def $	463	$z_gen_pred_$	intro	391
z'	$\int int_{-}def$	518	$z \forall$	intro	408
destz	int	366	⇔_	intro	200
$dest_z_signed_$	int	513	$\Leftrightarrow_{-} t_{-}$	intro	202
z_{-}	$int_homomorphism$		^_	intro	202
	$_{_thm}$	465	$\lor_left_$	intro	204
z_{-}	$int_homomorphism$		\vee _ $right_{-}$	intro	205
	$_{_}thm$	516	¬_	intro	205
$integer_of_$	$\int_{0}^{\infty} int$	39	7 7	intro	207
isz	int	366	⇒_	intro	208
$is_z_signed_$	int	513	A_ \`-	intro	211
$mk_z_$	int	366	V =	$intro_ orall _tac$	252
$mk_z_signed_$	$\begin{vmatrix} int \\ int \end{vmatrix}$	514	z_{-}	$intro_ \forall _tac$	394
~_oigitou_	$int_of_integer$	39	~ <u>-</u>	$intro_ \forall _tac1$	252
$string_of_$	int	31	3_	intro	$\frac{232}{214}$
UD_{-}	Int	119	\exists_{1}	intro	216
Z	Int	360	$z_{-}orall_{-}$	intro1	407
Z'	Int	463	z_{-} z_{-} z_{-} z_{-}		482
Zi	1100	400	2-166-	0100 - 00000000	402

	1 .		ı		
z orall	$ inv_conv $	408		$is_{-}z$	382
$z_{-}\exists_{-}$	$ inv_conv $	413		$is_{-}z_{-}abs$	513
$z_rel_$	$ inv_def $	507		$is_{-}z_{-}app$	363
$z_rel_$	$ inv_thm $	481		$is_z_binding$	364
$z_rel_$	$ inv_\rightarrowtailthm $	456	$check$ _	isz	381
$z_rel_$	$ inv_ \longrightarrow thm $	526	$check$ _	$is_z_conv_result$	381
	Invalid	56		iszdec	365
	Io	41		is_z_decl	364
Basic	IO	41		$is_z_decor_s$	364
Extended	IO	41		is_z_div	513
$z_less_$	$ irrefl_{-}thm $	467		is_z_eq	365
$z_less_$	$ irrefl_{-}thm $	516		is_z_false	365
z _ \mathbb{R} _ $less$ _	$ irrefl_{-}thm $	474		is_z_float	365
z _ \mathbb{R} _ $less$ _	$ irrefl_{-}thm $	531		$is_z_given_type$	366
	$ is_all_decimal $	31	$check$ _	is_z_goal	381
	$ is_all_z_type $	382		$is_z_greater$	513
	$ is_app $	90		is_z_gvar	366
	$ is_bin_op $	91		$is_z_h_schema$	366
	is_binder	91		$is_z_hide_s$	366
	is_char	91		iszif	496
	is_const	91		is_z_int	366
	$ is_ctype $	91		is_z_less	513
	is_dollar_quoted			is_z_let	367
	$_string$	363		iszlvar	367
	$ is_empty_list $	91		iszminus	513
	$ is_enum_set $	91		is_z_mod	513
	$ is_eq $	91		is_z_plus	513
	$is_{-}f$	92		$is_z_power_type$	367
	is_float	91		$iszpre_s$	367
	is_free_in	92		is_z_real	530
	$ is_free_var_in $	92		$is_z_rename_s$	368
	$is_{-}if$	92		$is_z_schema_dec$	368
	$ is_let $	92		$is_z_schema_pred$	368
	$ is_list $	92		$is_z_schema_type$	368
	$ is_mon_op $	92		$is_z_sel_s$	369
	$ is_Nil $	22		$is_z_sel_t$	369
	$ is_nil $	22	$set_check_$	isz	381
	$ is_pair $	92		is_z_seta	369
	$ is_proved_conjecture $	149		is_z_setd	369
	$ is_same_symbol $	64		$is_z_signed_int$	513
	$ is_set_comp $	92		is_z_string	370
	$ is_simple_binder $	93		$is_z_subtract$	513
	$ is_simple_orall$	93	CHECK	$IS_{-}Z_{-}T$	381
	$ is_simple_\exists$	93		is_z_term	362
	$ is_simple_\exists_1$	93	$check$ _	is_z_term	381
	$ is_simple_\lambda $	93		is_z_term1	382
	$ is_special_char $	64	$check$ _	is_z_thm	381
	$ is_string $	93		is_z_times	513
	$ is_{-}t $	93		is_z_true	370
	$ is_term_in $	41		is_z_tuple	370
	$ is_term_out $	41		$is_z_tuple_type$	370
	$ is_theory_ancestor $	142		is_z_type	363
	$ is_type_abbrev $	127		$is_z_var_type$	370
	is_type_instance	93		$isz\subseteq$	497
	is_u	363		$isz\Delta_s$	371
	is_var	94		$isz\in$	371
	$ is_vartype $	93		$isz\Xi_s$	371
	$ is_white $	64		$isz \Leftrightarrow$	372

		$ isz \Leftrightarrow_s $	371		iter	464
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				z_{-}	$ iter_def $	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	
is. z. R. greater 530 K. d. tac 30 is. z. R. less 530 K. d. tac 240 is. z. R. nimus 530 KERNEL						
is. z. ℝ. less 530 is. z. ℝ. minus 530 is. z. ℝ. minus 530 is. z. ℝ. plus 530 on. is. z. ℝ. plus 530 on. is. z. ℝ. z. k. itimes 530 on. is. z. ℝ. z. k. itimes 530 on. is. z. ℝ. z. k. itimes 530 on. is. z. ℝ. z.					1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
						210
is.z. ℝ. plus bis.z. ℝ. times 530 on. kernel_inference 129 is.z. ℝ. times 530 kernel.interface 129 is.z. ℝ.≥ 530 kernel.interface .diagnostics 142 is.z. ℝ.≥ 530 pending_reset_ kernel.interface .diagnostics 142 is.z. Λ. 372 before. kernel.state_change 133 is.z. Λ. 373 on. kernel.state_change 146 is.z. Λ. 373 oe. key_delete 40 is.z. Λ. 373 oe. key_dest_const 95 is.z. Λ. 374 key_dest_const 95 is.z. Λ. 374 e. get. key_dest_const 95 is.z. Λ. 374 e. get. key_enter 33 is.z. Λ. 374 e. get. key_enter 33 is.z. Λ. 375 oe. key_enter 33 is.z. Λ. 375 oe. key_enter 40 is.z. Λ. 375 oe. key_enter 40 is. Λ.						129
				on.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				016_	,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						123
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	149
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_		monding moset		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_		penamg_reset_		140
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_				191
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1 - f		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				*		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				oe_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					"	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				T.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_ *	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				oe_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$get_type_$	_ ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ iseq_{-} $				
	-	- i				
	<i>z</i> _	- "		Ø		
z_{-} $items_{-}def$ $tems_{-}def$ t		_				
$\lfloor nems[A] \rfloor$ 450 $top_current_ \lfloor label$ 228	z_{-}	*			-	
		$\lfloor wems[A] \rfloor$	400	top_current_	iuvei	228

set	$ labelled_goal $	227		length	23
top	$labelled_goal$	229	$get_line_$	length	67
$'z_sets_ext_$	lang	419	line_	length	67
$'z_{-}tuples_{-}$	lang	420	$set_line_$	length	68
$z_{-} \in set_{-}$	lang	418	$z_size_seqd_$	$length_thm$	488
$zsel_{t-}$	$lang_conv$	425	$z_size_seqd_$	$length_thm$	525
$z_{-}tuple_{-}$	$lang_eq_conv$	427	$undo_buffer_$	length	222
$z_{-}tuple_{-}$	$lang_intro_conv$	427		less	23
$declare_const_$	language	122	$z\mathbb{R} heta$	$less_0_less_times_thm$	476
z_{-}	$language_ext$	504	$z\mathbb{R} heta$	$less_0_less_times_thm$	532
get	language	126	$z_times_$	$less_0_thm$	471
$get_const_$	language	125	$z_times_$	$less_0_thm$	523
$get_current_$	language	125	$z\mathbb{R}$	$less_antisym_thm$	474
$set_current_$	language	128	$z\mathbb{R}$	$less_antisym_thm$	531
z_{-}	language	503	z_{-}	$less_cases_thm$	469
	lassoc1	23	z_{-}	$less_cases_thm$	523
	lassoc2	23	$z_{-}\mathbb{R}_{-}$	$less_cases_thm$	474
	lassoc3	23	$z\mathbb{R}$	$less_cases_thm$	531
	lassoc4	23	$z_{-}\mathbb{R}_{-}\leq_{-}$	$less_cases_thm$	474
	lassoc5	23	$z_{-}\mathbb{R}_{-}\leq_{-}$	$less_cases_thm$	532
	last	484	z_{-}	$less_clauses$	467
Z_	$ last_def$	522	z_{-}	$less_clauses$	516
	last[X]	483	$z\mathbb{R}$	$less_clauses$	476
$z\mathbb{R}$	bdef	535	$z\mathbb{R}$	$less_clauses$	531
HT	Lbrace	70	<i>z</i> _	$less_conv$	518
HT	Lbrack	70	$z_greater_$	$less_conv$	518
-	$ lb_{R} $	473	$z\mathbb{R}$	$less_conv$	534
	$ lb_{R-}$	473	$z_{-}\mathbb{R}_{-}$	$less_def$	535
$_{-}lb_{R}$		473	$z _ \mathbb{R}$	$less_dense_thm$	474
(-	$ lb_{R-})$	472	$z\mathbb{R}$	$less_dense_thm$	531
strip	leaves	110	$dest_{-}z_{-}$	less	513
	LeftAssoc	69	$dest_{-}z_{-}\mathbb{R}_{-}$	less	530
7	LEFT_C	173	$z_{-}\leq_{-}$	$less_eq_thm$	468
Z_{-}	LEFT_C	424	$z \leq$	$less_eq_thm$	516
^_	left_elim	202	<i>z</i> _	less_irrefl_thm	467
$declare_{-}$	left_infix	123	<i>z</i> π	less_irrefl_thm	516
get_{-}	left_infixes	126	z _ \mathbb{R}_{-}	less_irrefl_thm	474
V_ atmin_anin_a	left_intro	204 111	$egin{array}{c} z\mathbb{R} \ isz \end{array}$	$less_irrefl_thm$ $less$	531 513
$strip_spine_$	$egin{array}{c} left \ left_tac \end{array}$	284	$is_z_$ $is_z_\mathbb{R}$	less	513
√_ fun10	$left_tac$ $leftassoc$	478	mkz	less	514
fun20	leftassoc	462	$mkz\mathbb{R}$	less	531
fun20	leftassoc	472	77 m = 2 = 11 = 2 = 12 = 2 = 12 = 12 = 12	$less_plus1_thm$	468
fun25	leftassoc	489	$term_{-}$	less	114
fun30	leftassoc	450	$z_{-}abs_{-}\theta_{-}$	$less_thm$	471
fun30	leftassoc	462	$z_{-}abs_{-}\theta_{-}$	$less_thm$	523
fun30	leftassoc	472	$z_less_\mathbb{Z}_{-}$	$less_thm$	449
fun30	leftassoc	483	$z_less_\mathbb{Z}$	$less_thm$	521
fun30	leftassoc	489	z _ \mathbb{R}	$less_thm$	531
fun40	leftassoc	462	$z_{-}\mathbb{R}_{-}\neg_{-}\leq_{-}$	$less_thm$	474
fun40	leftassoc	472	$z_{-}\mathbb{R}_{-}$	$less_thm$	532
fun40	leftassoc	478	$z_{-}\mathbb{R}_{-}\leq_{-}\neg_{-}$	$less_thm$	474
fun40	leftassoc	483	$z_{-}\mathbb{R}_{-}\overset{-}{\leq}_{-}\neg_{-}$	$less_thm$	532
fun40	leftassoc	490	$z_{-}\neg_{-}$	$less_thm$	467
fun50	leftassoc	478	$z_{-}\neg_{-}$	$less_thm$	516
fun60	leftassoc	479	$z\theta$	$less_times_thm$	471
	$LEMMA_{-}T$	253	$z\theta$	$less_times_thm$	523
	$ lemma_tac $	253	$z_{-}\mathbb{R}_{-}\theta_{-}less_{-}\theta_{-}$	$less_times_thm$	476

TD - 1					
	$less_times_thm$	532	,	list	348
z_{-}	less_trans_thm	467	THE	$list_asm_ante_tac$	254
z_{-}	less_trans_thm	516	$THEN_{-}$	LIST_CAN	198
	less_trans_thm	474	D	$list_cup$	24
$z\mathbb{R}$		531	D	List	80
	less_trans_thm	474	DEmpty	List	80
_	less_trans_thm	532	$dest_{-}$	list	84
	less_trans_thm	467	$dest_empty_$	list	82
	less_trans_thm	516		$list_diag_string$	64
	$less_\neg_eq_thm$	474		list_divert	16
	$less_\neg_eq_thm$	532		LIST_DROP_ASM_T	254
	$less_{-} \leq _{-} thm$	532		$LIST_DROP_NTH$	054
z_	$less_ \leq _trans_thm$	467		_ASM_T	$\frac{254}{34}$
$z \ z \mathbb{R}$	$less_ \le _trans_thm$	516		list_e_enter	$\frac{34}{34}$
$z_{-\mathbb{R}_{-}}$	_	$474 \\ 532$	format	$list_e_merge$ list	$\frac{54}{67}$
	$ less_ \leq trans_thm less_ Z_less_thm $	$\frac{332}{449}$	format	$LIST_GET_ASM_T$	$\frac{67}{255}$
z_ ~	$less_\mathbb{Z}_less_thm$	521		LIST_GET_ASM_T	200
z_{-}	let_conv	173		$_ASM_T$	255
~	let_conv	424	hol	list	255 7
z_ ~	let_conv1	424	is	list	92
$egin{array}{c} z \ D \end{array}$	Let	80	$is_empty_$	list	91
$dest_{-}$	$egin{array}{c} Let \ let \end{array}$	84	mk_{\perp}	list	102
$dest_z_$		367	IIIn_	$list_mk_app$	95
HT	$egin{array}{c} tet \ Let \end{array}$	70		$list_mk_dpp$ $list_mk_bin_op$	96
is_{-}	let	92		$list_mk_binder$	96
isz	let	367	$mk_empty_$	list	101
$list_mk_$	let	96	non_cmpvg_	$list_mk_let$	96
mk_{-}	let	102		$list_mk_simple_ \forall$	97
mkz	let	367		$list_mk_simple_\exists$	97
$strip_{-}$	let	110		$list_mk_simple_\lambda$	96
Z	Let	360		$list_mk_ \rightarrow _type$	97
$delete_to_$	$ \begin{array}{c} -v \\ level \end{array} $	135		$list_mk_\wedge$	97
$pp_top_$		73		$list_mk_\vee$	97
thm	level	135		$list_mk_\Rightarrow$	98
	lex	71		$list_mk_\forall$	98
$'z_sets_ext_$	lib	496		$list_mk_\exists$	98
$'z_{-} \in _set_{-}$	lib	493		$listmk\epsilon$	98
z_{-}	$library_ext$	527		$list_mk_\lambda$	98
SML97Basis	Library	43		$list_net_enter$	117
Z	Library	527		$list_oe_merge$	40
z_{-}	library	527		$list_overwrite$	24
z_{-}	$library1$ _ ext	528	pp	list	8
z_{-}	library1	528		$list_raw_diag_string$	67
'z_	$\int lin_{-}arith$	520		$list_roverwrite$	24
$z\mathbb{R}$	$lin_arith_prove_conv$	532		ListSaveThm	131
$z\mathbb{R}$	$ lin_arith_prove_tac $	532		$list_save_thm$	142
Z_	$\lim_{\longrightarrow} arith$	519		$list_simple_ \forall _elim$	174
$z\mathbb{R}$	$ lin_arith $	529		$list_simple_ \forall _intro$	174
$'z_{-}$	linarith1	520		$list_simple_\exists_intro$	174
z_{-}	linarith1	519		$list_simple_\exists_tac$	255
	lindex	36	KI	$ListSimple \forall Elim$	129
$diag_{-}$	line	60		$LIST_SPEC_ASM_T$	271
input	line	41		list_spec_asm_tac	270
	$line_length$	67		LIST_SPEC_NTH	c=-
get	$line_length$	67		$_ASM_T$	271
set_{-}	$line_length$	68		$list_spec_nth_asm_tac$	270
$raw_diag_$	$ \ line$	67			

	LIST_SWAP_ASM			$LSDefns$	75
	CONCL_T	256		LSFixity	75
	$ list_swap_asm_concl $	200		LSP arents	75
	tac	256		LST arents LSTerminators	75
	$LIST_SWAP_NTH$	200		LSThms	75
	ASM_CONCL_T	256		LS Trailer	75
	$list_swap_nth_asm$	200		LSTypeAbbrevs	75
	$\begin{bmatrix} ust_swap_nun_asm \\ _concl_tac \end{bmatrix}$	256		LSTypes LSTypes	75 75
$THEN_{-}$	LIST_T	$\frac{250}{278}$		LSUndeclaredAliases	75
$THEN_TRY_$	$LIST_{-}T$	279		LSUndeclaredTermina	
	$\begin{array}{c c} List_tr \\ list_term_union \end{array}$	99		LSUndeclaredTypeAbb	
$THEN_{-}$	LIST	278		LSADNestedStructure	
$THEN_TRY_$	LIST	279		LSADNesteastracture LSADSection	75 75
$z_{-}num_{-}$	$\begin{vmatrix} Lisi \\ list_thm \end{vmatrix}$	488		LSADString	75
2_164116_	$\begin{vmatrix} iist_unin \\ list_union \end{vmatrix}$	24		LSADString $LSADStrings$	75 75
	ListUtilities	20		LSADStrings LSADTables	75 75
	$list_variant$	99		LSADT antes LSADT erms	75 75
zed	list	11		LSADThms	75
2Cu _	$\begin{vmatrix} list \\ list _ \land _intro \end{vmatrix}$	174		LSADTypes	75
	$ list_ \forall _elim $	175	HT	Lsqbrack	70
	$ list_ \lor_ellint$ $ list_ \lor_intro$	$175 \\ 175$	$z_{-}\mathbb{R}_{-}$	lub_def	535
$gen_theory_$	lister	76	. 2.11. 2.	$egin{array}{c} lub_R \end{array}$	472
gen_meory_	LISTER_SECTION	75		$egin{array}{c} lub_R \end{array}$	474
	ListerSupport	75	$dest_z_$	$egin{array}{c} luo_R \ lvar \end{array}$	367
$gen_theory_$	lister1	76	isz	$egin{array}{c} lvar \end{array}$	367
gen_meory_	$\begin{vmatrix} lister 1 \\ listing_indent \end{vmatrix}$	75	$mk_{-}z_{-}$	var	367
$sorted$ _	listings	75	$drop_{-}$	$main_goal$	223
<i>'</i> N_	lit	347	top_{-}	$main_goal$	229
$z\mathbb{R}$	$\begin{vmatrix} iit \\ lit_conv \end{vmatrix}$	534		$make_database$	9
z R_	$\begin{vmatrix} itt_conv \\ lit_conv 1 \end{vmatrix}$	534	pp	$make_net$	117
HTNum	Lit	70		$make_term_order$	300
$z\mathbb{R}$	$egin{array}{c} Lu \ lit_norm_conv \end{array}$	534	Too	ManyReadEmpties	500 57
num_{-}	$\begin{vmatrix} itt_norm_conv \\ lit_of_string \end{vmatrix}$	72	100	$MAP_{-}C$	175
164116_	load_files	49	ONCE	$MAP_{-}C$	176
	$ local_error $	64	$REPEAT_{-}$	$MAP_{-}C$	182
	$egin{array}{c} local_warn \end{array}$	64	$REWRITE_{-}$	$MAP_{-}C$	183
	LockTheory	131	TOP_{-}	$MAP_{-}C$	199
	$lock_theory$	143	101	MAP_EVERY	$\frac{155}{257}$
TS	Locked	119		MAP_EVERY_T	$\frac{257}{257}$
10	$look_at_next$	58		MAP_FIRST	$\frac{257}{257}$
$skip_and_$	$look_at_next$	58		MAP_FIRST_T	$\frac{257}{257}$
ship_ana_	$look_up_general$	90		map_shape	$\frac{257}{257}$
	_reader	64	term	map map map	114
	$look_up_named_reader$	64	$type_{-}$	map map	115
	look_up_specific	01	$ONCE_{-}$	MAP_WARN_C	177
	_reader	64	ONOLL	map filter	24
	lookahead	41	$compactification_$	mask	130
e_{-}	lookup	34	eq_{-}	$mash$ $match_conv$	163
$e_{-}key_{-}$	lookup	33	$simple_eq_$	$match_conv$	185
net	lookup	117	$simple_ho_eq_$	$match_conv$	186
net_ 0e_	lookup	40	$simple_no_eq_$ $eq_$	$match_conv1$	162
	lookup	40	$simple_eq_$	$match_conv1$	186
$oe_key_$ $s_$	lookup	$\frac{40}{32}$	$simple_eq_$ $simple_ho_eq_$	$match_conv1$	187
8_	LSAliases	3∠ 75	$simple_no_eq_$ $simple_\Leftrightarrow_$	$match_mp_rule$	187
	LSAxioms	75 75	$simple_\Leftrightarrow_$ $simple_\Rightarrow_$	$match_mp_rule$	188
	LSBanner	75 75	<i>stmpte_</i> ⇒_ ⇔_	$match_mp_rule$	201
	LSChildren	75 75	⇔_ ⇒_	$match_mp_rule$ $match_mp_rule$	$\frac{201}{209}$
	LSConsts	75 75		_	209 187
	LISCOUSIS	19	smpie_⇔_	$ match_mp_rule1 $	101

				ı	
$simple_{\Rightarrow}_$	_	188	$is_{-}z_{-}\mathbb{R}_{-}$	$\mid minus$	530
⇔_	$match_mp_rule1$	201	mkz	$\mid minus$	514
\Rightarrow_{-}	$match_mp_rule1$	209	$mkz\mathbb{R}$	$\mid minus$	531
$simple_{\Rightarrow}_$	-	188	z_{-}	$ minus_thm $	465
\Rightarrow_{-}	$match_mp_rule2$	209	z_{-}	$ minus_thm $	516
term	$\mid match \mid$	114	zabs	$ minus_thm $	468
type	$\mid match \mid$	115	zabs	$ minus_thm $	516
type	match1	115	$z_plus_$	$ minus_thm $	465
	max	462	$z_plus_$	$\mid minus_thm$	516
	max	464	$z_{-}\mathbb{R}_{-}$	$ minus_thm $	533
z_{-}	$max_{-}def$	518	$z\mathbb{R}plus$	$ minus_thm $	475
	$\mid mem \mid$	24	$z \mathbb{R}_p plus$	$ minus_thm $	533
term	$\mid mem \mid$	114	$z\mathbb{N}abs$	$ minus_thm $	468
	merge	35	$z\mathbb{N}abs$	$ minus_thm $	516
e_{-}	merge	34	$z\mathbb{N}\neg$	$ minus_thm $	466
liste	merge	34	$z\mathbb{N}\neg$	$ minus_thm $	516
$list_oe_$	merge	40	$z\mathbb{Z}$	$ minus_thm $	449
oe	merge	40	$z\mathbb{Z}$	$ minus_thm $	521
	$merge_pc_fields$	324	$\mathbb{Z}_{-}z_{-}$	$minus_thm$	449
	$merge_pcs$	323	$\mathbb{Z}_{-}z_{-}$	$minus_thm$	521
	$MERGE_PCS_C$	325	z_{-}	$ minus_times_thm $	466
	$MERGE_PCS_C1$	325	z_{-}	$ minus_times_thm $	516
$pending_push_$	$ merge_pcs $	327	z_{-}	$ minus_{-}\mathbb{N}_{-}\leq_{-}thm$	467
push	$merge_pcs$	334	z_{-}	$ minus_{-}\mathbb{N}_{-}\leq_{-}thm $	516
	$ merge_pcs_rule $	326		mkapp	99
	$merge_pcs_rule1$	325	list	mk_app	95
set	$merge_pcs$	334		mk_app_rule	176
	$MERGE_PCS_T$	326	KI	MkAppRule	129
	$MERGE_PCS_T1$	326		mk_bin_op	100
S	merge	32	list	mk_bin_op	96
	MESSAGE	16		mk_binder	99
get	message	18	list	mk_binder	96
$get_error_$	message	17		mk_char	100
$new_error_$	message	18		mk_const	100
$pp'change_error_$	message	19	key_{-}	mk_const	95
get	$ message_text $	18		mk_ctype	100
gc_{-}	messages	48	key_{-}	mk_ctype	95
$get_error_$	messages	17		mk_dollar_quoted	
$pending_reset_error_$	messages	18		$_string$	363
$set_error_$	messages	17		mk_empty_list	101
	Microseconds	54		mk_enum_set	101
	Middle	56		mkeq	101
	Milliseconds	54		$mk_{-}f$	101
	$\mid min \mid$	462		$mk_{-}float$	101
	$\mid min \mid$	464		$mk_{-}if$	102
z_{-}	min_def	518		mk_let	102
z_{-}	$minus_clauses$	465	list	mk_let	96
z_{-}	$minus_clauses$	516		mk_list	102
$z\mathbb{R}$	$minus_clauses$	475		mk_mon_op	103
$z\mathbb{R}$	$ minus_clauses $	533		mk_multi_\neg	103
$z_subtract_$	$minus_conv$	518		mkpair	103
$z\mathbb{R}$	$ minus_conv $	534		mk_set_comp	103
$z_{-}\mathbb{R}_{-}$	$minus_def$	535		mk_simple_binder	103
$dest_z_$	$\mid minus$	513		mk_simple_term	104
$dest_z_\mathbb{R}$	minus	530		mk_simple_type	104
$z_{-}\mathbb{R}_{-}$	$minus_eq_thm$	475		mk_simple_\forall	104
$z\mathbb{R}$	$minus_eq_thm$	533	$list_$	mk_simple_\forall	97
isz		513		mk_simple_\exists	105
	1			· -	

liat	mla_aimmla_ □	97		m	372
$list_{-}$	$egin{array}{c} mk_simple_\exists \ mk_simple_\exists_1 \end{array}$	97 104		$ \begin{array}{c} mk_{-}z_{-} \Leftrightarrow \\ mk_{-}z_{-} \Leftrightarrow_{s} \end{array} $	372 371
	$mk_simple_J_1$ mk_simple_λ	104		$mk_{-}z_{-} \Leftrightarrow_{s} \\ mk_{-}z_{-} \langle \rangle$	$\frac{371}{372}$
list	mk_simple_λ	96		$mk_{-}z_{-}$ $mk_{-}z_{-}$ $\mathbb{R}_{-}abs$	531
ust_{-}	mk_string	90 105		$mk_{-}z_{-}\mathbb{R}_{-}aos$ $mk_{-}z_{-}\mathbb{R}_{-}frac$	531
	mk_string	$105 \\ 105$		$mk_{-}z_{-}R_{-}greater$	531 531
	mk_t mk_term	$105 \\ 105$		$mk_{-}z_{-}R_{-}less$	531 531
	$mk_{-}u$	$\frac{105}{363}$		$mk_{-}z_{-}R_{-}tess$ $mk_{-}z_{-}R_{-}minus$	531 531
		303 106		$mk_z = \mathbb{R}_n minus$ $mk_z = \mathbb{R}_n over$	531 531
	$mk_{-}var$	105		$mk_z \mathbb{R}_{plus}$	531 531
	$mk_vartype \ mk_z_abs$	514		$mk_z \mathbb{R}_{ptus}$ $mk_z \mathbb{R}_{subtract}$	531 531
		$\frac{314}{363}$		$mk_z = \mathbb{R}_s uotract$ $mk_z = \mathbb{R}_t times$	531 531
	$mk_{-}z_{-}app$	364		$mk_z \mathbb{R}_{-} times$ $mk_z \mathbb{R}_{-} \le$	531 531
	$mk_{-}z_{-}binding \ mk_{-}z_{-}dec$	$\frac{364}{365}$		$ \begin{array}{c} mk_{-}z_{-}\mathbb{R}_{-} \leq \\ mk_{-}z_{-}\mathbb{R}_{-} \geq \end{array}$	531 531
	$mk_{-}z_{-}decl$	364		$mk_{-}z_{-}R_{-}Z_{-}exp$	531
	$mk_{-}z_{-}decor_{s}$	364		$mk_{-}z_{-}$ $mk_{-}z_{-}$	$\frac{331}{372}$
	$mk_{-}z_{-}aecor_{s}$ $mk_{-}z_{-}div$	$504 \\ 514$		$mk_{-}z_{-}\wedge$ $mk_{-}z_{-}\wedge$	$\frac{372}{372}$
	$mk_{-}z_{-}av$	365		$mk_{-}z_{-}\wedge_{s}$ $mk_{-}z_{-}\vee$	373
	$mk_{-}z_{-}eq$ $mk_{-}z_{-}false$	365		$mk_{-}z_{-}\vee mk_{-}z_{-}\vee s$	373
	$mk_{-}z_{-}$ float	365		$mk_{-}z_{-}\vee s$ $mk_{-}z_{-}\neg$	373
	$mk_{-}z_{-}given_{-}type$	366		mkz mkz	373 373
	$mk_{-}z_{-}greater$	514		$mkz \stackrel{\cdot}{\Rightarrow} mkz \Rightarrow$	373
	$mk_{-}z_{-}gvar$	366		$mkz \Rightarrow_s$	373
	$mk_{-}z_{-}yvar \ mk_{-}z_{-}h_{-}schema$	366		$mk_{-}z_{-} \rightarrow s$ $mk_{-}z_{-} \forall$	373
	$mkzhide_s$	366		$mkz \forall mkz \forall s$	374
	$mk_{-}z_{-}iiae_{s}$ $mk_{-}z_{-}if$	496		$mk_{-}z_{-}$ $\forall s$ $mk_{-}z_{-}$ \exists	$374 \\ 375$
	$mk_{-}z_{-}ij$ $mk_{-}z_{-}int$	366		$mk_{-}z_{-}\exists_{1}$	375
	mk_z_less	514		$mk_{-}z_{-}\exists_{1}$ $mk_{-}z_{-}\exists_{1}$	373
	mk_z_let	367		$mkz\exists_1s$ $mkz\exists_s$	375
	mk_z_lvar	367		$mk_{-}z_{-} \times mk_{-}z_{-} \times$	375
	mk_z_minus	514		$mk_{-}z_{-gs}$	376
	mk_z_mod	514		mkz_{-gs} $mkz \leq$	514
	mk_z_plus	514		$mkz \ge mkz \ge$	514
	mk_z_pras $mk_z_power_type$	367		$mk_{-}z_{-}\theta$	376
	$mk_{-}z_{-}pre_{s}$	367		$mk_{-}z_{-}\lambda$	376
	$mk_{-}z_{-}real$	531		$mk_{-}z_{-}\mu$	376
	$mk_{-}z_{-}rename_{s}$	368		$mk_{-}z_{-}\mathbb{P}$	377
	$mk_z_schema_dec$	368		mkz	377
	$mk_z_schema_pred$	368		$mk_{-}\varnothing$	106
	$mk_z_schema_type$	368		$mk_{-} \Leftrightarrow$	106
	$mk_{-}z_{-}sel_{s}$	369		$mk_{-} \rightarrow_{-} type$	106
	$mkzsel_t$	369	list	$mk \rightarrow type$	97
	mkzseta	369		$mk \wedge$	106
	mk_z_setd	369	$list_$	$mk \wedge$	97
	$mk_z_signed_int$	514		$mk_{-}\vee$	106
	$mk_{-}z_{-}string$	370	$list_$	$mk_{-}\vee$	97
	$mk_z_subtract$	514		mk_{-}	107
	$mk_{-}z_{-}term$	370		$mk_{-} \Rightarrow$	107
	$mk_{-}z_{-}times$	514	list	$mk_{-} \Rightarrow$	98
	$mk_{-}z_{-}true$	370		$\mid mk_{-} \forall$	107
	mkztuple	370	list	$mk_{-}\forall$	98
	$mk_{-}z_{-}tuple_{-}type$	370		$mk_{-}\exists$	108
	$mk_{-}z_{-}type$	370	$list_$	$mk_{-}\exists$	98
	$mk_{-}z_{-}var_{-}type$	370		$mk_{-}\exists_{1}$	107
	$mkz\subseteq$	497		$mk_{-} \times_{-} type$	108
	$mkz\overline{\Delta}_s$	371		$mk_{-\epsilon}$	108
	$mkz\in$	371	list	$mk_{-\epsilon}$	98
	$mkz\Xi_s$	371		$mk_{-}\lambda$	108

list	$\mid mk_{-}\lambda$	98	$get_percent_$	$\mid name$	63
	$mk_{-}N$	108	HT	Name	70
get	ML_any	62	$PRETTY_{-}$	NAME	58
get_{-}	ML_string	63	$dest_{-}z_{-}$	name1	361
to	ML_string	66	$dest_{-}z_{-}$	name2	361
$current_ad_$	$ mmp_rule $	317	*****	$named_quotation$	61
get_{-}	mmp_rule	335	add	$named_reader$	59
set_{-}	mmp_rule	335	$look_up_$	$named_reader$	64
,	mmp1	349	$get_theory_$	names	140
,	mmp2	349	Pretty	Names	57
_	mod_{-}	464	$theory_{-}$	names	140
	$\lfloor -mod \rfloor$	464	v	nat_of_string	31
$_mod$	_	464		$natural_of_string$	39
(_	mod_{-}	462	get	nd_entry	336
z_{-}	mod_conv	518	set	nd_entry	336
$dest_{-}z_{-}$	$\mid mod$	513	$current_ad_$	ndnet	330
$is_z_$	$\mid mod$	513	$pp'set_eval_ad_$	nd_net	330
mkz	$\mid mod$	514	$z_{-}abs_{-}$	neg_thm	471
z_{-}	mod_thm	471	$z_{-}abs_{-}$	neg_thm	523
z_{-}	mod_thm	523	LSAD	NestedStructure	75
z div	mod_unique_thm	468		NET	117
$z_div_$	mod_unique_thm	516	$current_ad_nd_$	net	330
$use_file_non_stop_$	mode	56	$current_ad_rw_$	net	328
-	$modify_goal_state_thm$	224	$empty_{-}$	net	117
	$modus_tollens_rule$	176		net_enter	117
dest	$ mon_op $	84	list	net_enter	117
is	mon_op	92		net_lookup	117
mk	$ mon_op $	103	$make_{-}$	net	117
$z_{-}ran_{-}$	$ mono_thm $	455	$pp'set_eval_ad_nd_$	net	330
$z_{-}ran_{-}$	$ mono_thm $	526	$pp'set_eval_ad_rw_$	net	328
$z_size_$	$ mono_thm $	470		Net Tools	117
$z_size_$	$ mono_thm $	523		NewAxiom	131
$z\mathbb{R}plus$	$\mid mono_thm$	475		new_axiom	143
$z\mathbb{R}plus$	$ mono_thm $	533		$new_conjecture$	150
$z_{-}\mathbb{R}_{-}plus_{-}$	$mono_thm1$	475		NewConst	131
$z_{-}\mathbb{R}_{-}plus_{-}$	$\mid mono_thm1$	533		new_const	143
$z_{-}\mathbb{R}_{-}plus_{-}$	$\mid mono_thm2$	475	Simple	NewDefn	131
$z_{-}\mathbb{R}_{-}plus_{-}$	$\mid mono_thm2$	533	$simple_$	new_defn	147
$simple_\Leftrightarrow_match_$	$\mid mp_rule$	187		$new_error_message$	18
$simple_\Rightarrow_match_$	$\mid mp_rule$	188		$ \mathit{new_flag} $	46
⇔_		201		$ new_init_fun $	49
\Leftrightarrow - $match$ -	1 -	201		$new_int_control$	46
⇒_	*	208		NewParent	131
\Rightarrow _match_	mp_rule	209		new_parent	143
$simple_\Leftrightarrow_match_$	mp_rule1	187		new_pc	324
$simple_\Rightarrow_match_$	mp_rule1	188		new_save_fun	49
\Leftrightarrow _match_	mp_rule1	201		NewSpec	131
\Rightarrow _match_	1 -	209		new_spec	144
$simple_\Rightarrow_match_$	mp_rule2	188		$new_string_control$	46
\Rightarrow _match_	mp_rule2	209	add	$new_symbols$	60
$dest_{-}$		84		NewTheory	131
mk_{-}	$ multi_\neg$	103		new_theory	144
$REPEAT_{-}$	N N	261		NewType	131
$REPEAT_{-}$	N_T	261		new_type	145
•	$NAME_CLASS$	56		NewTypeDefn	131
$dest_{-}z_{-}$	name	361		new_type_defn	145
$find_{-}$	name	61	$look_at_$	next	58
$get_current_theory_$	$\mid name$	139	$skip_and_look_at_$	next	58

$basic_res_$	$next_to_process$	308		oe_key_extend	40
	Nil	19		$oe_key_flatten$	40
is	Nil	22		oe_key_lookup	40
is	$\mid nil \mid$	22		oe_lookup	40
	$no_submatch_tt$	152		oe_merge	40
	$no_substring_tt$	152	list	oe_merge	40
	$no_subterm_tt$	152	area	of	16
$use_file_$	non_stop_mode	56	$string_{-}$	of_e_key	33
T	None	151	$string_{-}$	of_float	39
	Nonfix	69	SymEnd	Of Input	57
$declare_$	nonfix	123	$integer_$	of_int	39
get	non fixes	126	$string_{-}$	of_int	31
$simple_\beta_\eta_$	$norm_conv$	192	$string_{-}$	of_int3	65
$z\mathbb{R}lit$	$norm_conv$	534	int	$of_integer$	39
z_{-}	$norm_h_schema_conv$	435	$string_{-}$	$of_integer$	39
'z_	normal	494	$e_dict_$	of_oe_dict	40
TS	Normal	119	end	of_stream	41
	Normalisation	297	$integer_$	of_string	39
fun	not	28	nat	of_string	31
Bdz	NotZ	359	$natural_$	of_string	39
	$not_z_subterms$	382	$num_lit_$	of_string	72
	nth	25	string	of_term	109
$LIST_SWAP_$	NTH_ASM_CONCL		string	of _ thm	147
	_ T	256	type	of	115
SWAP	NTH_ASM_CONCL		$string$ _	of _ $type$	109
	_ T	276	$z_term_$	of_type	399
$list_swap_$	$nth_asm_concl_tac$	256	$z_type_$	of	399
swap	$nth_asm_concl_tac$	275	Bdz	Ok	359
$DROP_{-}$	NTH_ASM_T	241		$on_kernel_inference$	129
GET_{-}	NTH_ASM_T	250		on_kernel_state	
$LIST_DROP_$	NTH_ASM_T	254		$_change$	146
$LIST_GET_$	NTH_ASM_T	255	$pass$ _	on	18
$LIST_SPEC_$	NTH_ASM_T	271		$once_asm_rewrite_rule$	184
SPEC_	NTH_ASM_T	271	pure	$once_asm_rewrite_rule$	184
$VAR_{-}ELIM_{-}$	NTH_ASM_T	281		$once_asm_rewrite_tac$	263
eqsym	nth_asm_tac	242	pure	$once_asm_rewrite_tac$	263
$list_spec_$	nth_asm_tac	270		$once_asm_rewrite_thm$	
spec	nth_asm_tac	270		$_{-}tac$	263
$var_elim_$	nth_asm_tac	281	$pure_{-}$	$once_asm_rewrite_thm$	200
$z_spec_$	nth_asm_tac	399		_tac	263
Z_	num_list_thm	488		ONCE_MAP_C	176
HT	NumLit	70		$ONCE_MAP_WARN$	1
,	$num_lit_of_string$	72		_ C	177
'z_	numbers	511		$once_rewrite_conv$	183
Z	Numbers	510	$pure_{-}$	$once_rewrite_conv$	183
'z_	numbers 1	512		$once_rewrite_rule$	184
Z	Numbers1	522	$pure_{-}$	$once_rewrite_rule$	184
$z_succ \nearrow minus_$	$n \uparrow_{-} thm$	471		$once_rewrite_tac$	263
$z_succ \nearrow minus_$	n_{-thm}	523	$pure_{-}$	$once_rewrite_tac$	263
	oe_delete	40		once_rewrite_thm_tac	263
o dict of	OE_DICT	40	$pure_{-}$	$once_rewrite_thm_tac$	263
$e_dict_of_initial$	oe_dict	40	,	one	$\frac{39}{351}$
$initial_$	oe_dict	40	_	one	
	$egin{array}{l} oe_enter \ oe_extend \end{array}$	40 40	z_{-}	one_one_thm	487
	$oe_flatten$	40	z_{-}	one_one_thm	525
	oe_key_delete	40	$z\mathbb{Z}$	one_one_thm	449
	oe_key_aeieie oe_key_enter	40	$\underline{z}_{-}\mathbb{Z}_{-}$	one_one_thm	521
	00_1009_010001	40	$\mathbb{Z}_{-}z_{-}$	one_one_thm	449

$\mathbb{Z}_{-}z_{-}$	$ one_one_thm$	521	$translate_for_$	$\mid output$	66
			translate_jor_	outstream	41
$z \cap one$	$one_{-}thm$	487	$z _ \mathbb{R}$	over_clauses	477
$z \cap one$	one_thm	525	z _ \mathbb{R}	over_clauses	533
$z_{-}\mathbb{Z}_{-}one_{-}$	one_thm	449	z _ \mathbb{R}		534
$z\mathbb{Z}$ on e	one_thm	521	z _ \mathbb{R}	over_conv	535
$\mathbb{Z}_{-}z_{-}one_{-}$	$one_{-}thm$	449	$dest_{-}z_{-}\mathbb{R}_{-}$	$over_def$	530
$\mathbb{Z}_{-}z_{-}one_{-}$	one_thm	521	$aest_z_\mathbb{R}_$ $is_z_\mathbb{R}_$	over	530 530
$bin_bool_$	op	81		over	
$dest_bin_$	op	82	$mk_{-}z_{-}\mathbb{R}_{-} \ z_{-}\mathbb{R}_{-}$	over	531
$dest_mon_$	op	84	2_11\(\mathbb{L}\)	over_thm	533
HTIn	Op	70	1:-4	overwrite	25
HTPost	Op	70	$list_{-}$	overwrite	24
HTPre	Op	70	$pending_reset_subgoal_$	package	224
$is_bin_$	op	91	$subgoal_{-}$	$package_quiet$	221
$is_mon_$	op	92	$subgoal_{-}$	$package_size$	228
$list_mk_bin_$	op	96	Subgoal	Package	221
$mk_bin_$	op	100	$subgoal_{_}$	$package_ti_context$	222
$mk_mon_$	op	103		pair	345
$strip_bin_$	op	110	'propeq	pair	293
	$open_append$	41	λ_{-}	pair_conv	219
	$open_in$	41	D	Pair	80
	$open_out$	41	dest	pair	84
	Open Theory	131		$pair_{-}eq_{-}conv$	294
	$open_theory$	146	is_{-}	pair	92
	OPT	19	mk	pair	103
sub	opt	36	propeq	pair	293
sub_{-}	opt	38		pair_rw_canon	258
AND_{-}	$OR_{-}C$	157	$z_size_$	pair_thm	470
fun	or	28	z size	$pair_thm$	523
$gen_term_$	order	300	,	pair1	346
$integer_$	order	39		$paired_abstractions$	342
$make_term_$	order	300	z_{-}	para_pred_canon	395
term	order	302	Z_	para_pred_conv	395
zplus	$order_thm$	465	New	Parent	131
$z_plus_$	$order_thm$	516	new_{-}	parent	143
$z_times_$	$order_thm$	466	$egin{array}{c} get \ LS \end{array}$	parents	140
$z_times_$	$order_thm$	516	LS	Parents	75 494
$z_{-}\mathbb{R}_{-}plus_{-}$	$order_thm$	475	=	partition_	484
$z_{-}\mathbb{R}_{-}plus_{-}$	$order_thm$	533		$_partition_$	484
$z \mathbb{R}_{-} times$	$order_thm$	477	$_{-}partition$	- \[I_V]	484
$z_{-}\mathbb{R}_{-}times_{-}$	$order_thm$	533	(-	$partition_{-})[I, X]$	483
$type_{-}$	order	303	z_{-}	$partition_def$	522
	ORELSE	257		$\begin{array}{c} pass_on \\ PC_C \end{array}$	$ \begin{array}{c} 18\\325 \end{array} $
	$ORELSE_C$	177	$EXTEND_{-}$	$PC_{-}C$	$\frac{325}{319}$
	$ORELSE_CAN$	177	EATEND_	$PC_{-}C1$	$\frac{319}{325}$
	$ORELSE_{-}T$	257	$EXTEND_{-}$	$PC_{-}C1$	$\frac{325}{319}$
	$ORELSE_TTCL$	257			316
$close_$	out	41	$commit$ _	pc	$\frac{310}{328}$
flush	out	41	$pending_reset_$	$pc_database$	
$is_term_$	out	41	$delete_{-}$	$egin{array}{c} pc \ pc_evaluators \end{array}$	$\frac{318}{328}$
open	out	41	$pending_reset_$	-	318
std	out	41	$delete_{-}$	$egin{array}{l} pc_fields \ pc_fields \end{array}$	$\frac{318}{324}$
	output	41	merge_	_ "	$\frac{324}{322}$
Simple	Output	67	$get_current_\\ new_$	pc	$\frac{322}{324}$
	$output_theory$	77	$new_$ $pending_push_$	pc	$\frac{324}{327}$
2_	$output_theory$	78	$pending_push_extend_$	$egin{array}{c} pc \ pc \end{array}$	$\frac{327}{327}$
	$output_theory1$	76		pc = pc	328
z_	$ output_theory1$	78	<i>POP</i> _	P	920

	ı				
$push_{-}$	pc	334	Z_	pigeon_hole_thm	523
$push_extend_$	pc	333	$z\mathbb{R}$	$plus_0_thm$	475
	pc_rule	326	$z\mathbb{R}$	$plus_0_thm$	533
extend	pc_rule	320	z_{-}	$plus_assoc_thm$	464
	pc_rule1	325	Z_	$plus_assoc_thm$	516
$extend_{-}$	pc_rule1	320	$z\mathbb{R}$	$plus_assoc_thm$	475
set_{-}	pc	334	$z\mathbb{R}$	$plus_assoc_thm$	533
$set_extend_$	pc	333	z_{-}	$plus_assoc_thm1$	465
$pending_reset_$	pc_stack	328	z_{-}	plus_assoc_thm1	516
EV/DEND	$PC_{-}T$	326	$z\mathbb{R}$	plus_assoc_thm1	475
$EXTEND_{-}$	$PC_{-}T$	321	z _ \mathbb{R}_{-}	plus_assoc_thm1	533
$EXTEND_{-}$	$egin{array}{c} PCT1 \ PCT1 \end{array}$	$\frac{326}{321}$	z_	plus_clauses	466
$EXTEND_{-}$	$ PC_{-}II $ $ PCS_{-}C $	$\frac{321}{319}$	$z \ z \mathbb{R}$	plus_clauses	516
$MERGE_{-}$	$PCS_{-}C$	325	z _ \mathbb{R}	plus_clauses	$475 \\ 533$
$EXTEND_{-}$	$PCS_{-}C1$	$\frac{323}{319}$		plus_clauses	
$MERGE_{-}$	$PCS_{-}CI$	$319 \\ 325$	z_ ~	$egin{array}{c} plus_comm_thm \ plus_comm_thm \end{array}$	$\frac{464}{516}$
		$\frac{325}{322}$	$z \ z \mathbb{R}$	-	475
$egin{array}{c} get \ get stack \end{array}$	pcs	$\frac{322}{323}$	z _ \mathbb{R}	$egin{array}{c} plus_comm_thm \ plus_comm_thm \end{array}$	533
	pcs	323	∠_II\	plus_conv plus_conv	178
$merge_$ $pending_push_extend_$	$egin{array}{c} pcs \\ pcs \end{array}$	$\frac{323}{327}$	KI	PlusConv	129
pending_push_merge_	$\begin{vmatrix} pcs \\ pcs \end{vmatrix}$	$\frac{327}{327}$	z_{-}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	518
$penaing_pasn_merge_$ $push_extend_$	$\begin{vmatrix} pcs \\ pcs \end{vmatrix}$	333	z	$\begin{array}{c c} plus_conv \\ plus_conv \end{array}$	534
$push_extena_$ $push_merge_$	$\begin{vmatrix} pcs \\ pcs \end{vmatrix}$	334	$z_{-\mathbb{N}_{-}}$	$\begin{array}{c c} plus_conv \\ plus_conv \end{array}$	518
$pasn_merge_$ $extend_$	pcs_rule	320	z_{-1} _	$\begin{array}{c c} plus_conv \\ plus_cyclic_group_thm \end{array}$	465
$merge_{-}$	$ pcs_rule $	326	z	$\left \begin{array}{c} plus_cyclic_group_thm \end{array} \right $	516
$extend_{-}$	pcs_rule1	320	$z\mathbb{R}$	$\left \begin{array}{c} plus_egene_group_mm \\ plus_def \end{array} \right $	535
$merge_{-}$	pcs_rule1	325	$dest_z_$	$\begin{vmatrix} plus _ ucj \\ plus \end{vmatrix}$	513
$set_extend_$	$\begin{vmatrix} pcs = r & wc = 1 \\ pcs \end{vmatrix}$	333	$dest_{-}z_{-}\mathbb{R}_{-}$	$\begin{vmatrix} p vus \\ plus \end{vmatrix}$	530
$set_merge_$	$\begin{vmatrix} pcs \\ pcs \end{vmatrix}$	334	$z_times_$	$ plus_distrib_thm $	466
EXTEND_	$ PCS_{-}T $	321	$z_times_$	$plus_distrib_thm$	516
$MERGE_{-}$	$PCS_{-}T$	326	$z \mathbb{R}_{-} times$	$plus_distrib_thm$	476
$EXTEND_{-}$	$PCS_{-}T1$	321	$z_\mathbb{R}_times_$	$plus_distrib_thm$	533
MERGE	$PCS_{-}T1$	326	isz	plus	513
	$pending_push_extend$		$is_z_\mathbb{R}$	plus	530
	$\begin{vmatrix} 1 & pc \end{vmatrix}$	327	z_{-}	$plus_minus_thm$	465
	$pending_push_extend$		z_{-}	$plus_minus_thm$	516
	_pcs	327	$z\mathbb{R}$	$plus_minus_thm$	475
	$pending_push_merge$		$z {\scriptscriptstyle \perp} \mathbb{R}_{\scriptscriptstyle \perp}$	$plus_minus_thm$	533
	_pcs	327	mkz	plus	514
	$pending_push_pc$	327	$mkz\mathbb{R}$	plus	531
	$pending_reset_control$		$z\mathbb{R}$	$plus_mono_thm$	475
	_state	47	$z\mathbb{R}$	$plus_mono_thm$	533
	$pending_reset_error$		$z\mathbb{R}$	$plus_mono_thm1$	475
	$_messages$	18	$z\mathbb{R}$	$plus_mono_thm1$	533
	$pending_reset_kernel$		$z\mathbb{R}$	$plus_mono_thm2$	475
	$_interface$	146	$z\mathbb{R}$	$plus_mono_thm2$	533
	$pending_reset_pc$		z_{-}	$plus_order_thm$	465
	$_{_}database$	328	z_{-}	$plus_order_thm$	516
	$pending_reset_pc$		$z_{-}\mathbb{R}_{-}$	$plus_order_thm$	475
	_evaluators	328	$z\mathbb{R}$	$plus_order_thm$	533
	$pending_reset_pc$		$z_{-}abs_{-}$	$plus_thm$	468
	stack	328	$z{-}abs_{-}$	$plus_thm$	516
	pending_reset_subgoal		$z_dot_dot_$	$plus_thm$	469
	package	224	$z{-}dot_{-}dot_{-}$	$plus_thm$	523
get_{-}	percent_name	63	z _ \mathbb{R}_{-}	$plus_thm$	533
SymDouble	Percent	57	$z_{-}\mathbb{N}_{-}$	$plus_thm$	465
2_	$\mid pigeon_hole_thm$	470	$z\mathbb{N}$	$ plus_thm$	516

2 T.	plus_thm	448		$pp'set_eval_ad_sc$	
$z\mathbb{Z}$	$ plus_thm $	521		_conv	329
$\mathbb{Z}_{-}z_{-}$	$ plus_thm $	449		$pp'set_eval_ad_st$	020
	plus_thm	521		_conv	329
	$\left \begin{array}{c} plus_umit_thm \end{array} \right $	475		$pp'set_eval_ad_\exists_cd$	323
	$\begin{array}{c c} plus_unit_thm \end{array}$	533		$pp \ set_evat_aa___ca$ $_thms$	330
	1 -	$\frac{333}{467}$			990
$z \leq$	$plus\mathbb{N}thm$			$pp'set_eval_ad_\exists_vs$	221
$z_{-} \leq_{-}$	$plus_N_thm$	516		_thms	331
z_{-}	$plus0_thm$	465		pp'theory_hierarchy	50
z_	$plus0_thm$	516		pp'TS	221
	$plus1_thm$	468	_	pp'TypesAndTerms	79
	$plus1_thm$	469	$current_ad_$	pr_conv	317
	I =	523	get	pr_conv	336
	$ plus1_thm$	465	set	pr_conv	336
	$ plus1_thm $	516	get	pr_conv1	336
$z\mathbb{N}\neg$	$plus1_thm$	465	$current_ad_$	$pr_{-}tac$	317
$z\mathbb{N}\neg$	$plus1_thm$	516	get	$pr_{-}tac$	337
	$ poly_conv $	301	set	$pr_{-}tac$	337
	POP_ASM_T	258	get	pr_tac1	337
	pop_pc	328	$basic_res_$	pre	308
	$pop_{-}thm$	225	HT	PreOp	70
save	$pop_{-}thm$	227	$z_{-}para_{-}$	pred_canon	395
	$pos_{-}thm$	471	$z_dec_$	$pred_conv$	389
$z_{-}abs_{-}$	pos_thm	523	$z_decl_$	$pred_conv$	388
$basic_res_$	post	308	$z_{-}h_{-}schema_{-}$	$pred_conv$	434
HT	PostOp	70	$z_{-}para_{-}$	$pred_conv$	395
11 1	Postfix	69	$z_para_$ $z_schema_$	$pred_conv$	436
$declare_$	postfix	123	$z_{_}$ senema_ $z_{_}$ $z_{_}$ $z_{_}$	$pred_conv$	402
get_{-}	postfixes	126	z '_gen z schema_	$pred_conv1$	398
		28		-	396
fun_{-}	pow	$\frac{20}{367}$	<i>z_</i>	pred_dec_conv	
	power_type		Z_	$pred_decl_conv$	396
	power_type	367	$dest_z_schema_$	pred	368
	power_type	367	$z_gen_$	predelim	391
Z	PowerType	360	$z_{-}gen_{-}$	predelim1	391
	pp	10	$z_schema_$	$pred_intro_conv$	436
	PPArray	42	$z_gen_$	$pred_intro$	391
	pp_format_depth	73	$is_z_schema_$	pred	368
	$pp_{-}init$	74	$mk_{-}z_{-}schema_{-}$	pred	368
	pp_list	8	$z_gen_$	$pred_tac$	391
	$pp_make_database$	9	$z_intro_gen_$	$pred_tac$	394
	$pp_print_assumptions$	73	$z_gen_$	$pred_u_elim$	392
	PPString	42	ZSchema	Pred	360
	$pp_top_level_depth$	73	Z	Predicate Calculus	378
	PP Vector	42		predicates	344
	$pp'change_error$		$'z_{-}$	predicates	379
	$_message$	19	z_{-}	predicates	378
	$pp'database_info$	48		predicates1	344
	pp'error_init	19		Prefix	69
	$pp'reset_database_info$	49	$declare_$	prefix	124
	$pp'set_banner$	49	get	prefixes	126
	$pp'set_database_info$	49	J	present	$\frac{-25}{25}$
	$pp'set_eval_ad_cs_\exists$	-		$PRETTY_NAME$	58
	_convs	330		PrettyNames	57
	$pp'set_eval_ad_nd_net$	330		PrettyPrinter	73
	$pp'set_eval_ad_rw$	550	z_{-}	$pre_{s-}conv$	435
	canon	329	z∈_ z_∈_	pre_s = $conv$	435
	$pp'set_eval_ad_rw_net$	328	$dest_z_$	pre_s como pre_s	367
	PP SCI_COM_MM_IW_INCL	920		1 "	367
			isz	$ P^{res} $	507

mkz	$ pre_s $	367	z_fc	$prove_tac$	390
Z	Pre_s	360	$z\mathbb{R}linarith$	$prove_tac$	532
	prim_res_rule	313		$prove_thm$	260
	$prim_rewrite_conv$	179		$prove_\exists_conv$	332
	$prim_rewrite_rule$	180	'basic	$prove_\exists_conv$	341
	$prim_rewrite_tac$	259		$prove_\exists_rule$	332
z_{-}	$prim_seq_induction$			$prove_\exists_tac$	260
	$_{_}thm$	486	asm	$prove_\exists_tac$	316
z_{-}	$prim_seq_induction$		is	$proved_conjecture$	149
	$_{-}thm$	525	get	$proved_conjectures$	149
	$prim_suc_conv$	180		$pure_asm_rewrite_rule$	184
get	$primed_string$	63		$pure_asm_rewrite_tac$	263
pp	$print_assumptions$	73		$pure_asm_rewrite_thm$	
	print_banner	50		$_{ extstyle -} tac$	263
	print_current_goal	$\frac{225}{50}$		pure_once_asm	104
z_{-}	print_fixity	78		$_rewrite_rule$	184
	print_goal	225		pure_once_asm	069
	print_goal_state	$\frac{225}{53}$		_rewrite_tac	263
	$print_stats \\ print_status$	50		$pure_once_asm$ $_rewrite_thm_tac$	263
	print_status print_theory	50 77		pure_once_rewrite	203
z_{-}	print_theory	78		_conv	183
Pretty	Printer	73		pure_once_rewrite	100
basic_res_next_to_	process	308		_rule	184
$HOL_{-}lab_{-}$	$prod_reader$	63		$pure_once_rewrite_tac$	263
1101210001	prof	53		pure_once_rewrite	200
	Profiling	53		$_thm_tac$	263
	profiling	53		$pure_rewrite_conv$	183
	prompt1	55		$pure_rewrite_rule$	184
	prompt2	55		$pure_rewrite_tac$	263
	PROOF	231		$pure_rewrite_thm_tac$	263
bad	proof	236		$push_back$	58
	ProofContext	315	z_{-}	$push_consistency_goal$	397
	ProofContexts1	341		$push_extend_pc$	333
$simple_tac_$	proof	264	pending	$push_extend_pc$	327
tac_{-}	proof	277		$push_extend_pcs$	333
	$prop_eq$	293	pending	$push_extend_pcs$	327
,	propeq	293		$push_goal$	226
	$prop_eq_pair$	293		$push_goal_state$	226
/	$prop_eq_pair$	293		$push_goal_state_thm$	226
	$prop_eq_prove_tac$	295		$push_merge_pcs$	334
	prop_eq_rule	296	pending	$push_merge_pcs$	327
4 C 3 A	$PROP_{-}EQ_{-}T$	294	1.	$push_pc$	334
ASM_{-}	PROP_EQ_T	294	$pending$ _	$push_pc$	327
,	Propositional Equality	293		quantifier	108
	$propositions \\ prove_asm_rule$	343 180	z_{-}	quantifiers_elim_tac	$\frac{397}{221}$
	1	331	$subgoal_package_$	$egin{array}{c} quiet \ quit \end{array}$	50
basic	$prove_conv \ prove_conv$	356	$save_and_$	quit	50 51
$z_basic_$	prove_conv	385	$egin{array}{cccccccccccccccccccccccccccccccccccc$	quotation	61
$z_\mathit{basic}_$ $z_\mathit{fc}_$	prove_conv	389	$general_$ $named_$	quotation	61
z _ \mathbb{R} _ lin _ $arith$ _	prove_conv	532	specific	quotation	61
~ = ±12 - 0010 = 001 0016 =	$prove_conv$ $prove_rule$	331	$dest_dollar_$	$quoted_string$	363
	$prove_tac$	259	$is_dollar_$	$quoted_string$	363
asm	$ prove_tac $	316	$mk_dollar_$	$quoted_string$	363
basic	$ prove_tac $	357		ran	479
$prop_eq_$	$ prove_tac $	295	z_{-}	$ran_clauses$	481
$z_{-}basic_{-}$	$prove_tac$	386	$z_{-}fun_{-}$	$ran_clauses$	454
	1 *		<i>,</i>	l	-

$z_fun_$	ran_clauses	510	TD.	real	473
2_	$ran_{-}def$	507	$z\mathbb{R}$	$real_0_thm$	533
$z \!$	$ ran_eq_\rightarrowtail_thm $	455	$z_{-}\mathbb{R}_{-}$	$real_def$	535
$z \!$	$ ran_eq_\rightarrowtail_thm $	526	$dest_{-}z_{-}$	real	530
$z \!$	$ran_{-}eq_{-} \rightarrow thm$	455	isz	real	530
$z \longrightarrow$	$ ran_eq \rightarrow thm $	526	mkz	real	531
<i>z</i> _	ranmonothm	455	$z\mathbb{R}$	$real_{-}\mathbb{NR}_{-}thm$	533
2_	$ ran_mono_thm $	526	'z_	reals	529
2_	ran_seqd_thm	488	SML_{-}	recogniser	65
<i>z</i> _	ran_seqd_thm	525		redo	226
2_	$ran_{-}thm$	481		$refl_conv$	181
$z \leftrightarrow$	$ran_{-}thm$	457	KI	ReflConv	129
$z_{-} \leftrightarrow_{-}$	$ran_{-}thm$	526	$z_{-}\mathbb{R}_{-}\leq_{-}$	reflthm	474
$z \rightarrow$	$ran_{-}thm$	457	$z_{-}\mathbb{R}_{-}\leq_{-}$	reflthm	532
$z \rightarrow$	$ran_{-}thm$	526	$z \leq$	reflthm	467
$z \rightarrow \!$	$ran_{-}thm$	457	$z \leq$	reflthm	516
$z \rightarrow \!$	$ran_{-}thm$	526	z_{-}	reflex_closure_clauses	482
z_{-}	$ran \cup thm$	456	z_{-}	reflex_trans_closure	404
z_{-}	$ran \cup thm$	526		-thm	481
<i>z</i> _	$ran_ \lhd_thm$	455		rel	450
<i>z</i> _	$ran_{-} \triangleleft_{-} thm$	526		rel	463
7	RAND_C	181		rel	472
Z	RAND_C	424		rel	483
7	RANDS_C	181	,	rel	490
Z	$RANDS_{-}C$	424	'z ₋ ∈ ₋	rel	500
	ran[X, Y]	478	'z_	$rel_a alg$	501
	rassoc1	25	z_{-}	relext	505
	rassoc2	25	z_{-}	$rel_image_clauses$	482
	rassoc3	25	Z_	rel_image_def	507
	rassoc4	25	z_{-}	rel_image_thm	481
	rassoc5	26	z_{-}	rel_inv_clauses	482
	$RATOR_{-}C$	181	z_{-}	rel_inv_def	507
	raw_diag_line	67	z_{-}	rel_inv_thm	481
1:-4	raw_diag_string	68	Z_	$ rel_inv_ \rightarrow thm rel_inv_ \rightarrow thm $	456
$list_{-} \ HT$	$ raw_diag_string \ Rbrace $	67 70	z_		$526 \\ 453$
HT	l .	70 70	$z \rightarrow app eq \Leftrightarrow \in$	rel_thm	
	Rbrack		$z \rightarrow app eq \Leftrightarrow \in$		510
TooMany	$egin{array}{c} ReadEmpties \\ read_stopwatch \end{array}$	57 54	$z \rightarrow app \in$	$egin{array}{c} rel_thm \ rel_thm \end{array}$	$453 \\ 510$
	$ read_symbol $	$\frac{54}{65}$	$z \rightarrow app \in$		453
add asmonal	$\left egin{array}{ll} read = symbol \\ reader \end{array} \right $	59	$z \rightarrow \in$	11 1	510
$add_general_\ add_named_$	reader	59	$z ightarrow \in _$ Z	$ rel_\Leftrightarrow_app_eq_thm$ Relations	499
$add_specific_$	reader	59	Z	rename	109
uuu_specijic_	$READER_ENV$	58		$ rename_tac $	$\frac{109}{261}$
	READER	90	z_{-}	$rename_{s-}conv$	436
	_FUNCTION	58	$z_dec_$	$rename_{s-}conv$	433
	READER	90	z	$rename_{s-}conv$	436
	FUNCTION	59	$dest{-}z_{-}$	$ rename_s $	368
HOL_{-}	reader	64	isz	$ rename_s $	368
$HOL_lab_prod_$	reader	63	mkz	$ rename_s $	368
$look_up_general_$	reader	64	Z	$ Rename_s $	360
$look_up_named_$	reader	64	\forall_{-}	$ reorder_conv $	212
$look_up_specific_$	reader	64	3_	$ reorder_conv $	214
···- ·· · · · · · · · · · · · · · · · ·	ReaderWriter	55		repeat	29
$abandon_$	reader_writer	59		REPEAT	262
HOL	ReaderWriter	55		$REPEAT_{-}C$	182
1101	ReaderWriterSupport	55		$REPEAT_{-}C1$	182
	real	472		$REPEAT_CAN$	182
	1			ı	

	$ REPEAT_MAP_C $	182	$z_{-}\neg_{-}$	$ rewrite_canon $	402
	$REPEAT_N$	261	$z \Rightarrow$	$rewrite_canon$	403
	$REPEAT_N_T$	261	z orall	$rewrite_canon$	409
	$REPEAT_{-}T$	262	$\Leftrightarrow_{-}t_{-}$	$rewrite_canon$	203
	$REPEAT_TTCL$	262	^_	$rewrite_canon$	203
	$REPEAT_UNTIL$	262	¬_	$rewrite_canon$	287
	$REPEAT_UNTIL_T$	262	\forall _	$rewrite_canon$	287
	REPEAT_UNTIL_T1	262	, -	$rewrite_conv$	183
	$REPEAT_UNTIL1$	262	once	$rewrite_conv$	183
	reraise	19	$prim_{-}$	$rewrite_conv$	179
	RES_DB_TYPE	305	$pure_{-}$	$rewrite_conv$	183
basic	$res_extract$	307	$pure_once_$	$rewrite_conv$	183
$basic_{-}$	$res_next_to_process$	308	F	$REWRITE_MAP_C$	183
basic	$ res_post $	308		$rewrite_rule$	184
basic	$ res_pre $	308	asm	$rewrite_rule$	184
basic	$ res_resolver $	308	once_	$rewrite_rule$	184
basic	$ res_rule $	309	$once_asm_$	$rewrite_rule$	184
$prim_{-}$	$ res_rule $	313	$prim_{-}$	$rewrite_rule$	180
$basic_{-}$	$ res_subsumption $	309	$pure_{-}$	$rewrite_rule$	184
$basic_{-}$	res_tac	312	$pure_asm_$	$rewrite_rule$	184
$basic_{-}$	res_tac1	310	pure_once_	$rewrite_rule$	184
$basic_{-}$	res_tac2	310	$pure_once_asm_$	$rewrite_rule$	184
basic	res_{tac3}	311	parezeneezaeme	$rewrite_tac$	263
basic	res_{tac4}	311	asm_{-}	$rewrite_tac$	263
BASIC_	RES_TYPE	305	once	$rewrite_tac$	$\frac{263}{263}$
$pending_{-}$	$ reset_control_state $	47	$once_asm_$	$rewrite_tac$	$\frac{263}{263}$
perturing_	$ reset_controls $	47	$prim_{-}$	$rewrite_tac$	259
pp'	$ reset_database_info $	49	$pure_{-}$	$rewrite_tac$	$\frac{263}{263}$
$pending_{-}$	reset_error_messages	18	$pure_asm_$	$rewrite_tac$	$\frac{263}{263}$
pertainig_	reset_flag	47	pure_once_	$rewrite_tac$	$\frac{263}{263}$
	$ reset_flags $	47	$pure_once_asm_$	$rewrite_tac$	$\frac{263}{263}$
	$ reset_int_control $	47	eq	$rewrite_thm$	164
	$ reset_int_controls $	47	if_{-}	$ rewrite_thm $	164
$pending_{-}$	$ reset_kernel_interface $	146	<i>iy</i> –	$rewrite_thm_tac$	263
$pending_$	$ reset_pc_database $	328	asm_{-}	$rewrite_thm_tac$	$\frac{263}{263}$
$pending_$	$ reset_pc_evaluators $	328	$once_{-}$	$rewrite_thm_tac$	263
$pending_$	$reset_pc_stack$	328	$once_asm_$	$rewrite_thm_tac$	$\frac{263}{263}$
pertainig_	reset_stopwatch	54	$pure_{-}$	$rewrite_thm_tac$	263
	$reset_string_control$	47	$pure_asm_$	$rewrite_thm_tac$	$\frac{263}{263}$
	$reset_string_controls$	47	pure_once_	$rewrite_thm_tac$	$\frac{263}{263}$
$pending_{-}$	$ reset_subgoal_package $	224	$pure_once_asm_$	$rewrite_thm_tac$	$\frac{263}{263}$
pertainig_	$\left \begin{array}{c} reset_susgear_package \\ reset_use_terminal \end{array} \right $	65	<i>pare_once_aom</i> _	$ rewrite_thm $	164
	Resolution	304	∀ -	$rewrite_thm$	164
$BASIC_{-}$	$RESOLUTION_{-}T$	306	V_	$rewrite_thm$	164
BASIC_	RESOLUTION_T1	307	v - ¬_	$rewrite_thm$	164
<i>D11010</i> _	$ resolve_alias $	127	⇒_	$ rewrite_thm $	164
basic	$ resolve_rule $	307	∀_ →_	$rewrite_thm$	164
basic_res_	resolver	308		$rewrite_thm$	164
04316_163_	$ restore_defaults $	128	β	$rewrite_thm$	164
$check_is_z_conv_$	result	381	$ill formed$ _	$rewrite_warning$	153
CHCCN _ 13 _ 2 _ COHO _	rev	484	itij0111tCa_	Rewriting	153
7	$\begin{vmatrix} rev def \end{vmatrix}$	522		RightAssoc	69
z_{-}	$ rev_uej $	26		$RIGHT_{-}C$	184
	rev[orall tev]	483	Z_{-}	$RIGHT_{-}C$	424
	$\begin{bmatrix} REWRITE_CAN \end{bmatrix}$	182	Z_ \ \	$right_elim$	203
f_	rewrite_canon	$\frac{102}{203}$	$declare_$	$right_infix$	$\frac{203}{123}$
$J-simple_\lnot_$	rewrite_canon	$\frac{203}{203}$	$egin{array}{c} aectare_ \ get_ \end{array}$	$right_infixes$	126
$simple_\lnot_$ $simple_∀_$		$\frac{203}{203}$			$\frac{120}{205}$
smtpte_V_	rewrite_canon	203	V_	r igiti _ iiiti U	200

		444	7773.61.4	- D - I	100
$strip_spine_$	-	111	KIMkApp	Rule	129
V_ form 0	right_tac	284	$KISimple \lambda Eq$	Rule	129
fun0	$\left egin{array}{c} right assoc \\ right assoc \end{array} \right $	450 489	$KISubst$ $KI \Leftrightarrow MP$	$Rule \ Rule$	129 129
$\begin{array}{c} fun0 \\ fun45 \end{array}$	right assoc	483	$merge_pcs_$	rule	$\frac{129}{326}$
fun50	rightassoc	463	$mk_app_$	rule	176
fun50 $fun50$	rightassoc	472	$modus_tollens_$	rule	176
fun60	rightassoc	472	$once_asm_rewrite_$	rule	184
fun65	rightassoc	479	$once_rewrite_$	rule	184
fun70	right assoc	463	pc_{-}	rule	326
fun70	right assoc	479	$prim_res_$	rule	313
gen5	right assoc	452	$prim_rewrite_$	rule	180
gen5	right assoc	463	$prop_eq_$	rule	296
gen5	rightassoc	490	prove	rule	331
gen70	rightassoc	450	$prove_asm_$	rule	180
gen70	right assoc	463	$prove_\exists_$	rule	332
gen70	rightassoc	479	$pure_asm_rewrite_$	rule	184
gen70	rightassoc	483	$pure_once_asm$	_	
gen70	right assoc	490	$_rewrite_$	rule	184
	rollback	132	$pure_once_rewrite_$	rule	184
,	$ROTATE_{-}T$	264	$pure_rewrite_$	rule	184
get	$round_braces$	62	$rewrite_{-}$	rule	184
1: -4	roverwrite	26	$set_mmp_$	rule	335
$list_{-} \ HT$	roverwrite	24	set_rw_eqm_	rule	338
	$ Rsqbrack rtc_def$	70 507	$simple_\Leftrightarrow_match_mp_$ $simple_\Rightarrow_match_mp_$	$rule \ rule$	187 188
$z \ all_simple_eta$	$\left egin{array}{c} ric_aej \ rule \end{array} ight $	154	$simple_ \exists _ \epsilon$ _ $simple_ \exists _ \epsilon$ _	rule	191
$all_eta_$	rule	157	$simple_\epsilon_elim_$	rule	192
$app_arg_$	rule	158	$simple_\lambda_eq_$	rule	193
$app_fun_$	rule	158	$strip_ \land _$	rule	194
asm_{-}	rule	160	$strip_\Rightarrow_$	rule	194
$asm_inst_term_$	$rule$	159	subst	rule	196
$asm_inst_type_$	rule	159	$taut$ _	rule	278
$asm_rewrite_$	rule	184	undisch	rule	199
$basic_res_$	rule	309	$zapp\lambda$	rule	422
$basic_resolve_$	rule	307	$z_defn_simp_$	rule	424
$c_contr_$	rule	162	$z\mu$	rule	431
$contr_{-}$	rule	161	\Leftrightarrow _ $match_{-}mp_{-}$	rule	201
conv	rule	161	\Leftrightarrow _ mp	rule	201
$current_ad_mmp_$	rule	317	^_⇒_	rule	203
$current_ad_rw_eqm_$	rule	317	\vee _cancel_	rule	204
disch	rule	162	\negeqsym	rule	205
$eq_{-}sym_{-}$	rule	165	\Rightarrow _match_mp_	rule	209
$eq_trans_$	rule	165	$\Rightarrow mp_{-}$	rule	208
ext_	rule	166	\Rightarrow _trans_	rule	209
$extend_pc_$	$egin{array}{c} rule \ rule \end{array}$	$\frac{320}{320}$	\Rightarrow _ \land _ \forall _ asm_{-}	$rule \ rule$	210 210
$extend_pcs_$ $fc_$	$\left egin{array}{c} rate \ rule \end{array} ight $	169	V_ <i>asm_</i> ∀_⇔_	rule	212
$forward_chain_$	$\left egin{array}{c} raie \\ rule \end{array} ight $	169	$\exists_{-}asm_{-}$	rule	213
$get_mmp_$	rule	335	$\exists _{-}\epsilon _{-}$	rule	215
$get_rw_eqm_$	rule	338	β_{-}	rule	217
$inst_term_$	rule	172	$\epsilon elim$	rule	218
$inst_type_$	rule	173	$\epsilon_{-}intro_{-}$	rule	218
KIAsm	Rule	129	λ_{-}	rule	220
KIEqSym	Rule	129	λeq	rule	219
KIEqTrans	Rule	129	$extend_pc_$	rule 1	320
KIInstTerm	Rule	129	$extend_pcs_$	rule 1	320
KIInstType	Rule	129	$merge_pcs_$		325
~*	'		~ -		

	1 - 1	205		l t	420
pc_	rule1	325	$z_{-} \in h_{-}$		438
$simple_\Leftrightarrow_match_mp_$	rule1	187	$dest_{-}z_{-}$	$schema_dec \\ schema_dec$	368
$simple_\Rightarrow_match_mp_$	rule1	188	is_z_		368
$\Leftrightarrow _{-}match_{-}mp_{-}$	rule1	201	$egin{array}{c} mkz \ Z \end{array}$	schema_dec	368
\Rightarrow _match_mp_	rule1	209		SchemaDec	360
$simple_\Rightarrow_match_mp_$	rule 2	188	$dest_{-}z_{-}h_{-}$	schema	366
$\Rightarrow _{-}match_{-}mp_{-}$	rule2	209	$z\theta\in$	$schema_intro_conv$	436
Derived	Rules1	153	iszh	schema	366
Derived	Rules2	153	mkzh	schema	366
'sho_	rw	349	Z_	$schema_pred_conv$	436
$current_ad_$	$ rw_canon $	329	zh	$schema_pred_conv$	434
initial	$ rw_canon $	172	z_	$schema_pred_conv1$	398
pair_	$ rw_canon $	258	destz	$schema_pred$	368
$pp'set_eval_ad_$	$ rw_canon $	329	Z _	$schema_pred_intro$	100
get	rw_canons	337		_conv	436
set	rw_canons	337	isz	$schema_pred$	368
_	$RW_diagnostics$	56	mkz	$schema_pred$	368
$current_ad_$	$ rw_eqm_rule $	317	Z	SchemaPred	360
get	$ rw_eqm_rule $	338	destz	$schema_type$	368
set	$ rw_eqm_rule $	338	isz	$schema_type$	368
get	$ rw_eqn_cxt $	338	mkz	$schema_type$	368
set	$ rw_eqn_cxt $	338	Z	SchemaType	360
$current_ad_$	$ rw_net $	328	ZH	Schema	360
$pp'set_eval_ad_$	$ rw_net $	328	'z_	schemas	432
zseqd	rwthm	488		scratch	36
$z_seqd_\frown_$	rw_thm	525		scratch	38
add_{-}	rw_thms	338		second	490
aua	S	30	z_{-}	$second_def$	498
	$\begin{vmatrix} s \\ s_delete \end{vmatrix}$	32	z_{-}	$second_thm$	491
	S_DICT	19	z_{-}	$second_thm$	499
initial	$\begin{vmatrix} s bic i \\ s dict \end{vmatrix}$	$\frac{19}{32}$	$z_{-} \in _{-}$	$second_thm$	453
$iiiiiiai_{-}$	$\begin{vmatrix} s_aici \\ s_enter \end{vmatrix}$	$\frac{32}{32}$	$z_{-} \in _{-}$	$second_thm$	510
				Seconds	54
	$s_{-}extend$	32		second[X, Y]	489
	s_lookup	$\begin{array}{c} 32 \\ 32 \end{array}$	$LISTER_{-}$	SECTION	75
:-	s_merge		LSAD	Section	75
is_{-}	$same_symbol$	64	z_{-}	$ sel_{s-}conv $	425
	save	51	$dest_z_$	$ sel_s $	369
	save_and_exit	51	isz	$ sel_s $	369
	$save_and_quit$	51	mkz	$ sel_s $	369
	save_as	51	Z	Sel_s	360
new	$save_fun$	49	z_{-}	$sel_{t-}conv$	506
get	$save_funs$	48	$dest_{-}z_{-}$	$ sel_t $	369
	$save_pop_thm$	227	z_{-}	$sel_{t_}intro_conv$	425
	SaveThm	131	isz	$ sel_t $	369
	$save_thm$	146	z_{-}	sel_{t} $lang$ $conv$	425
List		131	mkz	$ sel_t $	369
$list_{-}$	$save_thm$	142	Z	$\left egin{smallmatrix} Sel_t \end{matrix} ight $	360
TT	Saved	151	HT	$egin{array}{c} Semi \end{array}$	70
$current_ad_$	sc_conv	329	11.1	Separator	70
$pp'set_eval_ad_$	sc_conv	329		SEQ	119
get	sc_eqn_cxt	338		seq_	484
set	sc_eqn_cxt	338	seq	004-	484
add	sc_thms	338	$z \in$	$\begin{vmatrix} - & & & & & & & & & & & & & & & & & & $	484
Z	SchemaCalculus	432	$z \in $ $z \in $		525
zh	$schema_conv$	434		$seq_app_eq_thm$ seq_cases_thm	$\frac{323}{487}$
$z_norm_h_$	$schema_conv$	435	z_ ~		525
	$schema_conv$	438	z_ ~	_	$\frac{525}{522}$
$z\theta\in$ _	$schema_conv$	444	Z _	seq_def	922

~	loop industion too	524	~ mam	and thm	525
z_ ~	$egin{array}{c} seq_induction_tac \ seq_induction_tac 1 \end{array}$	$524 \\ 524$	$egin{array}{c} z_ran_ \ z_size_ \end{array}$	$egin{array}{c} seqd_thm \ seqd_thm \end{array}$	$525 \\ 488$
z_ z_	$seq_induction_thm$	487	z_size_ z_size_	$seqd_thm$	525
z	$\begin{vmatrix} seq_induction_thm \\ seq_induction_thm \end{vmatrix}$	525	$z_{-}size_{-}$	$seqd_{-} \in seq_{-}thm$	488
zprim	$\begin{vmatrix} seq_induction_thm \\ seq_induction_thm \end{vmatrix}$	486	z	$seqd_{-} \in seq_thm$	525
zprim	$\begin{vmatrix} seq_induction_thm \\ seq_induction_thm \end{vmatrix}$	525			
_	$\begin{vmatrix} seq_induction_thm1 \\ seq_induction_thm1 \end{vmatrix}$	487	z_{-}	$seqd_^_rw_thm$	488
$egin{array}{c} z \ z \end{array}$	$seq_induction_thm1$	525	z_{-}	$seqd_^rw_thm$	525
z	$\begin{vmatrix} seq_tmauction_tmn1 \\ seq_seq_x_thm \end{vmatrix}$	487	z_{-}	$seqd_\frown_thm$	488
z	$\begin{vmatrix} seq_seq_x_thm \\ seq_seq_x_thm \end{vmatrix}$	525	z_{-}	$seqd_\frown_thm$	525
z	$\begin{vmatrix} seq_seq_x_snm \\ seq_thm \end{vmatrix}$	486	z_{-}	$seqd_^-\langle\rangle_clauses$	488
z	seq_thm	525			
$z_dom_$	$\begin{vmatrix} seq_thm \end{vmatrix}$	487	z_{-}	$ seqd_{-} \cap_{-} \langle \rangle_{-} clauses$	525
$z_{-}dom_{-}$	$\begin{vmatrix} seq_thm \end{vmatrix}$	525	Z	Sequences	522
z_seqd_\in _	$\begin{vmatrix} seq_thm \end{vmatrix}$	488	Z	Sequences1	522
z_seqd_\in _	$\begin{vmatrix} seq_thm \end{vmatrix}$	525		seq_{1-}	484
$z_singleton_$	$\begin{vmatrix} seqthm \end{vmatrix}$	486	seq_1	- dof	$484 \\ 522$
$z_singleton_$	$seq_{-}thm$	525	z_{-}	$seq_1 def$	$\frac{322}{483}$
$z_size_$	$seq_{-}thm$	470	mm/	$\begin{vmatrix} seq_1 X \\ set_banner \end{vmatrix}$	403
$z_size_$	$seq_{-}thm$	523	pp'	$\begin{vmatrix} set_ounner \\ set_check_is_z \end{vmatrix}$	$\frac{49}{381}$
$z_size_singleton_$	$seq_{-}thm$	487	D	SetComp	80
$z_size_singleton_$	$seq_{-}thm$	525	$dest_{-}$	$\begin{vmatrix} set_comp \\ set_comp \end{vmatrix}$	85
$z_{-}\langle\rangle_{-}$	$seq_{-}thm$	487	is	$\begin{vmatrix} set_comp \\ set_comp \end{vmatrix}$	92
$z_{-}\langle\rangle_{-}$	$seq_{-}thm$	525	mk	$\begin{vmatrix} set_comp \\ set_comp \end{vmatrix}$	103
z_^_∈_	$seq_{-}thm$	486	non_	$\left \begin{array}{c} set_comp \\ set_compactification \end{array} \right $	100
z _^_ \in _	$seq_{-}thm$	525		_cache	130
z z	$\begin{vmatrix} seq_thm1 \end{vmatrix}$	486		$set_controls$	47
z	seq_thm1	525		$set_cs_\exists_convs$	335
$z_size_$	seq_thm1	486		$set_current_language$	128
$z_{-}size_{-}$	seq_thm1	525	DEnum	Set	80
z_^_∈_	seq_thm1	486	pp'	$set_database_info$	49
	SEY_1111111	400	$dest_enum_$	1	82
^ ~	11 1	FOF	$aest_enum_$	set	04
z_^_∈_	seq_thm1	525	$aest_enum_ = z$	$\left egin{array}{l} set_dif_clauses \end{array} ight $	492
$z_size_$	seqthm2	486		l .	
$z_size_\ z_size_$	seq_thm2 seq_thm2	$486 \\ 525$	z_{-}	$set_dif_clauses$	492
$egin{array}{c} z size \ z size \ z \end{array}$	seq_thm2 seq_thm2 seq_u_thm	486 525 486	z	$set_dif_clauses$ $set_dif_clauses$ set_dif_thm set_dif_thm	492 499
$z_size_\ z_size_$	seq_thm2 seq_thm2 seq_u_thm seq_u_thm	486 525 486 525	z	$set_dif_clauses$ $set_dif_clauses$ set_dif_thm set_dif_thm $set_error_messages$	492 499 491
$egin{array}{cccccccccccccccccccccccccccccccccccc$	seq_thm2 seq_thm2 seq_u_thm seq_u_thm seq_u_thm	486 525 486 525 483	z	$set_dif_clauses$ $set_dif_clauses$ set_dif_thm set_dif_thm	492 499 491 499 17
$egin{array}{c} z size \ z size \ z \ z \ \end{array}$	seq_thm2 seq_thm2 seq_u_thm seq_u_thm seqX seq_x_thm	486 525 486 525 483 487	z_{-} z_{-} z_{-} pp'	$set_dif_clauses$ $set_dif_clauses$ set_dif_thm set_dif_thm $set_error_messages$ $set_eval_ad_cs_\exists$ $_convs$	492 499 491 499 17
$egin{array}{c} z size \ z size \ z \ z \ z \ z seq \ z seq \end{array}$	seq_thm2 seq_u_thm2 seq_u_thm seq_u_thm seqX seq_x_thm seq_x_thm	486 525 486 525 483 487 525	z_{-} z_{-} z_{-} z_{-} pp'	$set_dif_clauses$ $set_dif_clauses$ set_dif_thm set_dif_thm $set_error_messages$ $set_eval_ad_cs_\exists$ $_convs$ $set_eval_ad_nd_net$	492 499 491 499 17 330 330
$z_size_$ $z_size_$ z z z $z_seq_$ $z_seq_$ $z_singleton_$	seq_thm2 seq_u_thm2 seq_u_thm seq_u_thm seqX seq_x_thm seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487	z_{-} z_{-} z_{-} z_{-} pp' pp'	$set_dif_clauses$ $set_dif_clauses$ set_dif_thm $set_error_messages$ $set_eval_ad_cs_\exists$ $_convs$ $set_eval_ad_nd_net$ $set_eval_ad_rw_canon$	492 499 491 499 17 330 330 329
$z_size_$ $z_size_$ z z z $z_seq_$ $z_seq_$ $z_singleton_$ $z_singleton_$	seq_thm2 seq_thm2 seq_u_thm seq_u_thm seqX seq_x_thm seq_x_thm seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487	z_{-} z_{-} z_{-} z_{-} z_{-} pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net$	492 499 491 499 17 330 330 329 328
$z_size_$ $z_size_$ z z z $z_seq_$ $z_singleton_$ $z_singleton_$ z	seq_thm2 seq_u_thm2 seq_u_thm seq_u_thm seqX seq_x_thm seq_x_thm seq_x_thm seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487 525 487	z_{-} z_{-} z_{-} z_{-} z_{-} pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv$	492 499 491 499 17 330 330 329 328 329
$z_size_$ $z_size_$ z z z $z_seq_$ $z_singleton_$ $z_singleton_$ z_c z_c	seq_thm2 seq_thm2 seq_u_thm seq_u_thm $seqX$ seq_x_thm seq_x_thm seq_x_thm seq_x_thm seq_x_thm seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487 525 487 525	z_{-} z_{-} z_{-} z_{-} z_{-} pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_sc_conv\\set_eval_ad_st_conv$	492 499 491 499 17 330 330 329 328
$z_size_$ $z_size_$ z z z $z_seq_$ $z_singleton_$ $z_singleton_$ $z_c_$ $z_c_$ $z_size_$	seq_thm2 seq_thm2 seq_u_thm seq_u_thm $seqX$ seq_x_thm seq_x_thm seq_x_thm seq_x_thm seq_x_thm seq_x_thm seq_x_thm seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487 525 487 525 486	z_{-} z_{-} z_{-} z_{-} z_{-} pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_st_conv\\set_eval_ad_st_conv\\set_eval_ad_\exists_cd$	492 499 491 499 17 330 330 329 328 329 329
$z_size_$ $z_size_$ z z z $z_seq_$ $z_singleton_$ $z_singleton_$ z_\frown z_\frown $z_size_$ $z_size_$ $z_size_$	seq_thm2 seq_uthm2 seq_u_thm seq_u_thm $seqX$ seq_x_thm	486 525 486 525 483 487 525 487 525 487 525 486 525	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_st_conv\\set_eval_ad_st_conv\\set_eval_ad_\exists_cd_thms$	492 499 491 499 17 330 330 329 328 329
$z_size_$ $z_size_$ z z z $z_seq_$ $z_singleton_$ $z_singleton_$ z_\frown z_\frown $z_size_$ $z_size_$ $z_size_$	seq_thm2 seq_thm2 seq_u_thm seq_u_thm $seqX$ seq_x_thm	486 525 486 525 483 487 525 487 525 487 525 486 525 524	z_{-} z_{-} z_{-} z_{-} z_{-} pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_st_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs$	492 499 491 499 17 330 330 329 328 329 329 330
$z_size_$ $z_size_$ z z $z_seq_$ $z_singleton_$ $z_singleton_$ $z_c\$ $z_c\$ $z_size_$ $z_size_$ $z_size_$ z z z z z z z	seq_thm2 seq_thm2 seq_u_thm seq_u_thm $seqX$ seq_x_thm	486 525 486 525 483 487 525 487 525 487 525 486 525 524 488	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_sc_conv\\set_eval_ad_d_sc_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms$	492 499 491 499 17 330 330 329 328 329 329 330 331
$z_size_$ $z_size_$ z z $z_seq_$ $z_singleton_$ $z_singleton_$ $z_c\$ $z_c\$ $z_size_$ $z_size_$ $z_size_$ z	seq_thm2 seq_thm2 seq_u_thm seq_u_thm $seqX$ seq_x_thm	486 525 486 525 483 487 525 487 525 487 525 486 525 524 488 525	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_sc_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms\\set_extend_pc$	492 499 491 499 17 330 330 329 328 329 329 330 331 333
$z_size_$ $z_size_$ $z_$ $z_$ $z_seq_$ $z_seq_$ $z_singleton_$ $z_singleton_$ $z_\frown_$ $z_\frown_$ $z_size_$ $z_size_$ z	seq_thm2 seq_uthm2 seq_uthm seq_uthm seq_uthm $seqX$ seq_xthm seq_xthm	486 525 486 525 483 487 525 487 525 487 525 486 525 524 488 525 524	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_rw_canon\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_st_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms\\set_extend_pc\\set_extend_pcs$	492 499 491 499 17 330 330 329 328 329 329 330 331 333 333
$z_size_$ $z_size_$ $z_$ $z_$ $z_seq_$ $z_seq_$ $z_singleton_$ $z_singleton_$ z_\frown $z_c_$ $z_size_$ $z_size_$ $z_c∈$ $z_c∈$ $z_size_$ $z_size_$ $z_c∈$ $z_size_$ $z_c∈$ $z_size_$ $z_size_$	seq_thm2 seq_uthm2 seq_u_thm seq_u_thm $seqX$ seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487 525 486 525 524 488 525 524 524	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_rw_canon\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_sc_conv\\set_eval_ad_st_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms\\set_extend_pc\\set_extend_pcs\\set_flag$	492 499 491 499 17 330 330 329 328 329 329 330 331 333 333 47
$z_size_$ $z_size_$ $z_$ $z_$ $z_seq_$ $z_seq_$ $z_singleton_$ $z_singleton_$ z_\frown $z_c=$ $z_size_$ $z_size_$ $z_c=$ $z_c=$ $z_size_$	seq_thm2 seq_uthm2 seq_u_thm seq_u_thm $seqX$ seq_x_thm	486 525 486 525 483 487 525 487 525 486 525 524 488 525 524 488	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_tlauses\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_st_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms\\set_extend_pc\\set_extend_pcs\\set_flag\\set_flags$	492 499 491 499 17 330 330 329 328 329 329 330 331 333 47 47
$z_size_$ $z_size_$ $z_$ $z_$ $z_seq_$ $z_seq_$ $z_singleton_$ $z_singleton_$ z_\frown $z_size_$ $z_size_$ $z_$ z_\in z_\in $z_$ $z\in$ $z_$ $z_$ $z_$ $z_$ $z_$ $z_$ $z_$ $z_$	seq_thm2 seq_thm2 seq_u_thm seq_u_thm $seqX$ seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487 525 487 525 486 525 524 488 525 524 488 525	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_tlauses\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_sc_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms\\set_extend_pc\\set_extend_pc\\set_flag\\set_flags\\set_goal$	492 499 491 499 17 330 329 328 329 329 330 331 333 47 47 227
$z_size_$ $z_size_$ $z_$ $z_$ $z_seq_$ $z_seq_$ $z_singleton_$ $z_singleton_$ $z_size_$ $z_size_$ $z_size_$ $z_$ $z_$ $z_$ $z_$ $z_$ $z_$ $z_$ z	seq_thm2 seq_u_thm seq_u_thm seq_u_thm $seqX$ seq_x_thm $seq_x_x_thm$ $seq_x_x_x_x_x_x$ $seq_x_x_x_x$ $seq_x_x_x$ $seq_x_x_x$ $seq_x_x_x$ seq_x_x $seq_$	486 525 486 525 483 487 525 487 525 487 525 486 525 524 488 525 524 488 525 524 488 525 488	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_tlauses\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_sc_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms\\set_extend_pc\\set_extend_pc\\set_flag\\set_flags\\set_goal\\set_int_control$	492 499 491 499 17 330 329 328 329 329 330 331 333 47 47 227 47
$z_size_$ $z_size_$ $z_$ $z_seq_$ $z_seq_$ $z_singleton_$ $z_singleton_$ $z_c_$ $z_size_$ $z_size_$ $z_c_$ $z_c=$ $z_c=$ $z_size_$ $z_c=$ $z_size_$	seq_thm2 seq_u_thm seq_u_thm seq_u_thm $seqX$ seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487 525 486 525 524 488 525 524 524 488 525 488 525 488 525	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_tlauses\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_sc_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms\\set_extend_pc\\set_extend_pc\\set_extend_pcs\\set_flags\\set_flags\\set_goal\\set_int_controls$	492 499 491 499 17 330 330 329 328 329 329 330 331 333 47 47 47 227 47 47
$z_size_$ $z_size_$ $z_seq_$ $z_seq_$ $z_singleton_$ $z_singleton_$ $z_size_$	seq_thm2 seq_u_thm seq_u_thm seq_u_thm $seqX$ seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487 525 486 525 524 488 525 524 524 488 525 488 525 488 525 488	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_clauses\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_enet\\set_eval_ad_sc_conv\\set_eval_ad_sc_conv\\set_eval_ad_st_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms\\set_extend_pc\\set_extend_pc\\set_extend_pcs\\set_flags\\set_flags\\set_goal\\set_int_control\\set_int_controls\\set$	492 499 491 499 17 330 330 329 328 329 329 330 331 333 47 47 47 227 47 47 91
$z_size_$ $z_size_$ $z_$ $z_seq_$ $z_seq_$ $z_singleton_$ $z_singleton_$ $z_c_$ $z_size_$ $z_size_$ $z_c_$ $z_c=$ $z_c=$ $z_size_$ $z_c=$ $z_size_$	seq_thm2 seq_u_thm seq_u_thm seq_u_thm $seqX$ seq_x_thm seq_x_thm	486 525 486 525 483 487 525 487 525 486 525 524 488 525 524 524 488 525 488 525 488 525	z_ z_ z_ z_ pp' pp' pp' pp' pp' pp' pp'	$set_dif_clauses\\set_dif_tlauses\\set_dif_thm\\set_error_messages\\set_eval_ad_cs_\exists_convs\\set_eval_ad_nd_net\\set_eval_ad_rw_canon\\set_eval_ad_rw_net\\set_eval_ad_sc_conv\\set_eval_ad_sc_conv\\set_eval_ad_\exists_cd_thms\\set_eval_ad_\exists_vs_thms\\set_extend_pc\\set_extend_pc\\set_extend_pcs\\set_flags\\set_flags\\set_goal\\set_int_controls$	492 499 491 499 17 330 330 329 328 329 329 330 331 333 47 47 47 227 47 47

′z_∈_	$ set_lib $	493	,	sho_rw	349
<i>2</i> _∈_	$\begin{vmatrix} set_tio \\ set_line_length \end{vmatrix}$	493 68		show_term	$\frac{349}{74}$
	set_merge_pcs	334		$show_term$ $show_thm$	74
$mk_enum_$	set_merge_pes	101		$show_time$ $show_type$	74
mm_enum_	$\left \begin{array}{c} set \\ set_mmp_rule \end{array} \right $	335	$dest_z_$	$signed_int$	513
	$\begin{vmatrix} set_mmp_rate \\ set_nd_entry \end{vmatrix}$	336	isz	$signed_int$	513
	$\begin{vmatrix} set_na_entry \\ set_pc \end{vmatrix}$	334	mkz	$signed_int$	514
	$\begin{vmatrix} set_pc \\ set_pr_conv \end{vmatrix}$	336	$get_{-}u_{-}$	$simp_eqn_ext$	383
	$\begin{vmatrix} set_pr_conv \\ set_pr_tac \end{vmatrix}$	337	$egin{array}{c} get_u_ \\ set_u_ \end{array}$	$simp_eqn_ext$ $simp_eqn_ext$	383
	$\begin{vmatrix} set_pr_tac \\ set_rw_canons \end{vmatrix}$	337	$theory_u_$	$simp_eqn_ext$ $simp_eqn_ext$	383
	$set_rw_eqm_rule$	338	ŭ.	$simp_eqn_ext$ $simp_eqn_ext$	384
		338	$egin{array}{c} u \ z defn \end{array}$	$simp_eqn_ext$ $simp_rule$	424
	set_rw_eqn_cxt	338	2_aejn_	$Simp_{\perp} rate$ $Simple$	56
	set_sc_eqn_cxt	339	,	$simple_abstractions$	342
	$set_st_eqn_cxt$ set_stats	53		SIMPLE_BINDER_C	185
		55 47	Jost		
	set_string_control	$\frac{47}{47}$	$dest_{-}$	simple_binder	85 93
	set_string_controls		is_	simple_binder	
	set_u_simp_eqn_cxt	383	mk_{-}	simple_binder	103
	SetUserDatum	131	strip	simple_binder	110
	set_user_datum	147		SimpleDictionary	32
	set_variant_suffix	109	2_	$simple_dot_dot_conv$	515
	$set_{-}\exists_{-}cd_{-}thms$	339		$simple_eq_match_conv$	185
	$set_{-}\exists_{-}vs_{-}thms$	340		$simple_eq_match$	400
$z \in$	$seta_conv$	428		_conv1	186
$z_{-} \in _{-}$	$seta_conv1$	428		$simple_ho_eq_match$	400
destz	seta	369		_conv	186
z_	$seta_false_conv$	497		$simple_ho_eq_match$	
isz	seta	369		_conv1	187
mkz	seta	369		$simple_ho_thm_eqn$	
Z	Seta	360		$_{-}cxt$	340
$z_{-}\in$ _	$setd_conv$	400		Simple New Defn	131
$z_{-}\in$	$setd_conv1$	428		$simple_new_defn$	147
destz	setd	369		Simple Output	67
isz	set d	369	<i>z</i> _	$simple_swap_ \rightarrowtail _thm$	456
mkz	setd	369	Z_	$simple_swap_ \rightarrowtail _thm$	526
Z	Setd	360		$simple_tac_proof$	264
z_{-}	$setd_\subseteq_conv$	398		$simple_taut_tac$	265
z_{-}	$setd_{-} \in \mathbb{P}_{-}conv$	425	$DEST_{-}$	$SIMPLE_TERM$	79
z_{-}	$set dif_def$	498	dest	$simple_term$	85
,	$sets_alg$	352	mk	$simple_term$	104
$'z_{-}$	$sets_alg$	495	DEST	$SIMPLE_TYPE$	79
z_{-}	$sets_alg$	504	dest	$simple_type$	85
	$sets_ext$	353	mk	$simple_type$	104
	$sets_ext$	354		$simple_\Leftrightarrow_match_mp$	
,	$sets_ext$	353		$_rule$	187
z_{-}	$sets_ext_clauses$	492		$simple_\Leftrightarrow_match_mp$	
z_{-}	$sets_ext_clauses$	499		$_rule1$	187
2_	$sets_ext_conv$	426		$simple_\lnot_in_conv$	265
'z_	$sets_ext_lang$	419		$simple_\lnot_in_tac$	266
'z_	$sets_ext_lib$	496		$SIMPLE_\lnot_IN$	
2_	$sets_ext_thm$	460		$_{-}THEN$	266
z_	$sets_ext$	504		$simple_\lnot_rewrite$	
	sets_ext1	354		$_canon$	203
′	sets_ext1	354		$simple_\Rightarrow_match_mp$	
Z	Sets	493		$_rule$	188
map	shape	257		$simple_\Rightarrow_match_mp$	
Utility	SharedTypes	19		$_rule1$	188
get	$ shell_var $	48			

	$ simple_\Rightarrow_match_mp$		KI	$ Simple \forall Intro$	129
	$_rule2$	188	KI	$Simple \beta Conv$	129
ALL_{-}	$SIMPLE_\forall_C$	153		$Simple \lambda$	79
¬_	$ simple_\forall_conv $	206	KI	$Simple \lambda EqRule$	129
$dest_$	$ simple _ orall$	85		$ simplify_goal_state $	
	$ simple_ \forall _elim $	188		$_{-}thm$	228
all	$ simple_ \forall _elim $	154	z_{-}	$singleton_app_thm$	458
list	$ simple_ \forall _elim $	174	z_{-}	$singleton_app_thm$	526
	$ simple_\forall_intro $	189	z_{-}	$singleton_seq_thm$	486
list	$ simple_\forall_intro $	174	z_{-}	$singleton_seq_thm$	525
is	$ simple _ \forall$	93	$z_size_$	$singleton_seq_thm$	487
$list_mk_$	$ simple _ \forall$	97	$z_size_$	$singleton_seq_thm$	525
mk	$ simple_ orall$	104	z_{-}	$singleton_seq_x_thm$	487
	$ simple_\forall_rewrite $		z_{-}	$singleton_seq_x_thm$	525
	_canon	203	$z_size_$	$ singleton_thm $	470
strip	$ simple_{-} \forall$	111	zsize	$ singleton_thm $	523
	$ simple_ orall_tac $	267	$z_size_\cup_$	$ singleton_thm $	470
4 7 7	$ simple_\forall_\exists_conv $	189	$z_size_\cup_$	$ singleton_thm $	523
ALL_{-}	$SIMPLE_\exists_C$	154	$z \rightarrow \rightarrow diff_{-}$	$ singleton_thm $	458
7_	$simple_\exists_conv$	206	$z \rightarrow \rightarrow diff_{-}$	$ singleton_thm $	526
dest	$ simple_\exists$	86	$z \rightarrow diff$	$ singleton_thm $	457
	$ simple_\exists_elim$	189	$z \rightarrow diff$	$singleton_thm$	526
1. ,	$simple_\exists_intro$	190	z _ $\mathbb{F}\cup$	$singleton_thm$	469
list	$simple_\exists_intro$	174	z _ \mathbb{F} \cup	$singleton_thm$	523
is_	$ simple_{-}\exists$	93	z_{-}	$singleton_thm$	486
$list_mk_$	$ simple_{-}\exists$	97	z	$singleton_thm$	525
mk_{-}	$ simple_{-}\exists$	$105 \\ 111$	z _ $^-$ _	$ singleton_thm1 $	487
strip	$\begin{vmatrix} simple_ \exists \\ simple_ \exists_ tac \end{vmatrix}$	$\frac{111}{267}$	z_^_	$\begin{vmatrix} s \\ singleton_thm1 \end{vmatrix}$	525
$list_$	$\begin{vmatrix} simple_\exists_tac \\ simple_\exists_tac \end{vmatrix}$	$\frac{207}{255}$	z	$ size_0_thm $	470
1151_	$SIMPLE_\exists_THEN$	$\frac{255}{268}$	z	$\begin{vmatrix} size_0_thm \end{vmatrix}$	523
	$ simple_\exists_\exists THEN$	190	z = z	$\begin{vmatrix} size_1_thm \end{vmatrix}$	470
	$ simple_\exists_\forall_conv1 $	190	z = z	$\begin{vmatrix} size_1_thm \end{vmatrix}$	523
	$ simple_\exists_v_conv $	190	z = z	$ size_{-}2_{-}thm $	470
	$ simple_\exists_\epsilon_conv $ $ simple_\exists_\epsilon_rule $	191	z_{-}	$\begin{vmatrix} size_{-}2_{-}thm \end{vmatrix}$	523
	$\begin{vmatrix} simple_\exists_e_r & aic \\ simple_\exists_1_conv \end{vmatrix}$	268	z_{-}	$ size_diff_thm $	470
$dest_{-}$	$\begin{vmatrix} simple_\exists_1 \\ simple_\exists_1 \end{vmatrix}$	85	z_{-}	$size_diff_thm$	523
wc50_	$\begin{vmatrix} simple = \exists_1 = elim \end{vmatrix}$	191	z_{-}	$ size_dot_dot_conv $	525
	$ simple_\exists_1_intro $	191	z_{-}	$ size_dot_dot_thm $	470
is	$ simple_{-}\exists_{1}$	93	z_{-}	$ size_dot_dot_thm $	523
mk_{-}	$ simple_{-}\exists_{1}$	104	z_{-}	$ size_dot_dot_thm1 $	470
	$ simple_{-}\exists_{1-}tac $	269	z_{-}	$ size_dot_dot_thm1 $	523
	$SIMPLE_{-}\exists_{1}$ _THEN	269	z_{-}	$ size_empty_thm $	469
	$ simple_\alpha_conv $	191	z_{-}	$ size_empty_thm $	523
	$ simple_\beta_conv $	192	z_{-}	$size_eq_thm$	470
all	$ simple_\beta_conv $	154	z_{-}	$size_eq_thm$	523
all	$ simple_\beta_rule $	154	z_{-}	$ size_mono_thm $	470
	$simple_\beta_\eta_conv$	192	z_{-}	$ size_mono_thm $	523
	$simple_\beta_\eta_norm$		z_{-}	$ size_pair_thm $	470
	conv	192	z{-}	$ size_pair_thm $	523
	$ simple_\epsilon_elim_rule $	192	z_{-}	$ size_seq_thm $	470
	$SIMPLE_{-}\lambda_{-}C$	193	z_{-}	$ size_seq_thm $	523
$dest_$	$ simple_\lambda $	86	z_{-}	$ size_seq_thm1 $	486
	$simple_\lambda_eq_rule$	193	z_{-}	$ size_seq_thm1 $	525
is	$ simple_\lambda $	93	<i>z</i> _	$ size_seq_thm2 $	486
$list_mk_$	$ simple_\lambda $	96	<i>z</i> _	size_seq_thm2	525
mk_{-}	$ simple_\lambda $	105	<i>Z</i> _	$size_seq_\mathbb{N}_thm$	486
KIList	$ Simple \forall Elim$	129	<i>z</i> _	$ size_seq_\mathbb{N}_thm $	525

z_{-}	$ size_seqd_conv $	524	$look_up_$	$specific_reader$	64
z_{-}	$ size_seqd_length_thm $	488	strip	$ spine_left $	111
z_{-}	$size_seqd_length_thm$	525	strip	$spine_right$	111
z_{-}	$ size_seqd_thm $	488		split	26
z_{-}	$size_seqd_thm$	525		split3	26
z_{-}	$ size_singleton_seq_thm $	487		squash	484
z_{-}	$ size_singleton_seq_thm $	525	z_{-}	$squash_def$	522
z_{-}	$ size_singleton_thm $	470		squash[X]	483
z_{-}	$ size_singleton_thm $	523	$current_ad_$	st_conv	329
$subgoal_package_$	size	228	$pp'set_eval_ad_$	st_conv	329
z _ \mathbb{F}_{-}	$size_thm$	469	get	st_eqn_ext	339
z _ \mathbb{F}_{-}	$size_thm$	523	set_{-}	st_eqn_cxt	339
$z_{-}\mathbb{F}_{-}$	$ size_thm1 $	470	add	st_thms	339
$z_{-}\mathbb{F}_{-}$	$size_thm1$	523	get_{-}	$stack_pcs$	323
z_{-}	$ size_ +++ _thm $	470	$pending_reset_pc_$	stack	328
z_	$ size_ + + _thm $	523	1 - f 1 1	Starting	56
z_{-}	$ size_ \times _thm $	470	before_kernel_	state_change	133
z_{-}	$ size_\times_thm $	523	KERNEL_	STATE_CHANGE	131
z_{-}	$ size_ \le 1 thm $	470	on_kernel_	state_change	146
z_	$ size_{-} \leq 1 thm $	523 470	GOAL_	STATE	222
z_	$ size_\cup_singleton_thm $	523	pending_reset_control_	state	$47 \\ 225$
z_{-}	$\begin{vmatrix} size_\cup_singleton_thm \\ size_\cup_thm \end{vmatrix}$	$\frac{323}{470}$	$print_goal_$	$\left egin{array}{c} state \ state \end{array} ight $	$\frac{225}{226}$
z_ ~	$\begin{vmatrix} size_\cup_thm \\ size_\cup_thm \end{vmatrix}$	523	push_goal_	$\begin{vmatrix} state \\ state_thm \end{vmatrix}$	$\frac{220}{224}$
z_ ~	$\begin{vmatrix} size_\cup_thm \\ size_\cup_\leq_thm \end{vmatrix}$	$\frac{323}{470}$	$modify_goal_$	$\begin{vmatrix} state_thm \\ state_thm \end{vmatrix}$	$\frac{224}{226}$
$egin{array}{c} z \ z \end{array}$	$\begin{vmatrix} size_\cup_ \leq_thm \\ size_\cup_ \leq_thm \end{vmatrix}$	523	$push_goal_\ simplify_goal_$	$\begin{vmatrix} state_thm \\ state_thm \end{vmatrix}$	$\frac{220}{228}$
			$top_goal_$	$\begin{vmatrix} state_thm \\ state_thm \end{vmatrix}$	$\frac{228}{228}$
z_{-}	$size_ _thm$	487	$top_goal_$	state state	$\frac{220}{229}$
z_{-}	$size_\thm$	525	e_{-}	$\begin{vmatrix} state \\ stats \end{vmatrix}$	$\frac{223}{34}$
z_{-}	$size_\mathbb{N}_thm$	470	get	$\begin{vmatrix} stats \\ stats \end{vmatrix}$	53
z_{-}	$ size_\mathbb{N}_thm $	523	init	$\begin{vmatrix} stats \\ stats \end{vmatrix}$	53
	$skip_and_look_at_next$	58	$print_{-}$	stats	53
	$ skip_comment $	65	set_{-}	$\begin{vmatrix} stats \\ stats \end{vmatrix}$	53
	SML_recogniser	65	$get_current_theory_$	status	139
	SML97BasisLibrary	43	$get_theory_$	status	140
	snd	29	print	status	50
	$SOLVED_{-}T$	269	$THEORY$ _	STATUS	119
	Sort	35		std_err	41
	sort	$\frac{35}{200}$		std_in	41
	sort_conv	302		std_out	41
	$ sorted_listings \ SparseArray$	75 36		$step_strip_asm_tac$	272
	SparseArray SPARSE_ARRAY	36		$step_strip_tac$	272
	SPARSE_ARRAY SPEC_ASM_T	$\frac{30}{271}$	$use_file_non_$	$stop_mode$	56
LIST	$SPEC_ASM_T$	$\frac{271}{271}$	$read$ _	stopwatch	54
LIDI _	$ spec_asm_tac $	$\frac{271}{270}$	reset	stopwatch	54
list	$\begin{vmatrix} spec_asm_tac \\ spec_asm_tac \end{vmatrix}$	$\frac{270}{270}$	$end_of_$	stream	41
z_	$ spec_asm_tac $	399		String	70
New	$\left egin{array}{c} Spec \end{array} ight $	131		STRING	109
new	$\begin{vmatrix} spec \\ spec \end{vmatrix}$	144	get	$string_control$	46
10CW_	SPEC_NTH_ASM_T	271	new	$string_control$	46
LIST	SPEC_NTH_ASM_T	271	reset	$string_control$	47
2101	$spec_nth_asm_tac$	270	set	$string_control$	47
list	$ spec_nth_asm_tac $	270	get	$string_controls$	46
z_{-}	$ spec_nth_asm_tac $	399	reset	$string_controls$	47
$z_get_$	spec	393	set	$string_controls$	47
is_{-}	special_char	64		$string_conv$	194
	$specific_quotation$	61	KI	StringConv	129
add	$ specific_reader $	59	Z_	$ string_conv $	426
	•				

$z \in$ _	$ string_conv $	426		$STRIP_THM_THEN$	275
D	String	80		$strip_ \rightarrow _type$	111
dest	$\left egin{array}{c} string \end{array} \right $	86		$strip_\land$	111
$dest_dollar_quoted_$	$\left egin{array}{c} string \end{array} ight $	363		$strip_ \land_ rule$	194
$dest_{-}z_{-}$	$\left \begin{array}{c} string \\ string \end{array} \right $	370		$strip_\lor$	112
$diag_{-}$	$\left egin{array}{c} string \end{array} \right $	60		$strip_{-} \Rightarrow$	112
$get_{-}ML_{-}$	$\left egin{array}{c} string \end{array} \right $	63		$strip_\Rightarrow_rule$	194
$get_primed_$	$\left \begin{array}{c} string \\ string \end{array} \right $	63		$strip_\forall$	112
HT	String	70		$strip_{-}\exists$	112
$integer_of_$	string	39		$strip_{-\epsilon}$	112
is	string	93		$strip_{-}\lambda$	112
$is_dollar_quoted_$	$\left string \right $	363	LSADNested	Structure	75
isz	string	370		sub	36
$list_diag_$	string	64		sub	38
$list_raw_diag_$	string	67		$SUB_{-}C$	197
LSAD	String	75		$SUB_{-}C1$	197
mk	string	105		sub_opt	36
$mk_dollar_quoted_$	string	363		sub_opt	38
mkz	string	370		SubgoalPackage	221
$nat_of_$	string	31	$pending_reset_$	$subgoal_package$	224
$natural_of_$	string	39	1 0	$subgoal_package_quiet$	221
num_lit_of _	string	72		$subgoal_package_size$	228
v	$string_of_e_key$	33		$subgoal_package_ti$	
	string_of_float	39		$_context$	222
	$string_of_int$	31	tactic	$subgoal_warning$	222
	$string_of_int3$	65	all	$submatch_tt$	152
	$string_of_integer$	39	any	$submatch_tt$	152
	$string_of_term$	109	no	$submatch_tt$	152
	$string_of_thm$	147		subset	26
	$string_of_type$	109		subst	113
PP	String	42		$subst_conv$	195
$raw_diag_$	string	68	$gvar_{-}$	subst	362
to_ML	string	66		$subst_rule$	196
UD	String	119	KI	SubstRule	129
use	string	66	var_{-}	subst	116
	$string_variant$	109	all	$substring_tt$	152
Z	String	360	any	$substring_tt$	152
LSAD	Strings	75	no	$substring_tt$	152
	$ strip_app $	109	$basic_res_$	subsumption	309
	$ strip_asm_conv $	273	all	$subterm_tt$	152
	$ strip_asm_tac $	273	any	$subterm_tt$	152
step	$ strip_asm_tac $	272	no	$subterm_tt$	152
	$ strip_bin_op $	110	$not_z_$	subterms	382
	$ strip_binder $	110	$z_{-}\mathbb{R}_{-}$	$subtract_conv$	534
	$ strip_concl_conv $	273	$z_{-}\mathbb{R}_{-}$	$subtract_def$	535
	$STRIP_CONCL_T$	274	$dest_{-}z_{-}$	subtract	513
	$ strip_concl_tac $	274	$dest_{-}z_{-}\mathbb{R}_{-}$	subtract	530
	$ strip_leaves $	110	isz	subtract	513
	$ strip_let $	110	$is_{-}z_{-}\mathbb{R}_{-}$	subtract	530
	$ strip_simple_binder $	110	z_	$subtract_minus_conv$	518
	$ strip_simple_orall$	111	mkz	subtract	514
	$ strip_simple_\exists$	111	$mkz\mathbb{R}$	subtract	531
	strip_spine_left	111	$z\mathbb{R}$	$subtract_thm$	533
	strip_spine_right	111	$z\mathbb{Z}$	$subtract_thm$	449
	STRIP_T	274	$z\mathbb{Z}$	$subtract_thm$	521
	$ strip_tac $	274	$\mathbb{Z}_{-}z_{-}$	$subtract_thm$	449
step	$ strip_tac $	272	$\mathbb{Z}_{-}z_{-}$	$subtract_thm$	521
z_	$ strip_tac $	437		suc_conv	198

KI	SucConv	129		system	41
$prim_{-}$	$\begin{vmatrix} suc_conv \end{vmatrix}$	180		$ system_banner $	49
pr ent_	$\begin{vmatrix} succ \\ succ \end{vmatrix}$	462		System Control	46
	succ	464	HOL	System	48
z_{-}	$\begin{vmatrix} succ_def \end{vmatrix}$	518	1101	TAll	151
$z \in z$	$\begin{vmatrix} succ_uej \\ succ_thm \end{vmatrix}$	471	$ALL_ASM_FC_$	T^{Att}	246
	$\begin{vmatrix} succ_thm \\ succ_thm \end{vmatrix}$	523	ALL_ASM _FO_		240
$z_{-}\in$	l .	$\frac{323}{471}$	_FORWARD_CHAIN_	\mid_T	246
z_	$succ \nearrow 0 \uparrow thm$		ALL_FC_	$\left \begin{array}{c} I \\ T \end{array} \right $	246
z_	$succ \nearrow 0 \uparrow_{-}thm$	523	ALL_FORWARD		240
z_	$succ \nearrow minus_n \uparrow_thm$	471			246
<i>z</i> _	$succ \nearrow minus_n \uparrow_thm$	523	_CHAIN_		246
<i>z</i> _	$succ \nearrow n \uparrow_{-} thm$	471	$ALL_{-}VAR_{-}ELIM$		020
Z_	$succ \nearrow n \uparrow_{-}thm$	523	_ASM_	$\left \begin{array}{c} T \\ T \end{array} \right $	232
$get_variant_$	suffix	90	$ALL_{-}\epsilon_{-}$	T	233
setvariant	suffix	109	ACM EC	TAny	151
T : 1	sum	350	ASM_FC_		246
Lister	Support	75	$ASM_FORWARD$		2.40
Reader Writer	Support	55	_CHAIN_		246
	swap	29	$ASM_{-}PROP_{-}EQ_{-}$	$\mid T$	294
	$SWAP_ASM_CONCL$		BASIC	_	
	_ T	276	$_RESOLUTION_$	$\mid T$	306
$LIST_{-}$	$SWAP_ASM_CONCL$		$CASES$ _	$\mid T$	237
	_ T	256	$CHANGED_{-}$	$\mid T$	237
	$ swap_asm_concl_tac $	275	$CHECK_IS_Z_$	$\mid T$	381
list	$ swap_asm_concl_tac $	256	COND	$\mid T$	238
	$SWAP_NTH_ASM$		$CONTR_{-}$	$\mid T$	239
	$_CONCL_T$	276	$dest_{-}$	$\mid t$	86
$LIST_{-}$	$SWAP_NTH_ASM$		$DROP_ASM_$	$\mid T$	240
	$CONCL_T$	256	$DROP_ASMS_$	$\mid T$	240
	$swap_nth_asm_concl$		$DROP_FILTER$		
	$_{-}tac$	275	$_ASMS_$	$\mid T$	241
list	$swap_nth_asm_concl$		$DROP_NTH_ASM_$	$\mid T$	241
	-tac	256	⇔_	telim	202
2_	$ swap_ \mapsto _thm$	456	EVERY	$\mid T$	243
z_{-}	$swap_ \longrightarrow thm$	526	$EXTEND_PC_$	$\mid T$	321
$z_simple_$	$ swap_ \mapsto _thm$	456	$EXTEND_PCS_$	$\mid T$	321
$z_simple_$	$swap_ \mapsto thm$	526	FC	$\mid T$	246
	$swap_ \lor_ tac$	276	$FIRST_{-}$	$\mid T$	244
	switch	29	$FORWARD_CHAIN_$	$\mid T$	246
eq	sym_asm_tac	242		TFun	151
	SymCharacter	57	$GEN_INDUCTION_$	$\mid T$	248
eq	$ sym_conv $	164	$GET_ASM_$	$\mid T$	249
	SymDoublePercent	57	$GET_ASMS_$	$\mid T$	249
	SymEndOfInput	57	GET_FILTER		
	SymKnown	57	$_ASMS_$	$\mid T$	250
eq	$sym_nth_asm_tac$	242	$GET_NTH_ASM_$	$\mid T$	250
eq	sym_rule	165	$IF_$	$\mid T$	252
KIEq	SymRule	129	⇔_	$t_{-}intro$	202
$\neg eq$	$sym_{-}rule$	205	is	$\mid t$	93
_	SymUnknownChar	57	$LEMMA_{-}$	$\mid T$	253
	SymUnknownKw	57	$LIST_DROP_ASM_$	$\mid T$	254
	SymWhite	57	$LIST_DROP_NTH$		
	SYMBOL	57	_ASM_	\mid_T	254
expand	symbol	60	$LIST_GET_ASM_$	$\mid \overset{-}{T} \mid$	255
$is_same_$	symbol	64	$LIST_GET_NTH$		
$read_{-}$	symbol	65	_ASM_	\mid_T	255
	Symbol Table	122	$LIST_SPEC_ASM_$	$\mid T \mid$	271
$add_new_$	symbols	60		I	
	1 - 9	30			

LICT CDEC NULL	I		DACIC	I	
$LIST_SPEC_NTH$	T	271	$BASIC \\ _RESOLUTION _$	\mid_{T1}	307
ASM LIST_SWAP_ASM		211	EXTEND_PC_	$\left egin{array}{c} 1 \ T \end{array} \right $	307 321
	T	256		$\left egin{array}{c} 1 \ T \end{array} \right $	
CONCL		256	EXTEND_PCS_		321
LIST_SWAP_NTH		256	FC_	T1	247
_ASM_CONCL_	T	256	FORWARD_CHAIN_	T1	247
$MAP_EVERY_$	T	257	GEN_INDUCTION_	T1	249
$MAP_FIRST_$ $MERGE_PCS_$	T	257	$MERGE_PCS_$	T1	326
	T	326	PC_	$\left egin{array}{c} T1 \ T1 \end{array} ight $	326
mk	t	105	REPEAT_UNTIL_		262
$ORELSE_{-}$	TNone	151	$THEN_{\perp}$	T1	279
	$egin{array}{c} T \ T \end{array}$	257	$CASES_{-}$ IF_{-}	$\left egin{array}{c} T2 \\ T2 \end{array} \right $	237
PC_{-} $POP_{-}ASM_{-}$	$\left egin{array}{c} I \\ T \end{array} \right $	326		$\begin{array}{c} 1z \\ T2 \end{array}$	251 281
	$\left egin{array}{c} I \\ T \end{array} \right $	258	⇔_	$\left egin{array}{c} 1z \\ T2 \end{array} \right $	
$PROP_EQ_$ $REPEAT_$	$\left egin{array}{c} I \\ T \end{array} \right $	294 262	¬_ Camabal	$\left egin{array}{l} Tz \\ Table \end{array} \right $	287
	$\begin{array}{c c} T & & & \\ T & & & & \end{array}$		Symbol		122
$REPEAT_N_$ $REPEAT_UNTIL_$	$\begin{array}{c c} T & & \\ T & & \end{array}$	$ \begin{array}{r} 261 \\ 262 \end{array} $	LSAD	Tables	75 231
	$t_rewrite_canon$	202	$accept_ \ all_asm_ante_$	$egin{array}{c} tac \ tac \end{array}$	231
\Leftrightarrow_{-} $ROTATE_{-}$	T	$\frac{203}{264}$	$ant_asm_ante_$ $all_asm_fc_$		$\frac{231}{245}$
	$\begin{array}{c c} T & & & \\ T & & & & \end{array}$	264 269	·	tac	240
$SOLVED_{\perp}$	$\left egin{array}{c} I \\ T \end{array} ight $		$all_asm_forward$	4	0.45
SPEC_ASM_		271	_chain_	tac	245
SPEC_NTH_ASM_	T	271	all_fc	tac	245
STRIP_	T	274	$all_forward_chain_$	tac	245
STRIP_CONCL_	$\mid T \mid$	274	$all_var_elim_asm_$	tac	232
$SWAP_ASM$		276	$all_{-}\beta_{-}$	tac	233
CONCL	T	276	$all\epsilon$	tac	233
SWAP_NTH_ASM	/TI	976	ante	tac	233
$_{-}CONCL_{-}$	T	276	asm_{-}	tac	234
	t_tac	280	$asm_ante_$	tac	234
⇔_ THEN	$egin{array}{c} t tac \ T \end{array}$	282	$asm_fc_$	tac	245
$THEN_{\perp}$	$\left egin{array}{c} I \\ T \end{array} ight $	280	$asm_forward_chain_$	tac	245
THEN_LIST_	$\left egin{array}{c} I \\ T \end{array} \right $	278	$asm_prove_$	tac	316
$THEN_TRY_$ $THEN_TRY_LIST_$	$\begin{array}{c c} T & & & \\ T & & & \end{array}$	279	$asm_prove_\exists_$	tac	316
1 ПЕN _ 1 К Y _LIS I _	$egin{array}{c} I \ t_thm \end{array}$	279 199	$asm_rewrite_$ $asm_rewrite_thm_$	tac	263 263
_		206		tac	$\frac{203}{235}$
$TOP_ASM_$	$egin{array}{c} tthm \ T \end{array}$	280	$back_chain_$ $back_chain_thm_$	tac	236
$TOT_ASW_$ $TRY_$	T	280	$basic_prove_$	$egin{array}{c} tac \ tac \end{array}$	357
VAR_ELIM_ASM_	T	281	basic_res_	$\begin{vmatrix} tac \\ tac \end{vmatrix}$	312
VAR_ELIM_NTH		201	bc_{-}	$\begin{vmatrix} tac \\ tac \end{vmatrix}$	$\frac{312}{235}$
-ASM	T	281	$bc_thm_$	$\begin{vmatrix} tac \\ tac \end{vmatrix}$	236
<i>_ADM _</i> ⇔_	T	$\frac{281}{283}$	cases_	$\begin{vmatrix} tac \\ tac \end{vmatrix}$	237
	T	288	$check_asm_$	$\begin{vmatrix} tac \\ tac \end{vmatrix}$	238
¬_ ⇒_	T	$\frac{266}{290}$	$concl_in_asms_$	$tac \\ tac$	$\frac{238}{238}$
ϵ	T	292	$contr_{-}$	$tac \\ tac$	239
$ALL_ASM_FC_$	$\left egin{array}{c} T 1 \end{array} \right $	$\frac{232}{247}$	$conv_{-}$	$tac \\ tac$	239
ALL_ASM		241	$current_ad_pr_$	$tac \\ tac$	317
_FORWARD_CHAIN_	\mid_{T1}	247	$discard$ _	tac	240
ALL_FC_	T1	247	$eq_sym_asm_$	tac	242
ALL_FORWARD	* *	211	$eq_sym_nth_asm_$	$\begin{vmatrix} tac \\ tac \end{vmatrix}$	242
CHAIN	T1	247	$f_{-}thm_{-}$	$tac \\ tac$	247
ALL_VAR_ELIM	* *	241	$fail_{-}$	tac	243
ASM	T1	232	$fail_with_$	$\begin{vmatrix} tac \\ tac \end{vmatrix}$	243
$ASM_FC_$	T1	247	fc	tac	245
ASM_FORWARD	* *	211	$forward_chain_$	tac	245
CHAIN	T1	247	$gen_induction_$	tac	248
	* *	211	$get_materion_$ $get_pr_$		337
			900-P1-	1	001

	Ι.	252		I .	
$i_contr_$	tac	253	$var_elim_nth_asm_$	tac	281
id	tac	250	zappeq	tac	422
if	tac	251	$z_basic_prove_$	tac	386
$intro_ orall _$	tac	252	$z_cov_induction_$	tac	514
$k_id_$	tac	240	$z_fc_prove_$	tac	390
$lemma_{-}$	tac	253	$z_gen_pred_$	tac	391
$list_asm_ante_$	tac	254	$z_intro_gen_pred_$	tac	394
$list_simple_\exists_$	tac	255	$z_intro_orall_$	tac	394
$list_spec_asm_$	tac	270	$z_quantifiers_elim_$	tac	397
$list_spec_nth_asm_$	tac	270	$z_seq_induction_$	tac	524
$list_syap_asm_concl_$	tac	256		tac	399
	tac	250	$z_spec_asm_$		
$list_swap_nth_asm$,	050	$z_spec_nth_asm_$	tac	399
$_concl_$	tac	256	zstrip	tac	437
$once_asm_rewrite_$	tac	263	$z_{-}\mathbb{R}_{-}lin_{-}arith_{-}prove_{-}$	tac	532
$once_asm_rewrite$			$z \forall$	tac	409
$_{-}thm_{-}$	tac	263	$z_{-}\exists_{-}$	tac	414
$once_rewrite_$	tac	263	$z_{-}\exists_{1}$	tac	416
$once_rewrite_thm_$	tac	263	$z_{-} \leq _{-} induction_{-}$	tac	517
$prim_rewrite_$	tac	259	$z_{-}\mathbb{F}_{-}induction_{-}$	tac	526
-	$ tac_proof $	277	$z\mathbb{N}induction$	tac	517
$simple_$	tac_proof	264	$z_{-}\mathbb{Z}_{-}induction_{-}$	tac	519
$prop_eq_prove_$	tac	295	⇔_	tac	282
prop eq prove	tac	259	$\Leftrightarrow_{-}t_{-}$	tac	282
$prove_{-}\exists_{-}$	$\begin{vmatrix} tac \\ tac \end{vmatrix}$	$\frac{260}{260}$	√ _ <i>t</i>	tac	$\frac{282}{283}$
$pure_asm_rewrite_$	tac	263	$\vee_{-}left_{-}$	tac	284
$pure_asm_rewrite$,	0.00	$\vee_{-} right_{-}$	tac	284
$_{-}thm_{-}$	tac	263	¬_	tac	288
$pure_once_asm$			$\neg_elim_$	tac	285
$_rewrite_$	tac	263	$\neg_{-}in_{-}$	tac	286
$pure_once_asm$			⇒_	tac	289
$_rewrite_thm_$	tac	263	$\Rightarrow_{-}thm_{-}$	tac	290
$pure_once_rewrite_$	tac	263	\forall_{-}	tac	290
$pure_once_rewrite$			3_	tac	291
$_{-}thm_{-}$	tac	263	\exists_{1} -	tac	291
$pure_rewrite_$	tac	263	ϵ_{-}	tac	292
$pure_rewrite_thm_$	tac	263	$all_var_elim_asm_$	tac1	232
rename_	tac	261	$basic_res_$	tac1	310
		$\frac{261}{263}$			$\frac{310}{249}$
$rewrite_{-}$	tac		$gen_induction_$	tac1	
$rewrite_thm_$	tac	263	getpr	tac1	337
$set_pr_$	tac	337	$intro_{-} \forall_{-}$	tac1	252
$simple_taut_$	tac	265	$z_seq_induction_$	tac1	524
$simple_\lnot_in_$	tac	266	$basic_res_$	tac2	310
$simple _ \forall _$	tac	267	$basic_res_$	tac3	311
$simple_\exists_$	tac	267	$basic_res_$	tac4	311
$simple_\exists_{1}_$	tac	269		TACTIC	231
$spec_asm_$	tac	270	apply	tactic	223
$spec_nth_asm_$	tac	270	11 0	tactic_subgoal_warning	222
$step_strip_$	tac	272	THM _	TACTIC	231
$step_strip_asm_$	tac	272	THM_{-}	TACTICAL	231
$strip_{-}$		$\frac{272}{274}$	111111 _	Tactics1	231
	tac	273		Tactics2	$\frac{231}{231}$
$strip_asm_$	tac				
$strip_concl_$	tac	274		Tactics3	231
$swap_asm_concl_$	tac	275			484
$swap_nth_asm_concl_$	tac	275	z_{-}	$tail_def$	522
$swap_ \lor_$	tac	276		tail[X]	483
t_{-}	tac	280		$ taut_conv $	277
$taut$ _	tac	278		$taut_rule$	278
$var_elim_asm_$	tac	281		$ taut_tac $	278
	1			1	

$simple_{-}$	$ taut_tac$	265	LS	Terminators	75
z_{-}	tc_def	507	LSUndeclared	Terminators	75
	Term	70	LSAD	Terms	75
	TERM	80	pp'TypesAnd	Terms	79
	$term_any$	113	TypesAnd	Terms	79
$basic_dest_z_$	term	361	ZTypesAnd	Terms	359
$check_is_z_$	term	381	01	TEST	151
$compact_$	term	133	THM_INFO	TEST	151
•	$term_consts$	113		texdvi	13
DEST	TERM	80		Text	70
dest	term	86	$get_message_$	text	18
$DEST_SIMPLE_$	TERM	79	J J	THEN	280
$dest_simple_$	term	85	if?	$then_!else_!$	490
$dest_{-}z_{-}$	term	362	(if?)	$then_!else_!)[X]$	489
	$term_diff$	113		$THEN_{-}C$	198
	$term_fail$	113		THENCAN	198
	$term_fold$	113	$CONV_{-}$	THEN	240
format	term	73	if	$then_elim$	171
v	$term_grab$	113	$FAIL_{-}$	THEN	243
is	$term_in$	41	$FAIL_WITH_$	THEN	243
isz	term	362	HT	Then	70
	$term_less$	114	ID	THEN	250
	$term_map$	114	IF	THEN	251
	$term_match$	114		$THEN_LIST$	278
	$term_mem$	114		THEN_LIST_CAN	198
mk	term	105		$THEN_LIST_T$	278
$mk_simple_$	term	104	$SIMPLE_\lnot_IN_$	THEN	266
mkz	term	370	$SIMPLE_\exists_$	THEN	268
z_{-}	$term_of_type$	399	$SIMPLE_\exists_1_$	THEN	269
	$term_order$	302	$STRIP_THM_$	THEN	275
gen	$term_order$	300	75 - 10-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	$THEN_{-}T$	280
$make_{-}$	$term_order$	300		THEN_T1	279
is	$term_out$	41		$THEN_{-}TRY$	279
$asm_inst_$	$term_rule$	159		$THEN_{-}TRY_{-}C$	199
inst	$term_rule$	172		THEN_TRY_LIST	279
KIInst	TermRule	129		$THEN_TRY_LIST_T$	279
$show$ _	term	74		$THEN_TRY_T$	279
$string_of_$	term	109		$THEN_TRY_TTCL$	279
	$term_tycons$	114		$THEN_TTCL$	279
	$term_types$	114	⇔_	THEN	282
	$term_tyvars$	114	^_	THEN	283
UD	Term	119	V_	THEN	284
	$term_unify$	314	$\neg_{-}IN_{-}$	THEN	286
	$term_union$	114	\Rightarrow_{-}	THEN	290
list	$term_union$	99	3_	THEN	291
	$term_vars$	114	\exists_{1} –	THEN	292
Z_{-}	TERM	360	-1-	THEN1	279
$dest_{-}z_{-}$	term1	382	IF	THEN2	251
$format_$	term1	73	⇔_	THEN2	282
isz	term1	382	^_	THEN2	283
askat	terminal	60	V_	THEN2	284
$reset_use_$	terminal	65	$gen_find_thm_in_$	theories	152
use_{-}	terminal	66	3 J	THEORY	120
$declare_$	terminator	124	is	$theory_ancestor$	142
$undeclare_$	terminator	128	Delete	Theory	131
get_{-}	terminators	126	$delete_{-}$	theory	135
$get_current_$	terminators	125	$do_in_$	theory	137
$get_undeclared_$	terminators	127	Duplicate	Theory	131
300- 0000000000000000000000000000000000	1	141	2 aprocate	g	-01

$duplicate_{-}$	theory	138	$modify_goal_state_$	$\mid thm \mid$	224
$force_delete_$	theory	322	pop_{-}	thm	225
get_{-}	theory	141	$prove_{-}$	thm	260
$get_const_$	theory	139	$push_goal_state_$	thm	226
gettype	theory	142	Save	Thm	131
pp'	$theory_hierarchy$	50	save	thm	146
11	$THEORY_INFO$	120	$save_pop_$	thm	227
get	$theory_info$	141	show	thm	74
gen_{-}	$theory_lister$	76	$simplify_goal_state_$	thm	228
gen_{-}	$theory_lister1$	76	$string_of_$	thm	147
Lock	Theory	131	t	thm	199
$lock$ _	theory	143	$asm_rewrite_$	thm_tac	263
$get_current_$	$theory_name$	139	$back_chain_$	thm_tac	236
	$theory_names$	140	bc	thm_tac	236
get	$theory_names$	140	f	thm_tac	247
New	Theory	131	$once_asm_rewrite_$	thm_tac	263
new	theory	144	$once_rewrite_$	thm_tac	263
Open	Theory	131	$pure_asm_rewrite_$	thm_tac	263
open	theory	146	$pure_once_asm$		
$output_$	theory	77	$_rewrite_$	thm_tac	263
print	theory	77	$pure_once_rewrite_$	thm_tac	263
	$THEORY_STATUS$	119	$pure_rewrite_$	thm_tac	263
get	$theory_status$	140	rewrite	thm_tac	263
$get_current_$	$theory_status$	139	\Rightarrow_{-}	thm_tac	290
thm	theory	147		THM $_$ $TACTIC$	231
	$theory_u_simp_eqn$			$THM_TACTICAL$	231
	$_{-}cxt$	383	$STRIP_{-}$	THM _ $THEN$	275
Unlock	Theory	131		thm_theory	147
$unlock_$	theory	148	top	thm	229
$z_output_$	theory	78	$top_goal_state_$	thm	228
zprint	theory	78		THM_TYPE	151
output	theory1	76	valid	thm	148
$z_output_$	theory1	78	z 0 less times	thm	471
	THM	120	$z\thetalesstimes$	thm	523
$check_is_z_$	thm	381	$z_{-}\theta_{-}\mathbb{N}_{-}$	thm	465
$compact_{-}$	thm	133	$z_{-}\theta_{-}\mathbb{N}_{-}$	thm	516
cond	thm	161	$z_{-}abs_{-}$	thm	468
Delete	Thm	131	$z_{-}abs_{-}$	thm	516
$delete_{-}$	thm	135	$zabs\thetaless$	thm	471
$dest_{-}$	thm	136	$zabs\thetaless$	thm	523
get_{-}	$thm_{-}dict$	141	$zabseq\theta$	thm	468
$eq_rewrite_$	thm	164	$z_{-}abs_{-}eq_{-}\theta_{-}$	thm	516
	thmeqncxt	341	zabsminus	thm	468
$simple_ho_$	thm_eqn_cxt	$\frac{340}{170}$	$z_abs_minus_$	thm	$516 \\ 471$
f	$thm = thm_{-}fail$	$170 \\ 147$	$z_abs_neg_a$	$thm \ thm$	523
fin d	thm_fau	147 151	$egin{array}{c} z_abs_neg_\ z_abs_plus_ \end{array}$	thm	525 468
$find_{-}$ $format_{-}$	thm	73	$z_abs_plus_$	thm	516
gen_find _	thm	152	$z_abs_pos_$	thm	471
$gen_{ma_}$ $get_$	thm = thm	$\frac{132}{141}$	$z_aos_pos_$ $z_abs_pos_$	thm	523
get if	thm	289	$z_abs_times_$	thm	$\frac{323}{468}$
$if_rewrite_$	thm	164	$z_abs_times_$	thm	516
gen_find_	$thm_in_theories$	152	$z_abs_\le_times_$	thm	471
gen_jmu_	THM_INFO	151	$z_abs_ \leq _times_$ $z_abs_ \leq _times_$	thm	523
	THM_INFO_TEST	151	$z_abs_\mathbb{N}$	thm	468
	thm_level	135	$z_abs_\mathbb{N}$	thm	516
ListSave	Thm	131	$z_{-}aos_{-}$ $z_{-}app_{-}$	thm	460
$list_save_$	thm	142	$zapp \in zapp \in zapp \in zapp = zapp = zapp$	thm	460
.,,,,,	1		~- wpp-~-		100

$z_cov_induction_$	$\mid thm \mid$	468	$z_less_ \leq _trans_$	$\mid thm \mid$	516
$z_cov_induction_$		516	$z_less_\mathbb{Z}_less_$		449
$z_{-}div_{-}$		470	$z_less_\mathbb{Z}_less_$		521
$z_{-}div_{-}$		523	$z_minus_$		465
$z_div_mod_unique_$		468	$z_minus_$		516
$z_div_mod_unique_$		516	$z_minus_times_$		466
$z_{-}dom_{-}$		481	$z_minus_times_$	thm	516
$zdomf \longrightarrow f$	thm	457	$z_minus_\mathbb{N}_{\leq}_$	thm	467
$z_dom_f_\rightarrowtail_f_$		526	$z_{-}minus_{-}\mathbb{N}_{-}\leq_{-}$		516
$zdomf \leftrightarrowf$		456	$z_mod_$		471
$zdomf \leftrightarrowf$		526	$z_mod_$		523
$zdomf \rightarrowf$		457	$z_num_list_$		488
$zdomf \longrightarrowf$		526	$z_pigeon_hole_$		470
$z_{-}dom_{-}f_{-} \longrightarrow_{-}f_{-}$		457	zpigeonhole		523
$z_{-}dom_{-}f_{-} \longrightarrow_{-}f_{-}$		526	zplusassoc		464
$zdomf \rightarrow f$		457	zplusassoc		516
$zdomf \rightarrow f$		526	$z_plus_comm_c$		464
$z_{-}dom_{-}seq_{-}$		$487 \\ 525$	$z_{plus_comm_}$ $z_{plus_cyclic_group_}$		$516 \\ 465$
$egin{array}{c} z_{-}dom_{-}seq_{-} \ z_{-}dom_{-}seqd_{-} \end{array}$		488	zpluscyclicgroup zpluscyclicgroup		516
$z_dom_seqd_$		525	zpiuscyciicgroup zplusminus		465
z_dom_sequ _ $z_dom_ \oplus _ \mapsto _$		455	zptusminus		516
$z_dom_\oplus_\mapsto_$		526	$z_{-}plus_{-}order_{-}$		465
$z_{-}dom_{-}$		487	$z_{-}plus_{-}order_{-}$		516
			$z_{-}plus\theta_{-}$		465
$z_{-}dom_{-}$		525	$z_plus0_$		516
$z_{-}dot_{-}dot_{-}diff_{-}$		469	$z_prim_seq_induction_s$		486
$z_dot_dot_diff_\ z_dot_dot_plus_$		$523 \\ 469$	$z_prim_seq_induction_$		525
$z_dot_dot_plus_$		523	$z_{-}ran_{-}$	thm	481
$z_dot_dot_\cap$		469	$z_ran_mono_$	thm	455
$z_dot_dot_\cap_$		523	$z_ran_mono_$	thm	526
$z_dot_dot_\cup_$		469	$z_ran_seqd_$		488
$z_dot_dot_\cup_$		523	$z_ran_seqd_$		525
$z_{-}empty_{-}\mathbb{F}_{-}$		469	$zran\cup$		456
$z_empty_\mathbb{F}$		523	$z_ran_{-}\cup_{-}$		526
$zempty \rightarrow -$		458	$z_ran_{-} \triangleleft_{-}$		455
$zempty \rightarrow -$	thm	526	$z_{-}ran_{-} \triangleleft_{-}$	thm	526
$z_first_$	thm	491	z_reflex_trans	41	101
$z_first_$	thm	499	_closure_		481
$z_float_$		477	$z_rel_image_ \ z_rel_inv_$		481 481
$z_float_$		533	$z_ret_inv_$ $z_rel_inv_$		456
$z_guillemets_$		491	$z_ret_inv_$ $z_rel_inv_$		526
$z_guillemets_$		499	$z_second_$		491
$z_{-}id_{-}$		481	$z_second_$		499
$z_{-}id_{-}\!$		456	$z_seq_$		486
$z_{-}id_{-} \rightarrow $		526	$z_seq_$		525
z_if_		491	$z_seq_cases_$		487
$z_{-}if_{-}$		499	$z_seq_cases_$	thm	525
$z_int_homomorphism_$ $z_int_homomorphism_$		$465 \\ 516$	$z_seq_induction_$	thm	487
$z_tnt_nomomorphism_$ $z_less_cases_$		469	$z_seq_induction_$	thm	525
$z_less_cases_$		523	$z_seq_seq_x_$		487
$z_less_cases_$ $z_less_irrefl_$		467	$z_seq_seq_x_$		525
$z_less_irreft_$		516	$z_seq_u_$		486
$z_less_plus1_$		468	zsequ		525
$z_less_trans_$		467	$z_{-}seqd_{-}eq_{-}$		488
$z_less_trans_$		516	$z_seqd_eq_$		525
$z_less_ \leq _trans_$		467	$z_seqd_\in_seq_$	$\mid thm \mid$	488
_	•				

$z_seqd_\in_seq_$	thm	525	$z_size_\cup_\leq_$	thm	523
$z_seqd_\frown_$	thm	488	z_size_{-}	thm	487
$z_seqd_\frown_$	thm	525	$z_size_\frown_$	thm	525
$z_seqd_\cap_rw_$		488	$z_size_\mathbb{N}$	thm	470
	thm		$zsize\mathbb{N}$	thm	523
$z_seqd_r_rw_$	thm	525	$z_succ \nearrow 0 \uparrow$ _	thm	471
zsetdif	thm	491	$z_succ \nearrow 0 \uparrow$	thm	523
$z_set_dif_$	thm	499	$z_succ \nearrow minus_n \uparrow_$	thm	471
$z_sets_ext_$	thm	460	$z_succ \nearrow minus_n \uparrow_$	thm	523
$z_simple_swap_\rightarrowtail_$	thm	456	$z_succ \nearrow n \uparrow$ _	thm	471
$z_simple_swap_\rightarrowtail_$	thm	526	$z_succ \nearrow n \uparrow$ _	thm	523
$z_singleton_app_$	thm	458	$z_swap_\rightarrowtail_$	thm	456
$z_singleton_app_$	thm	526	$z_swap_\rightarrowtail_$	thm	526
$z_singleton_seq_$	thm	486	$z_times_assoc_$	thm	466
$z_singleton_seq_$	thm	525	$z_times_assoc_$	thm	516
$z_singleton_seq_x_$	thm	487	$z_times_comm_$	thm	466
$z_singleton_seq_x_$	thm	525	$z_times_comm_$	thm	516
z_size_0 _	$\mid thm \mid$	470	$z_times_eq_0_$	thm	466
z_size_0 _	$\mid thm \mid$	523	$z_times_eq_0_$	thm	516
z_size_1 _	$\mid thm \mid$	470	$z_times_less_0_$	thm	471
z_size_1 _	thm	523	$z_times_less_0_$ $z_times_less_0_$	thm	523
$z_size_2_$	thm	470	$z_times_tess_v_$ $z_times_order_$	thm	466
$z_size_2_$	thm	523	$z_times_order_$	thm	516
$z_size_diff_$	$\mid thm \mid$	470	z_times_bracer $z_times_plus_distrib_$	thm	466
z $_size$ $_diff$ $_$	$\mid thm \mid$	523	_	thm	516
$z_size_dot_dot_$	$\mid thm \mid$	470	$z_times_plus_distrib_$ $z_times0_$	thm	466
$z_size_dot_dot_$	$\mid thm \mid$	523	$z_times0_$	thm	516
$z_size_empty_$	$\mid thm \mid$	469	$z_times0_$ $z_times1_$	thm	466
$z_size_empty_$	$\mid thm \mid$	523			
$z_size_eq_$	$\mid thm \mid$	470	$z_times1_$	thm	516
$z_size_eq_$	$\mid thm \mid$	523	z_trans_closure_	thm	481
$z_size_mono_$	thm	470	$z_{-}underlining$	41	100
$z_size_mono_$	$\mid thm \mid$	523	_brackets_	thm	492
$z_size_pair_$	thm	470	$z_{-}underlining$	41	400
$z_size_pair_$	$\mid thm \mid$	523	_brackets_	thm	499
$z_size_seq_$	$\mid thm \mid$	470	$z\subseteq$	thm	491
$z_size_seq_$	thm	523	$z\subseteq$	thm	499
$z_size_seq_\mathbb{N}$	thm	486	z \subseteq \mathbb{F} \subseteq	thm	470
$z_size_seq_\mathbb{N}$	thm	525	$z\subseteq\mathbb{F}$	thm	523
$z_size_seqd_$	thm	488	<i>z</i> _ ⇒_	thm	481
$z_size_seqd_$	thm	525	2_0_	thm	481
$z_size_seqd_length_$	thm	488	z_o_≻→-	thm	456
$z_size_seqd_length_$	thm	525	z_o_≻→-	thm	526
$z_size_singleton_$	thm	470	$z_{-} \circ_{-} \rightarrow_{-}$	thm	456
$z_size_singleton_$	thm	523	$z_{-} \circ_{-} \longrightarrow_{-}$	thm	526
$z_size_singleton_seq_$	thm	487	$z_{-} \circ _{-} \longrightarrow _{-}$	thm	456
$z_size_singleton_seq_$	thm	525	$z_{-} \circ_{-} \longrightarrow_{-}$	thm	526
$z_size_{-} + + -$	thm	470	$z_{-} \circ_{-} \twoheadrightarrow_{-}$	thm	456
$z_size_ wo_$	thm	523	$z_{-} \circ_{-} \twoheadrightarrow_{-}$	thm	526
$z_size_\times_$	thm	470	$z_{-} \in app_{-}$	thm	460
$zsize\times$	thm	523	$z_{-} \in first_{-}$	thm	453
$z_size_{-} \leq 1_{-}$	thm	470	$z_{-} \in first_{-}$	thm	510
$z_size_ \stackrel{-}{\leq} _1_$	thm	523	$z_{-} \in \underline{-}second_{-}$	thm	453
$z_size_\cup_$	thm	470	$z_{-} \in _second_{-}$	thm	510
$z_size_\cup_$	thm	523	$z_{-} \in _seq_app_eq_$	thm	488
$z_size_\cup_singleton_$	thm	470	$z_{-} \in seq_{-}app_{-}eq_{-}$	thm	525
$z_size_\cup_singleton_$	thm	523	$z_{-} \in _seqd_app_eq_$	thm	488
$z_size_{-}\cup_{-}\leq_{-}$	l .	470	$z \in _seqd_app_eq_$	thm	525
	I		$z_{-} \in _succ_{-}$	$\mid thm \mid$	471

× C 20122	thm	523	$z \rightarrow app eq \Leftrightarrow \in$		
$z_{-} \in _succ_{-}$ $z_{-} \in _\to_{-}$	$egin{array}{c} thm \ thm \end{array}$	455	_rel_	thm	510
$z = \subseteq \longrightarrow$ $z = \subseteq \longrightarrow$	thm	526	$z \rightarrow app \in rel$	thm	453
$z_{-} \in \mathbb{N}_{-}$	thm	467	$z \rightarrow app \in rel$	thm	510
$z \in \mathbb{N}$	thm	516	$z \rightarrow diff_singleton$	thm	457
$z_{-} \in \mathbb{N}_{1-}$	thm	468	$z \rightarrow diff singleton$	thm	526
$z_{-} \in \mathbb{N}_{1-}$	thm	516	$z \rightarrow dom$	thm	456
$z_{-}\in \mathbb{P}_{-}$	thm	491	$z \rightarrow dom$	thm	526
$z \in \mathbb{P}$	thm	499	$z \rightarrow empty$	thm	458
z_C_n _ z_∉_	thm	491	$z \rightarrow empty$	thm	526
z-↓- z-∉-	thm	499	$z \rightarrow ran$	thm	457
~-\ z	thm	453	$z \rightarrow ran$	thm	526
$z \rightarrow z \rightarrow -$	thm	510	$z \rightarrow ran eq \Rightarrow$	thm	455
$z \rightarrow \rightarrow diff_singleton_$	thm	458	$z \rightarrow ran eq \Rightarrow$	thm	526
$z \rightarrow -diff_singleton_$	thm	526	$z \rightarrow \in _rel \Leftrightarrow _app$		
$z = w_{\perp} u_{ijj} = singteson = z_{\perp} + trans_{\perp}$	thm	456	_eq_	thm	453
$z \rightarrow z trans_{-}$	thm	526	$z_{-} \rightarrow_{-} \in -rel_{-} \Leftrightarrow_{-} app$		
z	thm	481	_eq_	thm	510
$z_{-}\varnothing_{-}$	thm	491	$z_{\mathbb{R}_0} - less_{\mathbb{R}_0} - less_{\mathbb{R}_0}$		
$z\varnothing$	thm	499	$_times_$	thm	476
$z_{-}\subset_{-}$	thm	491	$z_{\mathbb{R}}\theta_{less}\theta_{less}$		
$z_{-}\subset_{-}$	thm	499	$_times_$	thm	532
$z\cap$	thm	491	$z {\tt _R_} complete {\tt _}$	thm	475
$z\cap$	thm	499	$z\mathbb{R}complete$	thm	531
$z\cap\!$	thm	457	$z\mathbb{R}eq$	thm	475
$z\cap_{\longrightarrow}$ _	thm	526	$z\mathbb{R}eq$	thm	532
$z\cap\leftrightarrow$	thm	457	$z_{-}\mathbb{R}_{-}eq_{-}\leq_{-}$	thm	474
$z\cap\leftrightarrow$	thm	526	$z_{-}\mathbb{R}_{-}eq_{-}\leq_{-}$	thm	532
$z\cap \rightarrow$	thm	457	$z_{-}\mathbb{R}_{-}greater_{-}$	thm	532
$z\cap\to$	thm	526	$z {}\mathbb{R}_{_}less {}$	thm	531
$z\cap \rightarrowtail$	thm	457	$z_{-}\mathbb{R}_{-}less_{-}antisym_{-}$	thm	474
$z\cap \rightarrowtail$	thm	526	$z_{-}\mathbb{R}_{-}less_{-}antisym_{-}$	thm	531
$z\cap \twoheadrightarrow$	thm	457	$z_{-}\mathbb{R}_{-}less_{-}cases_{-}$	thm	474
$z\cap \twoheadrightarrow$	thm	526	$z_{-}\mathbb{R}_{-}less_{-}cases_{-}$	thm	531
$z\ominus$	thm	491	$z_{-}\mathbb{R}_{-}less_{-}dense_{-}$	thm	474
$z\ominus$	thm	499	$z_{-}\mathbb{R}_{-}less_{-}dense_{-}$	thm	531
$z\cap$	thm	491	$z_{-}\mathbb{R}_{-}less_{-}irrefl_{-}$	thm	474
$z\cap$	$\mid thm \mid$	499	$z_{-}\mathbb{R}_{-}less_{-}irrefl_{-}$	thm	531
$z\langle\rangle$	thm	487	$z_{-}\mathbb{R}_{-}less_{-}trans_{-}$	thm	474
$z\langle\rangle$	$\mid thm \mid$	525	$z_{-}\mathbb{R}_{-}less_{-}trans_{-}$	thm	531
$z\langle\rangleseq$	$\mid thm \mid$	487	$z_{-}\mathbb{R}_{-}less_{-}\neg_{-}eq_{-}$	thm	474
$z\langle\rangleseq$	thm	525	$z_{-}\mathbb{R}_{-}less_{-}\neg_{-}eq_{-}$	thm	532
$z_{-}\langle\rangle_{-}$	thm	487	$z_{-}\mathbb{R}_{-}less_{-}\leq_{-}trans_{-}$	thm	474
$z_{-}\langle\rangle_{-}$	thm	525	$z_{-}\mathbb{R}_{-}less_{-}\leq_{-}trans_{-}$	thm	532
$z_{-}\!\leftrightarrow_{-}$	thm	481	$z_{\mathbb{R}}$ _minus_	thm	533
$z_{-} \leftrightarrow_{-} ran_{-}$	thm	457	$z_{-}\mathbb{R}_{-}minus_{-}eq_{-}$	thm	475
$z \leftrightarrow ran$	thm	526	$z_{-}\mathbb{R}_{-}minus_{-}eq_{-}$	thm	533
$z \oplus$	thm	481	$z_{\mathbb{R}}$ over	thm	533
$z \oplus \mapsto app$	thm	455	$z_{-}\mathbb{R}_{-}plus_{-}$	thm	533
$z \oplus \mapsto app$	thm	526	$z_{\mathbb{R}} plus_{\mathbb{R}} \theta_{\mathbb{R}}$	thm	$475 \\ 533$
$z \oplus \mapsto \in \to$	thm	455	$z\mathbb{R}plus\theta \ z\mathbb{R}plusassoc$	thm thm	555 475
$z \oplus \mapsto \in \to$	thm	526	z _ \mathbb{R} _ $plus$ _ $assoc$ _ z _ \mathbb{R} _ $plus$ _ $assoc$ _	thm	533
$z \rightarrow$	thm	453	z _ $\mathbb{R}_p lus_comm$ _	thm	475
$z \longrightarrow$	thm	510	z _ \mathbb{R} _ $plus$ _ $comm$ _	thm	533
$z \!$	thm	453	$z_{\mathbb{R}_p lus_minus_}$	thm	475
$z \rightarrow app$	thm	510	z _ \mathbb{R} _ $plus$ _ $minus$ _ z	thm	533
$z \rightarrow app eq \Leftrightarrow \in$			z _ \mathbb{R} _ $plus$ _ $mono$ _		475
$_rel_$	$\mid thm \mid$	453	2 - 11 - p + wo - 11 + o 11 + o -		1.0

TD 1		~ 00		1	
$z_{\mathbb{R}_plus_mono_p}$		533	$z_{-} \leq_{-} antisym_{-}$	thm	516
$z_{-}\mathbb{R}_{-}plus_{-}order_{-}$	thm	475	$z_{-} \leq _{-} cases_{-}$	thm	467
$z_{-}\mathbb{R}_{-}plus_{-}order_{-}$	thm	533	$z_{-} \leq _{-} cases_{-}$	$\mid thm \mid$	516
$z \mathbb{R}_p lus unit$	thm	475	$z_{-} \leq _{-} induction_{-}$	$\mid thm \mid$	468
$z_{-}\mathbb{R}_{-}plus_{-}unit_{-}$	$\mid thm \mid$	533	$z_{-} \leq _{-} induction_{-}$	$\mid thm \mid$	516
$z {\scriptstyle _} \mathbb{R} {\scriptstyle _} real {\scriptstyle _} \theta {\scriptstyle _}$	thm	533	$z_{-} \leq less_{-}eq_{-}$	$\mid thm \mid$	468
$z_{-}\mathbb{R}_{-}real_{-}\mathbb{N}\mathbb{R}_{-}$	thm	533	$z_{-} \leq less_{-}eq_{-}$	thm	516
$z_{-}\mathbb{R}_{-}subtract_{-}$	thm	533	$z_{-} \leq less_{-} trans_{-}$	thm	467
$z_\mathbb{R}_times_$	thm	533	$z_{-} \leq less_{-} trans_{-}$	thm	516
z _ \mathbb{R} _ $times$ _ $assoc$ _	thm	476	$z_{-} \leq -plus_{-} \mathbb{N}_{-}$	thm	467
z _ \mathbb{R} _ $times$ _ $assoc$ _	thm	533	$z = plus = \mathbb{N}$ $z = plus = \mathbb{N}$	thm	516
z _R_times_comm_	thm	476	— ·	thm	467
			$z_{-} \leq refl_{-}$		
$z_{\mathbb{R}}_{times_comm_}$	thm	533	$z_{-} \leq refl_{-}$	thm	516
$z_{-}\mathbb{R}_{-}times_{-}order_{-}$	thm	477	$z_{-} \leq trans_{-}$	thm	467
$z_{-}\mathbb{R}_{-}times_{-}order_{-}$	thm	533	$z_{-} \leq trans_{-}$	thm	516
$z\mathbb{R}timesplus$			$z_{-} \leq_{-} \leq_{-} \theta_{-}$	$\mid thm \mid$	467
$_distrib_$	thm	476	$z_{-} \leq_{-} \leq_{-} \theta_{-}$	$\mid thm \mid$	516
$z_{-}\mathbb{R}_{-}times_{-}plus$			$z_{-} \leq_{-} \leq_{-} plus1_{-}$	$\mid thm \mid$	469
$_distrib_$	thm	533	$z_{-} \leq_{-} \leq_{-} plus1_{-}$	thm	523
$z_{-}\mathbb{R}_{-}times_{-}unit_{-}$	thm	476	$z_{-} \leq \mathbb{Z}_{-} \leq \mathbb{Z}_{-}$	thm	449
$z_{-}\mathbb{R}_{-}times_{-}unit_{-}$	thm	533	$z_{-} \leq \mathbb{Z}_{-} \leq \mathbb{Z}_{-}$	thm	521
$z \mathbb{R}_{-}unbounded$			$z_{-}\neq_{-}$	thm	491
above	thm	474	$z_{-}\neq_{-}$	thm	499
$z \mathbb{R}_{-}unbounded$	010110	111	z_U_	thm	491
above	thm	531	z_U_ z_U_	thm	499
		991			
$z_{-}\mathbb{R}_{-}$ unbounded	,1	477.4	z_U_ >** _	thm	456
below	thm	474	z_∪_≻ -	thm	526
$z_{-}\mathbb{R}_{-}unbounded$			$z \cup \leftrightarrow$	thm	456
$_below_$	thm	531	$z \cup \leftrightarrow$	$\mid thm \mid$	526
$z_{-}\mathbb{R}_{-}\neg_{-}less_{-}\leq_{-}$	thm	532	$z \cup \rightarrow$	$\mid thm \mid$	456
$z_{-}\mathbb{R}_{-}\neg_{-}\leq_{-}less_{-}$	thm	474	$z \cup \rightarrow$	$\mid thm \mid$	526
$z_{-}\mathbb{R}_{-}\neg_{-}\leq_{-}less_{-}$	$\mid thm \mid$	532	$z \cup \rightarrowtail$	$\mid thm \mid$	456
$z_{-}\mathbb{R}_{-}\leq_{-}$	thm	532	$z \cup \rightarrowtail$	$\mid thm \mid$	526
$z_{-}\mathbb{R}_{-} \leq_{-} antisym_{-}$	thm	474	$z \cup \twoheadrightarrow$	thm	456
$z_{-}\mathbb{R}_{-} \leq_{-} antisym_{-}$	thm	532	$z \cup \twoheadrightarrow$	$\mid thm \mid$	526
$z_{\mathbb{R}} \leq cases$	thm	474	$z + \sim$	thm	453
$z_{\mathbb{R}} \leq cases$	thm	532	$z \rightarrow \sim$	thm	510
$z_{\mathbb{R}} \leq less_{cases}$	thm	474	z \bigcup	thm	491
$z_{-}\mathbb{R}_{-} \leq less_{-}cases_{-}$	thm	532	z_U_ z_U_	thm	499
_			<u> </u>		
$z_{\mathbb{R}} \leq less_{trans}$	thm	474	$z \bigcup \mathbb{F}$	thm	470
$z_{\mathbb{R}} \leq less_{trans}$	thm	532	$z \bigcup \mathbb{F}$	thm	523
$z_{-}\mathbb{R}_{-} \leq refl_{-}$	thm	474	$z \!$	thm	453
$z_{-}\mathbb{R}_{-} \leq refl_{-}$	thm	532	$z \!$	$\mid thm \mid$	510
$z_{-}\mathbb{R}_{-} \leq_{-} trans_{-}$	$\mid thm \mid$	474	$z \!$	$\mid thm \mid$	453
$z_{-}\mathbb{R}_{-} \leq trans_{-}$	thm	532	$z \!$	$\mid thm \mid$	510
$z_{-}\mathbb{R}_{-}\leq_{-}\neg_{-}less_{-}$	thm	474	$z_{-} \longrightarrow _ran_{-}eq_{-} \longrightarrow _$	$\mid thm \mid$	455
$z_{-}\mathbb{R}_{-}\leq_{-}\neg_{-}less_{-}$	thm	532	$z_{-} \longrightarrow _{-} ran_{-} eq_{-} \longrightarrow _{-}$	$\mid thm \mid$	526
$z_{-}\mathbb{R}_{-}\geq_{-}$	thm	532	z_ ≼ _	thm	481
$z_\lnot_less_$	thm	467	$z_{-}\mathbb{F}_{-}$	thm	468
$z_\lnot_less_$	thm	516	$z_{-}\mathbb{F}_{-}$	thm	516
$z_{-}\neg_{-}\leq_{-}$	thm	467	z _ \mathbb{F} $diff$ _	thm	470
$z_{-} = z_{-}$	thm	516	$z\mathbb{F}diff$	thm	523
			z _ $\mathbb{F}empty$	thm	468
$z_{-}\neg_{-}cmpty_{-}$	thm	487			
$z_{-}\neg_{-}empty_{-}$	thm	525	$z_{-}\mathbb{F}_{-}empty_{-}$	thm	516
$z_{-}\neg_{-}\mathbb{N}_{-}$	thm	465	$z_{-}\mathbb{F}_{-}induction_{-}$	thm	469
$z_\lnot_\mathbb{N}$	thm	516	$z_{-}\mathbb{F}_{-}induction_{-}$	thm	523
z_{-g}	thm	481	$z_{-}\mathbb{F}_{-}size_{-}$	thm	469
$z_{-} \leq antisym_{-}$		467	$z_{-}\mathbb{F}_{-}size_{-}$	$\mid thm$	523
	I ······	-~•			

$z_{-}\mathbb{F}_{-}\cap_{-}$	1 thm	470	$z\mathbb{Z}eq$	thm	516
$z_{-}\mathbb{F}_{-}\cap$	$egin{array}{c} thm \ thm \end{array}$	523	$z \mathbb{Z} eq$ $z \mathbb{Z} induction$	thm	465
$z_{\mathbb{F}_{-}}\cup_{singleton_{-}}$	thm	469	$z_{-}\mathbb{Z}_{-}$ induction_	$egin{array}{c} thm \ thm \end{array}$	516
$z_{\mathbb{F}} \cup singleton_{\mathbb{F}}$	thm	523	z Z inauction z Z minus		449
z _F_O_singleton_ z _F_P_	thm	469	$z_{-}\mathbb{Z}_{-}minus_{-}$	$egin{array}{c} thm \ thm \end{array}$	521
$z_{-\mathbb{F}}$ = $z_{-\mathbb{F}}$ = $z_{-\mathbb{F}}$ = $z_{-\mathbb{F}}$	thm	523	$z \mathbb{Z} minus$ $z \mathbb{Z} one one$	thm	$\frac{321}{449}$
$z_{-\mathbb{F}_{1-}}$	thm	468	$z_{-}\mathbb{Z}_{-}$ one_one_	thm	521
$z_{-\mathbb{F}_{1-}}$	thm	516	$z_{-}\mathbb{Z}_{-}$ one $z_{-}\mathbb{Z}_{-}$ plus $z_{-}\mathbb{Z}_{-}$	thm	$\frac{321}{448}$
			$z_{-}\mathbb{Z}_{-}plus_{-}$	thm	521
z_{-}	thm	486	z_{-} Z_subtract_	thm	449
z_{-}	$\mid thm \mid$	525	$z_{-}\mathbb{Z}_{-}subtract_{-}$	thm	521
$z_ ^- assoc$	thm	487	$z_{-}\mathbb{Z}_{-}times_{-}$	thm	448
$z ^- assoc$	thm	525	$z_{-}\mathbb{Z}_{-}times_{-}$	thm	521
$z ^- def$	thm	486	$z_{-}\!$	thm	453
$z ^- def$	thm	525	$z \!$	thm	510
$z_ \cap one_one_$	thm	487	⇔_	thm	289
$z_ \cap _one_one_$	thm	525	\Leftrightarrow _rewrite_	thm	164
		487	^_	thm	203
z_{-} _ $seq_{-}x_{-}$	thm		$\land_rewrite_$	thm	$\frac{164}{205}$
$z \cap seq x$	thm	525	V_	thm	
$z_{\ _singleton_}$	$\mid thm \mid$	486	\vee _rewrite_	thm	164 206
$z_ \cap _singleton_$	thm	525		thm	$\frac{200}{289}$
$z_{-} \cap \underline{-} \in \underline{-} seq_{-}$	thm	486	¬_f_ if	$thm \ thm$	289 289
			¬_if_ 	thm	$\frac{269}{164}$
$z_{-} \cap \underline{-} \in \underline{-} seq_{-}$	thm	525	$\neg_rewrite_$ $\neg_t_$	thm	$\frac{104}{206}$
$z \widehat{} \langle \rangle$	thm	487	¬_⇔_	thm	$\frac{200}{289}$
$z \widehat{} \langle \rangle$	$\mid thm \mid$	525	¬_∧_	thm	$\frac{289}{289}$
$z \mapsto$	$\mid thm \mid$	481	¬_V_	thm	$\frac{289}{289}$
$z\mathbb{N}$	$\mid thm \mid$	465	'- V - ¬_¬_	thm	$\frac{289}{289}$
$z\mathbb{N}$	$\mid thm \mid$	516	¬_⇒_	thm	$\frac{289}{289}$
$z_{-}\mathbb{N}_{-}abs_{-}minus_{-}$	$\mid thm \mid$	468	A_ A	thm	$\frac{203}{207}$
$z\mathbb{N}absminus$	$\mid thm \mid$	516	¬_∃_	thm	208
$z_{-}\mathbb{N}_{-}cases_{-}$	$\mid thm \mid$	465	⇒_	thm	289
$z_{-}\mathbb{N}_{-}cases_{-}$	thm	516	\Rightarrow _rewrite_	thm	164
$z\mathbb{N}induction$	thm	465	\forall _rewrite_	thm	164
$z\mathbb{N}induction$	thm	516	$\exists_{-}intro_{-}$	thm	213
$z\mathbb{N}plus$	thm	465	\exists _rewrite_	thm	164
$z_{-}\mathbb{N}_{-}plus_{-}$	thm	516	\exists_{1}	thm	216
$z\mathbb{N}plus1$	thm	465	β _rewrite_	thm	164
$z\mathbb{N}plus1$	thm	516	$\mathbb{Z}_{-}z_{-}minus_{-}$	thm	449
$z\mathbb{N}times$	thm	466	$\mathbb{Z}_{-}z_{-}minus_{-}$	thm	521
$z_{-}\mathbb{N}_{-}times_{-}$	thm	516	$\mathbb{Z}_{-}z_{-}one_{-}one_{-}$	thm	449
$z_{-}\mathbb{N}_{-}\neg_{-}minus_{-}$	thm	466	$\mathbb{Z}_{-}z_{-}one_{-}one_{-}$	thm	521
$z_{-}\mathbb{N}_{-}\neg_{-}minus_{-}$	thm	516	$\mathbb{Z}_{-}z_{-}plus_{-}$	thm	449
$z_{-}\mathbb{N}_{-}\neg_{-}plus1_{-}$	thm	465	$\mathbb{Z}_{-}z_{-}plus_{-}$	thm	521
$z_{-}\mathbb{N}_{-}\neg_{-}plus1_{-}$	thm	516	$\mathbb{Z}_{-}z_{-}subtract_{-}$	thm	449
$z \rightarrow \!\!\!\! -$	thm	453	$\mathbb{Z}_{-}z_{-}subtract_{-}$	thm	521
$z \rightarrow -$	thm	510 457	$\mathbb{Z}_{-}z_{-}times_{-}$	thm	449
$z \rightarrow ran$	thm	457 526	$\mathbb{Z}_{-}z_{-}times_{-}$	thm	521
$z \rightarrow ran$	thm	$526 \\ 491$	$format_$	thm1	73
$z\mathbb{P}_{1-}$	$egin{array}{c} thm \ thm \end{array}$	491 499	zid	thm1	456
$z_{-}\mathbb{P}_{1-}$ $z_{-}\triangleleft_{-}$	$thm \ thm$	499 481	$z_id_$	thm1	526
$z_{-} \triangleleft_{-}$ $z_{-} \triangleleft_{-} \rightarrow_{-}$	thm	455	$z_plus_assoc_$	thm1	465
$z_{-} \triangleleft_{-} \rightarrow_{-}$ $z_{-} \triangleleft_{-} \rightarrow_{-}$	thm	526	$z_plus_assoc_$	thm1	516
$z_{-} = - \rightarrow_{-}$ $z_{-} \mathbb{Z}_{-} cases_{-}$	thm	465	$z_seq_$	thm1	486
$z_{-}\mathbb{Z}_{-}cases_{-}$	thm	516	$z_seq_$	thm1	525
z Z cases z Z eq		465	$z_seq_induction_$	thm1	487
~_W_EY_	010110	400			

z size dot dot than! 470 pp'set eval ad = 2.d. thms 330 z size dot, dot. than! 470 pp'set eval ad = 3.d. thms 331 thms 331 z size seq. than! 486 set = 2.d. thms 339 thms 331 thms 332 thms 339 z size seq. than! 486 set = 3.d. thms 339 thms 331 thms 332 thms 339 thms 332 thms 339 thms 332 thms 339 thms 332 thms 339 thms 332 thm 332 thms 332 thms 332 thm 332 thms	a and industion	1 + h m 1	525	nml act and ad ad	$\mid thms$	330
2. size. dot. dot. thun! 523 set. ∃. ed. thuns 339 2. size. seq. thun! 525 subgoal. package. 2. times. assoc. thun! 516 TIMED. 3. times. assoc. thun! 516 TIMED. 4. times. assoc. thun! 516 TIMED. 3. times. assoc. thun! 516 TIMED. 4. times. assoc. times. assoc. thun! 516 TIMED. 3. times. assoc. times. times. assoc. thun! 516 TIMED. 4. times. assoc. times. times. assoc. times. times. assoc. times. 5. times. assoc. times. times. assoc. times. times. assoc. times. 5. times. assoc. times. times. assoc. times. times. assoc. times. 5. times. assoc. times. times. assoc. times. times. assoc. times. times. 5. times. assoc. times. times. assoc. times. times. assoc. times. times. times. assoc. times. 5. times. assoc. times. times. assoc. times. times. assoc. times. times. assoc. times. times. assoc. times. times. assoc. times. times. assoc. times. times. assoc. times. times. assoc. times. times. assoc. times. times. comm. times. times. comm	-					
z . size . seq thml 486 set ∃ us thms 340 z . size . seq thml 466 subgoal package . time context 222 z . times . assoc. thml 466 TIMBD 54 z . ⊆ . times . diml 491 TIMBE UNITS 54 z . ⊆						
z_times_assoc_thm1		1				
z_times_assoc_thm1		1				
z_times_assoc_thm1	-	1		savyvai_packaye_		
Z_C thm1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Z = P thm				~		
2						
2						
z_R_plus_assoc_thm1		1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1				
z R. plus mono z R. plus mono thm1 533 z. R. times assoc. thm1 533 z. L. times clauses 516 z.R. times assoc. thm1 533 z. L. times clauses 516 z. times clauses 477 times clauses 533 z. R. times clauses 533 x. R. times comm.thm 466 x. R. times comm.thm 516 x. F. size tim1 523 z. x. F. size tim1 523 z. x. F. size tim1 523 z. x. R. times conv 518 x. F. size tim1 523 z. x. R. times conv 518 x. F. size tim1 525 dest. z. x. assoc. tim1 487 z. x. assoc tim1 487 z. x. singleton tim1 486 is.z. x. with times conv 518 x. x. times def 535 x. times eq. 0. thm 416 x. assoc times eq. 0. thm 516 x. times conv 518 x. t	-	1				
z	-					
z_R_times_assoc_thm1	_					
z.R. times_assoc. thm1 533 z.R. times_clauses 477 z.+- thm1 453 z.R. times_clauses 533 z thm1 456 z. times_comm.thm 466 z thm1 456 z. times_comm.thm 476 z thm1 469 z.R. times_comm.thm 516 z thm1 523 z. times_comm.thm 533 z size. thm1 470 z.R. times_comv 518 z assoc. thm1 487 z.R. times_comv 518 z singleton. thm1 487 z.R. times_comv 518 z seq. thm1 486 is.z.r. times_conv 518 z seq. thm1 486 is.z.r. times_conv 516 times_conv 516 times_conv 51						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$dest_{-}z_{-}$, and the second	513
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$dest_{-}z_{-}\mathbb{R}_{-}$	times	530
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		thm1	487		$times_eq_0_thm$	466
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$z \cap _singleton$	thm1	525	z_{-}	$times_eq_0_thm$	516
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$z_{-} \cap _{-} \in _{-} seq_{-}$	thm1	486	$is_z_$	times	513
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		thm.1	525	$isz\mathbb{R}$	times	530
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-			z_{-}	$times_less_0_thm$	471
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				z_{-}	$times_less_0_thm$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					times	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$mkz\mathbb{R}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1		z_{-}		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$z_size_seq_$	thm2	486	$z\mathbb{R}$		533
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		thm2	525	z_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$z_{-}\mathbb{R}_{-}plus_{-}mono_{-}$	thm2	475			466
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$z_{-}\mathbb{R}_{-}plus_{-}mono_{-}$	thm2	533	z_{-}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$z \!$	thm2	455	TI.		516
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$z \!$	thm2	526	$z_{-}\mathbb{R}_{-}$	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$add_rw_$	thms	338	ш		476
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$add_sc_$	thms	338	$z_{-}\mathbb{R}_{-}$		F00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$add_st_$	thms	339	0.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		thms				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		thms				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$current_ad_\exists_vs_$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		thms				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
15 1111115 15 17 17 17 17 17 17 17 17 17 17 17 17 17	-					
$LSAD \mid Thms$ 75 $z_minus_\mid times_tim$ 516						
	LSAD	$\mid Thms$	75	Z_111111US_	tonics_titll	910

$z\mathbb{R}$	$ times_thm $	533		$trans_thm$	532
$z_{\mathbb{R}}0_{less}0_{less}$	$ times_thm $	476	$z_{-}\mathbb{R}_{-} \leq less_{-}$	$trans_thm$	474
$z_{\mathbb{R}_0} - less_{\mathbb{R}_0} - less_{\mathbb{R}_0}$	$ times_thm $	532	$z_{-}\mathbb{R}_{-} \leq _{-}less_{-}$	$trans_thm$	532
$z\mathbb{N}$	$ times_thm $	466	$z \leq$	$trans_thm$	467
$z\mathbb{N}$	$ times_thm $	516	$z_{-} \leq_{-}$	$trans_{-}thm$	516
$z\mathbb{Z}$	$ times_thm $	448	$z_{-} \leq _{-} less_{-}$	transthm	467
$\underline{z}\mathbb{Z}$	$ times_thm $	521	$z_{-} \leq _{-} less_{-}$	transthm	516
$\mathbb{Z}_{-}z_{-}$	$ times_thm $	449		$translate_for_output$	66
$\mathbb{Z}_{-}z_{-}$	$ times_thm $	521	fun_{-}	true	28
$z\mathbb{R}$	$ times_unit_thm $	476	isz	true	370
$z\mathbb{R}$	$ times_unit_thm $	533	mkz	true	370
z_{-}	$ times0_thm $	466	Z	True	360
z_{-}	$times0_thm$	516		$\mid TRY$	280
z_{-}	$ times1_thm $	466		$\mid TRY_{-}C$	199
z_{-}	$times1_thm$	516	$THEN_{-}$	$TRY_{-}C$	199
	Timing	54	$THEN_{-}$	TRY_LIST_T	279
	$\mid tl \mid$	22	$THEN_{-}$	TRY_LIST	279
HTAq	$\mid Tm$	70		$TRY_{-}T$	280
	to	26	$THEN_{-}$	$TRY_{-}T$	279
$delete_$	to_level	135	$THEN_{-}$	$\mid TRY$	279
	to_ML_string	66		TRY_TTCL	280
$basic_res_next_$	$to_process$	308	$THEN_{-}$	$\mid TRY_TTCL$	279
α_{-}	to_z_conv	416		TSAncestor	119
α_{-}	to_z	417		TSDeleted	119
HOL_{-}	TOKEN	70		TSLocked	119
$modus_$	tollens_rule	176		TSNormal	119
	TooManyReadEmpties	57	pp'	$\mid TS$	221
Net	Tools	117	$all_submatch_$	$\mid tt$	152
ZArithmetic	Tools	519	$all_substring_$	$\mid tt$	152
	TOP_ASM_T	280	$all_subterm_$	$\mid tt$	152
	$top_current_label$	228	$any_submatch_$	$\mid tt$	152
	$ top_goal $	229	$any_substring_$	$\mid tt$	152
	top_goal_state	229	$any_subterm_$	$\mid tt$	152
	$top_goal_state_thm$	228	o a constant of the constant o	TTAxiom	151
	top_goals	228		TTDefn	151
	$top_labelled_goal$	229	$no_submatch_$	tt	152
pp	top_level_depth	73	$no_substring_$	tt	152
<i>FF</i> -	top_main_goal	229	$no_subterm_$	$\begin{vmatrix} t \\ tt \end{vmatrix}$	152
	TOP_MAP_C	199		TTSaved	151
	top_thm	229	$EVERY_{-}$	TTCL	242
LS	Trailer	75	$FIRST_{-}$	TTCL	244
z_{-}	$trans_closure_clauses$	482	$ORELSE_{-}$	TTCL	257
z	$trans_closure_thm$	481	$REPEAT_{-}$	TTCL	262
$z_reflex_$	$trans_closure_thm$	481	THEN_	TTCL	$\frac{202}{279}$
eq_{-}	trans_rule	165	$THEN_TRY_$	TTCL	279
KIEq	TransRule	129	TRY_{-}	TTCL	280
\Rightarrow_{-}	$trans_rule$	209	$dest_{-}z_{-}$	tuple	370
$z_less_$	$trans_thm$	467	$acst_{-}z_{-}$ z_{-}	$tuple_eq_conv$	506
$z_less_$	$trans_thm$	516	z	$tuple_eq_conv1$	507
$z_{-}less_{-} \leq_{-}$	$trans_thm$	467		$tuple_intro_conv$	507
$z_less_ \le _$ $z_less_ \le _$	$trans_thm$	516	z is z	tuple tuple	370
$z_tess_ \subseteq $ $z_ \rightarrowtail _$	$trans_thm$	456		$tuple_lang_eq_conv$	427
$z \rightarrow \longrightarrow z \rightarrow \longrightarrow -$	$trans_thm$	$\frac{450}{526}$	z_ ~	$tuple_lang_eq_conv$ $tuple_lang_intro_conv$	$\frac{427}{427}$
z _ $\mathbb{R}_{-}less$ _	$trans_thm$	$\frac{320}{474}$	z_{-}		$\frac{427}{370}$
z _ \mathbb{R} _ $less$ _ z _ \mathbb{R} _ $less$ _			mkz	tuple tuple	
	trans_thm	531	$dest_{-}z_{-}$	tuple_type	370
$z_{\mathbb{R}} less_{\leq}$	trans_thm	474	is_z_ mk_~	tuple_type	370
$z_{\mathbb{R}} less_{\mathbb{R}} \leq \mathbb{R}$	trans_thm	532	mkz	tuple_type	370
z_{\perp} K_ \leq _	trans thm	474	Z	$\mid Tuple Type$	360

Z	Tuple	360	mkz	type	370
'z_	tuples	502	mkzgiven	type	366
'z_	$tuples_lang$	420	$mk_{-}z_{-}power_{-}$	type	367
HTAq	Ty	70	$mk_{-}z_{-}schema_{-}$	type	368
$term_{-}^{2}$	tycons	114	mkztuple	type	370
$type_{-}$	tycons	116	mkzvar	type	370
\gp \c_=	Type	70	$mk \rightarrow$	type	106
	TYPE	80	$mk \times$	type	108
$declare_$	$type_abbrev$	124	New	Type	131
$expand$ _	$type_abbrev$	124	new	type	145
get_{-}	$type_abbrev$	126		$type_of$	115
is	$type_abbrev$	127	z_{-}	type_of	399
$undeclare_$	$type_abbrev$	128		type_order	303
get_{-}	$type_abbrevs$	127	$RES_DB_$	TYPE	305
$get_undeclared_$	$type_abbrevs$	127	$asm_inst_$	$type_rule$	159
LS	TypeAbbrevs	· 75	inst	$type_rule$	173
LSUndeclared	TypeAbbrevs	75	KIInst	TypeRule	129
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$type_any$	115	show	type	74
get	$type_arity$	141	$string_of_$	type	109
$BASIC_RES_$	TYPE	305	$strip_{\longrightarrow}_$	type	111
$compact_{-}$	type	133	get_{-}	type_theory	142
New	TypeDefn	131	THM_{-}	TYPE	151
new	$type_defn$	145	111111 _	type_tycons	116
Delete	Type	131		type_tyvars	116
$delete_{-}$	type	136	UD	Type	119
DEST_SIMPLE_	TYPE	79	Z_{-}	TYPE	360
$dest_simple_$	type	85	ZGiven	Type	360
$dest_simple_$	type	362	ZPower	Type	360
$dest_z_given_$	type	366	ZSchema	Type	360
$dest_z_given_$ $dest_z_power_$	$\begin{vmatrix} type \\ type \end{vmatrix}$	367	$z_{-}term_{-}of_{-}$	type	399
$dest_z_schema_$	$\left egin{array}{c} type \end{array} ight $	368	Z _term_oj_ Z Tuple	Type	360
$dest_z_senema_$ $dest_z_tuple_$		370	Z T u p t e $Z V a r$	Type $Type$	360
$dest_z_var_$	type	370 370			74
$dest_ = dest_ = dest$	type	87	format	type1 TypesAndTerms	79
$dest_ imes _$ $dest_ imes _$	type	89	mm/	TypesAndTerms TypesAndTerms	79 79
$aest_ \times _$	$egin{array}{c} type \ type_fail \end{array}$	115	$pp' \ Z$	TypesAndTerms TypesAndTerms	359
format	"- "	74		· -	359 141
$format_{-}$	type		get_{-}	types	
$get_const_ICL'DATABASE$	type	139	LS	Types	75 75
INFO	TVDE	40	LSAD	Types	75
	TYPE	48	term_	types	114
get_{-}	$type_info$	127	UtilityShared	Types	19
inst	type	90	$term_{-}$	tyvars	114
is	type_instance	93	$type_{-}$	tyvars	116
$is_all_z_$	type	382	$z_{-}\in$	u_conv	401
<i>is_z_</i>	type	363	$dest_{-}$	u	363
$is_z_given_$	type	366	$z_gen_pred_$	uelim	392
$is_z_power_$	type	367	is_{-}	u	363
$is_z_schema_$	type	368	mk	u	363
$is_z_tuple_$	type	370	,	$u_simp_eqn_cxt$	384
$is_z_var_$	type	370	get	$u_simp_eqn_cxt$	383
$is_{\longrightarrow}_$	type	94	set	$u_simp_eqn_cxt$	383
$is_{-}\times_{-}$	type	95	theory	$u_simp_eqn_cxt$	383
get_{-}		141	$z_seq_$	uthm	486
$list_mk_{\longrightarrow}_$	type	97	zseq	$u_{-}thm$	525
	$type_map$	115	$z\mathbb{R}$	ubdef	535
	$type_match$	115	-	ub_{R-}	473
	$type_match1$	115	_	$_{-}ub_{R-}$	473
$mk_simple_$	$\mid type$	104	$_{-}ub_{R}$	-	473

(_	$ ub_{R-})$	472	look	$ up_named_reader $	64
`	UD_Int	119	look	$up_specific_reader$	64
	UD_String	119		update	37
	UD_Term	119		update	38
	$UD_{-}Type$	119		$use_extended_chars$	56
	uindex	36	get	$use_extended_chars$	00
	uindex	38	get	_flag	63
$z _ \mathbb{R}$	$unbounded_above_thm$	474		use_file	66
z _ \mathbb{R}	$unbounded_above_thm$	531		$use_file_non_stop$	00
z _ \mathbb{R}	$unbounded_below_thm$	474		_mode	56
z _ \mathbb{R}	$unbounded_below_thm$	531		use_file1	66
2_11/2_		29		use_string	66
$all_\forall_$	uncurry	156		$use_terminal$	66
$all_\exists_$	$uncurry_conv \ uncurry_conv$	156	reset	$use_terminal$	65
A_	$uncurry_conv$	212	10300_	$user_banner$	49
V		214		USER_DATA	121
⊒_	uncurry_conv	$\frac{214}{128}$		USER_DATUM	119
	$undeclare_alias \ undeclare_terminator$		ant		
		128	get_{-}	$user_datum$	142
,	$undeclare_type_abbrev$	128	Set	UserDatum	131
get_{-}	undeclared_aliases	127	set_{-}	user_datum	147
LS	UndeclaredAliases	75	Character	Utilities	31
get	undeclared	40-	Function	Utilities	28
T 0	_terminators	127	List	Utilities	20
LS	Undeclared Terminators	75		UtilitySharedTypes	19
get	$undeclared_type$	105		$v_{-}\exists_{-}intro$	200
T. C.	$_abbrevs$	127		$valid_thm$	148
LS	UndeclaredTypeAbbrevs	75	e.	Value	19
z'	$underlining_brackets$	400	$force_{-}$	value	21
	$_{-}def$	498	D	Var	79
z_	$underlining_brackets$	400	D	Var	80
	$_{-thm}$	492	dest	var	87
z_{-}	$underlining_brackets$	400	A T T	VAR_ELIM_ASM_T	281
	thm	499	ALL{-}	$VAR_ELIM_ASM_T$ $VAR_ELIM_ASM_T1$	232
	$undisch_rule \ undo$	199 230	ALL_{-}	$egin{array}{c} VAR_ELIM_ASM_III \ var_elim_asm_tac \end{array}$	$232 \\ 281$
		$\frac{230}{222}$	~11	$var_elim_asm_tac$	$\frac{231}{232}$
4	$undo_buffer_length$		all_{-}		
$term_{-}$	unify	314	all	var_elim_asm_tac1	232
7	$\lfloor union \rfloor$	27		VAR_ELIM_NTH	001
$list_{-}$	$\left egin{array}{c} union \ \cdot \end{array} ight $	24		$_ASM_T$	281
$list_term_$	union	99	, 1 11	$var_elim_nth_asm_tac$	281
$term_{-}$	union	114	$get_shell_$	var .	48
zdivmod	$unique_thm$	468	$is_free_$	$ var_in $	92
zdivmod	$unique_thm$	516	<i>is</i>	var	94
$z_{-}\mathbb{R}_{-}plus_{-}$	$unit_thm$	475	mk	var	106
$z_{-}\mathbb{R}_{-}plus_{-}$	$unit_thm$	533	,	var_subst	116
$z_{-}\mathbb{R}_{-}times_{-}$	$unit_thm$	476	$dest_{-}z_{-}$	var_type	370
$z_{-}\mathbb{R}_{-}times_{-}$	$unit_thm$	533	isz	var_type	370
$TIMER_{-}$	UNITS	54	mkz	var_type	370
Sym	UnknownChar	57	Z	VarType	360
Sym	UnknownKw	57	ZG	Var	360
	UnlockTheory	131	ZL	Var	360
	$unlock_theory$	148		$\left variant \right $	116
get	$unproved_conjectures$	149	list	variant	99
$REPEAT_{-}$	UNTIL	262	string	variant	109
$REPEAT_{-}$	UNTIL_T	262	get	$variant_suffix$	90
$REPEAT_{-}$	UNTIL_T1	262	set	$variant_suffix$	109
$REPEAT_{-}$	UNTIL1	262	varstruct	variant	200
look	$ up_general_reader $	64	gen	vars	90

	I	111	$oldsymbol{V}$	V	400
$term_{-}$	vars	114	$X \rightarrowtail$	Y	462
λ_{-}	$varstruct_conv$	220	$X \Longrightarrow$	Y	462
	$varstruct_variant$	200	$X \leftrightarrow$	Y	489
	Vartype	79	$X \rightarrow$	Y	489
dest	vartype	87	X woheadrightarrow	Y	452
is	vartype	93	$X \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Y	452
mk	vartype	105	$X \rightarrowtail$	Y	452
PP	Vector	42	$X \rightarrow\!$	Y	452
HT	Vert	70	$X \rightarrowtail$	Y	452
$current_ad_\exists_$	vs_thms	331	$(\circ_{-})[X,$	[Y, Z]	478
$get_{-}\exists_{-}$	vs_thms	340	$\binom{\circ}{-g-}[X,$	[Y, Z]	478
$pp'set_eval_ad_\exists_$	vs_thms	331	$(_ \triangleright _)[X,$	Y]	478
$set _ \exists _$	vs_thms	340	$(_\triangleright_)[X,$	Y]	478
	warn	52	$(_{-}((_{-}))[X,$	Y]	478
$ONCE_MAP_$	$WARN_{-}C$	177	$(_{-}\oplus_{-})[X,$	Y	478
local	warn	64	$(- \Leftrightarrow -)[X,$	Y	478
	Warning	52	$(-\nearrow \sim \uparrow)[X,$	Y	478
$ill formed_rewrite_$	warning	153	$(_\mapsto_)[X,$	Y	478
$tactic_subgoal_$	warning	222	$(\neg \triangleleft \neg)[X,$	Y	478
v	which	27	(((())) [X,	Y	489
is	$ _{white}$	64	dom[X]	Y	478
Sym	White	57	first[X,	Y	489
$fail_{-}$	$with_canon$	166	ran[X,	Y	478
$fail_{-}$	$with_conv$	166	second[X],	Y	489
fail	$with_tac$	243	sccona[n],	$\begin{bmatrix} z_{-}\theta_{-}less_times_thm \end{bmatrix}$	471
$FAIL_{-}$	WITH_THEN	243		$z_0=less_times_thm$	523
$abandon_reader_$	writer	59		$z_0 = tess_t times_t times_t$ $z_0 = N_t thm$	$\frac{323}{465}$
HOLReader	Writer	55		$z_0 = \mathbb{N}_1 thm$	516
Reader	Writer	55		$z_{-}abs_{-}\theta_{-}less_{-}thm$	
Reader	WriterSupport	55			471
	X	450		$z_abs_0_less_thm$	523
bag	$\begin{pmatrix} X \\ X \end{pmatrix}$	478	1 1	z_abs_conv	518
id			dest	$z_{-}abs$	513
iseq	X	483		zabseq0thm	468
seq	X	483		$zabseq\thetathm$	516
seq_1	X	483	is	$z_{-}abs$	513
$z_seq_seq_$	xthm	487		zabsminusthm	468
$z_seq_seq_$	xthm	525		zabsminusthm	516
$z_singleton_seq_$	xthm	487	mk	zabs	514
$z_singleton_seq_$	xthm	525		$z_abs_neg_thm$	471
$z \widehat{\ } seq$	xthm	487		$z_abs_neg_thm$	523
$z \cap _seq$	xthm	525		$z_abs_plus_thm$	468
-	$X \rightarrow Y$	452		$z_abs_plus_thm$	516
	$X \rightarrow \longrightarrow Y$	462		$z_abs_pos_thm$	471
	$X \rightarrow Y$	462		$z_abs_pos_thm$	523
	$X \leftrightarrow Y$	489		z_abs_thm	468
	$X \to Y$	489		zabsthm	516
	$X \rightarrow Y$	452		$z_abs_times_thm$	468
	$X \rightarrow Y$	452		$z_abs_times_thm$	516
	$X \mapsto Y$	452		$z_abs_{\leq_times_thm}$	471
\mathbb{F}	X	462		$z_abs_{\leq_times_thm}$	523
\mathbb{F}_1	X X	462		$zabs\mathbb{N}thm$	468
ш 1	$X \rightarrow Y$	452		$zabs\mathbb{N}thm$	516
\mathbb{P}_1	$X \longrightarrow X$	489		zanfconv	520
<u>н</u> <u>1</u>	$X \mapsto Y$	452		ZApp	360
	$\begin{vmatrix} x & y & y \\ xpp & y \end{vmatrix}$	11		zappconv	421
$(_partition_)[I,$	$\begin{bmatrix} xpp \\ X \end{bmatrix}$	483	dest	zapp	363
(- / - / - / - / - / - / - / - / - / -	$\begin{bmatrix} X \\ X \end{bmatrix}$	483		zappeqtac	422
$(aisjoint)[1, X \rightarrow X)$		452	is	zapp	363
Λ	1	404			

mk_{-}	zapp	363		$ z_div_mod_unique $	
77070 _	$\begin{vmatrix} z - app \\ z - app - thm \end{vmatrix}$	460		_thm	468
	$\begin{vmatrix} z - app - thm \end{vmatrix}$	460		$z_{-}div_{-}mod_{-}unique$	100
	$\begin{vmatrix} z_{-}app_{-}\lambda_{-}rule \end{vmatrix}$	422		_thm	516
	$\begin{vmatrix} z - arp - \lambda - r & arc \\ z - arith - def \end{vmatrix}$	518		$\begin{vmatrix} z div thm \end{vmatrix}$	470
	ZArithmetic Tools	519		$\begin{vmatrix} z div thm \\ z div thm \end{vmatrix}$	523
	$\begin{vmatrix} zbagdef \end{vmatrix}$	528		$\begin{vmatrix} z_{-}ave_{-}vivv \\ z_{-}dom_{-}clauses \end{vmatrix}$	481
	ZBags	526		$\begin{vmatrix} z_{-}dom_{-}def \end{vmatrix}$	507
	$\begin{vmatrix} z_basic_prove_conv \end{vmatrix}$	385		$\begin{vmatrix} z domf & \\ z domf & \\ & \end{vmatrix}$	457
	$\begin{vmatrix} z_basic_prove_tac \end{vmatrix}$	386		$\begin{vmatrix} z dom f & -f thm \end{vmatrix}$	526
BdzNot	Z	359		$\begin{vmatrix} z dom f & -f thm \end{vmatrix}$	456
	ZBinding	360		$z_{-}dom_{-}f_{-}\leftrightarrow_{-}f_{-}thm$	526
dest	$\begin{vmatrix} z_{-}binding \end{vmatrix}$	364		$\begin{vmatrix} z dom f \rightarrow f thm \end{vmatrix}$	457
	$z_binding_eq_conv$	423		$z_{-}dom_{-}f_{-}\rightarrow_{-}f_{-}thm$	526
	$z_binding_eq_conv1$	423		$zdomf \longrightarrowfthm$	457
	$z_binding_eq_conv2$	423		$zdomf \longrightarrow fthm$	526
	$z_binding_eq_conv3$	506		$z_{-}dom_{-}f_{-} \rightarrow f_{-}thm$	457
is	$ z_b $	364		$z_{-}dom_{-}f_{-} \rightarrow f_{-}thm$	526
mk_{-}	$ z_binding $	364		$z_{-}dom_{-}seq_{-}thm$	487
	$z_bindingd_elim_conv$	422		$z_{-}dom_{-}seq_{-}thm$	525
	$z_bindingd_intro_conv$	423		$z_{-}dom_{-}seqd_{-}thm$	488
/	$z_bindings$	421		$z_{-}dom_{-}seqd_{-}thm$	525
$check_is_$	z	381		$z_{-}dom_{-}thm$	481
\mathbb{Z}_{-}	$z_{-}consistent$	448		$zdom \oplus \mapsto thm$	455
$check_is_$	$z_{-}conv_{-}result$	381		$zdom\oplus\mapstothm$	526
αto	$ z_conv $	416		$z_{-}dom_{-}$ _thm	487
\mathbb{Z}_{-}	$ z_conv $	521		$z_{-}dom_{-}$ _thm	525
	z_count_def	528		$\begin{vmatrix} z_{dom}_ & z_{mm} \\ z_{dot}_{dot}_{clauses} \end{vmatrix}$	$\frac{323}{469}$
	$ z_cov_induction_tac $	514		$\begin{vmatrix} z_{dot_dot_clauses} \\ z_{dot_dot_clauses} \end{vmatrix}$	523
	$z_cov_induction_thm$	468		$\begin{vmatrix} z_{-}aot_{-}aot_{-}ciauses \\ z_{-}dot_{-}dot_{-}conv \end{vmatrix}$	523
	$z_{-}cov_{-}induction_{-}thm$	516		$\begin{vmatrix} z aot aot conv \\ z dot dot def \end{vmatrix}$	518
	ZDec	360		$\begin{vmatrix} z dot dot dot diff thm \end{vmatrix}$	469
$dest_$	z dec	365		$\begin{vmatrix} z dot dot diff thm \end{vmatrix}$	523
is	$z_{-}dec$	365		$\begin{vmatrix} z dot dot dot plus thm \end{vmatrix}$	469
mk	z dec	365		$\begin{vmatrix} z_dot_dot_plus_thm \\ z_dot_dot_plus_thm \end{vmatrix}$	523
	$z_{-}dec_{-}pred_{-}conv$	389		$\begin{vmatrix} z dot dot thm \end{vmatrix}$	469
	$z_{-}dec_{-}rename_{s_{-}}conv$	433		$z_{-}dot_{-}dot_{-}\cap_{-}thm$	523
	ZDecl	360		$z_{-}dot_{-}dot_{-}\cup_{-}thm$	469
,	zdecl	380		$z_{-}dot_{-}dot_{-}\cup_{-}thm$	523
	Z_DECL_C	387	1	$z_{-}elementwise_{-}eq$	503
dest	$z_{-}decl$	364		$z_{-}empty_{-}\mathbb{F}_{-}thm$	469
	$Z_{-}DECL_{-}INTRO_{-}C$	387		$zempty\mathbb{F}thm$	523
is	$z_{-}decl$	364		$zempty \rightarrow thm$	458
mk	$z_{-}decl$	364		$zempty \rightarrow thm$	526
	$z_{-}decl_{-}pred_{-}conv$	388		ZEq	360
	$ZDecor_s$	360	dest	$z_{-}eq$	365
1 ,	$z_{-}decor_{s-}conv$	433	is	$ z_eq $	365
$dest_{-}$	$z_{-}decor_{s}$	364	mk	z eq	365
is_{-}	$z_{-}decor_{s}$	364		ZExpressions	418
mk_{-}	$z_{-}decor_{s}$	364		ZFalse	360
\mathbb{Z}_{-}	z def	521	is	$z_{-}false$	365
	$z_{-}defn_{-}simp_{-}rule$	424	mk	$z_{-}false$	365
	$z_disjoint_def$	522 518	/	$z_{-}fc$	380
14	$\begin{vmatrix} z div conv \\ z div \end{vmatrix}$	518 513		$z_{fc_prove_conv}$	389
$dest_{-}$	$\begin{vmatrix} z aiv \\ z div \end{vmatrix}$	513		$z_{-}fc_{-}prove_{-}tac$	390
is				$z_{-}first_{-}def$	498
mk	zdiv	514		$z_{-}first_{-}thm$	491
				$z_{-}first_{-}thm$	499

	ZFloat	360		$ z_id_{\rightarrow}\rightarrow_t thm $	456
	z_{-float_conv}	531		$z_i d_{\rightarrow} \rightarrow thm$	526
$dest_{-}$	$z_{-}float$	365	dest	$z_{-}if$	496
is	$z_{-}float$	365	is	$z_{-}if$	496
mk	z_{-} float	365	mk	$z_{-}if$	496
	z_{-} float_thm	477		zifthm	491
	z_{-} float_thm	533		$z_{-}if_{-}thm$	499
	z_{-} front_def	522		$z_i n_d ef$	528
,	z_fun_alg	509		$z_inequality_def$	518
	$z_fun_app_clauses$	454		ZInt	360
	$z_fun_app_clauses$	510	dest	$ z_{-}int $	366
	$z_fun_dom_clauses$	454		$z_int_homomorphism$	
	$z_{fun_dom_clauses}$	510		$_{-}thm$	465
	zfunext	509		$z_int_homomorphism$	
	$z_{-}fun_{-}ran_{-}clauses$	454		$_{ extstyle -} thm$	516
	$z_{-}fun_{-}ran_{-}clauses$	510	is	$z_{-}int$	366
	$z_{-}fun_{-} \in _clauses$	454	mk_{-}	$z_{-}int$	366
	$z_{-}fun_{-} \in _clauses$	510		$z_intro_gen_pred_tac$	394
	ZFunctions	507		$z_intro_\forall_tac$	394
	ZFunctions 1	522	is	z	382
	$z_gen_pred_elim$	391		z_iseq_def	522
	$z_gen_pred_elim1$	391		$z_{-}items_{-}def$	528
	$z_gen_pred_intro$	391		z_iter_def	518
	$z_gen_pred_tac$	391		z _ $language$	503
	zgenpreduelim	392		$z_language_ext$	504
	z_get_spec	393		$z_{-}last_{-}def$	522
	ZGivenType	360		$Z_{-}LEFT_{-}C$	424
dest	z_given_type	366		$z_less_cases_thm$	469
	z_given_type	366		$z_less_cases_thm$	523
	z_given_type	366		$z_less_clauses$	467
$check_is_$	$ z_{-}goal $	381		$z_less_clauses$	516
dest	$z_{-}greater$	513		z_less_conv	518
is	$z_{-}greater$	513	dest	z_less	513
	$z_greater_less_conv$	518		$z_less_irrefl_thm$	467
mk_{-}	$z_{-}greater$	514		$z_less_irrefl_thm$	516
	$z_guillemets_thm$	491	is_{-}	z_less	513
	$z_guillemets_thm$	499	mk_{-}	$z_{-}less$	514
$dest_{-}$	$z_{-}gvar$	366		$z_{-}less_{-}plus1_{-}thm$	468
is_{-}	$z_{-}gvar$	366		$z_less_trans_thm$	467
mk_{-}	$z_{-}gvar$	366		$z_less_trans_thm$	516
7 /	$z_h_schema_conv$	434		$z_{-}less_{-} \leq _{-}trans_{-}thm$	467
$dest_{-}$	z_h_schema	366 366		$z_{-}less_{-} \leq _{-}trans_{-}thm$	516
	z_h_schema	366		$z_{less} \mathbb{Z}_{less}$ thm	449
mk_{-}	z_h_schema	366		$z_less_\mathbb{Z}_less_thm$	521
	$z_h_schema_pred$	494		ZLet	$\frac{360}{424}$
	conv	434		$z{-}let_{-}conv$	$\frac{424}{424}$
	z_hash_def	$518 \\ 522$	Jost	$z_{-}let_{-}conv1$	$\frac{424}{367}$
	z_head_def	360	$dest_{-}$	$egin{array}{c} z_{let} \ z_{let} \end{array}$	367
	$ZHide_s$		<i>is_</i>	$\begin{vmatrix} z_{-} iet \\ z_{-} let \end{vmatrix}$	
$dest_$	$z_hide_s_conv \ z_hide_s$	$\frac{434}{366}$	mk_{-}	z_tet ZLibrary	$\frac{367}{527}$
	$egin{array}{ccc} z_niae_s \ z_hide_s \end{array}$	366		$egin{array}{c} z_{-}library \end{array}$	527 527
$is_ \ mk_$	$egin{array}{ccc} z_niae_s \ z_hide_s \end{array}$	366		$egin{array}{c} z_\mathit{library}_\mathit{ext} \end{array}$	527 527
11116_	$z_id_clauses$	481		$\begin{bmatrix} z_library_ext \\ z_library1 \end{bmatrix}$	$\frac{527}{528}$
	$\begin{vmatrix} z_{-}id_{-}ciduses \\ z_{-}id_{-}def \end{vmatrix}$	507		$\begin{bmatrix} z_library1 \\ z_library1_ext \end{bmatrix}$	528
	$\begin{vmatrix} z_{-}ia_{-}ae_{j} \\ z_{-}id_{-}thm \end{vmatrix}$	481		$\begin{bmatrix} z_lin_arith \end{bmatrix}$	519
	$\begin{vmatrix} z_{-i}a_{-t}im \\ z_{-i}d_{-t}hm1 \end{vmatrix}$	456	,	$\begin{vmatrix} z t i n a r i t h \end{vmatrix}$	520
	$\begin{vmatrix} z_{-}ia_{-}tim1 \\ z_{-}id_{-}thm1 \end{vmatrix}$	526		$\begin{vmatrix} z_{-}lin_{-}arith1 \end{vmatrix}$	520 519
	~ = 000 = 0101101	020		~_0010_W100101	919

,	$ z_lin_arith1 $	520	dest	zplus	513
$dest_{-}$	$\begin{vmatrix} z_{-}titt_{-}attittt \\ z_{-}lvar \end{vmatrix}$	$\frac{320}{367}$	is	$\begin{vmatrix} zpius \\ zplus \end{vmatrix}$	513
is_{-}	$\begin{vmatrix} z_{-}tvar \\ z_{-}lvar \end{vmatrix}$	367	<i>ι</i> δ_	$\begin{vmatrix} zp_tus \\ zplusminusthm \end{vmatrix}$	465
mk_{-}	$\begin{vmatrix} z_{-}lvar \\ z_{-}lvar \end{vmatrix}$	367		$\begin{vmatrix} zpusminusthm \end{vmatrix}$	516
11010 _	$\begin{vmatrix} z_{-}toar \\ z_{-}max_{-}def \end{vmatrix}$	518	mk	$\begin{vmatrix} zp_tusn_tmustmu \\ zplus \end{vmatrix}$	514
	$\begin{vmatrix} z max acf \\ z min def \end{vmatrix}$	518	11610 _	$\begin{vmatrix} zp_tus \\ zplusorderthm \end{vmatrix}$	465
	$\begin{vmatrix} zminae_j \\ zminusclauses \end{vmatrix}$	465		$\begin{vmatrix} zptusorderthm \end{vmatrix}$	516
	$z_minus_clauses$	516	\mathbb{Z}_{-}	$\begin{vmatrix} zpiusbiueitiim \\ zplusthm \end{vmatrix}$	449
$dest_{-}$	$\begin{vmatrix} z_minus \end{vmatrix}$	513	\mathbb{Z}_{-}	$\begin{vmatrix} zpustum \\ zplusthm \end{vmatrix}$	521
is_{-}	$\begin{vmatrix} z_{-}minus \\ z_{-}minus \end{vmatrix}$	513	<i>IL3</i> _	$\begin{vmatrix} zptustitm \\ zptusthm \end{vmatrix}$	465
mk_{-}	$\begin{vmatrix} z_{-}minus \\ z_{-}minus \end{vmatrix}$	514		$\begin{vmatrix} zplus\thetathm \end{vmatrix}$	516
11010 _	$\begin{vmatrix} z_{-}minus \\ z_{-}minus_{-}thm \end{vmatrix}$	465		ZPowerType	360
	$\begin{vmatrix} zminusthm \\ zminusthm \end{vmatrix}$	516	dest	z_power_type	367
\mathbb{Z}_{-}	$\begin{vmatrix} zminusthm \end{vmatrix}$	449	is	$\begin{vmatrix} z_{-power_type} \\ z_{-power_type} \end{vmatrix}$	367
\mathbb{Z}_{-}	$\begin{vmatrix} zminusthm \end{vmatrix}$	521	mk	$\begin{vmatrix} z_{-}power_{-}type \end{vmatrix}$	367
222	$\begin{vmatrix} zminustimesthm \end{vmatrix}$	466	11010 =	$\begin{vmatrix} z_{-}power_{-}vgpe \\ z_{-}pred_{-}dec_{-}conv \end{vmatrix}$	396
	$\begin{vmatrix} zminustimestime \\ zminustimesthm \end{vmatrix}$	516		$z_pred_decl_conv$	396
	$z_minus_\mathbb{N}_{\le thm}$	467		ZPredicateCalculus	378
	$z_{-}minus_{-}N_{-} \leq_{-}thm$	516		$z_{-}predicates$	378
	$\begin{vmatrix} z_{-}mod_{-}conv \end{vmatrix}$	518	,	$z_{-}predicates$	379
$dest_{-}$	$\begin{vmatrix} z_{-}mod \end{vmatrix}$	513		$ZPre_s$	360
is_{-}	$\begin{vmatrix} z_{-}mod \end{vmatrix}$	513		$\begin{vmatrix} z pre_{s-} conv \end{vmatrix}$	435
mk_{-}	$z_{-}mod$	514	dest	$\begin{vmatrix} zpre_s \end{vmatrix}$	367
	$ z_{-}mod_{-}thm $	471	is	$\begin{vmatrix} z_{-}pre_{s} \end{vmatrix}$	367
	$z_{-}mod_{-}thm$	523	mk	$z_{-}pre_{s}$	367
$dest_{-}$	$ z_name $	361		$z_prim_seq_induction$	
$dest_{-}$	$ z_name1 $	361		-thm	486
$dest_{-}$	$ z_name2 $	361		$ z_prim_seq_induction $	
	$ z_norm_h_schema $			_thm	525
	$_conv$	435		z_print_fixity	78
/	$ z_{-}normal $	494		z_print_theory	78
	$z_num_list_thm$	488		$z_push_consistency$	
	ZNumbers	510		_goal	397
,	$z_numbers$	511		$z_{-quantifiers_{-}elim_{-}tac}$	397
	ZNumbers1	522		$z_ran_clauses$	481
,	$z_numbers1$	512		z_ran_def	507
$\mathbb{Z}_{\scriptscriptstyle{-}}$	$ z_one_one_thm $	449		$z_ran_mono_thm$	455
\mathbb{Z}_{-}	$ z_one_one_thm $	521		$z_ran_mono_thm$	526
	zoutputtheory	78		$z_ran_seqd_thm$	488
	zoutputtheory1	78		$z_ran_seqd_thm$	525
	$z_para_pred_canon$	395		z_ran_thm	481
	$z_para_pred_conv$	395		$z_ran\cupthm$	456
	$z_partition_def$	522		$z_ran\cupthm$	526
	$z_pigeon_hole_thm$	470		$z_ran_{-} \lhd_{-}thm$	455
	$z_pigeon_hole_thm$	523		$z_ran_{-} \triangleleft_{-}thm$	526
	$z_plus_assoc_thm$	464		Z_RAND_C	424
	$z_plus_assoc_thm$	516		Z_RANDS_C	424
	$z_{plus}_{assoc}_{thm1}$	465	$dest_{-}$	$z_{-}real$	530
	zplusassocthm1	516	is_{-}	$z_{-}real$	530
	$z_plus_clauses$	466	mk_{-}	$z_{-}real$	531
	zplusclauses	516	,	$z_{-}reals$	529
	$z_plus_comm_thm$	464		$z_reflex_closure$	400
	$z_plus_comm_thm$	516		_clauses	482
	z_plus_conv	518		$z_reflex_trans_closure$	101
	$z_plus_cyclic_group$	165	,	_thm	481
	_thm	465	,	z_rel_alg	501 505
	$z_plus_cyclic_group$	516		z_rel_ext	
	-thm	516		$ z_rel_image_clauses $	482

	$ z_rel_image_def $	507		$ z_seq_seq_x_thm $	487
	$z_rel_image_thm$	481		$z_{seq_seq_x_thm}$	525
	$z_rel_inv_clauses$	482		$ z_seq_thm $	486
	$z_rel_inv_def$	507		$z_{-}seq_{-}thm$	525
	$ z_{-}rel_{-}inv_{-}thm $	481		$z_{-}seq_{-}thm1$	486
	$ z_rel_inv_\longrightarrow thm $	456		$z_{-}seq_{-}thm1$	525
	$\begin{vmatrix} z rel inv \rightarrow z thm \end{vmatrix}$	526		$\begin{vmatrix} z_{-}seq_{-}u_{-}thm \end{vmatrix}$	486
	ZRelations	499		$\begin{vmatrix} z_{-}seq_{-}u_{-}thm \end{vmatrix}$	525
	$ZRename_s$	360		$\begin{vmatrix} z_seqt_a_ttm \\ z_seqd_app_conv \end{vmatrix}$	524
	$z_rename_{s-}conv$	436		$\begin{vmatrix} z_seqd_eq_conv \end{vmatrix}$	524
$dest_{-}$	z_rename_s	368		$\begin{vmatrix} z_seqd_eq_thm \end{vmatrix}$	488
		368			525
is_	$z_{-}rename_{s}$	368		$z_seqd_eq_thm$	488
mk_{-}	z_rename_s			$z_seqd_\in_seq_thm$	
	z_rev_def	522		$z_seqd_\in_seq_thm$	525
	Z_RIGHT_C	424		$z_seqd_r_rw_thm$	488
	$z_{-}rtc_{-}def$	507		$z_seqd_r_rw_thm$	525
	ZSchemaCalculus P	432		z_seqd_{-} thm	488
	ZSchemaDec	360			
$dest_{-}$	z_schema_dec	368		z_seqd_{-} thm	525
is	z_schema_dec	368		$ z_seqd_^-\langle\rangle_clauses$	488
mk_{-}	z_schema_dec	368		$ z_seqd_^-\langle\rangle_clauses$	525
	ZSchemaPred	360		ZSequences	522
	$ z_schema_pred_conv $	436		ZSequences1	522
	$ z_schema_pred_conv1 $	398		$\begin{vmatrix} z_{-}seq_{1-}def \end{vmatrix}$	522
dest	zschemapred	368	$set_check_is_$	$\begin{bmatrix} z = c \cdot q_1 = w \cdot c_j \\ z \end{bmatrix}$	381
	$z_schema_pred_intro$		00020100102102	$\begin{vmatrix} z \\ z_set_dif_clauses \end{vmatrix}$	492
	$_conv$	436		$z_{-}set_{-}dif_{-}clauses$	499
is	z_schema_pred	368		$\begin{vmatrix} z_set_dif_thm \end{vmatrix}$	491
mk_{-}	z_schema_pred	368		$\begin{vmatrix} z_set_dif_thm \end{vmatrix}$	499
	ZSchema Type	360		ZSeta ZSeta	360
$dest_{-}$	$ z_schema_type $	368	dest	z_seta	369
is	z_schema_type	368	$aest_{-}$		
mk_{-}	z_schema_type	368		$z_seta_false_conv$	497
,	$ z_{-}schemas $	432	is_	$z_{-}seta$	369
	z_second_def	498	mk	$z_{-}seta$	369
	$\begin{vmatrix} z_second_thm \end{vmatrix}$	491	1 1	ZSetd	360
	$\begin{vmatrix} z_second_thm \end{vmatrix}$	499	$dest_{-}$	zsetd	369
	$ZSel_s$	360	<i>is</i> _	zsetd	369
	$\begin{vmatrix} z_{-}sel_{s-}conv \end{vmatrix}$	425	mk_{-}	z_setd	369
$dest_{-}$	$\begin{vmatrix} z_{-}sel_{s} - conv \\ z_{-}sel_{s} \end{vmatrix}$	369		$z_setd_\subseteq_conv$	398
is_{-}	$\begin{vmatrix} zset_s \\ zset_s \end{vmatrix}$	369		$z_setd_\in \mathbb{P}_conv$	425
mk_{-}	$\begin{vmatrix} z_{-}set_{s} \\ z_{-}set_{s} \end{vmatrix}$	369		z_setdif_def	498
111K _	$\begin{vmatrix} zset_s \\ ZSet_t \end{vmatrix}$	360		ZSets	493
		500 506		z_sets_alg	504
1 4	$ z_{-}sel_{t_{-}}conv $,	z_sets_alg	495
$dest_{-}$	$zsel_t$	369		z_sets_ext	504
	$z_{-}sel_{t_{-}}intro_{-}conv$	425		$z_{-}sets_{-}ext_{-}clauses$	492
is_{-}	$ zsel_t $	369		$z_{-}sets_{-}ext_{-}clauses$	499
,	$ z_{-}sel_{t_{-}}lang_{-}conv $	425		$z_sets_ext_conv$	426
mk_{-}	$ zsel_t $	369	,	$z_sets_ext_lang$	419
	$z_{-}seq_{-}cases_{-}thm$	487	,	$z_sets_ext_lib$	496
	$z_seq_cases_thm$	525		$z_{-}sets_{-}ext_{-}thm$	460
	zseqdef	522	dest	z_signed_int	513
	$z_seq_induction_tac$	524	is	z_signed_int	513
	$z_seq_induction_tac1$	524	mk	z_signed_int	514
	$z_seq_induction_thm$	487	-	$z_simple_dot_dot$	
	$z_seq_induction_thm$	525		_conv	515
	$z_seq_induction_thm1$	487		$ z_simple_swap_\rightarrowtail$	
	$z_{-}seq_{-}induction_{-}thm1$	525		_thm	456
				1	100

$z_simple_swap_\rightarrowtail$			$z_size_\cup_singleton$	
$_{-}thm$	526		$_thm$	523
$z_singleton_app_thm$	458		$z_size_\cup_thm$	470
$z_singleton_app_thm$	526		$z_size_\cup_thm$	523
$z_singleton_seq_thm$	486		$z_size_\cup_\leq_thm$	470
$z_singleton_seq_thm$	525		$z_size_\cup_{\leq_thm}$	523
$z_singleton_seq_x_thm$	487		$z_size_^-thm$	487
$z_singleton_seq_x_thm$	525			
$z_size_0_thm$	470		$z_size_\bigcirc_thm$	525
$z_size_0_thm$	523		$z_size_\mathbb{N}_thm$	470
$z_size_1_thm$	470		$z_size_\mathbb{N}_thm$	523
$z_size_1_thm$	523		$z_spec_asm_tac$	399
$z_size_2_thm$	470		$z_spec_nth_asm_tac$	399
$z_size_2_thm$	523		zsquashdef	522
$z_size_diff_thm$	470		ZString	360
$z_size_diff_thm$	523		z_string_conv	426
$z_size_dot_dot_conv$	525	dest	z_string	370
$z_size_dot_dot_thm$	470	is	z_string	370
$z_size_dot_dot_thm$	523	mk	z_string	370
			z_strip_tac	437
$z_size_dot_dot_thm1$	470	not	$z_subterms$	382
$z_size_dot_dot_thm1$	523	dest	$z_subtract$	513
$z_size_empty_thm$	469	is	$z_subtract$	513
$z_size_empty_thm$	523		$z_subtract_minus$	
$z_size_eq_thm$	470		_conv	518
$z_size_eq_thm$	523	mk	$z_subtract$	514
$z_size_mono_thm$	470	\mathbb{Z}_{-}	$z_subtract_thm$	449
$z_size_mono_thm$	523	\mathbb{Z}_{-}	$z_subtract_thm$	521
$z_size_pair_thm$	470		z_succ_def	518
$z_size_pair_thm$	523		$z_succ \nearrow 0 \uparrow_thm$	471
$z_size_seq_thm$	470		$z_succ \nearrow 0 \uparrow_thm$	523
$z_size_seq_thm$	523		$z_succ \nearrow minus_n \uparrow$	0_0
$z_size_seq_thm1$	486		_thm	471
$z_size_seq_thm1$	525		$z_succ \nearrow minus_n \uparrow$	111
$z_size_seq_thm2$	486		_thm	523
$z_size_seq_thm2$	525		$z_succ \nearrow n \uparrow_thm$	471
$z_size_seq_\mathbb{N}_thm$	486		$z_succ \nearrow n \downarrow _thm$	523
$z_size_seq_\mathbb{N}_thm$	525		$z_swap_\rightarrowtail_thm$	456
$z_size_seqd_conv$	524		$z_swap_ \longrightarrow _thm$	526
$z_size_seqd_length$		$CHECK_IS_$	$Z_{-}Swap_{-}$ "_titim" $Z_{-}T$	381
$_thm$	488	OHEOR ID	$z_{-}tail_{-}def$	522
$z_size_seqd_length$			z_tau_uef z_tc_def	507
$_{-}thm$	525		$Z_{-}te_{-}ue_{J}$ $Z_{-}TERM$	360
$z_size_seqd_thm$	488	basis dost		
$z_size_seqd_thm$	525	$basic_dest_$	$z_{-}term$	361
$z_size_singleton_seq$		$check_is_$	$z_{-}term$	381
$_{\mathtt{-}}thm$	487	dest	$z_{-}term$	362
$z_size_singleton_seq$		is_{-}	$z_{-}term$	362
$_thm$	525	mk_{-}	$z_{-}term$	370
$z_size_singleton_thm$	470		$z_term_of_type$	399
$z_size_singleton_thm$	523	$dest_{-}$	$z_{-}term1$	382
$z_size_ + thm$	470	is	$z_{-}term1$	382
$z_size_ ++-thm$	523	$check_is_$	$z_{-}thm$	381
$z_size_\times_thm$	470		$z_times_assoc_thm$	466
$z_size_ \times _thm$	523		$z_times_assoc_thm$	516
$z_{-size_{-}} < 1 \text{-}thm$	470		$z_times_assoc_thm1$	466
$z_size_ \le 1_thm$ $z_size_ \le 1_thm$	523		$z_times_assoc_thm1$	516
$z_size_ \subseteq _1_tttm$ $z_size_ \cup _singleton$	020		$z_times_clauses$	466
$z_size_\cup_singleton$ $_thm$	470		$z_times_clauses$	516
_ 616116	410		$z_times_comm_thm$	466

	$ z_times_comm_thm $	516		$ z_\subseteq_clauses $	492
	$ z_times_conv $	518		$z_{-}\subseteq _{-} clauses$	499
$dest_{-}$	$z_{-}times$	513		z_\subseteq_conv	497
	$z_times_eq_0_thm$	466	dest	$z\subseteq$	497
	$z_times_eq_0_thm$	516	is	$z\subseteq$	497
is	$ z_{-}times $	513	mk	$z\subseteq$	497
	$z_times_less_0_thm$	471		$z\subseteq thm$	491
	$z_times_less_0_thm$	523		$z_{-} \subseteq thm$	499
mk_{-}	$z_{-}times$	514		$z \subseteq thm1$	491
	$z_times_order_thm$	466		z_\subseteq_thm1	499
	$z_times_order_thm$	516		$z_\subseteq _{-}\mathbb{F}_{-}thm$	470
	$z_times_plus_distrib$			$z_\subseteq _{-}\mathbb{F}_{-}thm$	523
	$_{-}thm$	466		$z_{-} \triangleright_{-} clauses$	482
	$z_times_plus_distrib$			$z \triangleright def$	507
	$_{\it -thm}$	516		$z \triangleright thm$	481
\mathbb{Z}_{-}	$z_{-}times_{-}thm$	449		$z \uplus def$	528
\mathbb{Z}_{-}	z_times_thm	521		$z\Delta_{s-}conv$	437
	z_times0_thm	466	dest	$z\Delta_s$	371
	z_times0_thm	516	is	$z\Delta_s$	371
	z_times1_thm	466	mk_{-}	$z\Delta_s$	371
	z_times1_thm	516		$z_\circ_clauses$	481
	$z_{trans_{trinsts_{trans_{trans_{trans_{trans_{trans_{trans_{trans_{trans_{tr$			$z_{-} \circ_{-} def$	507
	$_clauses$	482		$z_{-} \circ_{-} thm$	481
	$z_trans_closure_thm$	481		$z_{-} \circ \longrightarrow_{-} thm$	456
	ZTrue	360		$z_{-} \circ \longrightarrow thm$	526
is	$z_{-}true$	370		$z_{-} \circ_{-} \rightarrow_{-} thm$	456
mk	$z_{-}true$	370		$z_{-} \circ_{-} \rightarrow_{-} thm$	526
	ZTuple	360		$z_{-} \circ_{-} \longrightarrow_{-} thm$	456
dest	$z_{-}tuple$	370		$z_{-} \circ_{-} \longrightarrow_{-} thm$	526
	$ z_tuple_eq_conv $	506		$z_{-} \circ_{-} \twoheadrightarrow_{-} thm$	456
	$z_tuple_eq_conv1$	507		$z_{-} \circ_{-} \twoheadrightarrow_{-} thm$	526
	$ z_{-}tuple_{-}intro_{-}conv $	507		$ z^- def$	522
is	ztuple	370		$z_{-} \in app_{-}thm$	460
	$ z_{-}tuple_{-}lang_{-}eq_{-}conv $	427		$z_{-} \in _decor_{s-}conv$	433
	$z_tuple_lang_intro$		dest	$z \in$	371
	conv	427		$z{-} \in _dot_{-}dot_{-}conv$	515
mk	$ z_{-}tuple $	370		$Z_{-} \in _ELIM_{-}C$	427
	ZTupleType	360		$z_{-} \in _{-} first_{-} thm$	453
$dest_{-}$	z_tuple_type	370		$z_{-} \in first_thm$	510
is	z_tuple_type	370	,	$z_{-} \in fun$	508
mk	z_tuple_type	370		$z_{-} \in h_{-}schema_conv$	438
,	$z_{-}tuples$	502		$z_{-} \in h_{-}schema_conv1$	438
,	z_tuples_lang	420		$z_{-} \in _hide_{s-}conv$	434
	$Z_{-}TYPE$	360	is	$z \in$	371
dest	$z_{-}type$	362	mk_{-}	$z_{-} \in$	371
is	$z_{-}type$	363		$z_{-} \in pre_{s-}conv$	435
$is_all_$	$z_{-}type$	382	,	$z_{-} \in _rel$	500
mk	$z_{-}type$	370		$z_{-} \in _rename_{s-}conv$	436
	z_type_of	399		$z_{-} \in _second_thm$	453
	ZTypesAndTerms	359		$z_{-} \in _second_thm$	510
	$z_{-}underlining_{-}brackets$			$z_{-} \in _seqappeqthm$	488
	thm	492		$z{-} \in _seqappeqthm$	525
	$z_{-}underlining_{-}brackets$	400		$z_{-} \in _seqd_app_eq_thm$	488
	thm	499		$z{-} \in _seqd_app_eq_thm$	525
,	ZVarType	360	,	$z_{-} \in _set_lang$	418
$dest_{-}$	z_var_type	370	,	$z_{-} \in _set_{-}lib$	493
is_{-}	z_var_type	370		$z_{-} \in _seta_conv$	428
mk_{-}	$ z_var_type $	370		$z_{-} \in _seta_conv1$	428
				•	

	$z_{-} \in _setd_conv$	400		z + -def	518
	$z_{-} \in _setd_conv1$	428		$z_\subset_clauses$	492
	$z_{-} \in _string_conv$	426		$z_\subset_clauses$	499
	$z_{-} \in _succ_{-}thm$	471		$z_{-}\subset_{-} def$	498
	$z_{-} \in succ_{-}thm$	523		$z_{-}\subset thm$	491
		401		$\begin{vmatrix} z \subset -thm \\ z \subset -thm \end{vmatrix}$	499
	$z \in u conv$				
	$z_{-} \in \Delta_{s-} conv$	437		$z\cap clauses$	492
	$z_{-} \in \Xi_{s-} conv$	439		$z\cap clauses$	499
	$z_{-} \in \Leftrightarrow_{s-} conv$	439		$z\cap def$	498
	$ z_{-} \in \langle \rangle_{-} conv$	429		$z\cap thm$	491
	$z_{-} \in _ \to _thm$	455		$z\cap thm$	499
	$z_{-} \in _ \rightarrow _thm$	526		$z \cap \longrightarrow thm$	457
	$z_{-} \in - \land_{s-} conv$	440		$z \cap \longrightarrow thm$	526
		440		$z\cap \leftrightarrow thm$	457
	$z \in V_s conv$				
	$z \in \neg_{s} conv$	441		$z\cap \leftrightarrow thm$	526
	$z_{-} \in \Rightarrow_{s-} conv$	441		$z\cap \longrightarrow thm$	457
	$z_{-} \in \neg \forall_{s-} conv$	442		$z\cap \to thm$	526
	$z_{-} \in \exists_{1 \ s-} conv$	442		$z\cap \longrightarrow thm$	457
	$z_{-} \in \exists_{s-} conv$	443		$z\cap \longrightarrow thm$	526
	$z_{-} \in \times_{-} conv$	428		$z\cap \twoheadrightarrow thm$	457
	$z_{-\in -\frac{o}{g}s} - conv$	443		$z \cap \rightarrow thm$	526
	$z_{-} \in \lambda_{-} conv$	430		$z\ominus clauses$	492
	$z \in \mathbb{N}_{-conv}$	518		$z\ominus clauses$	499
	$z \in \mathbb{N} - thm$	467			498
				$z_{-}\ominus_{-}def$	
	$z_{-} \in \mathbb{N}_{-} thm$	516		$z\ominusthm$	491
	$z \in \mathbb{N}_1 - thm$	468		$z\ominusthm$	499
	$z_{-} \in \mathbb{N}_{1-}thm$	516	dest	$z_{-} \Leftrightarrow$	372
	$z_{-} \in \mathbb{P}_{-} conv$	429	is	$z_{-} \Leftrightarrow$	372
	$z_{-}\in \mathbb{P}_{-}thm$	491	mk	$z_{-} \Leftrightarrow$	372
	$z_{-} \in \mathbb{P}_{-}thm$	499		$z \Leftrightarrow_{s-} conv$	439
	$z \in \mathbb{P}_{thm1}$	460	$dest_$	$z \Leftrightarrow_s$	371
	$z \in [s-conv]$	445	is	$z = \langle \cdot \rangle_s$ $z = \Leftrightarrow_s$	371
	$z_{-} \notin def$	498	mk_{-}		371
			111h _	$z \rightarrow s$	
	$z_{-} \notin thm$	491		$z_{-}\bigcap_{-} clauses$	492
	$z_{-} \notin thm$	499		$z\bigcap clauses$	499
	$z \rightarrow \sim_{-} clauses$	454		$ z_{-}()-def $	498
	$z \rightarrow \sim clauses$	510		$ z\cap thm $	491
	$z \longrightarrow def$	509		$z\cap thm$	499
	$z \rightarrow -diff _singleton$			$ z_{-}\langle\rangle_{-}conv $	429
	$_{\it -}thm$	458	$dest_$	$ z_{-}\langle\rangle$	372
	$z \rightarrow \rightarrow diff _singleton$		is	$ z_{-}\langle\rangle$	372
	-thm	526	mk	$\begin{vmatrix} z \langle \rangle \end{vmatrix}$	372
	$z \rightarrow \to thm$	453	77070 =	$\begin{vmatrix} z \\ z \\ \end{vmatrix} > seq thm$	487
	$\begin{vmatrix} z & \longrightarrow \\ z & \longrightarrow \\ thm \end{vmatrix}$	510			525
				$ z_{-}\langle\rangle_{-}seq_{-}thm$	
	$z \rightarrow -trans_thm$	456		$ z_{-}\langle\rangle_{-}thm$	487
	$z \rightarrow -trans_thm$	526		$ z\langle\rangle thm$	525
	$z_ \triangleright_ clauses$	481		$ z_{-}\langle\rangle_{-}$ _thm	487
	$z_{-}\triangleright_{-}def$	507		$ z_{-}\langle\rangle_{-}$ _thm	525
	$z \triangleright thm$	481		\' /	
	$z\Xi_{s-}conv$	439		$z_{-} \leftrightarrow_{-} clauses$	481
$lest_{-}$	$ z\Xi_s $	371		$z_{-} \leftrightarrow_{-} def$	498
is_{-}	$\begin{vmatrix} z z_s \\ z \overline{z}_s \end{vmatrix}$	371		$z_{-} \leftrightarrow_{-} ran_{-} thm$	457
				$z_{-} \leftrightarrow_{-} ran_{-} thm$	526
mk_{-}	$z\Xi_s$	371		$z_{-} \leftrightarrow_{-} thm$	481
	$z \varnothing def$	498		$z \oplus clauses$	482
	$z\varnothingthm$	491		$z \oplus def$	507
	$z\varnothingthm$	499		$z \oplus thm$	481
	$z\varnothingthm1$	491		$z \oplus \mapsto app thm$	455
	$z_{\rightarrow} \rightarrow def$	518			
	*			$z \oplus \mapsto app thm$	526

	$z \oplus \mapsto app thm 1$	455		$z_{-}\mathbb{R}_{-}greater_conv$	534
	$z \oplus \mapsto app thm1$	526		$z_{\mathbb{R}_greater_def}$	535
	$z \oplus \mapsto \in \to thm$	455	$dest_{-}$	$z_{-}\mathbb{R}_{-}$ greater	530
	$z \oplus \mapsto \in \to thm$	526	is	z _ \mathbb{R} _ $greater$	530
	$z_{-} \rightarrow_{-} app_{-} eq_{-} \Leftrightarrow_{-} \in_{-} rel$		mk	z _ \mathbb{R} _ $greater$	531
	$_{-}thm$	453		$z_{-}\mathbb{R}_{-}greater_{-}thm$	532
	$z_{-} \rightarrow_{-} app_{-} eq_{-} \Leftrightarrow_{-} \in_{-} rel$	100		$z\mathbb{R}lbdef$	535
	thm	510		$z{-}\mathbb{R}_{-}less_{-}antisym_{-}thm$	474
	$z \rightarrow app thm$	453		$z_{\text{-}}\mathbb{R}_{\text{-}}less_{\text{-}}antisym_{\text{-}}thm$	531
	$z \rightarrow app thm$	510		z _ $\mathbb{R}_{less_cases_thm}$	474
	$z \rightarrow _app \in _rel_thm$	453		z _R_less_cases_thm	531
	$z \rightarrow app \in rel thm$	510		z _R_less_clauses	476
	$z \rightarrow clauses$	454		z _ $\mathbb{R}_{-less_clauses}$	531
	$z \rightarrow clauses$	510		z _R_less_conv	534
	$z \rightarrow def$	498		z _ $\mathbb{R}_{-}less_{-}def$	535
	$z \rightarrow diff singleton$	400		z _R_less_dense_thm	474
	_thm	457		z _R_less_dense_thm	531
	$z \rightarrow diff_singleton$	101	$dest_{-}$	z _ \mathbb{R}_{less}	530
	thm	526	4030	$z_{-}\mathbb{R}_{-}less_{-}irrefl_{-}thm$	474
	$z \rightarrow dom thm$	456		$z_{-\mathbb{R}_{-}less_irrefl_thm}$	531
	$z_{-} \rightarrow _{-} dom_{-} thm$	526	is	$z_{-\mathbb{R}_{-}less}$	530
	$z \rightarrow aom tim$ $z \rightarrow empty thm$	458	mk_{-}	$z_{-\mathbb{R}_less}$	530
	$z \rightarrow empty_thm$	526	11616_	$z_{-\mathbb{R}_less_thm}$	531
	$z_{-} \rightarrow_{-} empty_{-} tim$ $z_{-} \rightarrow_{-} ran_{-} eq_{-} \rightarrow_{-} thm$	455		$z_{-\mathbb{R}_less_trans_thm}$	474
	$z_{-} \rightarrow_{-} ran_{-} eq_{-} \rightarrow_{-} thm$ $z_{-} \rightarrow_{-} ran_{-} eq_{-} \rightarrow_{-} thm$	526		$z_{-\mathbb{R}}$ _less_trans_thm	531
	$z \rightarrow ran eq \rightarrow ran thm$	457		$z_{-\mathbb{R}_less_\neg_eq_thm}$	474
	$z \rightarrow ran thm$	526		$z_{-\mathbb{R}_less_} \neg_{-eq_thm}$	532
	$z \rightarrow thm$	453		$z_{-\mathbb{R}_{-}less_{-}} \leq trans_{-}thm$	474
	$z \rightarrow thm$	510		$z_{-\mathbb{R}}$ _less_ \leq _trans_thm $z_{-\mathbb{R}}$ _less_ \leq _trans_thm	532
	$z \rightarrow \in -rel \Leftrightarrow app eq$	010		z _ \mathbb{R} _ lin _ $arith$	529
	thm	453		$z{-\mathbb{R}_lin_arith_prove}$	020
	$z_{-} \rightarrow_{-} \in -rel_{-} \Leftrightarrow_{-} app_{-} eq$	100		_conv	532
	thm	510		$z\mathbb{R}linarithprove$	002
	z _ \mathbb{R} _0_less_0_less	010		tac	532
	_times_thm	476		$z_{-}\mathbb{R}_{-}lit_{-}conv$	534
	z _ \mathbb{R} _0_less_0_less	110		$z_{-}\mathbb{R}_{-}lit_{-}conv1$	534
	_times_thm	532		$z_{-}\mathbb{R}_{-}lit_{-}norm_{-}conv$	534
	$z \mathbb{R}_a bs conv$	534		z _ $\mathbb{R}_{-}lub$ _ def	535
	$z_{-}\mathbb{R}_{-}abs_{-}def$	535		z _ \mathbb{R} _ $minus$ _ $clauses$	475
$dest_{-}$	z _ \mathbb{R}_abs	530		z _ \mathbb{R} _ $minus$ _ $clauses$	533
is_{-}	$z = \mathbb{R}_{-}abs$	530		$z_{-}\mathbb{R}_{-}minus_{-}conv$	534
mk_{-}	$z = \mathbb{R}_{-}abs$	531		$z_{-}\mathbb{R}_{-}minus_{-}def$	535
	$z_{-}\mathbb{R}_{-}complete_{-}thm$	475	$dest_{-}$	$z_{-}\mathbb{R}_{-}minus$	530
	$z_{\mathbb{R}_{-}} complete_{\mathbb{E}_{-}} thm$	531	0000	$z_{\mathbb{R}_{-}minus_{-}eq_{-}thm}$	475
	$z_{-}\mathbb{R}_{-}def$	535		$z_{\mathbb{R}_{-}minus_{-}eq_{-}thm}$	533
	$z_{-}\mathbb{R}_{-}dot_{-}dot_{-}def$	535	is	$z_{-}\mathbb{R}_{-}minus$	530
	$z_{\mathbb{R}} eq_{\mathbb{C}} conv$	534	mk_{-}	$z_{-}\mathbb{R}_{-}minus$	531
	$z_{\mathbb{R}} eq_{\mathbb{R}} thm$	475		$z_{\mathbb{R}_{-}minus_{-}thm}$	533
	$z_{-}\mathbb{R}_{-}eq_{-}thm$	532		z _ \mathbb{R} _over_clauses	477
	$z_{\mathbb{R}} eq_{\mathbb{L}} \leq thm$	474		$z_{\mathbb{R}}$ over clauses	533
	$z_{\mathbb{R}} eq_{\mathbb{L}} \leq thm$	532		$z_{-}\mathbb{R}_{-}over_{-}conv$	534
	$Z_{-}\mathbb{R}_{-}EVAL_{-}C$	532		$z_{\mathbb{R}}$ over def	535
	$z = \mathbb{R} - eval - conv$	532	$dest_{-}$	z _ \mathbb{R} _over	530
	$z_{-}\mathbb{R}_{-}frac_{-}def$	535	is_{-}	$z_{\mathbb{R}}$ over	530
$dest_{-}$	z _ \mathbb{R} _ $frac$	530	mk_{-}	$z_{\mathbb{R}}$ over	531
is_{-}	z _ \mathbb{R} _ $frac$	530		$z_{\mathbb{R}}$ over thm	533
mk_{-}	z _ \mathbb{R} _ $frac$	531		$z_{-}\mathbb{R}_{-}$ $plus_{-}\theta_{-}thm$	475
	$z_{-}\mathbb{R}_{-}glb_{-}def$	535		$z_{-}\mathbb{R}_{-}$ $plus_{-}\theta_{-}thm$	533
	, ,			•	

	, TD 1			I ID	
	$z_{\mathbb{R}_plus_assoc_thm}$	475		$z_{-}\mathbb{R}_{-}times_{-}unit_{-}thm$	533
	$z_{-}\mathbb{R}_{-}plus_{-}assoc_{-}thm$	533		$z_{-}\mathbb{R}_{-}ub_{-}def$	535
	$z_{-}\mathbb{R}_{-}plus_{-}assoc_{-}thm1$	475		$z_{-}\mathbb{R}_{-}unbounded_{-}above$	
	$z_{-}\mathbb{R}_{-}plus_{-}assoc_{-}thm1$	533		$_{_}thm$	474
	$z_{-}\mathbb{R}_{-}plus_{-}clauses$	475		$z_{-}\mathbb{R}_{-}unbounded_{-}above$	
	$z_{-}\mathbb{R}_{-}$ plus_clauses	533		$_{\perp}thm$	531
	$z_{-}\mathbb{R}_{-}$ plus_comm_thm	475		$z_{-\mathbb{R}_{-}unbounded_below}$	001
					474
	$z_{\mathbb{R}_p plus_comm_thm}$	533		_thm	474
	$z_{-}\mathbb{R}_{-}plus_{-}conv$	534		$z_{\mathbb{Z}} unbounded_below$	
	$z_{-}\mathbb{R}_{-}plus_{-}def$	535		-thm	531
dest	$ z_{-}\mathbb{R}_{-}plus $	530		$ z_{-}R_{-}-less_{-}\leq_{-}thm $	532
is_{-}	$z_{-}\mathbb{R}_{-}plus$	530		$z_{-}\mathbb{R}_{-}\neg_{-}\leq_{-}less_{-}thm$	474
	$z_{-}\mathbb{R}_{-}$ plus_minus_thm	475		$z_{\mathbb{R}} = -1$	532
	$z_{\mathbb{R}_plus_minus_thm}$	533		$z_{\mathbb{R}} \leq antisym_{thm}$	474
1.				-	
mk	$z_{-\mathbb{R}_{-}}$ plus	531		$z_{\mathbb{R}} \leq antisym_{thm}$	532
	$z_{-\mathbb{R}_{-}}plus_{-}mono_{-}thm$	475		$z_{-\mathbb{R}_{-}} \leq cases_{-}thm$	474
	$z_{-}\mathbb{R}_{-}plus_{-}mono_{-}thm$	533		$z_{\mathbb{R}} \leq cases_{thm}$	532
	$z_{-}\mathbb{R}_{-}plus_{-}mono_{-}thm1$	475		$ z_{-}\mathbb{R}_{-} \leq_{-} clauses$	476
	$z_{-}\mathbb{R}_{-}plus_{-}mono_{-}thm1$	533		$z_{\mathbb{R}} \leq clauses$	532
	$z_{\mathbb{R}_plus_mono_thm2}$	475		$z_{-}\mathbb{R}_{-} \leq conv$	534
	$z_{\mathbb{R}_plus_mono_thm2}$	533		$z_{\mathbb{R}} \leq def$	535
	$z_{-\mathbb{R}_{-}}$ plus_order_thm	475	dest	$\begin{vmatrix} z_{-1}x_{-} \le acj \\ z_{-1}x_{-} \le acj \end{vmatrix}$	530
	_			_	
	$z_{\mathbb{R}_plus_order_thm}$	533	is	$z_{\mathbb{R}} \leq$	530
	$z_{-}\mathbb{R}_{-}plus_{-}thm$	533		$z_{\underline{\mathbb{R}}} \leq less_{\underline{\mathbb{C}}} ses_{\underline{\mathbb{C}}} thm$	474
	$z\mathbb{R}plusunitthm$	475		$ z_{-}R_{-} \leq less_{-} cases_{-} thm$	532
	$ z_{-}\mathbb{R}_{-}plus_{-}unit_{-}thm $	533		$ z_{\mathbb{R}} \leq less_{trans_{thm}}$	474
	$z_{\mathbb{R}}real_{0}thm$	533		$z_{\mathbb{R}} \leq less_{trans_{thm}}$	532
	$z_{\mathbb{R}}real_def$	535	mk_{-}	$ z_{-}\mathbb{R}_{-}$	531
	$z_{\mathbb{R}}real_{\mathbb{R}}thm$	533		$z_{\mathbb{R}} \leq refl_t hm$	474
	$z_{-\mathbb{R}_subtract_conv}$	534		$z_{-}\mathbb{R}_{-} \leq refl_{-}thm$	532
	$z_{\mathbb{R}}$ _subtract_def	535		$z_{\mathbb{R}} \leq thm$	532
dest	$z_{-}\mathbb{R}_{-}subtract$	530		$z_{-}\mathbb{R}_{-} \leq trans_{-}thm$	474
is	$z_{-}\mathbb{R}_{-}subtract$	530		$ z_{-}\mathbb{R}_{-}\leq_{-} trans_{-} thm$	532
mk	$z_{-}\mathbb{R}_{-}subtract$	531		$ z_{-}\mathbb{R}_{-}\leq_{-}\neg_{-}less_{-}thm$	474
	$z_{\mathbb{R}_{subtract_thm}}$	533		$z_{-}\mathbb{R}_{-} \leq_{-} \neg_{-}less_{-}thm$	532
	$z_{\mathbb{R}_times_assoc_thm}$	476		$z_{\mathbb{R}} = conv$	534
	$z_{\mathbb{R}}_{times_assoc_thm}$	533		$z_{\mathbb{R}} \geq def$	535
	$z_{\mathbb{R}_times_assoc}$	999	dest	$\begin{vmatrix} z_{-} \mathbb{R} - z_{-} \end{bmatrix}$	530
		470			
	thm1	476	is{-}	$z_{\mathbb{R}} \geq$	530
	$z_{-}\mathbb{R}_{-}times_{-}assoc$		mk	$z_{-\mathbb{R}} \geq$	531
	_ thm1	533		$ z_{-}\mathbb{R}_{-}\geq_{-}thm $	532
	$z_{-}R_{-}times_{-}clauses$	477		$z_{-}\mathbb{R}_{-}\mathbb{Z}_{-}exp_{-}conv$	534
	$z_{-}\mathbb{R}_{-}times_{-}clauses$	533		$z_{-}\mathbb{R}_{-}\mathbb{Z}_{-}exp_{-}def$	535
	$z_{\mathbb{R}_{times_comm_thm}}$	476	dest	$z_{\mathbb{Z}} = \mathbb{Z}_{exp}$	530
	$z_{\mathbb{R}_{times_comm_thm}}$	533	is	$z_{\mathbb{Z}} = xp$	530
	$z_{\mathbb{R}_{times_conv}}$	534	mk_{-}	$z_{\mathbb{Z}} = exp$	531
				_	
1 ,	$z_{\mathbb{R}}_{times_{\mathbb{R}}} def$	535	$dest_{-}$	$z_{-} \wedge$	372
dest	$z_{-}\mathbb{R}_{-}times$	530	is	$z_{-} \wedge$	372
is	$z_{-}\mathbb{R}_{-}times$	530	mk	$z \wedge$	372
mk	$z_{-}\mathbb{R}_{-}times$	531		$z \wedge_{s-} conv$	440
	$z_{-}\mathbb{R}_{-}times_{-}order_{-}thm$	477	dest	$z \wedge_s$	372
	$z_{\mathbb{R}_{-}times_order_thm}$	533	is	$ z \wedge_s $	372
	$z_{\mathbb{R}_{times_{plus}}}$		mk_{-}	$\begin{vmatrix} z \wedge_s \\ z \wedge_s \end{vmatrix}$	372
	$-distrib_thm$	476	$dest_{-}$	$\begin{vmatrix} z \wedge s \\ z \vee \end{vmatrix}$	373
		110			
	$z_{-}\mathbb{R}_{-}times_{-}plus$	5 00	is_{-}	$z_{-}\vee$	373
	$_{_}distrib_{_}thm$	533	mk	$z_{-}V$	373
	$z_{\mathbb{R}}_{times_{thm}}$	533		$ z_{-}\vee_{s-}conv $	440
	$ z_{-}\mathbb{R}_{-}times_{-}unit_{-}thm $	476	dest	$ z\vee_s $	373

	I				
	$z \vee_s$	373		$z_{-}\exists_{-}tac$	414
mk_{-}	$z \vee_s$	373		$\begin{bmatrix} z_{-} \exists_{1-} conv \end{bmatrix}$	415
dest	z_{-}	373	dest	$ z_{-}\exists_{1}$	375
	$z_{\neg\neg gen_pred_conv}$	402		$z_{-}\exists_{1-intro_conv}$	415
	$ z_{-}\neg_{-}in_{-}conv $	402	is	$ z_{-}\exists_{1}$	375
is	$z_{-}\neg$	373	mk	$ z_{-}\exists_{1}$	375
	$z_{-}\neg_{-}less_{-}thm$	467		$z_{-}\exists_{1-}tac$	416
	$z_{-}\neg_{-}less_{-}thm$	516		$z_{-}\exists_{1s-}conv$	442
mk	$z_{-}\neg$	373	dest	$z_{-}\exists_{1s}$	374
	$z_{\neg}rewrite_canon$	402	is	$z_{-}\exists_{1s}$	374
	$ z_{-}\neg_{-}\forall_{-}conv $	403	mk	$z_{-}\exists_{1s}$	374
	$z_{\neg}\exists conv$	403		$z_{-}\exists_{s-}conv$	443
	$z_{-}\neg_{-}\leq_{-}thm$	467	dest	$z_{-}\exists_{s}$	375
	$z_{-}\neg_{-}\leq_{-}thm$	516	is	$z_{-}\exists_{s}$	375
	$z_\neg -empty_thm$	487	mk	$z_{-}\exists_{s}$	375
	$ z_{-}\neg_{-}empty_{-}thm $	525		$z_{-} \times_{-} clauses$	$\frac{492}{499}$
	$z_{-}\neg_{-}\mathbb{N}_{-}thm$	465		$z_{-} \times_{-} clauses$	
	$z_{-}\neg_{-}\mathbb{N}_{-}thm$	516	14	$z_{-} \times_{-} conv$	430
	$ z_{-}\neg_{s-}conv $	441	$dest_{-}$	$z_{-}\times$	375
dest	$z_{-}\neg_{s}$	373	is_{-}	$z_{-}\times$	375
is	$z_{-}\neg_{s}$	373	mk	$z_{-}\times$	375
mk	$z_{-}\neg_{s}$	373		$z_{-\oplus_{-}} def$	498
dest	$ z_{-}\Rightarrow$	374		$z_{-\frac{o}{g}}$ clauses	481
is	$ z\Rightarrow$	374		$z_{-g}def$	507
mk	$ z\Rightarrow$	374		$z_{-g}thm$	481
	$z_{\rightarrow}rewrite_canon$	403		z_{-gs} -conv	443
	$ z \Rightarrow_{s-} conv $	441	$dest_{-}$	$z_{-\frac{o}{9}s}$	376
dest	$z \Rightarrow_s$	373	is_{-}	$z_{-\frac{o}{9}s}$	376
is	$z \Rightarrow_s$	373	mk	z_{-gs}	376
mk	$z \Rightarrow_s$	373		$z_{-} \leq antisym_{-}thm$	467
dest	$z_{-}\forall$	374		$z_{-} \leq antisym_{-}thm$	516
	$z_{-}\forall_{-}elim$	406		$z_{-} \leq cases_thm$	467
	$z_{-}\forall_{-}elim_{-}conv$	405		$z_{-} \leq cases_{-}thm$	516
	$z_{-}\forall_{-}elim_{-}conv1$	404		$z_{-} \leq_{-} clauses$	467
	$z_{-}\forall_{-}elim_{-}conv2$	405		$z_{-} \leq_{-} clauses$	516
	$z_{-}\forall_{-}intro$	408		$ z_{-} \leq conv $	518
all	$z_{-}\forall_{-}intro$	381	dest	$ z_{-} \leq z_{-} $	513
	$z_{-}\forall_{-}intro_{-}conv$	407		$ z_{-} \leq induction_tac $	517
	$z_{-}\forall_{-}intro_{-}conv1$	405		$z_{-} \leq induction_thm$	468
	$z_{-}\forall_{-}intro1$	407		$z_{-} \leq induction_thm$	516
	$z_{-}\forall_{-}inv_{-}conv$	408	<i>is_</i>	$ z_{-} \leq z_{-} $	513
is	$z_{-}\forall$	374		$z_{-} \leq less_{-}eq_{-}thm$	468
mk	$z_{-}\forall$	374		$z_{-} \leq less_{-}eq_{-}thm$	516
	$z_{-}\forall_{-}rewrite_{-}canon$	409		$z_{-} \leq less_{-} trans_{-} thm$	467
	$z_{-}\forall_{-}tac$	409	1	$z_{-} \leq less_{-} trans_{-} thm$	516
	$z_{-}\forall_{s-}conv$	442	mk	$ z \leq z $	514
dest	$z_{-}\forall_{s}$	374		$z_{-} \leq -plus_{-} \mathbb{N}_{-} thm$	467
is	$z_{-}\forall_{s}$	374		$z \leq plus \mathbb{N}_t thm$	516
mk	$z_{-}\forall_{s}$	374		$z_{-} \leq refl_{-}thm$	467
dest	z_∃	375		$z \le refl_t thm$	$\frac{516}{467}$
	$z_{-}\exists_{-}elim_{-}conv$	412		$\begin{vmatrix} z_{-} \leq trans_{-} thm \\ z_{-} \leq trans_{-} thm \end{vmatrix}$	407 516
	$z_{-}\exists_{-}elim_{-}conv1$	410		$\begin{vmatrix} z \leq trans_t thm \\ z \leq \leq 0_t thm \end{vmatrix}$	467
	$z_{-}\exists_{-}elim_{-}conv2$	411		$\begin{vmatrix} z \leq - \leq -0 \text{ thm} \\ z \leq -\leq -0 \text{ thm} \end{vmatrix}$	516
	$z_{-}\exists_{-}intro_{-}conv$	412		$\begin{vmatrix} z \leq -b t t t m \\ z \leq - \leq -p l u s 1 t h m \end{vmatrix}$	469
	$z_{-}\exists_{-}intro_conv1$	411		$\begin{vmatrix} z \leq -ptus1_thm \\ z \leq -\leq -ptus1_thm \end{vmatrix}$	523
	$z_{-}\exists_{-}inv_{-}conv$	413		$\begin{vmatrix} z \leq -p u s r - t n m \\ z \leq - \mathbb{Z} \leq -t h m \end{vmatrix}$	$\frac{323}{449}$
is_{-}	$\begin{bmatrix} z \exists \\ \exists \end{bmatrix}$	375		$\begin{vmatrix} z_{-} \leq -\mathbb{Z}_{-} \leq -thm \\ z_{-} \leq -\mathbb{Z}_{-} \leq -thm \end{vmatrix}$	521
mk	$ z_{-}\exists$	375			021

	$ z_{-}\neq_{-} def$	498	$ z \rightarrow thm1$	453
	$\begin{vmatrix} z \neq -uc \\ z \neq -thm \end{vmatrix}$	491	$\begin{vmatrix} z & -thm1 \\ z & -thm1 \end{vmatrix}$	510
	$\begin{vmatrix} z_{-} \neq -thm \end{vmatrix}$	499	$z \rightarrow thm2$	455
$dest_{-}$	$z \ge z$	513	$\begin{vmatrix} z & \rightarrow thm2 \end{vmatrix}$	526
is_{-}	$\begin{vmatrix} z - z \\ z - z \end{vmatrix}$	513	$z_{-} \rightarrow_{-} clauses$	454
mk_{-}	$\begin{vmatrix} z - z \\ z - z \end{vmatrix}$	514	$z_{-} \rightarrow_{-} clauses$	510
	$\begin{vmatrix} z - z \\ z - \ge - \le -conv \end{vmatrix}$	518	$z_{-} \rightarrow_{-} def$	509
	$z_{-}\cup_{-} clauses$	492	$z \longrightarrow ran_eq \longrightarrow thm$	455
	$z_{-}\cup_{-} clauses$	499	$z_{-} \longrightarrow_{-} ran_{-} eq_{-} \longrightarrow_{-} thm$	526
	$z_{-}\cup_{-} def$	498	$z_{-} \rightarrow thm$	453
	$ z_{-}\cup_{-}thm $	491	$z_{-} \rightarrow thm$	510
	$z_{-}\cup_{-}thm$	499	$z_{\rightarrow} thm1$	456
	$ z_{-}\cup_{-} \rightarrow -thm$	456	$z \rightarrow thm1$	526
	$z \cup_{\longrightarrow} thm$	526	$z_{-} \lessdot_{-} clauses$	482
	$z \cup \leftrightarrow thm$	456	$z_{-} \lessdot_{-} def$	507
	$z \cup \leftrightarrow thm$	526	$z_{-} \lessdot_{-} thm$	481
	$z\cup\tothm$	456	$z_{-}\mathbb{F}_{-}def$	518
	$z\cup\tothm$	526	$z_{-}\mathbb{F}_{-}diff_{-}thm$	470
	$z \cup \longrightarrow thm$	456	$z_{-}\mathbb{F}_{-}diff_{-}thm$	523
	$z \cup \longrightarrow thm$	526	$z_{-}\mathbb{F}_{-}empty_{-}thm$	468
	$z \cup \twoheadrightarrow thm$	456	$z_{-}\mathbb{F}_{-}empty_{-}thm$	516
	$ z_{-}\cup_{-} \twoheadrightarrow_{-} thm $	526	$z_{-}\mathbb{F}_{-}induction_{-}tac$	526
αto	z	417	$z_{-}\mathbb{F}_{-}induction_{-}thm$	469
	$z_{-}\beta_{-}conv$	430	$z_{-}\mathbb{F}_{-}induction_{-}thm$	523
	$z_{-}\theta_{-}conv$	444	$z_{-}\mathbb{F}_{-}size_{-}thm$	469
	$z_{-}\theta_{-}conv1$	444	$z_{-}\mathbb{F}_{-}size_{-}thm$	523
$dest_{-}$	$z_{-}\theta$	376	$z_{-}\mathbb{F}_{-}size_{-}thm1$	470
	$z_{-\theta_{-}}eq_{-}conv$	444	$z_{-}\mathbb{F}_{-}size_{-}thm1$	523
is_{-}	$z_{-\theta}$	376	$z_{-}\mathbb{F}_{-}thm$	468
mk_{-}	$z_{-\theta}$	376	$z_{-}\mathbb{F}_{-}thm$	516
	$z_{-\theta_{-}} \in schema_conv$	444	$z_{-}\mathbb{F}_{-}thm1$	469
	$z_{-}\theta_{-} \in schema_intro$	400	$z_{-}\mathbb{F}_{-}thm1$	523
	conv	436	$z{-}\mathbb{F}_{-}\cap_{-}thm$	470
1004	$\begin{vmatrix} z\lambda conv \\ z\lambda \end{vmatrix}$	430 376	$\begin{vmatrix} z_{-}\mathbb{F}_{-} \cap_{-} thm \\ z_{-}\mathbb{F}_{-} \cup_{-} singleton_{-} thm \end{vmatrix}$	523 469
$dest_{-}$	$\begin{vmatrix} z_{-\lambda} \\ z_{-\lambda} \end{vmatrix}$	376	~	523
$is \ mk$	$\begin{vmatrix} z_{-\lambda} \\ z_{-\lambda} \end{vmatrix}$	376	$z_{\mathbb{F}_{-}}\cup_{singleton_thm}$ $z_{\mathbb{F}_{-}}\mathbb{F}_{-thm}$	$\frac{323}{469}$
$dest_{-}$		376	$\begin{bmatrix} z \mathbb{F} \mathbb{F} thm \end{bmatrix}$	523
is_{-}	$z_{-\mu}$	376	$z_{-}\mathbb{F}_{1-}def$	518
mk_{-}	$egin{array}{c} z\mu \ z\mu \end{array}$	376	$\begin{vmatrix} z_{-} \mathbb{F}_1 - acj \\ z_{-} \mathbb{F}_1 - thm \end{vmatrix}$	468
11010 =	$\begin{vmatrix} z_{-\mu} \\ z_{-\mu} rule \end{vmatrix}$	431	$z_{-}\mathbb{F}_{1-}thm$	516
	$\begin{vmatrix} z \mu r & a c \\ z clauses \end{vmatrix}$	454	z_{-} assoc_thm	
	$z_{-} \rightarrow clauses$	510		487
	$z \rightarrow def$	509	z assoc_thm	525
	$z \rightarrow z_t thm$	453	$z_{-} \cap assoc_{-}thm1$	487
	$z_{-} \rightarrow x_{-} thm$	510	$z^-assocthm1$	525
	z_{-} z_{-} z_{-} z_{-}	492	z_{-} _def	522
	z_{-} J_{-} $clauses$	499	$z_{-} def_{-}thm$	486
	$z_{-}\bigcup_{-} def$	498		
	z_{-} $\bigcup_{-} thm$	491	z def thm	525
	z $\bigcup thm$	499	$z \cap one one thm$	487
	z $\bigcup\mathbb{F}$ thm	470	z one_one_thm	525
	z $\bigcup\mathbb{F}$ thm	523	$z \sim seq_x thm$	487
	$z \leftrightarrow clauses$	454	z_{-} seq_x_thm	525
	$z \leftrightarrow clauses$	510	_	
	$z \rightarrow def$	509	z singleton_thm	486
	$z \rightarrow thm$	453	z singleton_thm	525
	$ z + \downarrow thm $	510	$ z^-singleton_thm1 $	487

		ror		l 41	101
	z singleton_thm1	525		$ z_{-} \triangleleft_{-} thm $	481
	z^-thm	486		$\begin{vmatrix} z_{-} \triangleleft_{-} \rightarrow_{-} thm \\ z_{-} \triangleleft_{-} \rightarrow_{-} thm \end{vmatrix}$	$455 \\ 526$
	z hm	525		$\begin{vmatrix} z \downarrow - def \end{vmatrix}$	520
	$z_{-} \in seq_{-}thm$	486		$\begin{vmatrix} z_{-} - aej \\ z_{-} \end{vmatrix}_{s=conv}$	445
	$z_{-} \subset seq_thm$	525	dest	$z_{-} _{s}$	377
	$z_{-} \subset seq_thm1$	486	is_{-}	$\begin{bmatrix} z_{-} \mid s \\ z_{-} \mid s \end{bmatrix}$	377
	_	525	mk_{-}	$\begin{vmatrix} z_{-} \end{vmatrix}_{s}$	377
	$z_{-} \in seq_thm1$		\mathbb{Z}_{-}	$\frac{1}{z}$	448
	$ z^-\langle\rangle thm$	487		$ z\mathbb{Z} $	448
	$ z_{-}^{-}\langle\rangle_{-}thm$	525		$z_{\mathbb{Z}} cases_{thm}$	465
	z def	522		$z_{-}Z_{-}cases_{-}thm$	516
	$z_{-}\mapsto_{-} def$	507		$z_{-}\mathbb{Z}_{-}cases_{-}thm1$	466
	$z_{-}\mapsto_{-}thm$	481		$z_{-}\mathbb{Z}_{-}cases_{-}thm1$	516
	$z_{-}N_{-}abs_{-}minus_{-}thm$	468		$z_{-}\mathbb{Z}_{-}consistent$	448
	$z\mathbb{N}absminusthm$	516		$z_{-}\underline{\mathbb{Z}}_{-}conv$	521
	$z_{-}N_{-}cases_{-}thm$	465		$z_{-}\underline{\mathbb{Z}}_{-}def$	518
	$z_N_cases_thm$	516 518		$z_{-}Z_{-}def$	521
	$\begin{bmatrix} z\mathbb{N}_def \\ z\mathbb{N}_induction_tac \end{bmatrix}$	517		$z_{-}\mathbb{Z}_{-}eq_{-}conv$	518
	z_{-} N_induction_thm	465		$z_{-}\mathbb{Z}_{-}eq_{-}thm$	465
	z_{-} N_induction_thm	516		$z_{-}\mathbb{Z}_{-}eq_{-}thm$	516
	$z_{-}\mathbb{N}_{-}plus_{-}conv$	518		$z_{-}\mathbb{Z}_{-}induction_{-}tac$	519
	$z_{-}\mathbb{N}_{-}$ plus_thm	465		$z_{-}\mathbb{Z}_{-}induction_thm$	465
	$z\mathbb{N}$ plus_thm	516		$\begin{vmatrix} z\mathbb{Z} induction_thm \\ z\mathbb{Z} minus_thm \end{vmatrix}$	516
	$z_{-}\mathbb{N}_{-}plus1_{-}thm$	465		$\begin{vmatrix} z \mathbb{Z} minus thm \\ z \mathbb{Z} minus thm \end{vmatrix}$	449 521
	$z_{-}\mathbb{N}_{-}plus1_{-}thm$	516		$\begin{bmatrix} z \mathbb{Z} m m a s m m \\ z \mathbb{Z} o n e o n e t h m \end{bmatrix}$	$\frac{321}{449}$
	$z_{-}N_{-}thm$	465		$\begin{bmatrix} z \mathbb{Z} one one thm \end{bmatrix}$	521
	$z_{-}N_{-}thm$	516		$\begin{vmatrix} z \mathbb{Z} one one tim \\ z \mathbb{Z} plus thm \end{vmatrix}$	448
	$z_{-}N_{-}times_{-}conv$	518		$z_{-}\mathbb{Z}_{-}plus_{-}thm$	521
	$z_{-}N_{-}times_{-}thm$	466		$z_{-}\mathbb{Z}_{-}$ subtract_thm	449
	$z_{-}N_{-}times_{-}thm$	516		$z_{-}\mathbb{Z}_{-}subtract_{-}thm$	521
	$z\mathbb{N}\negminusthm$	466		$z_{-}\mathbb{Z}_{-}times_{-}thm$	448
	$z\mathbb{N}\negminusthm$	516		$z_{-}\mathbb{Z}_{-}times_{-}thm$	521
	$z\mathbb{N}\negplus1thm$	465		$z_{\rightarrow \rightarrow -clauses}$	454
	$z_{-}\mathbb{N}_{-}\neg_{-}plus1_thm$	516		$z_{\rightarrow \rightarrow clauses}$	510
	$z\mathbb{N}_{1-}def$	518		$z_{\rightarrow\rightarrow}def$	509
	$z \rightarrow clauses$	454		$z_{\rightarrow} \rightarrow thm$	453
	$z \rightarrow clauses$	510		$z_{-} \mapsto thm$	510
	$z \rightarrow def$	509		$z_{-} \mapsto thm1$	456
	$ z \rightarrow ran thm $	457		$ z_{-} \mapsto thm1$	526
	$z \rightarrow ran thm$	526		Z'Float	472
	$z \rightarrow thm$	453		Z'Float	474
	$\begin{vmatrix} z \rightarrow thm \\ z \rightarrow thm1 \end{vmatrix}$	510 456		$z'guillemets_def$	498
	$\begin{vmatrix} z \twoheadrightarrow thm1 \\ z \twoheadrightarrow thm1 \end{vmatrix}$	526		z'ifdef	498
	z_{-} times z_{-} \mathbb{P}_{-} clauses	492		Z'Int	463
	$z_{-}\mathbb{P}_{-}$ clauses	499		$z'int_def$	463
$dest_{-}$	$\begin{bmatrix} z_{-1} & z_{-1} & z_{-1} \\ z_{-1} \end{bmatrix}$	377		$z'int_def$	518
is_{-}	$\begin{bmatrix} z \mathbb{I} \\ z \mathbb{P} \end{bmatrix}$	377		$z'underlining_brackets$	400
mk_{-}	$\begin{bmatrix} z \mathbb{I} \\ z \mathbb{P} \end{bmatrix}$	377		-def	498
	$\begin{bmatrix} z_{-} \mathbb{P} \\ z_{-} \mathbb{P}_{1-} clauses \end{bmatrix}$	492		$\begin{vmatrix} z'\Pi def \\ zed \end{vmatrix}$	498 7
	$z_{-}\mathbb{P}_{1-}$ clauses	499		$\begin{vmatrix} zea \\ zed_list \end{vmatrix}$	11
	$z_{-}\mathbb{P}_{1-}def$	498		zero	39
	$z_{-}\mathbb{P}_{1-}thm$	491		ZGVar	360
	$z_{-}\mathbb{P}_{1-}thm$	499		ZHSchema	360
	$z_{-} \triangleleft_{-} clauses$	481		zip	27
	$z_{-} \triangleleft_{-} def$	507		ZLVar	360
				1	

$(\circ)[X, Y,$	Z	478	z_{-}	$ \subseteq_{-} thm$	491
$\binom{0}{2} [X, Y, Y]$	Z	478	z_{-}	$\subseteq thm$	499
/	$Z\Delta_s$	360	z_{-}	$\subseteq thm1$	491
	$Z \in$	360	z_{-}	$\subseteq thm1$	499
	$Z\Xi_s$				
		360	z_	$\subseteq \mathbb{F} thm$	470
	$Z\Leftrightarrow$	360	Z _	$\subseteq \mathbb{F}thm$	523
	$Z \Leftrightarrow_s$	360		_	480
	$ Z\langle angle$	360	_>	_	480
	$Z \stackrel{\cdot \cdot }{\wedge}$	360	_	⊳_	480
	$Z \wedge_s$	360	- (-	$\triangleright_{-})[X, Y]$	478
	$Z \vee Z \vee$	360		$\triangleright_{-clauses}$	482
			z_		
	$Z\vee_s$	360	z_{-}	⊳_def	507
	$Z\neg$	360	z_{-}	ightharpoonup thm	481
	$Z \neg_s$	360		_ U _	450
	$Z \Rightarrow$	360	_₩	_	450
	$Z\Rightarrow_s$	360	-	₩_	450
	Z orall	360	(_	$ \uplus_{-})[X]$	450
	$Z\forall_s$	360	z_{-}	$\left $	528
	$Z\exists$	360	z_{-}	$\Delta_{s-}conv$	437
	$Z\exists_1$	360	$z \in $	Δ_{s-conv}	437
	$Z\exists_{1s}$	360	$dest_{-}z_{-}$	Δ_s	371
	$Z\exists_s$	360	isz	Δ_s	371
	$Z \times$	360	mkz	Δ_s	371
	Z_{gs}^{o}	360		_0_	479
	$Z\theta$	360	_0	_	479
	$Z\lambda$	360	-	0_	479
	$Z\mu$	360	(_	$\circ_{-})[X, Y, Z]$	478
	$ Z\mathbb{P} $	360	z_{-}	$ \circ_clauses $	481
	Z_s	360	z	o_def	507
-	-	490	z_	\circ _thm	481
		490	z_{-}	$\circ_\rightarrowtail_thm$	456
-		490	z_{-}	$\circ_\rightarrowtail_thm$	526
(_	_)[X]	489	z_{-}	$ \circ \rightarrow thm$	456
	#	464	2_	$ \circ \rightarrow thm$	526
	#[X]	462	z_{-}	$ \circ_{-} \rightarrow_{-} thm$	456
	% << %_!% >> %	491	z_{-}	$ \circ_{-} \rightarrow_{-} thm$	526
$\% << \%_{-}!$	% >> %	491	z_{-}	$\circ \rightarrow thm$	456
	% >> %)[X]	489	z_{-}	$\circ \rightarrow thm$	526
(/0 < < /0=:	^	473	~ =		
	- Z- ^				484
_	Z -	473	z_{-}	\cap_{-def}	522
- Z		473		$\gamma(X)$	483
(–	(Z-)	472	~		460
	~_	463	z_{-}	$ \in_{-}app_{-}thm$ $ \in_{-}C$	
\sim	_	463	P		431
	\sim <=	27	z_{-} fun_	\in _clauses	454
	\sim =	27	$z_fun_$		510
	\sim = #	132	z_{-}	$\in decor_{s-}conv$	433
	$\sim -$ \\$	116	$dest_{-}z_{-}$	∈	371
	φ 	132	z_{-}	$\in dot_dot_conv$	515
	~		Z_{-}	$\in ELIM _C$	427
	\sim_{R-}	473	z_{-}	$\in first_thm$	453
\sim_R	- ,	473	z	$\in first_thm$	510
z_{-}	\subseteq $_clauses$	492	$\frac{z_{-}}{z_{-}}$	-	508
z_{-}	\subseteq _clauses	499		•	
z_{-}	\subseteq - $conv$	497	z_{-}	$\in h_schema_conv$	438
$z_setd_$	\subseteq $conv$	398	z_{-}	$\in h_schema_conv1$	438
$dest_{-}z_{-}$	\subseteq	497		$\in -hide_{s-}conv$	434
isz	_ _	497	isz	l .	371
mkz		497	mkz	€	371
11010 _ & _	ı -	101			

```
z_{-} \mid \in \mathbb{P}_{-} conv
                                                                                                                                                                        429
                        z_{-} \mid \in pre_{s-}conv
                                                                         435
                       'z_{-}
                                                                         500
                                                                                                                             \in \mathbb{P}_{-}conv
                              \in \_rel
                                                                                                              z\_setd\_
                                                                                                                                                                        425
                                                                         453
                                                                                                                             \in \mathbb{P}_{-}thm
                                                                                                                                                                        491
                              |\in rel\_thm|
                                                                                                                       z_{-}
           z_- \rightarrow_- app_-
                                                                         510
                                                                                                                             \in \mathbb{P}_{-}thm
                                                                                                                                                                        499
           z_- \rightarrow_- app_-
                              |\in rel_thm|
                                                                                                                       z_{-}
                              |\in rel\_thm|
                                                                         453
                                                                                                                             \in \mathbb{P}_{-}thm1
                                                                                                                                                                        460
z_- \rightarrow_- app_- eq_- \Leftrightarrow_-
                                                                                                                      z_{-}
                              \in \_rel\_thm
                                                                         510
                                                                                                                             \in \_ \upharpoonright_{s-} conv
                                                                                                                                                                        445
z_- \rightarrow_- app_- eq_- \Leftrightarrow_-
                                                                                                                      z_{-}
                                                                                                                             -∉-
                                                                                                                                                                        490
                              \in rel_{-} \Leftrightarrow app_eq_thm
                                                                         453
                              \in rel_{\Rightarrow} app_eq_thm
                                                                         510
                                                                                                                      -∉
                                                                                                                                                                        490
                              \in rename<sub>s</sub> conv
                                                                         436
                                                                                                                             ∉_
                                                                                                                                                                        490
                     z_-\theta_-
                              \in \_schema\_conv
                                                                         444
                                                                                                                       (_
                                                                                                                             \not\in_-)[X]
                                                                                                                                                                        489
                    z_-\theta_-
                              \in \_schema\_intro\_conv
                                                                         436
                                                                                                                             \not\in _{-}def
                                                                                                                                                                        498
                                                                                                                      z_{-}
                              \in \_second\_thm
                                                                         453
                                                                                                                             \not\in_thm
                                                                                                                                                                        491
                        z_{-}
                                                                                                                       z_{-}
                              \in \_second\_thm
                                                                         510
                        z_{-}
                                                                                                                       z_{-}
                                                                                                                             \not\in_thm
                                                                                                                                                                        499
                              \in seq\_app\_eq\_thm
                                                                         488
                                                                                                                                                                        452
                                                                                                                             \longrightarrow
                                                                         525
                              \in \_seq\_app\_eq\_thm
                                                                                                                     452
                              \in \_seq\_thm
                                                                          488
                                                                                                                                                                        452
                z_{-}seqd_{-}
                                                                         525
                                                                                                                             \Longrightarrow_clauses
                                                                                                                                                                        454
               z\_seqd\_
                              \in \_seq\_thm
                                                                                                                      z_{-}
                                                                                                                            \Longrightarrow_clauses
                                                                                                                                                                        510
                   z_{-}
                              \in \_seq\_thm
                                                                         486
                                                                                                                       z_{-}
                                                                                                                            \Longrightarrow_- def
                                                                                                                                                                        509
                              \in \_seq\_thm
                                                                         525
                                                                                                                            \implies diff_singleton_thm
                                                                                                                                                                        458
                              \in \_seq\_thm1
                                                                         486
                                                                                                                            \longrightarrow_- diff_singleton_thm
                                                                                                                                                                        526
                                                                                                                       z_{-}
                              \in \_seq\_thm1
                                                                         525
                                                                                                                            \Longrightarrow_{-}f_{-}thm
                                                                                                                                                                        457
                                                                                                          z_{-}dom_{-}f_{-}
                              \in \_seqd\_app\_eq\_thm
                                                                         488
                        z_{-}
                                                                                                                            \Longrightarrow_{-}f_{-}thm
                                                                                                                                                                        526
                                                                                                          z_{-}dom_{-}f_{-}
                                                                         525
                              \mid \in \_seqd\_app\_eq\_thm
                                                                                                                            \Longrightarrow_thm
                                                                                                                                                                        453
                       'z_{-}
                              |\in\_set\_lang|
                                                                         418
                                                                                                                            \Longrightarrow_thm
                                                                                                                                                                        510
                                                                                                                       2.
                              \in set_lib
                                                                         493
                                                                                                                            \Longrightarrow_thm
                                                                                                                 z_{-}id_{-}
                                                                                                                                                                        456
                              \in \_seta\_conv
                                                                         428
                        z
                                                                                                                            \longrightarrow_{-}thm
                                                                                                                                                                        526
                                                                                                                 z_{-}id_{-}
                                                                         428
                              \in seta\_conv1
                        z_{-}
                                                                                                         z_rel_inv_
                                                                                                                            \longrightarrow_{-}thm
                                                                                                                                                                        456
                              \in \_setd\_conv
                                                                         400
                                                                                                                            \Longrightarrow_thm
                                                                                                         z_rel_inv_1
                                                                                                                                                                        526
                              \in \_setd\_conv1
                                                                         428
                        z_{-}
                                                                                                z\_simple\_swap\_
                                                                                                                            \Longrightarrow_thm
                                                                                                                                                                        456
                        z_{-}
                              \in \_string\_conv
                                                                         426
                                                                                                                            \rightarrowtail_thm
                                                                                                z\_simple\_swap\_
                                                                                                                                                                        526
                              \in \_succ\_thm
                                                                         471
                        z_{-}
                                                                                                                            \Longrightarrow_thm
                                                                                                                                                                        456
                                                                                                            z_-swap_-
                              \in \_succ\_thm
                                                                         523
                                                                                                                            \Longrightarrow_thm
                                                                                                                                                                        526
                                                                                                            z_-swap_-
                              \in_thm
                                                                         460
                z_-app_-
                                                                                                                            \Longrightarrow_thm
                                                                                                                   z_{-}\circ_{-}
                                                                                                                                                                        456
                              \in u_-conv
                                                                         401
                        z_{-}
                                                                                                                   z_{-}\circ_{-}
                                                                                                                            \longrightarrow_{-}thm
                                                                                                                                                                        526
                                                                         437
                              \in -\Delta_{s-}conv
                        z_{-}
                                                                                                                            \Longrightarrow_{-}thm
                                                                                                                                                                        457
                                                                                                                  z_-\cap_-
                              \in _{-}\Xi_{s-}conv
                                                                         439
                                                                                                                  z_-\cap_-
                                                                                                                            \longrightarrow_{-}thm
                                                                                                                                                                        526
                              \in \_\Leftrightarrow_{s\_}conv
                                                                         439
                        z_{-}
                                                                                                                            \Longrightarrow_thm
                                                                                                                                                                        456
                                                                                                                  z_{-}\cup_{-}
                              \in \_\langle \rangle\_conv
                                                                         429
                        z_{-}
                                                                                                                  z_{-}\cup_{-}
                                                                                                                            \Longrightarrow_thm
                                                                                                                                                                        526
                              \in \_ \longrightarrow \_thm
                                                                         455
                        z_{-}
                                                                                                   z \rightarrow ran_eq_-
                                                                                                                            \Longrightarrow_thm
                                                                                                                                                                        455
                              \in \_ \rightarrow \_thm
                                                                         526
                                                                                                   z \longrightarrow ran_eq_-
                                                                                                                            \Longrightarrow_thm
                                                                                                                                                                        526
              z_- \oplus_- \mapsto_-
                              \in \_ \longrightarrow \_thm
                                                                         455
                                                                                                                            \longrightarrow_{-} trans_{-} thm
                                                                                                                      z_{-}
                                                                                                                                                                        456
              z_- \oplus_- \mapsto_-
                              \in \_ \longrightarrow \_thm
                                                                         526
                                                                                                                            \Longrightarrow_trans_thm
                                                                                                                                                                        526
                              \in \_ \land_{s-} conv
                                                                         440
                        z_{-}
                                                                                                                       X
                                                                                                                            \rightarrowtail Y
                                                                                                                                                                        452
                              \in V_s-conv
                                                                         440
                                                                                                                             \Pi?
                        z_{-}
                                                                                                                                                                        491
                                                                         441
                              \in \neg \neg s \neg conv
                        z
                                                                                                                            \Pi_{-}def
                                                                                                                                                                        498
                              \in \_\Rightarrow_{s-}conv
                                                                         441
                        z_{-}
                                                                                                                             _▷_
                                                                                                                                                                        479
                              \in \neg \forall_s \neg conv
                                                                         442
                                                                                                                     _{-}\triangleright
                                                                                                                                                                        479
                              \in \exists_{1s} = conv
                                                                         442
                        z_{-}
                                                                                                                                                                        479
                                                                                                                             \triangleright_{-}
                              \in \exists_{s} = conv
                                                                         443
                        z_{-}
                                                                                                                       (_
                                                                                                                             \triangleright_{-})[X, Y]
                                                                                                                                                                        478
                                                                         428
                              \in \_\times\_conv
                        z_{-}
                                                                                                                             \triangleright_{-} clauses
                                                                                                                                                                        481
                                                                                                                      z_{-}
                              \in -\frac{o}{gs} -conv
                                                                         443
                                                                                                                            \triangleright_{-} def
                                                                                                                                                                        507
                                                                                                                      z_{-}
                              \in \lambda_- conv
                                                                         430
                                                                                                                            \triangleright_{-}thm
                                                                                                                                                                        481
                                                                                                                      z_{-}
                              \in \mathbb{N}_{-}conv
                                                                         518
                        z_{-}
                                                                                                                            \Xi_{s-}conv
                                                                                                                                                                        439
                                                                                                                       z_{-}
                              \in \mathbb{N}_{-}thm
                                                                         467
                        z_{-}
                                                                                                                  z_{-}\in_
                                                                                                                             \Xi_{s-}conv
                                                                                                                                                                        439
                              \in \mathbb{N}_- thm
                                                                                                                            \Xi_s
                                                                         516
                                                                                                              dest_z_
                                                                                                                                                                        371
                              \in \mathbb{N}_1 thm
                                                                         468
                                                                                                                            \Xi_s
                                                                                                                                                                        371
                                                                                                                  is_-z_-
                        z_{-} \in \mathbb{N}_{1-}thm
                                                                         516
                                                                                                                mk_-z_- \mid \Xi_s
                                                                                                                                                                        371
```

	Ø	491	z	$ \ominus_{clauses} $	499
z_{-}	$\varnothing_{-}def$	498	z	$\ominus_ctauses$ \ominus_def	498
$dest_{-}$	Ø_aej Ø	436 87	z	\ominus _ thm	491
is_{-}	Ø	94	z	\ominus _thm \ominus _thm	499
mk_{-}	Ø	106	$z \rightarrow \in _rel$		459 453
	\varnothing_{-thm}	491	$z_{-} \rightarrow_{-} \in rel_{-}$ $z_{-} \rightarrow_{-} \in rel_{-}$	$\Leftrightarrow app_eq_thm$	510
z_ ~	$\varnothing_{-}thm$	499	$z_{-} \rightarrow_{-} \in \tau e \iota_{-}$ FC_{-}	\Leftrightarrow _ $appeqthm$ \Leftrightarrow _ CAN	169
z z	$\varnothing_{-}thm1$	491	FORWARD_CHAIN_	\Leftrightarrow CAN	169
2-	$\varnothing[X]$	489	fc_{-}	\Leftrightarrow _canon	170
	\(\mathcal{L} \) \(\mathcal{L} \) \(\mathca	464	$forward_chain_$	\Leftrightarrow _canon	170
_≻#+>	_/"/_	464	$dest_{-}$	⇔_canon	87
_/11-/	- > > _	464	$dest_z_$	\Leftrightarrow	372
- z_	>	518	$aest_{-}z_{-}$	\Leftrightarrow _elim	200
X = X	$\downarrow \mapsto Y$	462		\Leftrightarrow _intro	200
21		464	is	<i>⇔</i> = <i>intil</i> 0	94
_ - >	- "/ -	464	isz	\Leftrightarrow	372
	- - - - - - - - - -	464	65 _ 2 _	\Leftrightarrow _match_mp_rule	201
- z_		518	$simple_$	\Leftrightarrow _match_mp_rule	187
$z_{-}size_{-}$	+++ thm	470	Stripte_	\Leftrightarrow _match_mp_rule1	201
zsize		523	$simple_$	\Leftrightarrow _match_mp_rule1	187
X		462	mk	<i>⇔</i> = <i>maseri_mp_raie1</i>	106
21	_C_	490	mkz	\Leftrightarrow	372
		490	### = % = % = % = % = % = % = % = % = %	$\Leftrightarrow mp_rule$	201
	- C-	490		\Leftrightarrow _rewrite_thm	164
(_	\subset)[X]	489	\forall _	\Leftrightarrow _rule	212
z_{-}	\subset _clauses	492	V -	⇔_T	283
z_{-}	\subset _clauses	499		$\Leftrightarrow_{-}t_{-}elim$	202
z	$\subset_{-} def$	498		$\Leftrightarrow_{-}t_{-}intro$	202
z	$\subset_{-}thm$	491		$\Leftrightarrow_{-}t_{-}rewrite_{-}canon$	203
z	\subset _thm	499		$\Leftrightarrow_{-}t_{-}tac$	282
~ =		490		⇔_T2	281
		490		⇔_tac	282
	- ∩_	490		⇔_ THEN	282
(_	$\bigcap_{-} [X]$	489		⇔_ THEN2	282
z_{-}	\cap _clauses	492		\Leftrightarrow _thm	289
z_{-}	\cap _clauses	499	¬_	$\Leftrightarrow _thm$	289
z_{-}	$\cap_{-} def$	498	$z \rightarrow app eq$	$\Leftrightarrow _ \in _rel_thm$	453
z_{-}	\cap_{-thm}	491	$z \rightarrow app eq$		510
z_{-}	\cap_{-thm}	499	z_{-}	$\Leftrightarrow_{s-}conv$	439
$z_dot_dot_$	$\cap_{-}thm$	469	$z \in$	$\Leftrightarrow_{s-}conv$	439
$z_{-}dot_{-}dot_{-}$	$\cap_{-}thm$	523	$dest_{-}z_{-}$	\Leftrightarrow_s	371
$z_{-}\mathbb{F}_{-}$	$\cap_{-}thm$	470	$is_z_$	\Leftrightarrow_s	371
z _ \mathbb{F}	$\cap_{-}thm$	523	mkz	\Leftrightarrow_s	371
z_{-}	\cap_\longrightarrow_thm	457			490
z_{-}	$\cap_{\longrightarrow} thm$	526	z_{-}	$\bigcap_{-} clauses$	492
z_{-}	$\cap_{-} \leftrightarrow_{-} thm$	457	z_{-}	$\bigcap_{-} clauses$	499
z_{-}	$\cap_{-} \leftrightarrow_{-} thm$	526	z_{-}	$\bigcap_{-} def$	498
z_{-}	$\cap_{-} \rightarrow_{-} thm$	457	z_{-}	$\bigcap_{-} thm$	491
z_{-}	$\cap_{-} \longrightarrow_{-} thm$	526	z_{-}	$\bigcap_{-}thm$	499
z_{-}	$\cap_{-} \longrightarrow_{-} thm$	457		$\bigcap[X]$	489
z_{-}	$\cap_{-} \longrightarrow_{-} thm$	526	$z_seqd_\frown_$	$\langle \rangle_{-} clauses$	488
z_{-}	$\cap_{-} \twoheadrightarrow_{-} thm$	457	$z_seqd_\frown_$	$\langle \rangle$ _clauses	525
z_{-}	$\cap_{-} \twoheadrightarrow_{-} thm$	526	$z_seqa___$	$\langle \rangle$ _conv	$\frac{323}{429}$
	⊖	490	z	$\langle \rangle _conv$	429
_⊖	_	490	$dest_{-}z_{-}$	$\langle \rangle$	$\frac{429}{372}$
-	⊖_	490	isz	$\langle \rangle$	372
(_	$\ominus_{-})[X]$	489	$mk_z_$	$\langle \rangle$	$\frac{372}{372}$
z_{-}	\ominus _ $clauses$	492	77	i)	487
			2 -	1/-004-0000	±01

	I				
z_{-}	$ \langle\rangle_seq_thm $	525		$\rightarrow_{-} def$	498
z_{-}	$ \langle\rangle thm $	487	z_{-}	\rightarrow _ diff _ singleton _ thm	457
z_{-}	$\langle \rangle thm$	525	z_{-}	\rightarrow _ $diff$ _ $singleton$ _ thm	526
z_{-}	$\langle \rangle thm$	487	z	\rightarrow $_dom$ $_thm$	456
	\ \'		z_{-}	\rightarrow _ $dom_{-}thm$	526
z_{-}	$\langle \rangle thm$	525	z_{-}	\rightarrow _ $empty_thm$	458
z_{-}	$\langle \rangle_{-}$ thm	487		$\rightarrow empty_thm$	526
z_{-}	$\langle \rangle_{-}$ thm	525		$\rightarrow f thm$	457
	()	480	ů l	$\rightarrow_{-}f_{-}thm$	526
_		480	z_{-}	$\rightarrow ran_eq \rightarrow thm$	455
(_	(() (X, Y)	478		$\rightarrow ran_eq \Rightarrow thm$	526
_(_) _	480		$\rightarrow ran_{-}thm$	457
_ (_		480	l l	$\rightarrow ran_{-}thm$	526
- (-	$\binom{\nu}{-}(X, Y]$	478	l l	\rightarrow _thm	453
(_(_	$ \rangle [X, Y]$	478	l l	\rightarrow _thm	510
-4-		491		\rightarrow _thm \rightarrow _thm	456
_↔	- ` ' -	491		\rightarrow _thm \rightarrow _thm	526
- ` '	- ←→ _	491			
_	\leftarrow $clauses$	481		$\rightarrow_{-}thm$	455
z_				$\rightarrow_{-}thm$	526
z_ 1	\longleftrightarrow def	498	l l	\rightarrow _thm	457
$z_{-}dom_{-}f_{-}$	$\longleftrightarrow_{-f} thm$	456	l l	\rightarrow _thm	526
zdomf	$\longleftrightarrow fthm$	526	l l	\rightarrow _thm	455
z_	$\longleftrightarrow _ran_thm$	457	l l	\rightarrow _thm	526
z_{-}	$\longleftrightarrow _ran_thm$	526	$z\cup$	\rightarrow _thm	456
z_{-}	$\longleftrightarrow_{-}thm$	481	$z\cup$	\rightarrow _thm	526
$z\cap$		457	$z_{-} \triangleleft_{-}$	\rightarrow _ thm	455
$z\cap$		526	$z_{-} \triangleleft_{-}$	\rightarrow _ thm	526
$z \cup$	\longleftrightarrow _thm	456	$dest_{-}$	\rightarrow _ $type$	87
$z \cup$	\longleftrightarrow _thm	526	is	\rightarrow _type	94
X	$\longleftrightarrow Y$	489	$list_mk_$	\rightarrow _type	97
	—	480	mk{-}	\rightarrow _type	106
_⊕	_	480		\rightarrow _type	111
_	⊕_	480		$\rightarrow Y$	489
(_	$(\oplus_{-})[X, Y]$	478	z_{-}	$\rightarrow_{-} \in -rel_{-} \Leftrightarrow_{-} app_{-} eq$	100
z_{-}	\oplus _clauses	482	~-	_thm	453
z_{-}	$\oplus_{-}def$	507	z_{-}	\rightarrow _ \in _ rel_{\Rightarrow} _ app_{eq}	100
z_{-}	_ *	481	~-	thm	510
z_{-}	$\bigoplus_{-\mapsto_{-}} app_{-}thm$	455		\mathbb{R}	472
z_{-}	$\bigoplus_{-\mapsto_{-}} app_thm$	526		\mathbb{R}	474
z		455			4/4
		526	z	$\mathbb{R}_{-}\theta_{-}less_{-}\theta_{-}less_{-}times$	47C
$z \ z dom$		455		_thm	476
$z_{dom}_$		$\frac{455}{526}$	z	$\mathbb{R}_{-}\theta_{-}less_{-}\theta_{-}less_{-}times$	F00
				$_{-}thm$	532
z_{-}	$\bigoplus_{-} \mapsto_{-} \in_{-} \to_{-} thm$	455		$\mathbb{R}_{-}abs_conv$	534
z_{-}	$\bigoplus_{-} \mapsto_{-} \in_{-} \to_{-} thm$	526		$\mathbb{R}_{-}abs_{-}def$	535
		491		$\mathbb{R}_{-}abs$	530
	-	491		$\mathbb{R}_{-}abs$	530
-	→_	491	l l	$\mathbb{R}_{-}abs$	531
z_{-}	\rightarrow _app_eq_ \Leftrightarrow _ \in _rel		z_{-}	$\mathbb{R}_{-}complete_thm$	475
	-thm	453		$\mathbb{R}_{-}complete_thm$	531
z_{-}	$\rightarrow app_eq_+ \Leftrightarrow eq \Leftrightarrow rel$		z_{-}	$\mathbb{R} def$	535
	$_{-}thm$	510	z_{-}	$\mathbb{R} dot dot def$	535
z_{-}	$\rightarrow app thm$	453	z_{-}	$\mathbb{R}_{-}eq_conv$	534
z_{-}	$\rightarrow app thm$	510		$\mathbb{R}_{-}eq_{-}thm$	475
z_{-}	$\rightarrow app \in rel thm$	453		$\mathbb{R}_{-}eq_{-}thm$	532
z_{-}	$\rightarrow app_{-} \in rel_{-}thm$	510		$\mathbb{R}_{-}eq_{-} \leq_{-}thm$	474
z_{-}	\rightarrow _clauses	454		$\mathbb{R}_{-}eq_{-} \leq_{-}thm$	532
z_{-}	\rightarrow _clauses	510		$\mathbb{R}_{-}EVAL_{-}C$	532
	'		1		

~	$ \mathbb{R}_eval_conv $	532	$is_z_$	$ \mathbb{R}_{over} $	530
$egin{array}{c} z \ z \end{array}$	\mathbb{R}_{-} frac_def	535	mkz	\mathbb{R}_{-over}	531
$dest_{-}z_{-}$	\mathbb{R} _frac	530	7111 Z = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	\mathbb{R}_{-over_thm}	533
$is_{-}z_{-}$	\mathbb{R} _frac	530	z - z -	$\mathbb{R}_{-}plus_{-}\theta_{-}thm$	475
mkz	\mathbb{R} _frac	531	z	$\mathbb{R}_{-plus_0_thm}$	533
	\mathbb{R}_{-glb_def}	$531 \\ 535$	z	$\mathbb{R}_{-plus_assoc_thm}$	475
z _ ~	$\mathbb{R}_{-greater_conv}$	534	z	$\mathbb{R}_{-plus_assoc_thm}$	533
$egin{array}{c} z \ z \end{array}$	$\mathbb{R}_{-greater_def}$	535	z	\mathbb{R} _plus_assoc_thm1	475
$dest_{-}z_{-}$	$\mathbb{R}_{-greater}$	530	z	\mathbb{R}_{-} plus_assoc_thm1	533
$is_{-}z_{-}$	$\mathbb{R}_{-greater}$	530	z	$\mathbb{R}_{-plus_clauses}$	475
$mk_{-}z_{-}$	$\mathbb{R}_{-greater}$	531	z - z -	$\mathbb{R}_{-plus_clauses}$	533
z_	$\mathbb{R}_{-greater_thm}$	531	z - z -	$\mathbb{R}_{-plus_comm_thm}$	475
z_{-}	$\mathbb{R}_{-}lb_{-}def$	535	z = z	$\mathbb{R}_{-plus_comm_thm}$	533
z_{-}	$\mathbb{R}_{-less_antisym_thm}$	474	z = z	\mathbb{R}_{-plus_conv}	534
z_{-}	$\mathbb{R}_{-}less_antisym_thm$	531	z	$\mathbb{R}_{-}plus_{-}def$	535
z_{-}	$\mathbb{R}_{-less_cases_thm}$	474	$dest_{-}z_{-}$	\mathbb{R}_{-} plus	530
z_{-}	$\mathbb{R}_{-less_cases_thm}$	531	isz	$\mathbb{R}_{-}plus$	530
z_{-}	$\mathbb{R}_{-less_clauses}$	476	z_{-}	$\mathbb{R}_{-plus_minus_thm}$	475
z_{-}	$\mathbb{R}_{-less_clauses}$	531	z	$\mathbb{R}_{-plus_minus_thm}$	533
z_{-}	\mathbb{R}_{-less_conv}	534	mkz	\mathbb{R}_{-} plus	531
z_{-}	\mathbb{R}_{-less_def}	535	z_{-}	$\mathbb{R}_{-plus_mono_thm}$	475
z_{-}	$\mathbb{R}_{-less_dense_thm}$	474	z = z	$\mathbb{R}_{-plus_mono_thm}$	533
z_{-}	$\mathbb{R}_{-less_dense_thm}$	531	z = z	$\mathbb{R}_{-plus_mono_thm1}$	475
$dest_{-}z_{-}$	\mathbb{R} _less	530	z = z	$\mathbb{R}_{-plus_mono_thm1}$	533
z_{-}	$\mathbb{R}_{-less_irrefl_thm}$	474	z = z	$\mathbb{R}_{-plus_mono_thm2}$	475
z_{-}	$\mathbb{R}_{-less_irrefl_thm}$	531	z_{-}	$\mathbb{R}_{-plus_mono_thm2}$	533
$is_{-}z_{-}$	\mathbb{R}_{-less}	530	z_{-}	$\mathbb{R}_{-plus_order_thm}$	475
mkz	\mathbb{R}_{-less}	531	z_{-}	$\mathbb{R}_{-plus_order_thm}$	533
z_{-}	\mathbb{R}_{-less_thm}	531	z_{-}	$\mathbb{R}_{-}plus_thm$	533
z_{-}	$\mathbb{R}_{-less_trans_thm}$	474	z_{-}	$\mathbb{R}_{-plus_unit_thm}$	475
z_{-}	$\mathbb{R}_{-less_trans_thm}$	531	z_{-}	$\mathbb{R}_{-}plus_{-}unit_{-}thm$	533
z_{-}	$\mathbb{R}_{-}less_\neg_eq_thm$	474	z_{-}	$\mathbb{R}_{-}real_{-}\theta_{-}thm$	533
z_{-}	$\mathbb{R}_{-}less_\neg_eq_thm$	532	z_{-}	$\mathbb{R}_{-}real_{-}def$	535
z_{-}	$\mathbb{R}_{-}less_{-} \leq_{-} trans_{-} thm$	474	z_{-}	$\mathbb{R}_{-}real_{-}\mathbb{N}\mathbb{R}_{-}thm$	533
z_{-}	$\mathbb{R}_{less} \subseteq trans_{thm}$	532	z_{-}	$\mathbb{R}_{-subtract_conv}$	534
z_{-}	$\mathbb{R}_{-}lin_{-}arith_{-}prove$		z_{-}	$\mathbb{R}_{-}subtract_{-}def$	535
	_conv	532	$dest_z_$	$\mathbb{R}_{-}subtract$	530
z_{-}	$\mathbb{R}_{-lin_arith_prove_tac}$	532	isz	$\mathbb{R}_{-}subtract$	530
z_{-}	$\mathbb{R}_{-}lin_{-}arith$	529	mkz	$\mathbb{R}_{-}subtract$	531
z_{-}	$\mathbb{R}_{-}lit_{-}conv$	534	<i>z</i> _	$\mathbb{R}_{-}subtract_thm$	533
z_{-}	$\mathbb{R}_{-}lit_conv1$	534	z_{-}	$\mathbb{R}_{-}times_assoc_thm$	476
z_{-}	$\mathbb{R}_{-}lit_{-}norm_{-}conv$	534	z_{-}	$\mathbb{R}_{-}times_{-}assoc_{-}thm$	533
z_{-}	$\mathbb{R}_{-}lub_{-}def$	535	z_{-}	$\mathbb{R}_{-}times_assoc_thm1$	476
z_{-}	$\mathbb{R}_{-minus_clauses}$	475	z_{-}	$\mathbb{R}_{-}times_assoc_thm1$	533
z_{-}	$\mathbb{R}_{-minus_clauses}$	533	z_{-}	$\mathbb{R}_{-}times_clauses$	477
z_{-}	\mathbb{R}_{-minus_conv}	534	z_{-}	$\mathbb{R}_{-}times_clauses$	533
z_{-}	$ \mathbb{R}_minus_def $	535	z_{-}	$\mathbb{R}_{-}times_comm_thm$	476
$dest_{-}z_{-}$	$ \mathbb{R}_{-}minus $	530	z_{-}	$\mathbb{R}_{-}times_comm_thm$	533
z_{-}	$\mathbb{R}minuseqthm$	475	z_{-}	$\mathbb{R}_{-}times_conv$	534
z_{-}	$\mathbb{R}minuseqthm$	533	z_{-}	$ \mathbb{R}_times_def $	535
isz	$\mathbb{R}_{-}minus$	530	$dest_z_$	$\mathbb{R}_{-}times$	530
mkz	$\mathbb{R}_{-}minus$	531	isz	$\mathbb{R}_{-}times$	530
z_{-}	\mathbb{R}_{-minus_thm}	533	mkz	$\mathbb{R}_{-}times$	531
z_{-}	$\mathbb{R}_{-}over_clauses$	477	z_{-}	$\mathbb{R}_{-times_order_thm}$	477
z_{-}	$\mathbb{R}_{-}over_clauses$	533	z_{-}	$\mathbb{R}_{-times_order_thm}$	533
z_{-}	\mathbb{R}_{-over_conv}	534	z_{-}	$\mathbb{R}_{-times_plus_distrib}$	
z_	$\mathbb{R}_{-}over_{-}def$	535		$ $ _thm	476
$dest_{-}z_{-}$	$ \mathbb{R}_{-}over $	530			

~	$ \mathbb{R}_times_plus_distrib $		$list_mk_$	 ^	97
z_{-}	_thm	533	mk_{-}	^	106
z_{-}	\mathbb{R}_{-times_thm}	533	$mk_{-}z_{-}$	^	372
z _ z _	$\mathbb{R}_times_unit_thm$	476	11610 _ 2 _	$\land_rewrite_canon$	203
z _ z _	$\mathbb{R}_times_unit_thm$	533		$\land_rewrite_thm$	164
z _ z _	$\mathbb{R}_{-}ub_{-}def$	535		\land_right_elim	203
z _ z _	$\mathbb{R}_{-}unbounded_{-}above$	999	strip	\land_rule	194
2 _	_thm	474	$sirip_{-}$ \Rightarrow_{-}	\land_rule	210
z_{-}	$\mathbb{R}_unbounded_above$	717	$strip_{-}$	\\\\\\\\	111
2 _	_thm	531	our up_	\wedge_{-tac}	283
z_{-}	$\mathbb{R}_{-unbounded_below}$	551		\land _THEN	283
2 _	_thm	474		\land_THEN2	$\frac{283}{283}$
z_{-}	$\mathbb{R}_{-unbounded_below}$	11.1		$\wedge_{-}thm$	$\frac{203}{203}$
~_	_thm	531	¬_	$\wedge_{-}thm$	289
z_{-}	$\mathbb{R}_{\neg\neg less} \leq thm$	532	·-	$\wedge_{-} \Rightarrow_{-} rule$	203
z _ z _	\mathbb{R}_{-} $\neg_{-} \leq_{-} less_thm$	474	z_{-}	\wedge_{s-conv}	440
z _ z _	$\mathbb{R}_{\neg \neg \le less_thm}$	532	$z \in z$	\wedge_{s-conv}	440
z_{-}	$\mathbb{R}_{-\leq antisym_thm}$	474	$dest_{-}z_{-}$	\wedge_s	372
z_{-}	$\mathbb{R}_{-} \leq antisym_{-}thm$	532	isz	\wedge_s	372
z_{-}	$\mathbb{R}_{-\leq_} cases_thm$	474	mkz	\wedge_s	372
z_{-}	$\mathbb{R}_{-\leq_cases_thm}$	532	ALL_{-}	$\bigvee_{-}^{N_s} C$	155
z_{-}	$\mathbb{R}_{-} \leq -clauses$	476		\lor_cancel_rule	204
z_{-}	$\mathbb{R}_{-} \leq -clauses$	532	dest	V	88
z_{-}	$\mathbb{R}_{-\leq -conv}$	534	$dest_{-}z_{-}$	V	373
z_{-}	$\mathbb{R}_{-} \leq_{-} def$	535	*****	$\lor_{-}elim$	204
$dest_{-}z_{-}$	\mathbb{R}_{-}	530	is	V	94
isz		530	$is_z_$	V	373
z_{-}	$\mathbb{R}_{-} \leq less_cases_thm$	474		\lor_left_intro	204
z_{-}	$\mathbb{R}_{-} \leq less_cases_thm$	532		$\lor_\mathit{left_tac}$	284
z_{-}	$\mathbb{R}_{-} \leq less_trans_thm$	474	$list_mk_$	\ \	97
z_{-}	$\mathbb{R}_{-} \leq less_trans_thm$	532	mk	V	106
mkz	\mathbb{R}_{-}	531	mkz	V	373
z_{-}	$\mathbb{R}_{-} \leq refl_{-}thm$	474		$\lor_rewrite_thm$	164
z_{-}	$\mathbb{R}_{-} \leq refl_{-}thm$	532		\vee _right_intro	205
z_{-}	$\mathbb{R}_{-} \leq_{-} thm$	532		\vee _right_tac	284
z_{-}	$\mathbb{R}_{-} \leq trans_thm$	474	strip	V	112
z_{-}	$\mathbb{R}_{-} \leq trans_thm$	532	swap	$\vee_{-}tac$	276
z_{-}	$\mathbb{R}_{-} \leq_{-} \neg_{-} less_thm$	474		$\vee_{-}THEN$	284
z_{-}	$\mathbb{R}_{-} \leq_{-} \neg_{-} less_thm$	532		$\vee_{-}THEN2$	284
z_{-}	$\mathbb{R}_{-} \geq_{-} conv$	534		$\vee_{-}thm$	205
	$\mathbb{R}_{-} \geq_{-} def$	535	¬_	$\vee_{-}thm$	289
	$ \mathbb{R} \ge$	530	z_{-}	$\vee_{s-}conv$	440
	$\mathbb{R}_{-} \geq$	530	$z \in$	$\vee_{s-}conv$	440
mkz	$ \mathbb{R} \ge$	531	destz	\vee_s	373
z_{-}	$\mathbb{R}_{-} \geq -thm$	532	isz	\vee_s	373
z_{-}	$\mathbb{R}_{-}\mathbb{Z}_{-}exp_conv$	534	mkz	\vee_s	373
	$\mathbb{R}_{-}\mathbb{Z}_{-}exp_{-}def$	535	¬_	$\neg _conv$	206
	$\mathbb{R}_{-}\mathbb{Z}_{-}exp$	530	$dest_{-}$	_	88
	$\mathbb{R}_{-}\mathbb{Z}_{-}exp$	530	$dest_multi_$	_	84
	$\mathbb{R}_{-}\mathbb{Z}_{-}exp$	531	destz	_	373
ALL_{-}	\land _ C	155		$\neg _elim$	205
$dest_{-}$	^	87		$\neg _elim_tac$	285
$dest_{-}z_{-}$	\ \	372	¬_	\negelim	207
7		202	TT 1	$\neg eq_sym_rule$	205
list	$\wedge_{-}intro$	174	z _ \mathbb{R} _ $less$ _	$\neg eqthm$	474
is	\bigwedge_{\bullet}	94	$z_\mathbb{R}_less_$	$\neg eqthm$	532
isz	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	372		$\neg fthm$	289
	$\land _left_elim$	202	z_{-}	$\neg_gen_pred_conv$	402

	$ \neg if_thm$	289	z_{-}	$\neg_{\mathbb{Z}}\mathbb{N}_{-}thm$	516
	\neg_{-in_conv}	$\frac{285}{285}$	z	\neg_{s-conv}	441
$simple_$	$\neg_i in_i conv$	$\frac{265}{265}$	$z \in $	\neg_{s-conv}	441
z_{-}	$\neg in_conv$	402	$dest_{-}z_{-}$	\neg_s	373
~ _	$\begin{vmatrix} \neg_{-in_tac} \end{vmatrix}$	286	isz	$\neg s \\ \neg s$	373
$simple_$	$\neg in_{-}tac$	266	mkz	$\neg s \\ \neg s$	373
ornopro=	\neg_{-IN_THEN}	286	$dest_{-}$	\Rightarrow	88
SIMPLE	\neg_{IN_THEN}	266	$dest_z_$	\Rightarrow	374
21111 22 2	\neg_iintro	205	woov_22_	$\Rightarrow_{-}elim$	208
¬_	\neg_{-intro}	207		$\Rightarrow_{-}intro$	208
is		94	all	$\Rightarrow_{-}intro$	155
$is_z_$		373	is	⇒	94
z_{-}	\neg_{-less_thm}	467	isz	\Rightarrow	374
z_{-}	\neg_{-less_thm}	516	$list_mk_$	\Rightarrow	98
$z_{-}\mathbb{R}_{-}\leq_{-}$	\neg_{-less_thm}	474	*****	\Rightarrow _match_mp_rule	209
$z_{-}\mathbb{R}_{-}\leq_{-}$	\neg_{-less_thm}	532	$simple_$	\Rightarrow _match_mp_rule	188
$z\overline{\mathbb{R}}$	$\neg less \le thm$	532	_I	\Rightarrow _match_mp_rule1	209
$z\mathbb{N}$	$ \neg_minus_thm $	466	$simple_$	\Rightarrow _match_mp_rule1	188
$z\mathbb{N}$	$ \neg_minus_thm $	516	1	\Rightarrow _match_mp_rule2	209
mk		107	$simple_$	\Rightarrow _match_mp_rule2	188
$mk_multi_$		103	mk_{-}	\Rightarrow	107
mkz	_	373	mkz	\Rightarrow	374
$z\mathbb{N}$	\neg_plus1_thm	465		$\Rightarrow _mp_rule$	208
$z\mathbb{N}$	$\neg plus1_thm$	516	z_{-}	\Rightarrow _rewrite_canon	403
	$\neg rewrite_canon$	287		\Rightarrow _rewrite_thm	164
$simple_$	$\neg_rewrite_canon$	203	strip	\Rightarrow _rule	194
z_{-}	$\neg_rewrite_canon$	402	^_	\Rightarrow _rule	203
	$\neg rewrite_thm$	164	strip	\Rightarrow	112
	$\neg_simple_\forall_conv$	206	_	$\Rightarrow_{-} T$	290
	$\neg _simple _ \exists _conv$	206		$\Rightarrow_{-} tac$	289
	$\neg_T T$	288		$\Rightarrow_{-} THEN$	290
	$\neg_t t_t thm$	206		$\Rightarrow_{-}thm$	289
	$\neg T2$	287		\Rightarrow _thm_tac	290
	$\neg_{-}tac$	288	¬_	$\Rightarrow_{-}thm$	289
	$\neg_{-}thm$	206		\Rightarrow _trans_rule	209
¬_	$\neg_{-}thm$	289		\Rightarrow _ \land _ $rule$	210
	$\neg_{-}thm1$	206	z_{-}	$\Rightarrow_{s-}conv$	441
	$\neg_{-} \Leftrightarrow_{-} thm$	289	$z \in$	$\Rightarrow_{s-}conv$	441
	$\neg \land thm$	289	destz	\Rightarrow_s	373
	$\neg _ \lor _thm$	289	isz	\Rightarrow_s	373
	$\neg \neg conv$	206	mkz	\Rightarrow_s	373
	$\neg \neg elim$	207		\forallarbelim	210
	$\neg \neg intro$	207	all	\forallarbelim	155
	$\neg\negthm$	289		$\forall_{-}asm_{-}rule$	210
	$\neg \rightarrow thm$	289	$ALL_SIMPLE_$	$\forall_{-}C$	153
	$\neg \neg \forall \neg conv$	207	$simple _ \exists _$	$\forall _conv$	190
z_{-}	$\neg \neg \forall \neg conv$	403	$z_{-}\neg_{-}$	$\forall _conv$	403
	$\neg \neg \neg thm$	207		$\forall _conv$	207
	$\neg \exists conv$	207	$\neg_simple_$	$\forall _conv$	206
<i>z</i> _	$\neg \exists conv$	403	$simple_\exists_$	$\forall _conv1$	190
	$\neg_{-}\exists_{-}thm$	208	$dest_{-}$	A	88
$z\mathbb{R}$	$\neg _ \le _less_thm$	474	$dest_simple_$	A	85
$z_{-}\mathbb{R}_{-}$	$\neg _ \le _less_thm$	532	$dest_{-}z_{-}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	374
z_{-}	$\neg \leq thm$	467	••	$\forall_{-}elim$	211
<i>z</i> _	$\neg_{-} \leq_{-} thm$	516	all_{-}	$\forall_{-}elim$	155
z_{-}	$\neg \cap empty_thm$	487	$all_simple_$	$\forall_{-}elim$	154
z_{-}	$\neg \cap empty_thm$	525	z_	$\forall_{-}elim_{-}conv$	405
z_{-}	$\neg \mathbb{N} thm$	465	2_	$ \forall_{-}elim_{-}conv1 $	404
	•				

z_{-}	$ \forall_elim_conv2 $	405	$z_{-} eg _{-}$	$\exists _conv$	403
$list_{-}$	\forall_{-elim}_convz \forall_{-elim}	405 175	%_ '_ ¬_	$\exists _conv$	207
$list_simple_$	$\forall_{-}elim$	174	$\neg_simple_$	$\exists _conv$	206
$simple_$	$\forall_{-}elim$	188	$get_cs_$	$\exists _conv$	335
z_{-}	$\forall_{-}elim$	406	$pp'set_eval_ad_cs_$	$\exists _convs$	330
£ _	\forall_{-intro}	211	$set_cs_$	$\exists _convs$	335
all	$\forall intro$	156	$dest_{-}$	3_001103	89
$all_z_$	$\forall _intro$	381	$dest_simple_$] =	86
auz z	$\forall _intro_conv$	407	$dest_z_$]]	375
z	$\forall _intro_conv1$	405	4636_2_	$\exists_{-}elim$	213
list	$\forall _intro _conv1$ $\forall _intro$	175	z_{-}	\exists_{-elim_conv}	412
$list_simple_$	$\forall _intro$	174	z	\exists_{-elim_conv1}	410
$simple_$	\forall_{-intro}	189	z	\exists_{-elim_conv2}	411
z_{-}	\forall_{-intro}	408	$simple_{-}$	$\exists _elim$	189
z	$\forall _intro1$	407	simpic_	$\exists _intro$	$\frac{103}{214}$
z	$\forall _inv_conv$	408	z_{-}	$\exists _intro_conv$	412
is_{-}	∀	94	z	$\exists _intro_conv1$	411
$is_simple_$	\forall	93	$list_simple_$	$\exists intro eomer$	174
$is_simple_$ $is_z_$	\forall	374	$simple_$	$\exists _intro$ $\exists _intro$	190
$list_mk_$	\forall	98	Simpic_	\exists_{-intro_thm}	213
$list_mk_simple_$	\forall	97	v_{-}	\exists_{-intro}	200
mk_{-}	\forall	107	z_{-}	$\exists _inv_conv$	413
$mk_simple_$	\forall	104	is	3_1110_cont0	95
mkz	\forall	374	$is_simple_$]	93
11616 = 22 =	$\forall_{-reorder_conv}$	212	issimple] =	375
	$\forall _rewrite_canon$	287	$list_mk_$		98
$simple_$	$\forall _rewrite_canon$	203	$list_mk_simple_$] =	97
z_{-}	$\forall _rewrite_canon$	409	mk] =	108
~ _	$\forall _rewrite_thm$	164	$mk_simple_$] =	105
$strip_{-}$	A	112	mkz] =	375
$strip_simple_$	A	111	11010 = 20 =	$\exists _reorder_conv$	214
our op _ ourrepro_	$\forall_{-}tac$	290		$\exists _rewrite_thm$	164
$intro$ _	$\forall_{-}tac$	$\frac{252}{252}$	prove	$\exists_{-}rule$	332
$simple_{-}$	$\forall_{-}tac$	$\frac{267}{267}$	$strip_{-}$	3	112
z_{-}	$\forall_{-}tac$	409	$strip_simple_$]	111
$z_intro_$	$\forall_{-}tac$	394	· · · · · · · · · · · · · · · · · · ·	$\exists_{-}tac$	291
$intro_$	$\forall_{-}tac1$	252	$asm_prove_$	$\exists_{-}tac$	316
¬_	$\forall_{-}thm$	207	$list_simple_$	$\exists_{-}tac$	255
	$\forall_{_uncurry_conv}$	$\frac{212}{212}$	$prove_{-}$	$\exists_{-}tac$	260
all	$\forall_{-}uncurry_{-}conv$	156	$simple_{-}$	$\exists_{-}tac$	267
	$\forall _ \Leftrightarrow _rule$	212	z_{-}	$\exists_{-}tac$	414
$simple_{-}$	$\forall \exists conv$	189		$\exists_{-}THEN$	291
z_{-}	\forall_{s-conv}	442	$SIMPLE_{-}$	$\exists_{-} THEN$	268
$z \in$ _	\forall_{s-conv}	442	¬_	$\exists _thm$	208
$dest_z_$		374		$\exists _uncurry_conv$	214
$is_z_$		374	all	$\exists _uncurry_conv$	156
mkz	$ \forall_s $	374	$current_ad_$	$\exists_{-}vs_{-}thms$	331
	$\exists _asm_rule$	213	get	$\exists _vs_thms$	340
$ALL_SIMPLE_$	$\exists_{-}C$	154	$pp'set_eval_ad_$	$\exists _vs_thms$	331
add		339	set_{-}	$\exists _vs_thms$	340
$current_ad_$		330	$simple_$	$\exists \neg \forall \neg conv$	190
get		339	$simple_{-}$	$\exists \neg \forall \neg conv1$	190
$pp'set_eval_ad_$		330	1	$\exists \epsilon_{-} conv$	215
set		339	$simple_$	$\exists \epsilon conv$	190
$'basic_prove_$		341	-	$\exists \epsilon_rule$	215
$current_ad_cs_$		330	$simple_$	$\exists \epsilon_rule$	191
$prove_{-}$		332	•	\exists_{1-conv}	215
$simple_ orall _$		189	$simple_$	\exists_{1-conv}	268
-	'		-	'	

~	$ \exists_{1-}conv$	415	$dest_z_$	0	376
$z \ dest$	$\exists_1 \ conv$	88	$is_z_$	9 s 9 s	376
$dest_simple_$	_	85	$mk_z_$	g_{s}	376
$dest_z_$	1	375	11th = 2 =	9s -≤-	463
uest_2_	\exists_{1-elim}	216	_≤		463
$simple_$	1	191	->	-	463
simple_	$\exists_{1-intro}$	216	- (≤- ≤-)	462
z_{-}	l ¬	415	$z_{-}\leq_{-}$	≤ 0 ≤ 0 ≤ 1	$\frac{462}{467}$
	$\exists_{1-intro} = conv$ $\exists_{1-intro}$	191	$z \leq z $	$\leq 0.thm$ $\leq 0.thm$	516
is_{-}		94	$z \leq -z size$	$\leq 0.01m$ $\leq 1.1m$	470
$is_simple_$		93	$z_size_$	$\leq 1 - thm$ $\leq 1 - thm$	523
$is_simpie_$ $is_z_$		375	$z_{-}size_{-}$ z_{-}	$\leq 1 - thm$ $\leq antisym_thm$	$\frac{323}{467}$
mk_{-}		107	z	$\leq antisym_t thm$ $\leq antisym_t thm$	516
$mk_simple_$	*	104	$z\mathbb{R}$	$\leq antisym_t thm$ $\leq antisym_t thm$	474
mkz	1	375	$z\mathbb{R}$	$\leq antisym_t thm$ $\leq antisym_t thm$	532
11111 = 2 =	\exists_{1-tac}	291	z_{-} is z_{-}	$\leq -antisym_{\perp}titm$ $\leq -cases_{\perp}thm$	467
$simple_$		269	z	$\leq cases_thm$	516
z_{-}	\exists_{1-tac}	416	$z\mathbb{R}$	\leq _cases_thm \leq _cases_thm	474
2 _	\exists_{1} THEN	292	$z_{-}\mathbb{R}_{-}$	\leq _cases_thm \leq _cases_thm	532
$SIMPLE_{-}$	\exists_{1} THEN	269	z_{-1}	\leq _clauses	467
DIMI EE	$\exists_{1-}thm$	216	z	\leq _clauses \leq _clauses	516
z_{-}	$\exists_{1 s\text{-}conv}$	442	$z\mathbb{R}$	\leq _clauses \leq _clauses	476
$z \in$	$\exists_{1s}\text{-}conv$	442	z _ \mathbb{R}	\leq _clauses \leq _clauses	532
$dest_{-}z_{-}$		374	z_{-1}	$\leq conv$	518
isz	\exists_{1s}	374	$z\mathbb{R}$	$\leq conv$ $\leq conv$	534
mkz	\exists_{1s}	374	$z_{-}\geq_{-}$	$\leq conv$	518
z_{-}	\exists_{s-conv}	443	$z \mathbb{R}$	≤_ <i>def</i>	535
$z \in$	\exists_{s-conv}	443	$dest_{-}z_{-}$	≤- <i>ucj</i> ≤	513
$dest_{-}z_{-}$		375	$dest_z_\mathbb{R}_{-}$	<u>-</u> ≤	530
isz	\exists_s	375	z_{-}	\leq _induction_tac	517
mkz	\exists_s	375	z	$\leq_{-induction_thm}$	468
z_{-}	$\times_{-} clauses$	492	z	$\leq_{-induction_thm}$	516
z	\times _clauses	499	isz		513
z	×_conv	430	$is_z_\mathbb{R}$	≤ ≤	530
$z \in$	$\times conv$	428	$z\mathbb{R}$	$\leq less_cases_thm$	474
$dest_{-}z_{-}$	×	375	$z_{-}\mathbb{R}_{-}$	$\leq less_cases_thm$	532
$is_z_$	×	375	z_{-}	$\leq less_eq_thm$	468
mkz	×	375	z_{-}	$\leq less_eq_thm$	516
$z_size_$	$\times_{-}thm$	470	z _ \mathbb{R} _ \neg _	$\leq less_thm$	474
$z_size_$	$\times_{-}thm$	523	$z \mathbb{R} \neg$	$\leq less_thm$	532
$dest_{-}$	$\times_{-}type$	89	z_{-}	$\leq less_trans_thm$	467
is	$\times_{-}type$	95	z_{-}	$<$ $_{less_trans_thm}$	516
mk	$\times_{-}type$	108	$z\mathbb{R}$	$\leq_{-less_trans_thm}$	474
	⊕ -⊕-	491	$z_{-}\mathbb{R}_{-}$	$\leq_{less_trans_thm}$	532
⊕ -⊕		491	mkz	<u>−</u> ≤	514
-⊕	- ⊕ ⊕-	491	$mkz\mathbb{R}$	_ <	531
-			z_{-}	$\leq_{-}plus_{-}\mathbb{N}_{-}thm$	467
(-	⊕_)[A]	489	z_{-}	$\leq plus_{\mathbb{N}_{-}}thm$	516
Z _	$\bigoplus_{\oplus_{-}}^{\oplus} def$	498	$z \leq$	$\leq plus1_thm$	469
	- g-	479	$z_{-} \leq _{-}$	$\leq plus1_thm$	523
- ^o 9	_	479	z_{-}	$\leq refl_thm$	467
_	9-	479	z_{-}	$\leq reflthm$	516
(_	$\binom{o}{g-}[X, Y, Z]$	478	$z\mathbb{R}$	\leq _refl_thm	474
z_{-}	$ _{g_{-}} clauses$	481	$z\mathbb{R}$	\leq _refl_thm	532
z_	$\int_{g_{-}}^{g_{-}} def$	507	$z_minus_\mathbb{N}$	$\leq_{-}thm$	467
z_	$ _{g_{-}}thm$	481	$z_minus_\mathbb{N}$	$\stackrel{-}{\leq}_{-}thm$	516
z_ -	$\frac{\circ}{\circ s} - conv$	443	$z_size_\cup_$	$\stackrel{-}{\leq}_{-}thm$	470
$z_{-}\in$ _	$\left \begin{smallmatrix} o \\ gs - \end{smallmatrix} conv \right $	443	$z_size_\cup_$	$\leq_{-} thm$	523

	1 -		,		
$_{_}z_{_}\mathbb{R}_{_}$	$ \leq_{-} thm$	532	(-	$ \cup_{-})[X]$	489
$z\mathbb{R}eq$	$ \leq_{-} thm$	474	<i>z</i> _	$\cup_{-} clauses$	492
$z\mathbb{R}eq$	$ \leq_{-} thm$	532	z_{-}	\cup _clauses	499
$z_{-}\mathbb{R}_{-}\neg_{-}less_{-}$	$ \leq_{-} thm$	532	z_{-}	$\cup_{-} def$	498
$z_{-}\neg_{-}$	$ \leq_{-} thm$	467	$z_size_$	\cup _singleton_thm	470
$z_{-}\neg_{-}$	$\leq thm$	516	$z_size_$	\cup _singleton_thm	523
$z \leq \mathbb{Z}$	$\leq thm$	449	$z_{-}\mathbb{F}_{-}$	\cup _singleton_thm	469
$z \leq \mathbb{Z}$	$\leq thm$	521	$z _ \mathbb{F}$	\cup _singleton_thm	523
zabs	$\leq times thm$	471	z_{-}	$\cup_{-}thm$	491
zabs	$\leq_{-} times_{-} thm$	523	z_{-}	$\cup_{-}thm$	499
z_{-}	$\leq trans_thm$	467	$z_dot_dot_$	$\cup_{-}thm$	469
z_{-}	$\leq trans_thm$	516	$z_dot_dot_$	$\cup_{-}thm$	523
$z_less_$	$\leq transthm$	467	$z_{-}ran_{-}$	$\bigcup_{-}thm$	456
		516	$z_{-}ran_{-}$	$\bigcup_{-}thm$	526
$z\mathbb{R}$	$ \stackrel{-}{\leq}_{_}trans_{_}thm$	474	$z_size_$		470
$z\mathbb{R}$	$ \leq_{-} trans_{-} thm$	532	$z_size_$	$\bigcup_{-}thm$	523
$z_{-}\mathbb{R}_{-}less_{-}$	$ \leq_t trans_thm$	474	z_{-}	$\bigcup_{\longrightarrow} thm$	456
	$ \leq_t trans_thm$	532	z_{-}	\cup_\rightarrowtail_thm	526
$z_{-}\mathbb{R}_{-}$	$ \leq_{-}\neg_{-}less_thm$	474	z_{-}	$\bigcup_{-\leftarrow} thm$	456
z _ \mathbb{R}_{-}	$ \leq_{\neg\neg less_thm}$	532	z	$\bigcup_{-\leftarrow_{-}thm}$	526
z_{\perp}	$ \leq_{-}\leq_{-}\theta_{-}thm$	467	z	$\bigcup_{-\rightarrow_{-}thm}$	456
z	$\begin{vmatrix} \leq - \leq -0 - thm \\ \leq - \leq -0 - thm \end{vmatrix}$	516	z	$\bigcup_{-\rightarrow_{-}thm}$	526
	$\begin{vmatrix} \leq - \leq -0 \text{ -} thm \\ \leq - \leq -plus1 \text{ -} thm \end{vmatrix}$	469	z_{-} $z_{-}size_{-}$	$\bigcup_{-\leq -thm}$	470
z_ ~	$\begin{vmatrix} \leq - \leq -ptus1 - ttim \\ \leq - \leq -ptus1 - thm \end{vmatrix}$	523	$z_size_$ $z_size_$	$ \cup_{-\leq_{-}thm} $	523
z_ ~		449		$\bigcup_{-\searrow_{-}} thm$	456
z_ ~	$\leq \mathbb{Z} \leq thm$	521	z_ ~	$\bigcup_{-} \longrightarrow_{-} thm$	526
z_{-}	$\leq \mathbb{Z}_{\leq thm}$	473	z_		
	$-\leq R-$		<i>z</i> _	$\cup_{-} \rightarrow thm$	456
-≤ <i>R</i>	-	473	z_{-}	$\cup_{-} \rightarrow_{-} thm$	526
-	\leq_{R-}	473	. 1	α _conv	216
(-	$ \leq_{R-})$	472	$simple_$	α _conv	191
,	-≠-	490		$\alpha_{-}to_{-}z$	417
-≠	-,	490		$\alpha_{-}to_{-}z_{-}conv$	416
_	≠ -	490	.,	β _conv	217
(_	$ \neq_{-})[X]$	489	all	$\beta_{-}conv$	157
z_{-}	$\neq def$	498	$all_simple_$	$\beta_{-}conv$	154
z_{-}	\neq _thm	491	$simple_$	$\beta_{-}conv$	192
z_	$\neq thm$	499	<i>z</i> _	β _conv	430
	-≥-	463		$\beta_{-}rewrite_{-}thm$	164
_≥	_	463		β _rule	217
	≥-	463	all	β _rule	157
(≥_)	462	$all_simple_$	β _rule	154
$z\mathbb{R}$	\geq $conv$	534	all	$eta_{-}tac$	233
$z\mathbb{R}$	$ \geq_{-} def$	535	simple	$\beta\etaconv$	192
$dest_{-}z_{-}$	≥	513	$simple_$	$\beta\etanormconv$	192
$dest_{-}z_{-}\mathbb{R}_{-}$	\geq	530	$simple _ \exists _$	$\epsilon_{-}conv$	190
$is_z_$	\geq	513	3_	$\epsilon_{-}conv$	215
$is_z_\mathbb{R}$	\geq	530	dest	ϵ	89
mkz	\geq	514		$\epsilon elim rule$	218
$mkz\mathbb{R}$	≥-tome ≥-def ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥-thm	531	$simple_{-}$	$\epsilon elim rule$	192
$z\mathbb{R}$	$\geq thm$	532		$\epsilon_{-}intro_{-}rule$	218
z_{-}	$\geq \leq conv$	518	is	ϵ	95
	_≥ _R _	473	$list_mk_$	ϵ	98
$-\geq_R$	_	473	mk	ϵ	108
-	\geq_{R-}	473	$simple_\exists_$	$\epsilon_{-}rule$	191
(_	$ \geq_{R-})$	472	3_	$\epsilon_{-}rule$	215
•	≥ _R -) _U_ -	490	strip	ϵ	112
_U	_	490	_	$\epsilon_{-}T$	292
-	U_	490	ALL_{-}	$\epsilon_{-}T$	233
	•				

	$ \epsilon_{-}tac $	292			452
all	$ \epsilon_{-}tac $	233	_+ -	=	452
	$ \eta conv $	218	_	+ →_	452
$simple _\beta _$		192	z_{-}	\rightarrow _clauses	454
$simple_eta_$	1 7	192	z_{-}	\rightarrow _clauses	510
z_{-}	$\theta_{-}conv$	444	z_{-}	$\rightarrow _{-}def$	509
z_{-}	$\theta_{-}conv1$	444	z_{-}	$\rightarrow thm$	453
$dest_z_$	$\mid \theta \mid$	376	z_{-}	\rightarrow _ thm	510
z_{-}	$\theta_{-}eq_{-}conv$	444	z_{-}	\rightarrow _ $thm1$	453
isz	θ	376	z_{-}	\rightarrow _ $thm1$	510
mkz	θ	376	z_{-}	\rightarrow _thm2	455
	$\theta_{-} \in _schema_conv$	444	z_{-}	\rightarrow _ $thm2$	526
z_{-}			X	$\rightarrow Y$	452
	$_conv$	436			452
	$\lambda_{-}C$	219	_≻→	_	452
SIMPLE	$\lambda_{-}C$	193	_	-	452
z_{-}	$\lambda_{-}conv$	430	z_{-}	\rightarrowtail _clauses	454
$z \in$ _	$\lambda_{-}conv$	430	z_{-}	\rightarrowtail _clauses	510
dest	$ \lambda $	89	z_{-}	\rightarrowtail _ def	509
$dest_simple_$	$ \lambda $	86	$z_dom_f_$	$\rightarrowtail_{-}f_{-}thm$	457
$dest_{-}z_{-}$	$ \lambda $	376	$z_{-}dom_{-}f_{-}$	$\rightarrowtail_{-}f_{-}thm$	526
	$\lambda_{-}eq_{-}rule$	219	z_{-}	\rightarrowtail _ran_eq_ \Longrightarrow _thm	455
$simple_$	_	193	z_{-}	\rightarrowtail _ran_eq_ \Longrightarrow _thm	526
is	λ	95	z_{-}	\rightarrowtail _thm	453
$is_simple_$	$ \lambda $	93	z_{-}	\rightarrowtail _thm	510
isz	$ \lambda $	376	$z_{-}\circ_{-}$	\rightarrowtail _ thm	456
$list_mk_$	$ \lambda $	98	$z_{-}\circ_{-}$	\rightarrowtail _ thm	526
$list_mk_simple_$	$ \lambda $	96	$z\cap$	\rightarrowtail _thm	457
mk_{-}	$ \lambda $	108	$z\cap$	\rightarrowtail _thm	526
$mk_simple_$	$ \lambda $	105	$z\cup$	\rightarrowtail _thm	456
mkz	$ \lambda $	376	$z\cup$	\rightarrowtail _thm	526
	$\lambda_{-}pair_{-}conv$	219	z_{-}	\rightarrowtail _thm1	456
	$\lambda_{-}rule$	220	z_{-}	\rightarrowtail _thm1	526
zapp	$\lambda_{-}rule$	422	X	$\rightarrowtail Y$	452
strip	λ	112		_┥_	480
	$\lambda_{-}varstruct_{-}conv$	220	_ <	-	480
destz	$\mid \mu \mid$	376	-	\triangleleft_{-}	480
isz	$\mid \mu \mid$	376	($\lhd_{-})[X, Y]$	478
mkz	$\mid \mu \mid$	376	z_{-}	\lhd _clauses	482
z_{-}	$\mu_{-}rule$	431	z_{-}	\triangleleft _ def	507
	_ _	452	z_{-}	$\lessdot_{-}thm$	481
_ -+>>	_	452	${\mathbb F}$	_	464
-		452		\mathbb{F}_{-}	464
z_{-}	$\rightarrow \sim -clauses$	454	z_{-}	$\mathbb{F}_{-}def$	518
z_{-}	$\rightarrow \sim_{-} clauses$	510	z_{-}	$\mathbb{F} diff thm$	470
z_{-}	$\rightarrow -def$	509	z_{-}	$\mathbb{F} diff thm$	523
z_{-}	$\rightarrow -thm$	453	z_{-}	$\mathbb{F}emptythm$	468
z_{-}	$\rightarrow -thm$	510	z_{-}	$\mathbb{F}emptythm$	516
X	→ Y	452	z_{-}	$\underline{\mathbb{F}}_{-}induction_tac$	526
	Į U	490	z_{-}	$\underline{\mathbb{F}}_{-}induction_thm$	469
z_	$\bigcup_{-} clauses$	492	z_{-}	$\underline{\mathbb{F}}_{-}induction_thm$	523
z_	$\bigcup_{-} clauses$	499	z_{-}	$\mathbb{F} size thm$	469
z_{-}	$\bigcup_{-} def$	498	z_{-}	$\mathbb{F}_{-}size_{-}thm$	523
z_{-}	$\bigcup_{-} thm$	491	z_{-}	$\mathbb{F} size thm1$	470
z_{-}	$\bigcup_{-} thm$	499	z_{-}	$\mathbb{F} size thm1$	523
z_{-}	$\bigcup_{-\mathbb{F}_{-}} thm$	470	z_{-}	$\mathbb{F}_{-}thm$	468
z_{-}	$\bigcup_{-}\mathbb{F}_{-}thm$	523	z_{-}	$\mathbb{F}_{-}thm$	516
	$\bigcup [X]$	489	$z_empty_$	$\mathbb{F}_{-}thm$	469

				ı	
zempty	$ \mathbb{F}thm $	523	z_{-}	$\bigcap_{seq_{-}x_{-}thm}$	525
$z\subseteq$	$\mathbb{F}thm$	470	z_{-}	$_{_singleton_thm}$	486
$z\subseteq$	$ \mathbb{F}thm $	523	z_{-}		525
$z\bigcup$	$ \mathbb{F}thm $	470		-	
$z\bigcup$	$ \mathbb{F}thm $	523	z_{-}	\bigcap _singleton_thm1	487
z_{-}	$ \mathbb{F}thm1 $	469	z_	\bigcap _singleton_thm1	525
z_{-}	$ \mathbb{F}thm1 $	523	z_{-}	$\cap_{-}thm$	486
	$ \mathbb{F}X $	462	z_{-}	$_{_thm}$	525
z_{-}	$\mathbb{F}_{-}\cap_{-}thm$	470	$z_dom_$	$ \smallfrown_{_thm} $	487
z_{-}	$\mathbb{F}_{-}\cap_{-}thm$	523			
z_{-}	$\mathbb{F}_{-}\cup_{-singleton_thm}$	469	$z_dom_$	$\bigcap_{-}thm$	525
z_	$\mathbb{F} \cup singleton_thm$	523	$z_seqd_$	$\bigcap_{-}thm$	488
<i>z</i> _	$\mathbb{F}_{-}\mathbb{P}_{-}thm$	469	$z_seqd_$	$\cap_{-}thm$	525
Z_	$\mathbb{F}_{-}\mathbb{P}_{-}thm$	523	$z_size_$	$_{-thm}$	487
\mathbb{F}_1	_ TC3	464	z size	\neg_{thm}	525
	\mathbb{F}_{1-}	464		\uparrow_{-thm}	487
z_{-}	$\mathbb{F}_{1-}def$	518	$z_{-}\langle\rangle_{-}$		
z_{-}	\mathbb{F}_{1-thm}	468	$z\langle\rangle$	\cap _thm	525
z_{-}	\mathbb{F}_{1-thm}	516	z_{-}	$\cap_{-\in_seq_thm}$	486
	$\mathbb{F}_1 X$	462	z_{-}		525
	-/-↓ ォ ↑	$464 \\ 464$	z_{-}		486
-		462	z_{-}		525
(-		480		_	
	-/ *↓ ↗ູ↑	480	$z_seqd_$	$\bigcirc_{-}\langle\rangle_{-} clauses$	488
	$(\nearrow \uparrow \downarrow)[X]$	478	$z_seqd_$	$\bigcap_{-\langle \rangle_{-}} clauses$	525
(-		480	2_	$\bigcap_{-\langle \rangle_{-}} thm$	487
	-/	480	z_{-}	$ \smallfrown_{-} \langle \rangle_{-} thm$	525
(_	$(\nearrow + \uparrow)[X]$	478		₋ 1_ ''	484
(-		480	-1		484
_	- / → 	480	_	1_	484
(_	$\nearrow \sim \uparrow)[X, Y]$	478	(_	$ \uparrow_{-})[X]$	483
_ >		464	z_{-}	1_ <i>def</i>	522
-/-	*	464		_⊷_	479
(_/	$(_{-})[X]$	462	_⊢→	_	479
(_/)[X]	462		⊢	479
		484	(-	$\mapsto_{-})[X, Y]$	478
$\overline{}$		484		\mapsto _app_thm	455
-	_			\mapsto _app_thm	526
	-	484	$z \oplus$	\mapsto _app_thm1	455
(_	$\cap_{-})[X]$	483	$z \oplus$	$\mapsto appthm1$	526
z_{-}	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	487	z_	$\mapsto_{-} def$	507
z_{-}	$_{-assoc_thm}$	525	Z_	\mapsto thm	481
z_{-}	$ \smallfrown_{assoc_thm1} $	487	$egin{array}{c} z_{-}dom_{-}\oplus_{-} \ z_{-}dom_{-}\oplus_{-} \end{array}$		$455 \\ 526$
		525			
z_			$egin{array}{c} z \oplus \ z \oplus \end{array}$	$ \begin{array}{l} \mapsto_{-} \in_{-} \to_{-} thm \\ \mapsto_{-} \in_{-} \to_{-} thm \end{array} $	$455 \\ 526$
z_{-}	$\bigcap_{-} def_{-}thm$	486	2 -₩-	\mathbb{N}	116
z_{-}	$\bigcap_{-} def_{-} thm$	525		N	462
z_{-}	^{-}def	522		N	463
$z_{-}\neg_{-}$	$_{-empty_thm}$	487	,	N	346
$z_{-}\neg_{-}$	\cap_{-empty_thm}	525	z_{-}	$\mathbb{N}abs_minus_thm$	468
		487	z	$\mathbb{N}abs_minus_thm$	516
z_{-}			z	$\mathbb{N}_{-}cases_thm$	465
z_{-}	$\bigcap_{-} one_{-} one_{-} thm$	525	z	$\mathbb{N}_{-}cases_thm$	516
$z_seqd_$	\bigcap_{rw_thm}	488	$z \in$	$\mathbb{N}_{-}conv$	518
$z_seqd_$	\neg_{rw_thm}	525	z_{-}	$\mathbb{N}_{-}def$	518
z	$\neg_{seq_x_thm}$	487	dest		89
~ -					

	171		_		
z_{-}	$\mathbb{N}_{-}induction_{-}tac$	517	$z\cap$	$\longrightarrow_{-}thm$	457
z_{-}	$\mathbb{N}_{-}induction_thm$	465	$z\cap$	\rightarrow _thm	526
z_{-}	$\mathbb{N}_{-}induction_{-}thm$	516	$z \rightarrow ran eq$	$\rightarrow _{-}thm$	455
is	$ \mathbb{N} $	95	$z \rightarrow ran eq$	\rightarrow _thm	526
,	$\mathbb{N}_{-}lit$	347	$z \cup$	$\rightarrow -thm$	456
mk	$ \mathbb{N} $	108	$z \cup$	\rightarrow _thm	526
z_{-}	$\mathbb{N}_{-}plus_{-}conv$	518	z_{-}	\rightarrow _thm1	456
z_{-}	\mathbb{N}_{-} plus_thm	465	z_{-}	\rightarrow _thm1	526
z_{-}	\mathbb{N}_{-} plus_thm	516	X	$\rightarrow Y$	452
z_{-}	\mathbb{N}_{-} plus 1_thm	465	z_{-}	$\mathbb{P}_{-clauses}$	492
z_{-}	\mathbb{N}_{-} plus 1_thm	516	z_{-}	\mathbb{P}_{-} clauses	499
z = z	$\mathbb{N}_{-}thm$	465	$z_setd_\in_$	\mathbb{P}_{-conv}	425
z	$\mathbb{N}_{-}thm$	516	z_{-}	\mathbb{P}_{-conv}	429
$z_{-}\theta_{-}$	$\mathbb{N}_{-}thm$	465	$dest_{-}z_{-}$	\mathbb{P}	377
$z_{-}\theta_{-}$	$\mathbb{N}_{-}thm$	516	isz	$\stackrel{\scriptscriptstyle{1}}{\mathbb{P}}$	377
				\mathbb{P}	
zabs	$\mathbb{N}_{-}thm$	468	mkz	$\mathbb{P}_{-}thm$	377
$z_abs_$	$\mathbb{N}_{-}thm$	516	$z_{-}\in$ _		491
$z_size_$	$\mathbb{N}_{-}thm$	470	$z \in$	$\mathbb{P}_{-}thm$	499
$z_size_$	$\mathbb{N}_{-}thm$	523	$z_{-}\mathbb{F}_{-}$	$\mathbb{P}_{-}thm$	469
$z_size_seq_$	$\mathbb{N}_{-}thm$	486	$z {}\mathbb{F}_{-}$	$\mathbb{P}_{-}thm$	523
$z_size_seq_$	$\mathbb{N}_{-}thm$	525	$z \in$	$\mathbb{P}thm1$	460
$z \in$	$\mathbb{N}_{-}thm$	467	\mathbb{P}_1	_	491
$z \in$	$\mathbb{N}_{-}thm$	516		$ \mathbb{P}_{1-} $	491
$z_{-}\neg_{-}$	$\mathbb{N}_{-}thm$	465	z_{-}	$\mathbb{P}_{1-clauses}$	492
$z_{-}\neg_{-}$	$\mathbb{N}_{-}thm$	516	z_{-}	$\mathbb{P}_{1-clauses}$	499
$z_{-} \leq_{-} plus_{-}$	$\mathbb{N}_{-}thm$	467	z_{-}	$\mathbb{P}_{1-}def$	498
$z_{-} \leq _{-} plus_{-}$	$\mathbb{N}_{-}thm$	516	z_{-}	\mathbb{P}_{1-thm}	491
$=$ 1 z_{-}	$\mathbb{N}_{-}times_conv$	518	z_{-}	$\mathbb{P}_{1-}^{1}thm$	499
z_{-}	$\mathbb{N}_{-}times_{-}thm$	466		$\mathbb{P}_{1}^{1}X$	489
z_{-}	$\mathbb{N}_{-}times_{-}thm$	516			479
$z = z_{-}$	$\mathbb{N}_{-}\neg_{-}minus_thm$	466	_<		479
$z = z_{-}$	$\mathbb{N}_{\neg\neg minus_thm}$	516	- 7	- 	479
z_{-}	$\mathbb{N}_{-}\neg_{-}plus1_thm$	465	- (\triangleleft _)[X, Y]	478
z _ z _	$\mathbb{N}_{-}\neg_{-}plus1_thm$	516	(- z_	\lhd _clauses	481
$z_minus_$	$\mathbb{N}_{-} \leq thm$	467	z	\triangleleft _ctauses \triangleleft _def	507
$z_{-}minus_{-}$ $z_{-}minus_{-}$	$\mathbb{N}_{-} \leq -thm$	516		$\lhd_{-}thm$	481
z_mmus_		462	z_		455
	\mathbb{N}_1		$z_ran_$	\triangleleft _thm	
	\mathbb{N}_1	464	z _ ran _	\triangleleft _thm	526
z_	+ "	518	<i>z</i> _	$\lhd \to thm$	455
$z \in$	_	468	<i>z</i> _	$\triangleleft_{-} \rightarrow_{-} thm$	526
	$\mathbb{N}_{1-}thm$	516		- <u>(</u> - <u>)</u> -	491
$z_{-}\mathbb{R}_{-}real_{-}$	$\mathbb{NR}_{-}thm$	533	<u>-(-)</u>	_	491
	→>_	452	-	(_)_	491
_→>	_	452	(_	$(_{-})_{-})[X,Y]$	489
_	→ *_	452	(_($(-)^{-}(X,Y)$	489
z_{-}	\rightarrow _clauses	454	(-1	$ $ $)_{-}$ $)[X, Y]$	489
z_{-}	$\rightarrow clauses$	510	(- <u>(</u> -	<u>/</u> -/[2 1 , 1]	
z_{-}	$\rightarrow def$	509	-[<u>- </u>	491
$z_dom_f_$	$\rightarrow fthm$	457	<u>-</u>	<u>)</u> -	491
$z_dom_f_$	$\longrightarrow_{-}f_{-}thm$	526		-	484
$z = \omega \circ \dots = j = z$	$\rightarrow ran_{-}thm$	457	_ [<u> </u>	484
$z = z_{-}$	$\rightarrow ran_{-}thm$	526	-		484
z _ z _	$\rightarrow thm$	453	(_	$\upharpoonright_{-})[X]$	483
z	\rightarrow _thm	510	z_{-}		522
zempty	\rightarrow _thm	458	z_{-}	$ \uparrow_{s-} conv $	445
		526	$z_{-}\in$ _	$ _{s-conv}$	445
zempty	$\longrightarrow_{-}thm$		$dest_{-}z_{-}$		377
z_o_	->thm	456	$is_z_$	l : '	377
$z_{-}\circ_{-}$	$ \rightarrow _{-} thm$	526		1 ' 5	~··

_			
mkz	s	377	$z_{-} \mapsto clauses$
	\mathbb{Z}	462	$z_{-} \mapsto def$
	\mathbb{Z}	464	$z \mapsto thm$
z_{-}	\mathbb{Z}_{-cases_thm}	465	$z \mapsto thm$
z_{-}	\mathbb{Z}_{-cases_thm}	516	$z_{-} \mapsto thm1$
z_{-}	\mathbb{Z}_{-cases_thm1}	466	$z_{-} \mapsto thm1$
z_{-}	\mathbb{Z}_{-cases_thm1}	516	$X\mid\rightarrowtail Y$
z_{-}	$\mathbb{Z}_{-}consistent$	448	
z_{-}	\mathbb{Z}_{-conv}	521	
z_{-}	$\mathbb{Z}_{-}def$	518	
z_{-}	$\mathbb{Z}_{-}def$	521	
z_{-}	$\mathbb{Z}_{-}eq_conv$	518	
z_	$\mathbb{Z}_{-}eq_{-}thm$	465	
	$\mathbb{Z}_{-}eq_{-}thm$	516	
	$\mathbb{Z}_{-}exp_conv$	534	
$z\mathbb{R}$	$egin{array}{c} \mathbb{Z}exp_def \ \mathbb{Z}exp \end{array}$	535 530	
$dest_z_\mathbb{R}$	$\mathbb{Z}_{-}exp$ $\mathbb{Z}_{-}exp$	530 530	
$isz\mathbb{R}$ $mkz\mathbb{R}$	$\mathbb{Z}_{-}exp$ $\mathbb{Z}_{-}exp$	530 531	
	$\mathbb{Z}_{-induction_tac}$	531 519	
z_ ~	$\mathbb{Z}_{-induction_thm}$	465	
z_ ~	$\mathbb{Z}_{-induction_thm}$	516	
z_{-} $z_{-}less_{-}$	\mathbb{Z}_{-less_thm}	449	
$z_less_$ $z_less_$	\mathbb{Z}_{-less_thm}	521	
	\mathbb{Z}_{-minus_thm}	449	
$z \ z$	\mathbb{Z}_{-minus_thm}	521	
z _ z _	$\mathbb{Z}_{-one_one_thm}$	449	
z _ z _	$\mathbb{Z}_{-one_one_thm}$	521	
z _ z _	\mathbb{Z}_{-plus_thm}	448	
z _ z _	\mathbb{Z}_{-plus_thm}	521	
z	$\mathbb{Z}_{-subtract_thm}$	449	
z	$\mathbb{Z}_{-subtract_thm}$	521	
$z = z_{-}$	\mathbb{Z}_{-times_thm}	448	
z_{-}	\mathbb{Z}_{-times_thm}	521	
z_{-}	\mathbb{Z}	448	
	\mathbb{Z}_{-z}	448	
	$\mathbb{Z}_{-z_consistent}$	448	
	\mathbb{Z}_{-z_conv}	521	
	$\mathbb{Z}_{-}z_{-}def$	521	
	$\mathbb{Z}_{-}z_{-}minus_{-}thm$	449	
	$\mathbb{Z}_{-}z_{-}minus_{-}thm$	521	
	$\mathbb{Z}_{-z_one_one_thm}$	449	
	$\mathbb{Z}_{-z_one_one_thm}$	521	
	$\mathbb{Z}_{-}z_{-}plus_{-}thm$	449	
	$\mathbb{Z}_{-}z_{-}plus_{-}thm$	521	
	$\mathbb{Z}_{-}z_{-}subtract_{-}thm$	449	
	$\mathbb{Z}_{-}z_{-}subtract_{-}thm$	521	
	$\left \mathbb{Z}_{-}z_{-}times_{-}thm \right $	449	
	$\mathbb{Z}_{z_times_thm}$	521	
	$\mathbb{Z}_{-} \leq -thm$	449	
$z \leq$	$\mathbb{Z}_{-} \leq_{-} thm$	521	
п	[[]	450	
[450	
([[])[X]	450	
	_> +> _	452	
_>++>	_	452	
-	$\mapsto_{-} clauses$	452 454	
Z _	∕→_ciauses	454	