
L
E
M
M
A1 Copyright c© : Lemma 1 Ltd 2005 Lemma 1 Ltd.

c/o Interglossa
2nd Floor

31A Chain St.
Reading

Berks
RG1 2HX

ProofPower
—

SLRP User Guide

Abstract

This document is the user guide for SLRP — a simple parser generator
for Standard ML.

Version: Revision : 1.17
Date: 21 September 2005
Reference: LEMMA1/XPP/USR032
Pages: 60

Prepared by: R.D. Arthan
Tel: +44 118 958 4409
E-Mail: rda@lemma-one.com

L
E
M
M
A1

Lemma 1 Ltd. SLRP User Guide 2

0.1 Contents

0.1 Contents . 2
0.2 List of Figures . 4
0.3 References . 4
0.4 Changes History . 5
0.5 Changes Forecast . 5

1 INTRODUCTION 6
1.1 Overview of SLRP . 6
1.2 Overview of this Document . 7

2 GETTING STARTED WITH SLRP 9

3 WRITING A COMPLETE PARSER 12
3.1 Lexical Analyser . 13
3.2 Adding Actions . 16

4 HOW THE PARSERS WORK 19
4.1 LR(0) Parsing . 19
4.2 Conflict Resolution . 20
4.3 LR(0) States . 21
4.4 SLRP Parser Driver Implementation Details 22

5 AMBIGUOUS GRAMMARS 24
5.1 Debugging a Grammar . 24
5.2 Reduce/Reduce Conflicts . 26
5.3 Shift/Reduce Conflicts . 28

5.3.1 If-then-else . 28
5.3.2 Operator Precedence . 29
5.3.3 An Inherently Ambiguous Language . 31
5.3.4 Transforming a non-LALR(1) Grammar into an LALR(1) one 32

6 ERROR HANDLING 35

A STANDARD ML CODE EXAMPLES 36
A.1 Compiling SLRP Parsers . 36
A.2 A Lexical Analyser . 37
A.3 Adding Actions . 41
A.4 Operator Precedence Conflict Resolution . 44
A.5 Error Handling . 45

B COMMAND LINE INTERFACE 47
B.1 Command Line Syntax . 47
B.2 Input and Output File Conventions . 47
B.3 Code Generation Options . 47
B.4 Listing Options . 48

Lemma 1 Ltd. SLRP User Guide 3

C SLRP INPUT FORMAT 49

D STANDARD ML LIBRARY 50

E PARSER DRIVER API 51

F GENERIC PARSER API 57

G API INDEX 60

Lemma 1 Ltd. SLRP User Guide 4

0.2 List of Figures

1 A Grammar for Arithmetic Expressions . 9
2 Generic Parser Input . 11
3 The Parse Tree for the Input in Figure 1 . 11
4 An Action Grammar for Arithmetic Expressions 16
5 A Grammar and the Graph of its LR(0) Automaton 19
6 LR(0) State Table and Conflict Listing . 22
7 Fragments of an Incorrect Grammar for C . 25
8 A Grammar With Reduce/Reduce Conflicts 26
9 Reduce/Reduce Conflicts — Extracts from the Listing 27
10 A Grammar Requiring Operator Precedence Rules 29
11 Operator Precedence — Extracts from the Listing 30
12 An Inherently Ambiguous Language . 31
13 Resolving Ambiguities By Widening the Language 31
14 A non-LALR(1) Grammar . 33
15 Making a Grammar LALR(1) . 34
16 Compiling the SLRP Library Code . 36
17 Compiling the Code Generated by SLRP . 36
18 Constructing Lexical Values . 37
19 Recognising Punctuation Symbols . 38
20 Recognising an Identifier . 38
21 Recognising a Literal . 39
22 Dealing with Lexical Errors . 39
23 Constructing the Reader . 40
24 Constructing the Parser . 40
25 The Reduction Functions for Commands . 41
26 The Reduction Functions for Expressions I . 41
27 The Reduction Functions for Expressions II 42
28 The Reduction Functions for Expressions III 42
29 Constructing the Parser . 43
30 The Operator Precedence Parser . 44
31 A Simple Extension to the Default Error Routine 45
32 A Simple Error Recovery Scheme . 46

0.3 References

[1] BS6154:1981. Method of defining syntactic metalanguage. British Standards Institution,
1981.

[2] DS/FMU/IED/DTD018. Detailed Design for SLR Parser Driver. R.D. Arthan, Lemma
1 Ltd., http://www.lemma-one.com.

[3] DS/FMU/IED/IMP018. Implementation of SLR Parser Driver. R.D. Arthan, Lemma 1
Ltd., http://www.lemma-one.com.

Lemma 1 Ltd. SLRP User Guide 5

[4] DS/FMU/IED/PLN009. BS6154:1981 Method of defining syntactic metalanguage.
British Standards Institution, 1981.

[5] LEMMA1/DEV/WRK063. Demonstration SLRP Parser for ANSI-C. R.D. Arthan,
Lemma 1 Ltd., rda@lemma-one.com.

[6] LEMMA1/DEV/WRK064. SLRP Grammars for Ada 95, Java 1.1 and Pascal. R.D.
Arthan, Lemma 1 Ltd., rda@lemma-one.com.

[7] LEMMA1/HOL/USR029. ProofPower HOL Reference Manual. Lemma 1 Ltd.,
rda@lemma-one.com.

0.4 Changes History

Issues 1.1 – 1.15 Author’s initial drafts.

Issue 1.16 First complete version.

0.5 Changes Forecast

None at this release.

Lemma 1 Ltd. SLRP User Guide 6

1 INTRODUCTION

1.1 Overview of SLRP

SLRP is a simple but powerful parser generator for Standard ML. The input to SLRP is
a grammar written in a version of BNF, [1]. The output from SLRP is a file of Standard
ML code that can be used to construct a parser for the language specified by the grammar.
Grammar rules may include semantic actions: Standard ML expressions to be evaluated when
a rule is applied during parsing. SLRP can also output a listing describing its analysis of a
grammar to assist you in designing the language or the grammar that defines it.

SLRP is similar in conception to well-known parser generators like yacc and bison for C
and ML-Yacc for Standard ML. SLRP differs from these in that the parser it generates is
table-driven rather than comprising a mixture of tables and decision-making code. The tables
are interpreted by a simple polymorphic parser-driver function that takes as its arguments
functions that you supply to carry out application-specific tasks such as reading the input
stream and reporting errors. The parser driver function is supplied as part of a simple API
that provides support for coding these functions. Another difference between SLRP and yacc

or bison is that it supports dynamic rather than static resolution of parsing conflicts. This
makes it easy to implement language features such as user-defined operator precedences.

SLRP does not include an automatic lexical analyser generator. It does support production
of a generic parser from a grammar. This means that SLRP can automatically generate the
semantic actions for you. The result is a complete working parser whose input is a sequence
of terminal symbols in the same format as was used in the grammar and whose output is a
parse tree. This makes it easy to experiment with the design of the language or the grammar
without committing a lot of effort to writing code. The generic parser is supplied as part of
an API that you can use or adapt to provide the parsing functionality that your application
requires.

SLRP is currently available to run with the Poly/ML or Standard ML of New Jersey compilers.
The output from SLRP is Standard ML code that should work with any Standard ML compiler.
SLRP includes the ProofPower library of utility functions and the code it generates does depend
on these. However, substitutes for the small repertoire of functions actually used (primarily
concerned with table lookup) can easily be developed to work in other environments.

Like yacc and bison, SLRP implements a version of the LALR(1) technique. This means
that it is capable of generating code to parse a wide range of practical languages. It is used
for all of the main object languages supported by ProofPower: HOL, Z and the Compliance
Notation (which includes most of the Ada ’83 language). The SLRP distribution includes
example grammars for the programming languages Ada 95, Java 1.1 and Pascal and a fairly
complete worked example of a parser for C. SLRP is also used for the parsers for the object
languages HOL and Z supported by ProofPower.

Lemma 1 Ltd. SLRP User Guide 7

The SLRP source code and documentation is packaged using PPTex, the ProofPower document
preparation and literate programming system. You do not need to use PPTex to use SLRP,
but it does provide a convenient way of packaging the various source files and scripts you need
to build a parser with SLRP.

1.2 Overview of this Document

This document is intended to be a self-contained introduction to using SLRP. It assumes some
familiarity with the Standard ML programming language and with the basic concepts of using
a context-free grammar written in BNF to specify a language.

The document is structured as follows:

Section 2 shows you how to get started by preparing a grammar in the form supported by
SLRP and to use it to implement a first cut at a generic parser, in a few lines of ML,
that reads strings of grammar symbols and outputs parse trees.

Section 3 shows how you can use the API supplied with the generic parser support code to
implement a lexical analyser and how to add semantic actions to the grammar and so
implement a complete working parser for a simple calculator program.

Section 4 gives a brief introduction to the theory behind the LALR(1) parsing technique
and explains the concept of shift/reduce and reduce/reduce conflicts that tend to arise
when working with more complex languages and grammars.

Section 5 discusses some of the common problems that arise, such as errors in the grammar;
it gives some useful techniques for working with ambiguous grammars, e.g., for languages
which are best expressed using numeric operator precedence.

Section 6 shows you how to develop a parser with more sophisticated error handling and
error recovery.

Appendix A give the full Standard ML code for the examples in the earlier sections.

Appendix B describes the SLRP command line interface.

Appendix C gives the BNF grammar for the SLRP input format.

Appendix D describes the library of Standard ML utility types and functions that is sup-
plied with SLRP.

Appendix E gives detailed reference documentation for the parser driver API.

Appendix F gives detailed reference documentation for the generic parser API.

Lemma 1 Ltd. SLRP User Guide 8

The source of this document is itself a literate script containing example grammars and ex-
ample code that can be automatically processed and compiled. Other examples may be found
in the documents [5] and [6] supplied with SLRP.

Lemma 1 Ltd. SLRP User Guide 9

2 GETTING STARTED WITH SLRP

The first task in using SLRP to build a parser is to prepare a text file containing a grammar for
the language you want to parse. The file should be given a name ending in “.txt”. The format
of this file is specified in detail in appendix C. Figure 1 shows an example file containing a
grammar for a language of arithmetic expressions:

Text dumped to file usr032a.grm.txt

Expression = Sum;

Atom = literal
| identifier
| ‘(‘, Expression, ‘)‘;

Application = Atom
| ‘−‘, Application
| ‘+‘, Application
| identifier , ‘(‘, Expression, ‘)‘;

Product = Application
| Product , ‘∗‘, Application
| Product , ‘/‘, Application;

Sum = Product
| Sum, ‘+‘, Product
| Sum, ‘−‘, Product ;

Figure 1: A Grammar for Arithmetic Expressions

In this document, we assume that you are familiar with the basic concepts of what are generally
called context-free or BNF grammars, or, in this document, just grammars. This example
shows the SLRP conventions for writing a grammar: the grammar is written as a list of
equations, which we call productions; the right-hand side of each production comprises zero or
more alternatives separated by vertical bars and terminated by a semi-colon; each alternative
comprises zero or more grammar symbols separated by commas. A nonterminal symbol is a
grammar symbol that appears on the left-hand side of some production. A terminal symbol is
a grammar symbol that does not appear on the left-hand side of any production. A grammar
rule is an equation such as Sum = Product whose left and right-hand sides are both drawn
from some production in the grammar.

Nonterminal symbols are written as identifiers, e.g., Sum, following the Standard ML rules for
forming identifiers (using letters, numbers, underscores and the prime character and beginning
with a letter). Terminal symbols may be written either as identifiers, e.g., literal, or as
arbitrary strings enclosed in back-quote characters, e.g., ‘+‘.

Lemma 1 Ltd. SLRP User Guide 10

In strings, you may use a backslash character as an escape character, if you need to include a
backslash, a new-line or a back-quote character in the string.

SLRP adopts the convention that the first production gives the starting symbol for the gram-
mar, in this case Expression. We call this symbol the sentence symbol and we use the term
sentences to refer to the programs, or algebraic expressions, or specification language para-
graphs, or whatever syntactic objects it may be that the sentence symbol represents.

Once you have prepared your grammar file, you can run SLRP to analyse the grammar and
generate the parser code. You use the shell script slrp to do this, specifying the name of
your file using the -f option. The file name must end in “.txt”. In this case, the name is
usr032a.grm.txt. If you want to generate the generic parser, you specify the option -g. For
our example, the command would be as follows:

Bourne Shell

slrp −g −f usr032a.grm.txt >usr032a.grm.run 2>&1

This will result in some messages on standard output (redirected to the file usr032a.grm.run

in the above example call on slrp). It will also produce two output files: usr032a.grm.sml

which contains the Standard ML code of the generated parser and usr032a.grm.log which
contains a listing of the grammar and various additional information; for example, it includes
a sorted list of the terminal symbols, which is useful for checking for mistyped nonterminal
names.

You can now compile and run the generic parser for your language after first compiling the
parser driver and supporting material using the ML commands shown in figures 16 and 17.
The example code in figure 17 defines a function ae parser1 that takes the name of an input
file as its argument; it parses the sequence of terminal symbols in the input file and, if the
input is correct, prints out a textual representation of the parse tree. An example input file,
usr032a.grm.tst, for it is shown in figure 2

If you now execute ae_parser1 "usr032a.grm.tst", you will see the print-out of the parse
tree shown in figure 3. The parse tree is printed out as a left-to-right, bottom-up listing of
the grammar rules used to parse the input; each application of a rule is given a label showing
its position in the tree. Each terminal symbol in the print-out of the tree is followed by the
line number on which the terminal symbol in question was encountered. The print-out can
be understood as a top-down description of how the input has been parsed by reading it
backwards: “1: an Expression can be a Sum; 1.1: a Sum can be a Sum followed by a plus sign
(the one on line 2) followed by a Product; 1.1.3: a Product can be an Application . . . ”.

Of course the functionality of the generic parser as it stands is unlikely to be what you want
in your actual application. Both its “front-end”, i.e., its lexical analyser, and its “back-end”,
i.e., the generic reduction actions that build a generic parse tree, will generally need to be
modified to do what is really wanted. Section 3 explains how you can go about mutating the
generic parser to meet your needs.

Lemma 1 Ltd. SLRP User Guide 11

Text dumped to file usr032a.grm.tst

literal ‘∗‘ ‘(‘ literal ‘−‘ literal
‘)‘ ‘+‘ identifier ‘(‘

literal ‘/‘
literal

‘)‘

Figure 2: Generic Parser Input

1 .1 .1 .1 .1 .1 .1 : Atom = literal(1);
1 .1 .1 .1 .1 .1 : Application = Atom;
1 .1 .1 .1 .1 : Product = Application;
1 .1 .1 .1 .3 .1 .2 .1 .1 .1 .1 .1 : Atom = literal(1);
1 .1 .1 .1 .3 .1 .2 .1 .1 .1 .1 : Application = Atom;
1 .1 .1 .1 .3 .1 .2 .1 .1 .1 : Product = Application;
1 .1 .1 .1 .3 .1 .2 .1 .1 : Sum = Product ;
1 .1 .1 .1 .3 .1 .2 .1 .3 .1 .1 : Atom = literal(1);
1 .1 .1 .1 .3 .1 .2 .1 .3 .1 : Application = Atom;
1 .1 .1 .1 .3 .1 .2 .1 .3 : Product = Application;
1 .1 .1 .1 .3 .1 .2 .1 : Sum = Sum, ‘−‘(1), Product ;
1 .1 .1 .1 .3 .1 .2 : Expression = Sum;
1 .1 .1 .1 .3 .1 : Atom = ‘(‘(1), Expression, ‘)‘(2);
1 .1 .1 .1 .3 : Application = Atom;
1 .1 .1 .1 : Product = Product , ‘∗‘(1), Application;
1 .1 .1 : Sum = Product ;
1 .1 .3 .1 .3 .1 .1 .1 .1 .1 : Atom = literal(3);
1 .1 .3 .1 .3 .1 .1 .1 .1 : Application = Atom;
1 .1 .3 .1 .3 .1 .1 .1 : Product = Application;
1 .1 .3 .1 .3 .1 .1 .3 .1 : Atom = literal(4);
1 .1 .3 .1 .3 .1 .1 .3 : Application = Atom;
1 .1 .3 .1 .3 .1 .1 : Product = Product , ‘/‘(3), Application;
1 .1 .3 .1 .3 .1 : Sum = Product ;
1 .1 .3 .1 .3 : Expression = Sum;
1 .1 .3 .1 : Application = identifier(2), ‘(‘(2), Expression, ‘)‘(5);
1 .1 .3 : Product = Application;
1 .1 : Sum = Sum, ‘+‘(2), Product ;
1 : Expression = Sum;

Figure 3: The Parse Tree for the Input in Figure 1

Lemma 1 Ltd. SLRP User Guide 12

3 WRITING A COMPLETE PARSER

The code generated by SLRP defines a polymorphic function called slrp ′gen parser . This
function takes four parameters which identify functions as follows:

RESOLVER: a function to resolve what SLRP sees as possible ambiguities in the grammar,
referred to as conflicts, (see sections 4 and 5 below for more information on this). If the
grammar has no conflicts, the function default resolver provided as part of the SLRP
library will serve for this parameter.

CLASSIFIER: a function to map tokens read from an input stream, e.g., “TEMP VAR”
or “+” to the terminal symbol in your grammar that represents the lexical class of the
token, e.g., Identifier or ‘+‘. A function classifier is provided as part of the generic SLRP
parser which will serve for this parameter unless you want to customise the data types
used to represent the lexical classes.

ERROR ROUTINE: a function to deal with syntax errors. A function default error is
provided as part of the SLRP library to serve as an off-the-shelf value for this parameter.
See section 6 for more information on error handling.

READER: a function to provide input to the parser; this is interface by which you supply
a lexical analyser suiting the rules of the language you are parsing.

The parser function is also implicitly parametrised by a table generated by SLRP which maps
grammar rules to ML functions called reduction actions or just actions for short. These actions
are executed during parsing and give an operational semantics to the grammar.

To understand how this works, you can think of the parser identifying the sequence of tokens
that make up its input by a series of reductions that transform sequences of grammar symbols.
The parser tries to match parts of the input with the right-hand side of a grammar rule. When
a match is found the parser reduces the matching portion of the input to the name of the
nonterminal symbol on the left-hand side of the matching rule. It keeps trying these reduction
steps until it has reached a sequence comprising just the sentence symbol. Each time a rule is
used in a reduction the corresponding action is evaluated and the result or side-effect of ths
gives a semantics to the rule.

The reductions are analogous to a forwards reading of the parse tree in figure 3: “1.1.1.1.1.1.1:
The literal (on line 1) can be reduced to an Atom; 1.1.1.1.1.1: an Atom can be reduced to an
Application . . . ”. The evaluation of the action functions can be viewed as as a similar reading
together with a description of a calculation of a value: “. . . an Atom [with value 99] can be
reduced to an Application [with value 99] . . . ”.

For the generic parser we constructed in section 2, the action code is automatically generated
by SLRP and the semantics is calculation of a parse tree. SLRP lets you write Standard ML

Lemma 1 Ltd. SLRP User Guide 13

expressions alongside the alternatives in a grammar to serve as the action code; when you
do this, your expressions are evaluated as the reduction actions, giving each alternative the
semantics implied by your action code.

The purpose of this section is to show by example how to write a lexical analyser to serve
as the READER function and how to include application-specific actions in a grammar. Our
example will be based on the language of arithmetic expressions of figure 1; the result will be a
calculator program that reads, parses and evaluates the sentences of the language. Section 3.1
deals with lexical analysis and section 3.2 deals with implementing the actions.

3.1 Lexical Analyser

The structure GenericSlrpParser contains the generic parser API which provides a framework
to help you construct a lexical analyser. Reference documentation for the generic parser API
is given in appendix F of this document.

In this section we show how you can use this framework to implement a lexical analyser for
the language of arithmetic expressions of figure 1. The framework helps you with things such
as reading an input stream and keeping track of line numbers, letting you concentrate on the
lexical matters that are specific to your language.

The framework is provided both as an API and as source code. The source code is only
a few hundred lines of ML. If you are writing a parser for use in a larger application you
may well want, eventually, to take a copy of the source, strip out the parts you do not use,
and customise what remains to the requirements of your application. In this section, we will
concentrate on using the API, since that is the first step in understanding of the framework.

In the lexical analysis framework, a polymorphic type ′lc LEX VALUE is used for commu-
nication between the lexical analyser and the parser. It is defined as follows:

type ′lc LEX VALUE = ′lc ∗ (string ∗ int);

Here ′lc stands for the ML representation of the various terminal symbols (lexical classes)
in the grammar (together with a special end-of-sentence symbol). In the generic parser we
constructed in section 2, ′lc is instantiated to a data type LEX CLASS representing the
identifiers and string quotations that make up the set of terminal symbols in the SLRP input
format. For our language of arithmetic expressions, we will continue to use this data type for
the lexical classes. It is defined as follows:

datatype LEX CLASS =
LCIdentifier of string

| LCString of string
| LCEos ;

Lemma 1 Ltd. SLRP User Guide 14

The listing file usr032a.grm.log generated by SLRP shows us that we have the following
lexical classes to deal with: identifier , literal , ‘(‘, ‘)‘, ‘ ∗ ‘, ‘ + ‘, ‘− ‘, ‘/‘. Here are
the lexical rules chosen for the example language: identifiers are formed from letters, num-
bers and underscores and start with a letter or an underscore; literals are strings of decimal
digits; the punctuation symbols are as given above together with semicolon, the hash symbol
and the equals symbol (for later use) and the parser must warn about and skip over other
characters. The input stream comprises a sequence of arithmetic expressions separated by
semicolons. Comments comprise any sequence of characters beginning with a hash character
and terminated by an end-of-line character. The ML definitions given in figure 18 reflect some
of these design decisions.

To construct a lexical analyser using the framework, you write what we call recogniser func-
tions for the various lexical classes. These are defined in terms of the following data types, a
recogniser function being a function from ′lc LEX STATE to itself.

datatype CONTINUATION STATUS =
InComment

| InString of string list ;
datatype ′lc LEX STATUS =

Unknown
| Known of ′lc LEX VALUE
| Comment
| Continuation of int ∗ CONTINUATION STATUS ;

type ′lc LEX STATE = (string list ∗ ′lc LEX STATUS);

The idea is that a recogniser function is passed as the first component of its parameter a buffer
comprising a list of strings representing the unread input characters (one character per string)
from the current input line. If it recognises what it finds, the function should consume the
appropriate number of characters from the buffer and return the remaining characters in the
buffer together with a status value indicating what has been found. The generic tools look
after issues such as skipping white space between tokens and ignoring tokens that have been
recognised as comments.

The data types above allow for lexical values, e.g., comments or strings in some languages,
that can be continued over multiple lines. We do not need to use these features in our example.

Figures 19 to 22 show the code for recognising the lexical classes we are interested in. Because
we want to accept a sequence of arithmetic expressions separated by semicolons, the recogniser
for punctuation maps semicolon to the end of sentence symbol; it also deals with comments,
and, for use when we extend the language a little in section 3.2, with equals signs. The
recognisers for identifiers and numeric literals are straightforwards representations in ML of
finite state machines implementing our lexical rules. Finally the recogniser for unknown
symbols issues an error message and classifies the erroneous symbol as a comment, so that
the lexical analyser will skip over it.

In figure 23, we use our recogniser functions and the lexical analysis framework API to con-

Lemma 1 Ltd. SLRP User Guide 15

struct our READER and then in figure 24 we construct the parser by supplying the appropriate
parameters to slrp’gen parser to give a parsing function that, given a string containing the
sentences to be parsed, returns a function which when called will return the results of parsing
the successive sentences in the text.

In figure 23, the first step is to use the function rec first from the API to combine our individual
recognisers. It works by first of all skipping over space characters and then when a non-space
character is found it calls the individual recognisers in turn until it finds one that signals
success (i.e., that does not return status Unknown).

The READER parameter to slrp’gen parser is defined to have type an instance of the poly-
morphic type ′st − > ′tok ∗ ′st . Here ′st is the type of some internal state of the reader and
′tok is the type of the lexical token returned by a call on the READER. In the lexical anal-
ysis framework, ′st is instantiated to string list ∗ bool . I.e., the state comprises a buffer of
single-character strings representing the as yet unconsumed contents of an input line together
with a flag indicating whether the input source for the next line is available.

The function gen reader in the API will automatically produce a READER given parameters
identifying the lexical class representing end-of-input, a recogniser function and an input
source. The input source is represented by a type IN CHAR STREAM defined in the API,
which also provides functions to construct such input streams given a source of input text
such as an ML string or a file name. This provides all that is needed to construct a READER
for a parser that is expecting to find exactly one sentence in the input source. Our example
is a little more complicated, because we want to read a sequence of sentences separated by
semicolons. Our approach in figure 23 is to wrap round a call of the READER function
produced by gen reader some code that records the state of the READER in an assignable
variable.

Given the READER function constructed in figure 23, figure 24 shows the construction of
the finished parser. Note that the type IN CHAR STREAM is a record type including a
component called close which we should call to free up resources, such as open files, associated
with the input stream. We do not need to close a stream explicitly if we read to the end of
the stream, but we do need to close it explicitly if the parsing is abandoned before the end of
stream is read.

To test the parser, we can execute the following code which will print out the parse trees for
the two expressions “1 + 2” and “3 ∗ 4”.

let val p = ae parser2 "1 + 2 ; 3 ∗ 4";
in print tree(p());

print tree(p())
end ;

Lemma 1 Ltd. SLRP User Guide 16

3.2 Adding Actions

In this section, we will finish off our example by adding actions to the grammar. We also extend
the language a little to introduce commands that bind numbers to names. The actions will
compute the value of expressions, so that our parser becomes a simple interactive calculator
with a memory of named numbers.

The grammar for the extended language is given in figure 4. The grammar has been extended
in two ways: first, the sentence symbol is now Command, which is either an expression as
before, or a definition of a named number, comprising an identifier and an expression giving
its value; second, we have added actions giving semantics to the grammar rules as discussed
on page 12. The actions are given by supplying a Standard ML expression enclosed in brackets
at the end of each alternative.

Text dumped to file usr032b.grm.txt

Command = Expression (red command1 x1)
| identifier , ‘=‘, Expression (red command2 x1 x3);

Expression = Sum (red expression x1);

Atom = literal (red atom1 x1)
| identifier (red atom2 x1)
| ‘(‘, Expression, ‘)‘ (red atom3 x2);

Application = Atom (red application1 x1)
| ‘−‘, Application (red application2 x2)
| ‘+‘, Application (red application3 x2)
| identifier , ‘(‘, Expression, ‘)‘

(red application4 x1 x3);

Product = Application (red product1 x1)
| Product , ‘∗‘, Application (red product2 x1 x3)
| Product , ‘/‘, Application (red product3 x1 x3);

Sum = Product (red sum1 x1)
| Sum, ‘+‘, Product (red sum2 x1 x3)
| Sum, ‘−‘, Product (red sum3 x1 x3);

Figure 4: An Action Grammar for Arithmetic Expressions

Whenever the parser reduces an instance of an alternative in an action grammar, it evaluates
the action as an ML expression. The result of evaluating an action is called the semantic
value of the instance of the nonterminal symbol on the left-hand side of the grammar rule.
The action is evaluated inside an ML fn-expression whose pattern binds the variables, x1, x2,

Lemma 1 Ltd. SLRP User Guide 17

x3, . . . to representations of the semantic values of the 1st, 2nd, 3rd, . . . grammar symbols in
the alternative (reading it left-to-right). Here, the semantic value of a terminal symbol is a
representation of the lexical value of the input token.

The semantic values are represented in ML as instances of the following polymorphic type:

datatype (′tok , ′lc, ′pp) INPUT STACK ITEM =
Token of ′tok ∗ ′lc

| Parsed of ′pp;

Here ′pp (the name stands for “partially-parsed”) is the type of the semantic value of a
nonterminal symbol and ′tok and ′lc are the types for the lexical value of a token and its
lexical class. For our calculator, ′pp will be integers representing the results of evaluating
arithmetic expressions; ′tok and ′lc will be the types AE LEX VALUE (defined in figure 18)
and LEX CLASS (discussed in section 3.1) respectively. In fact, if you’re using the lexical
analysis framework, all you usually need to know about the operand of the constructor Token
is that it has the form ((, (s,)),) where s is the text of the input token.

In our action grammar, we have adopted the convention of having a separate ML function
for each alternative in the grammar. We call these the reduction functions. Each reduction
function is passed as parameters the xN that correspond to nonterminals, literals or identifiers
in the alternative. So, for example, the function red sum2 is passed the semantic values of
the two operands of the addition.

Figures 25 to 28 give the reduction functions which give the calculator semantics to our
language. The reduction functions do pattern-matching on their parameters to pick out the
semantic values of the symbols on the right-hand side of the corresponding grammar rule:
a parameter corresponding to a nonterminal has a pattern constructed with Parsed and a
parameter corresponding to a terminal symbol has a pattern constructed with Token. Several
of the reduction functions are just defined to be equal to an auxiliary function red accept
which simply returns the semantic value of its parsed parameter (this is often useful for rules
where the right-hand side comprises a single nonterminal).

For example, red application4 in figure 26 corresponds to the rule:

Application = identifier , ‘(‘, Expression, ‘)‘

Its first parameter is expected to be a token and its second a parsed value. It implements
a semantics supporting two named functions “abs” and “sgn” which compute absolute value
and the sign function. It checks to see that the name is one of these two and if so returns the
value of the specified function applied to the number appearing in the second parameter. If
the name is not one of the two supported functions it outputs an error message and raises an
exception.

The reduction functions for commands shown in figure 25 also have side effects: they both
cause something to be printed on standard output and update a table of named numbers (used

Lemma 1 Ltd. SLRP User Guide 18

in red atom2 to look up the value of an expression comprising an identifier — red command1
adopts the ML-like convention of binding a top-level expression to the variable it).

In general, care should be taken when actions have side-effects, since the order in which the
actions are evaluated can be tricky to understand. In this case, all we need to know is that
the calling order corresponds to some order for constructing a parse tree from the bottom
up. Since the production for the sentence symbol, Command, is not recursive, the actions in
its alternatives will be evaluated once only and after evaluating any other actions for each
sentence parsed.

Finally, figure 29 shows the construction of the finished parser with semantic actions. It reuses
the lexical analyser code described in section 3.1. So that it can be tested interactively, we
formulate the parser to take its input from an instream, such as std in.

If you compile the code in the figures in sections refCompiling to A.3 and run the following
ML command, you will begin an interactive session with our simple calculator program.

ae parser3 std in;

If you put a semicolon-separated list of commands in a file, say usr032b.grm.tst, then the
following command will execute the commands.

ae parser3 (open in "usr032b.grm.tst");

Note that the calculator will not allow the file to end with a semicolon. You may find it an
instructive exercise to try redesigning the calculator to treat semicolons as terminators rather
than separators — there are many ways of going about it.

Lemma 1 Ltd. SLRP User Guide 19

4 HOW THE PARSERS WORK

Many useful grammars give rise to problems when you first enter them into a tool like SLRP;
moreover, some applications have requirements, e.g., for error-recovery, that are not covered
by the simple techniques we have been using so far. To help you understand and solve the
problems that can arise, this section gives a more detailed description of how SLRP and the
parsers it generates work.

4.1 LR(0) Parsing

For any grammar, parsing a sentence according using the grammar corresponds to finding
a possible computation of a machine called the LR(0) automaton for the grammar. The
behaviour of this machine is governed by a certain rooted directed graph each of whose edges
is labelled either with a grammar symbol or with a special symbol $ meaning end-of-input.

An example grammar and the corresponding graph are given in figure 5. The root of the
graph is the node drawn in black. The nodes of the graph are referred to as states. There is
a distinguished state “accept”, which is labelled −1 in the figure.

Text dumped to file usr032d.grm.txt

Decl = UninitDecl , ‘;‘
| InitDecl , ‘;‘;

UninitDecl = var , ‘:‘, type;

InitDecl = var , ‘:‘, type, ‘:=‘, expr ;

’:’ type ’:=’ expr

Decl $

UninitDecl

InitDecl

’;’

’;’

0 −1

1 2

3 4

7 8 9 5 6
var

10

Figure 5: A Grammar and the Graph of its LR(0) Automaton

Lemma 1 Ltd. SLRP User Guide 20

The LR(0) automaton is a machine whose input comprises the graph and a string of terminal
symbols. The states of the automaton are the nodes of the graph, the initial state being the
root of the graph. The automaton “consumes” its input string, symbol by symbol working
from left to right, but it need not consume a new symbol on every transition. At each stage
of its computation it carries out one of the following types of transition:

Accept: if the current state s is “accept”, then the input string is a sentence of the language,
the sequence of reductions which have been carried out determine a parse tree for it,
and the automaton stops, accepting the input string;

Shift: if there is an edge labelled with the current input symbol and leading from the current
state s to some state s′, then the automaton can consume the input symbol and move
to state s′;

Reduce: if there is a state, s′, and a grammar rule, X = α, such that:

1. the path in the automaton that led to the current state s passes through s′

2. the edge labels on the path from s′ to s spell out the sequence of symbols α

3. there is an edge labelled with X leading out of s′ to some state s′′

then the automaton can move to state s′′ (without consuming an input symbol);

Error: if none of the above types of transition is possible, the input string is not a sentence
of the language and the automaton stops, rejecting the input string.

For example, consider the input “var, ‘:’, type, ‘:=’, expr” for the example in figure 5. From
the start state 10, the first three input symbols force the automaton to shift three times and
enter state 9. In this state it has a choice: either it can reduce to state 1 (taking s′ to be the
start state 10, and using the rule for UninitDecl), or it can shift into state 5. Such a choice is
referred to as a conflict and means that the LR(0) automaton does not give a deterministic
parser for the grammar.

4.2 Conflict Resolution

An LR(1) automaton is an LR(0) automaton equipped with a table resolving any conflicts
by telling it what transition to make in each state for each possible input symbol. This table
is called the lookahead table. If a suitable lookahead table exists for the grammar then the
grammar is unambiguous and the LR(1) automaton will provide a deterministic parser for it.
At each stage of a parse, the action of the parser is driven by by the next unconsumed input
symbol, which we refer to as the lookahead token.

There are several ways of attempting to calculate lookahead tables. The method used in
SLRP is first to apply a simple method called SLR(1) to compute the LR(0) graph and to

Lemma 1 Ltd. SLRP User Guide 21

calculate a first approximation to the lookahead table. This may not resolve all the conflicts,
in which case SLRP applies a rather more sophisticated method called LALR(1) in an attempt
to resolve the remaining conflicts.

Even the LALR(1) method will sometimes fail to resolve all conflicts. There can still be
states and input symbols for which the lookahead tables offer the automaton more than one
choice. It turns out that there will never be a choice between two different ways to shift: the
possibilities for a given state and input symbol may include at most one shift transition and
any number of reduce transitions.

SLRP implements a traditional heuristic to resolve the situations where there is a choice
between several reduce transitions (reduce/reduce conflicts): the reduction corresponding to
the nonterminal that appeared first in the grammar is taken as the resolution and the rest
are removed. If several reductions for the same nonterminal are possible, then the alternative
that appeared first is taken as the resolution.

After this heuristic has been applied, there will be at most one conflict for each state and input
symbol and that will be a shift/reduce conflict. Section 5 below discusses how you can check
that the built-in static resolution of reduce/reduce conflicts is appropriate for your application
and how you can work with grammars that have shift/reduce conflicts by supplying ML code
to resolve conflicts dynamically.

4.3 LR(0) States

If your grammar gives rise to conflicts you will often need to study the listings it produces to
understand what is causing the problem. The listing of the state table can be very useful for
this purpose. The state table comprises a list of sets of items, an item being a grammar rule
together with a marker identifying a position the parser could reach in parsing an instance of
that rule.

The LR(0) state table is constructed by an algorithm which groups the items into sets. The
resulting sets of items are assigned numbers which represent the states in the implementation
of the LR(1) automaton. Note that the algorithm does not generally produce an equivalence
relation on items, i.e., an item may appear in several different states.

Figure 6 shows some extracts from the listing of a state table for a grammar for the C
programming language. Items are shown in the listing as grammar rules with a dot to indicate
the position marker. For example, the two items in state 207 show the position in a parse
when the then-part of an if statement has just been identified. This is discussed in more detail
in section 5.3.

Lemma 1 Ltd. SLRP User Guide 22

+++ State Table +++
...
207 : selection statement = ‘if ‘, ‘(‘, expression, ‘)‘, statement .

selection statement = ‘if ‘, ‘(‘, expression, ‘)‘, statement ., ‘else‘, statement
...
343 : statement = .labeled statement

statement = .compound statement
statement = .expression statement
statement = .selection statement
statement = .iteration statement
statement = .jump statement
labeled statement = .identifier , ‘:‘, statement
labeled statement = .‘case‘, constant expression, ‘:‘, statement
labeled statement = .‘default‘, ‘:‘, statement
compound statement = .‘{‘, ‘}‘

...
+++ Conflicts +++
...
1 conflict detected (1 shift/reduce, 0 reduce/reduce)

State 207 on symbol ‘else‘
Reduce by selection statement = ‘if ‘, ‘(‘, expression, ‘)‘, statement | ...
Shift to 343

Figure 6: LR(0) State Table and Conflict Listing

4.4 SLRP Parser Driver Implementation Details

The LR(1) automaton is implemented in SLRP by the grammar-independent parser driver
code in [2, 3]. Reference documentation for the parser dirver API is given in appendix E of
this document.

The parser driver API implements a generic LR(1) automaton as an ML function slrp’parse.
In the implementation, all the information the automaton needs about the LR(0) graph, the
grammar and the lookahead table are encoded in a compact way in two tables called the action
table and the goto table. The implementation maintains two stacks to represent the path in
the graph that led from the root to the current state (one stack for the states and one for the
edges).

The function slrp’parse takes 8 parameters. The first four of these parameters are values that
are computed by SLRP: the first of these gives the initial state of the automaton; the next
two give action table and goto table; the fourth parameter gives reduction table containing
the semantic action functions that are applied whenever a reduction transition is taken.

Lemma 1 Ltd. SLRP User Guide 23

The function slrp’gen parser is then generated by SLRP as the result of applying slrp’parse to
an initial state value and a trio of tables that it computes for your grammar (see appendix E
for more information). The remaining four parameters of slrp’parse become the parameters
to slrp’gen parser as discussed at the beginning of section 3 above.

Lemma 1 Ltd. SLRP User Guide 24

5 AMBIGUOUS GRAMMARS

This section is intended to help you understand and deal with shift/reduce and reduce/reduce
conflicts in your grammar. If either kind of conflict occurs, you have essentially two options:
either change the grammar to eliminate the conflicts or take steps to ensure that the parser
that is generated does what is wanted despite the conflicts. The following points should be
kept in mind when working on a grammar with conflicts.

• You may be fighting against one of the following possibilities:

– your language may be inherently ambiguous, i.e., there may be no way of describing
it with an unambiguous grammar;

– your grammar may be ambiguous and it may be difficult or impossible to find a
tractable grammar for the same language that is not ambiguous;

– your grammar may be unambiguous but may not belong to the class of LALR(1)
languages that SLRP can support without some hand-coded assistance.

In practice, there is almost always a work-around for these problems, e.g., by writing
code to resolve conflicts dynamically or by using a grammar for a tractable superset of
the language and imposing extra hand-coded checks.

• A shift/reduce conflict will cause the parser to fail at run-time if it encounters an input
that gives rise to the conflict unless you have supplied a RESOLVER function that tells
the parser what to do.

• Reduce/reduce conflicts are all resolved statically using the heuristic described in sec-
tion 4.2 above. You must check that this heuristic is appropriate for your language.

• A grammar with a few well understood conflicts that you can resolve dynamically is
often a better solution than a more complicated grammar without the conflicts.

5.1 Debugging a Grammar

Conflicts often occur just because of a mistake in grammar. Common causes include: acci-
dentally omitting an important punctuation symbol, accidentally duplicating an alternative
in a production and giving several ways of accepting an empty sequence of symbols. Figure 7
shows some fragments of the grammar for C as given in [6] seeded with a few minor errors
along these lines. These modifications introduce 200 conflicts into the grammar.

There is no general rule for debugging a grammar. The following suggestions may be helpful:

• The first thing to do is to study the conflict and state table listings to see which symbols
and which rules are causing the problem.

Lemma 1 Ltd. SLRP User Guide 25

• In the case of a large grammar like the one for C, try analysing sublanguages such as
expressions, statements and declarations separately. This will often reduce the amount
of information you need to process to find the source of the problem, particularly if there
are several unrelated errors in the grammar.

• If the problem seems to be related to missing or ambiguous punctuation in the grammar,
then try temporarily introducing distinctive delimiters for the main syntactic categories,
e.g., for C, try putting distinctive keywords in at the points where the statement and
declaration nonterminals are used.

• Try approximating the language from below: start from a small sublanguage that works
and then put in language features one by one.

• Try approximating the language from above: design a superset which admits a simpler
description and then refine it in stages to remove unwanted constructs.

• Check for other errors: e.g., SLRP reports if there are nonterminals in your grammar
that are useless because they are not reachable from the sentence symbol or because
they generate an empty language. These problems could highlight a mistake giving rise
to conflicts elsewhere.

declaration (∗ should have a semicolon terminator ∗)
= declaration specifiers
| declaration specifiers , init declarator list
;

declaration list (∗ an empty declaration list should not be allowed ∗)
=
| declaration list , declaration
;

statement list (∗ an empty statement list should not be allowed ∗)
=
| statement list , statement
;

relational expression
= shift expression
| relational expression, ‘<‘, shift expression
| relational expression, ‘>‘, shift expression
| relational expression, ‘<=‘, shift expression
| relational expression, ‘<=‘, shift expression

(∗ typo: should be ‘>=‘ − duplicates previous alternative ∗)
;

Figure 7: Fragments of an Incorrect Grammar for C

Lemma 1 Ltd. SLRP User Guide 26

5.2 Reduce/Reduce Conflicts

As discussed in section 4.2, SLRP resolves reduce/reduce conflicts statically using a heuristic
based on the order of the rules in your grammar: if the conflict is between two different
nonterminals it chooses the one that came first in the grammar, and similarly if it is between
two different alternatives for the same nonterminal it chooses the first one.

An example that gives rise to several reduce/reduce conflicts is given in figure 8. This example
shows a modification to part of the grammar of figure 4 which produces reduce/reduce conflicts.
The heuristic will cause the alternatives with two minus signs or two plus signs to be used in
favour of the ones with just one sign.

Text dumped to file usr032e.grm.txt

Application = Atom (red application1 x1)
| ‘−‘, ‘−‘, Application (red accept x3)
| ‘+‘, ‘+‘, Application (red accept x3)
| ‘−‘, Application (red application2 x2)
| ‘+‘, Application (red application3 x2)
| identifier , ‘(‘, Expression, ‘)‘

(red application4 x1 x3);

Figure 8: A Grammar With Reduce/Reduce Conflicts

The heuristic for removing reduce/reduce conflicts works nicely with some styles for presenting
a grammar, but care should be taken to check that it does actually implement the language
that you want. It is wise to check the state table and the conflicts in the listings carefully.
The relevant parts of the listings for the above example are shown in figure 9.

In the example, there are 12 conflicts — the two that are shown in figure 8 are both repeated
for each of the symbols ‘*’, ‘/’, ‘+’, ‘-’ and ‘)’ that can validly appear immediately following
an Application. The state table shows that the only thing the parser can be doing when the
reduce/reduce conflict would occur is recognising an Application following two plus or minus
signs. From this you can conclude that it is always safe to reduce by the rule that comes first,
and so this tiny optimisation to our calculator is acceptable.

Lemma 1 Ltd. SLRP User Guide 27

+++ State Table +++
...
12 : Application = ‘−‘, ‘−‘, Application.

Application = ‘−‘, Application.
13 : Application = ‘+‘, ‘+‘, Application.

Application = ‘+‘, Application.
14 : Application = identifier ., ‘(‘, Expression, ‘)‘
...
+++ Conflicts +++
...
12 conflicts detected (0 shift/reduce, 12 reduce/reduce)

State 12 on symbol LCEos
Reduce by Application = ... | ‘−‘, Application | ...
Reduce by Application = ... | ‘−‘, ‘−‘, Application | ...

...
State 13 on symbol LCEos

Reduce by Application = ... | ‘+‘, Application | ...
Reduce by Application = ... | ‘+‘, ‘+‘, Application | ...

...

Figure 9: Reduce/Reduce Conflicts — Extracts from the Listing

Lemma 1 Ltd. SLRP User Guide 28

5.3 Shift/Reduce Conflicts

When SLRP detects shift/reduce conflicts, these always have to be resolved dynamically. I.e.,
you must supply a RESOLVER function to tell the parser what to do when the conflict occurs.
The function can either give the parser one of three options: Shift, Reduce or Error, or it can
raise an exception, The function default resolver supplied in the SLRP API always raises the
exception PARSER ERROR, which is intended to signal a design error.

The API uses the following data types for the RESOLVER function:

datatype RESOLUTION = DoShift
| DoReduce
| DoError ;

type (′tok , ′lc, ′pp)RESOLVER
= (′tok ∗ ′lc) ∗ (′tok , ′lc, ′pp)INPUT STACK ∗ ((string ∗ int) ∗ int)

−> RESOLUTION ;

The RESOLVER function is called when a lookahead token giving rise to a shift/reduce
conflict is encountered, its arguments have the form (x, stack, r) where x is a pair containing
the lexical value and lexical class of the lookahead token, stack is the parser driver input
stack, and r describes the possible reduction by giving the nonterminal name, the index of the
alternative (0-based indexing) and the state to be entered. Most applications do not need all
this information, but there are situations where it is useful. As we shall see shortly, the parser
driver API provides a function to make one common approach (based on operator precedence)
a little easier.

5.3.1 If-then-else

For a first example, consider the example in figure 6 which shows extracts from the listing
of the state table for the grammar for C given in [5] together with the description of the
conflict that grammar gives rise to. This conflict is caused by a deliberate ambiguity in the
grammar, which does not specify whether the else-part in the statement “if(a) if(b) f();

else g();” belongs to the inner if-statement or the outer one. The language rule is that the
else-part should belong to the inner if-statement and that means the resolution should always
be to shift. As this is the only conflict in the grammar, the RESOLVER function in [5] could
hardle be simpler:

fun c resolver = DoShift ;

Note that if the C language rule said that an ambiguous else-part belonged to the outer if-
statement, then it would not be satisfactory to use the grammar of [5] and a RESOLVER
that always reduces — the resulting parser would reject valid statements such as “while(a)
if(b) f(); else g();”. To achieve the desired effect, you would either have to rework the

Lemma 1 Ltd. SLRP User Guide 29

grammar or supply a more complicated RESOLVER that examined the input stack to check
if it is appropriate to reduce.

5.3.2 Operator Precedence

Our next example shows a widely used technique. The grammar in figure 10 actually specifies
the same language of arithmetic expressions as the grammar of figure 1 considered in section 2
above. However, unlike the earlier grammar, it is ambiguous: it no longer has the precedence
rules for the arithmetic operators wired into it; it allows an expression such as “1 ∗ 2 + 3 ∗ 4”
to be parsed in several different ways.

Text dumped to file usr032f.grm.txt

Expression = Binary ;

Atom = literal
| identifier
| ‘(‘, Expression, ‘)‘;

Application = Atom
| ‘−‘, Application
| ‘+‘, Application
| identifier , ‘(‘, Expression, ‘)‘;

Binary = Binary , ‘+‘, Binary
| Binary , ‘−‘, Binary
| Binary , ‘∗‘, Binary
| Binary , ‘/‘, Binary
| Application;

Figure 10: A Grammar Requiring Operator Precedence Rules

Figure 11 shows an extract from the SLRP listing for the grammar. The 16 conflicts arise
from the sixteen different pairs of the infix operators, ‘+’, ‘-’, ‘*’ and ‘/’. The conflicts arise
in four different states, all of which contain exactly the same set of items (the ones shown in
the extract). From the state table, we can see that the conflict occurs when the parser has
just got to the end of something that could be a Binary and the lookahead token is one of the
infix operators. From the conflcts listing, we see that the possible reduction is via one of the
alternatives Binary, ‘+’, Binary. Binary, ‘-’, Binary etc. This means that the conflict can be
resolved by comparing the topmost terminal symbol on the stack with the lookahead token:
for example, if the topmost terminal symbol is ‘*’ and the lookahead token is ‘+’, then we
having something of the form a ∗ b+ c, and we should reduce so that the multiplication takes
precedence over the addition.

Lemma 1 Ltd. SLRP User Guide 30

+++ State Table +++
...
12 : Binary = Binary ., ‘+‘, Binary

Binary = Binary , ‘+‘, Binary .
Binary = Binary ., ‘−‘, Binary
Binary = Binary ., ‘∗‘, Binary
Binary = Binary ., ‘/‘, Binary

...
+++ Conflicts +++

...
16 conflicts detected (16 shift/reduce, 0 reduce/reduce)

...
State 12 on symbol ‘∗‘

Reduce by Binary = Binary , ‘+‘, Binary | ...
Shift to 20

...

Figure 11: Operator Precedence — Extracts from the Listing

The API provides the function simple resolver to simplify the coding of a RESOLVER based
on operator precedence, you provide a function to compare the two tokens and return the
appropriate resolution and it constructs the RESOLVER for you. Your function is passed a
pair (stk tok, la tok) where stk tok represents the topmost terminal symbol on the stack and
la tok represents the lookahead token. The RESOLVER that results will return DoError if
there is no unreduced terminal symbol on the stack.

val simple resolver :
((′tok ∗ ′lc) ∗ (′tok ∗ ′lc) −> RESOLUTION) −> (′tok , ′lc, ′pp) RESOLVER;

Figure 30 shows this function in use to implement our example grammar. If you compile this
and execute the following, you can check whether it is building the right parse trees.

let val p = ae parser4 "2∗3 + 4 ; 2 − 3∗4 ; 1 + 2 + 3";
in print tree(p());

print tree(p());
print tree(p())

end ;

Lemma 1 Ltd. SLRP User Guide 31

5.3.3 An Inherently Ambiguous Language

A language is called inherently ambiguous if there is no unambiguous context-free grammar
that describes it. Such languages exist, but are not very common in practical applications.
An example is given by the language defined by the ambiguous grammar in figure 12. The
language comprises strings comprising some ‘a’s followed by some ‘b’s followed by some ‘c’s
subject to the constraint that there should either be the same number of ‘a’s and ‘b’s or the
same number of ‘b’s and ‘c’s or possibly both.

Text dumped to file usr032g.grm.txt

S = AB , C | A, BC ;
AB = | ‘a‘, AB , ‘b‘;
C = | C , ‘c‘;
A = | A, ‘a‘;
BC = | ‘b‘, BC , ‘c‘;

Figure 12: An Inherently Ambiguous Language

If you are faced with an inherently ambiguous language, or, and much more likely, a language
defined by a grammar that is difficult to transform into an unambiguous one, then your only
option is to try to specify a wider language and supply code in the reduction functions or
subsequent processing to detect invalid language constructs. This is demonstrated for our
inherently ambiguous example in figure 13 where the grammar accepts any string comprising
some ‘a’s followed by some ‘b’s followed by some ‘c’s and the reduction functions impose the
desired checks on the numbers of ‘a’s, ‘b’s and ‘c’s.

Text dumped to file usr032h.grm.txt

S = A, B , C
((fn Parsed m => fn Parsed n => fn Parsed p =>
if m <> n andalso n <> p
then raise SYNTAX ERROR
else 0) x1 x2 x3);

A = (0)
| A, ‘a‘ ((fn Parsed m => m + 1) x1);

B = (0)
| B , ‘b‘ ((fn Parsed n => n + 1) x1);

C = (0)
| C , ‘c‘ ((fn Parsed p => p + 1) x1);

Figure 13: Resolving Ambiguities By Widening the Language

Lemma 1 Ltd. SLRP User Guide 32

5.3.4 Transforming a non-LALR(1) Grammar into an LALR(1) one

In practice, if your grammar gives rise to conflicts, it can often be transformed into one that
does not. Figure 14 shows an example which adapts our language of arithmetic expressions
to support functions with more than one argument and to allow the user to define functions
using syntax such as mean(x, y) = (x+ y)/2.

The way the grammar is expressed in figure 14 must give rise to conflicts. The reason is that,
in parsing a construct such as f(x1, x2, . . .) = . . ., while reading the comma after x1, say, one
needs to look ahead as far as the equals sign to guide the LR(0) automaton into parsing x1

as an IdentifierList rather than as an ExpressionList.

Figure 15 shows a transformation to the productions for Application and ExpressionList which
gives a grammar that defines the same language as that of figure 15 but with no conflicts.
The transformed grammar distinguishes between lists of identifiers and lists of more complex
expressions. It makes it explicit how the language of the grammar of figure 14 can be recognised
by an LR(0) automaton guided only by one lookahead token.

The alternative to the solution in figure 15 would be to remove the non-terminal IdentifierList
altogether and use ExpressionList in its place in the production for FormalParams. The action
code for FormalParams would then have to check the semantic value of the ExpressionList
and reject invalid ones. This would probably be a better solution in the case at hand, since it
makes the grammar shorter and, assuming the semantic actions compute some kind of syntax
tree, processing the tree to check for non-identifiers in a FormalParams will be no more work
than converting the tree for an IdentifierList into what is needed for the tree representing an
Application..

Lemma 1 Ltd. SLRP User Guide 33

Text dumped to file usr032i.grm.txt

Command = Expression
| identifier , ‘=‘, Expression
| identifier , FormalParams , ‘=‘, Expression;

Expression = Sum;

FormalParams = ‘(‘, IdentifierList , ‘)‘;

IdentifierList = identifier
| IdentifierList , ‘,‘, identifier ;

Atom = literal
| identifier
| ‘(‘, Expression, ‘)‘;

Application = Atom
| ‘−‘, Application
| ‘+‘, Application
| identifier , ‘(‘, ExpressionList , ‘)‘;

ExpressionList = Expression
| ExpressionList , ‘,‘, Expression;

Product = Application
| Product , ‘∗‘, Application
| Product , ‘/‘, Application;

Sum = Product
| Sum, ‘+‘, Product
| Sum, ‘−‘, Product ;

Figure 14: A non-LALR(1) Grammar

Lemma 1 Ltd. SLRP User Guide 34

Text appended to file usr032j.grm.txt

Application = Atom
| ‘−‘, Application
| ‘+‘, Application
| identifier , ‘(‘, NonIdExpressionList , ‘)‘
| identifier , ‘(‘, IdentifierList , ‘)‘;

NonIdExpressionList =
NonIdExpression

| IdentifierList , ‘,‘, NonIdExpression
| NonIdExpressionList , ‘,‘, Expression;

NonIdExpression = ‘(‘, Expression, ‘)‘
| ‘−‘, Application
| ‘+‘, Application
| identifier , ‘(‘, NonIdExpressionList , ‘)‘
| identifier , ‘(‘, IdentifierList , ‘)‘
| Product , ‘∗‘, Application
| Product , ‘/‘, Application
| Sum, ‘+‘, Product
| Sum, ‘−‘, Product ;

Figure 15: Making a Grammar LALR(1)

Lemma 1 Ltd. SLRP User Guide 35

6 ERROR HANDLING

As mentioned at the head of section 2, one of the parameters to the SLRP parser driver is
an ERROR ROUTINE: an ML function you provide to deal with errors. This function is
called whenever there is no entry in the action table telling the parser how to respond to the
lookahead token. The function default error is an error routine that implements the simplest
error handling strategy of all: it just prints an error message and raises an exception. This can
be a perfectly acceptable approach, e.g., see the code in figure 29, which catches the exception,
and continues trying to parse the input if it is running interactively.

The type of the ERROR ROUTINE is an instance of the following type:

type (′tok , ′lc, ′pp, ′st)ERROR ROUTINE
= ′tok ∗ (′tok , ′lc, ′pp)INPUT STACK ∗ STATE STACK ∗ ′st

−> ′tok ∗ ′st ∗ int ;

The quadruple that is passed as the argument to the ERROR ROUTINE has the form
(tok, is, ss, rs), where: tok is the lookahead token that caused the error, is is the input stack,
ss is the stack stack and rs is the READER state. If the function returns a value (rather than
raising an exception), then the return value is a triple (tok ′, rs′, n), where tok′ is a lookahead
token to be used in place of the erroneous one, rs′ is a new READER state and n is an integer.
If the ERROR ROUTINE returns (tok′, rs′, n), the parser will pop n entries off its input and
state stacks, and proceed as if tok′ had just been read as the lookahead token resulting in a
READER state rs’.

Figures 31 show an ERROR ROUTINE that raises an exception after printing a bit more
information than default error. It looks up the current state (the top of the state stack) in
the action table and gets the list of lexical classes that could be dealt with in that state.
(The action table entries are lists of lexical class/action pairs). It prints out an error message
similar to that printed by default error, and then prints out the list of “expected” lexical
classes. This is quite a common technique, although it is sometimes a little misleading, since
the lexical classes the parser is expecting in a given state may not be the only ones that could
validly continue the input processed so far.

Figuer 32 shows a simple error recovery scheme for the language of arithmetic expressions.
Here the error routine first prints out the error message and then it attempts to recover from
the error, by discarding tokens until it encounters the end-of-stream marker (either a semicolon
or the actual end of the input stream). If there is another token available, it reads it and
returns that token and the current READER state to the parser telling it to unwind its stacks
back to their initial state. If there is no more input available it raises an exception which is
handled in the parser function and causes a tidy exit.

Lemma 1 Ltd. SLRP User Guide 36

A STANDARD ML CODE EXAMPLES

A.1 Compiling SLRP Parsers

The Standard ML code in the figures in this section compiles all the library support needed
for the generic parser for arithmetic expressions described in section 2 and then compiles and
instantiates the code generated by SLRP. If you are working in a ProofPower ML database,
then you can omit the first six files since they are already compiled into ProofPower.

SML

map use [
"dtd108 .sml", (∗ Portability infrastructure ∗)
"imp108 .sml",
"dtd002 .sml", (∗ System control and error reporting ∗)
"imp002 .sml",
"dtd001 .sml", (∗ Standard ML utilities ∗)
"imp001 .sml",
"dtd018 .sml", (∗ SLRP parser driver ∗)
"imp018 .sml",
"dtd118 .sml", (∗ Generic SLRP parser support ∗)
"imp118 .sml"
];

open GenericSlrpParser ;

Figure 16: Compiling the SLRP Library Code

SML

use"usr032a.grm.sml"; (∗ The generated parser code ∗)
val ae parser1 : string −> unit =

print tree o parse file slrp ′gen parser ;

Figure 17: Compiling the Code Generated by SLRP

Lemma 1 Ltd. SLRP User Guide 37

A.2 A Lexical Analyser

The Standard ML code in the figures in this section implements the lexical analyser for the
language of arithmetic expressions as discussed in section 3.1 above.

SML

type AE LEX VALUE = LEX CLASS LEX VALUE ;
type AE LEX STATE = LEX CLASS LEX STATE ;
fun lv identifier (s : string) : AE LEX VALUE = (

(LCIdentifier "identifier", (s , get line number()))
);
fun lv literal (s : string) : AE LEX VALUE = (

(LCIdentifier "literal", (s , get line number()))
);
fun lv punctuation c = (LCString c, (c, get line number()));
val lv left bracket : AE LEX VALUE = lv punctuation "(";
val lv right bracket : LEX CLASS LEX VALUE = lv punctuation ")";
val lv times : AE LEX VALUE = lv punctuation "∗";
val lv plus : AE LEX VALUE = lv punctuation "+";
val lv minus : AE LEX VALUE = lv punctuation "−";
val lv over : AE LEX VALUE = lv punctuation "/";
val lv equals : AE LEX VALUE = lv punctuation "=";
val lv semicolon : AE LEX VALUE = (LCEos , (";", get line number()));
val lv end of input : AE LEX VALUE =

(LCEos , ("<end−of−input>", get line number()));

Figure 18: Constructing Lexical Values

Lemma 1 Ltd. SLRP User Guide 38

SML

fun rec punctuation (("(" :: more,) : AE LEX STATE)
: AE LEX STATE
= (more, Known lv left bracket)

| rec punctuation (")" :: more,) = (more, Known lv right bracket)
| rec punctuation ("∗" :: more,) = (more, Known lv times)
| rec punctuation ("+" :: more,) = (more, Known lv plus)
| rec punctuation ("−" :: more,) = (more, Known lv minus)
| rec punctuation ("/" :: more,) = (more, Known lv over)
| rec punctuation (";" :: more,) = (more, Known lv semicolon)
| rec punctuation ("=" :: more,) = (more, Known lv equals)
| rec punctuation ("#" :: ,) = ([], Comment)
| rec punctuation (chs ,) = (chs , Unknown);

Figure 19: Recognising Punctuation Symbols

SML

fun is alph or us ch = (
"a" <= ch andalso ch <= "z"

orelse "A" <= ch andalso ch <= "Z"

orelse ch = " "

);
fun is digit ch = "0" <= ch andalso ch <= "9";
val is alnum = is alph or us fun or is digit ;
fun rec identifier (([],) : AE LEX STATE) : AE LEX STATE = (

([], Unknown)
) | rec identifier (chs as (ch :: more),) = (

let fun aux acc [] = (implode (rev acc), [])
| aux acc (cs as (c::more)) = (

if is alnum c
then aux (c::acc) more
else (implode(rev acc), cs)

);
in if is alph or us ch

then let val (name, rest) = aux [ch] more;
in (rest , Known (lv identifier name))
end

else (chs , Unknown)
end

);

Figure 20: Recognising an Identifier

Lemma 1 Ltd. SLRP User Guide 39

SML

fun rec literal (([],) : AE LEX STATE)
: AE LEX STATE = ([], Unknown)

| rec literal (chs as (ch :: more),) = (
let fun aux acc [] = (implode (rev acc), [])

| aux acc (cs as (c::more)) = (
if is digit c
then aux (c::acc) more
else (implode(rev acc), cs)

);
in if is digit ch

then let val (digits , rest) = aux [ch] more;
in (rest , Known (lv literal digits))
end

else (chs , Unknown)
end

);

Figure 21: Recognising a Literal

SML

fun rec unknown ((ch :: more,) : AE LEX STATE)
: AE LEX STATE = (
output(std out , "Unrecognised input character \"" ̂ ch ̂ "\"\n");
(more, Comment)

) | rec unknown ([],) = ([], Unknown);

Figure 22: Dealing with Lexical Errors

Lemma 1 Ltd. SLRP User Guide 40

SML

val rec token : AE LEX STATE −> AE LEX STATE =
rec first [rec punctuation, rec identifier , rec literal , rec unknown];

val reader state : (string list ∗ bool) ref = ref ([], true);
fun reader (strm : IN CHAR STREAM)

: (AE LEX VALUE , string list ∗ bool) READER = (
let val do read = gen reader LCEos rec token strm
in fn state =>

let val (tok , state ′) = do read state;
in reader state := state ′;

(tok , state ′)
end

end
);

Figure 23: Constructing the Reader

SML

use"usr032a.grm.sml";
fun ae parser2

(text : string) : unit −> LEX CLASS GEN PARSE TREE = (
let val strm as {close, ...} = in char stream of string text ;

val do parse =
slrp ′gen parser
default resolver
classifier
(default error string of lex value)
(reader strm);

val = reader state := ([], true);
in fn () => do parse (!reader state)

handle ex => (
close();
raise ex

)
end

);

Figure 24: Constructing the Parser

Lemma 1 Ltd. SLRP User Guide 41

A.3 Adding Actions

The Standard ML code in this section implements the reduction functions that support the
action grammar shown in figure 4 in section 3.2 above.

SML

val named numbers : int S DICT ref = ref [];
fun red command1 (Parsed i) = (

named numbers := s enter "it" i (!named numbers);
output(std out , "it = " ̂ string of int i ̂ "\n");
i

);
fun red command2 (Token ((, (s ,)),)) (Parsed i) = (

named numbers := s enter s i (!named numbers);
output(std out , s ̂ " = " ̂ string of int i ̂ "\n");
i

);

Figure 25: The Reduction Functions for Commands

SML

fun red accept (Parsed i) = i ;
val red expression = red accept ;
fun red atom1 (Token ((, (s ,)),)) = nat of string s ;
fun red atom2 (Token ((, (s ,)),)) = (

case s lookup s (!named numbers) of
Value i => i

| Nil => (
output(std out , "Undefined name \"" ̂ s ̂ "\"\n");
raise SYNTAX ERROR

)
);

Figure 26: The Reduction Functions for Expressions I

Lemma 1 Ltd. SLRP User Guide 42

SML

val red atom3 = red accept ;
val red application1 = red accept ;
fun red application2 (Parsed i) = ∼i ;
val red application3 = red accept ;
fun red application4 (Token((, (s ,)),)) (Parsed i) = (

case s of
"abs" => if i < 0 then ∼i else i

| "sgn" => if i > 0 then 1 else if i = 0 then 0 else ∼1
| => (

output(std out , "Unsupported function \"" ̂ s ̂ "\"\n");
raise SYNTAX ERROR

)
);

Figure 27: The Reduction Functions for Expressions II

SML

val red product1 = red accept ;
fun red product2 (Parsed i) (Parsed j) = i ∗ j ;
fun red product3 (Parsed i) (Parsed j) = i div j handle Div => (

output(std out , "Zero divisor\n");
raise SYNTAX ERROR

);
val red sum1 = red accept ;
fun red sum2 (Parsed i) (Parsed j) = i + j ;
fun red sum3 (Parsed i) (Parsed j) = i − j ;

Figure 28: The Reduction Functions for Expressions III

Lemma 1 Ltd. SLRP User Guide 43

SML

use"usr032b.grm.sml";
fun ae parser3

(instrm : instream) : unit = (
let val strm as {close, ...} = in char stream of instream instrm;

val do parse =
slrp ′gen parser
default resolver
classifier
(default error string of lex value)
(reader strm);

val = reader state := ([], true);
in while case !reader state of ([], false) => false | => true do

(do parse (!reader state); ())
handle SYNTAX ERROR => (

(if not (ExtendedIO .is term in instrm)
then (close(); raise SYNTAX ERROR)
else ())

)
end

);

Figure 29: Constructing the Parser

Lemma 1 Ltd. SLRP User Guide 44

A.4 Operator Precedence Conflict Resolution

SML

use"usr032f .grm.sml";
fun precedence (((, (stk val ,)),) , ((, (la val ,)),)) = (

let fun num prec "∗" = 2
| num prec "/" = 2
| num prec = 1 ;
val stk prec = num prec stk val ;
val la prec = num prec la val ;

in if stk prec < la prec
then DoShift
else DoReduce

end
);

fun ae parser4
(text : string) : unit −> LEX CLASS GEN PARSE TREE = (
let val strm as {close, ...} = in char stream of string text ;

val do parse =
slrp ′gen parser
(simple resolver precedence)
classifier
(default error string of lex value)
(reader strm);

val = reader state := ([], true);
in fn () => do parse (!reader state)

handle ex => (
close();
raise ex

)
end

);

Figure 30: The Operator Precedence Parser

Lemma 1 Ltd. SLRP User Guide 45

A.5 Error Handling

SML

use"usr032b.grm.sml";
fun ae error reporter (tok , is , ss as (s ::), rs) = (

let val lcs =map (string of lex class o fst)
(PPArray .sub(slrp ′actions , s));

val location = case is of [] => "here"
| => "after " ̂ format stack string of lex value is
val sorted lcs = Sort .sort Sort .string order lcs ;
val msg1 = "∗∗∗ Error in arithmetic expression:\n";
val msg2 = string of lex value tok ̂

" is not expected " ̂ location ̂ "\n";
val msg3 = "Expected " ̂

format list (fn x => x) sorted lcs ", " ̂ ", ...\n";
in output(std out , msg1 ̂ msg2 ̂ msg3)
end

);
fun ae error handler5 tok is ss rs =

(ae error reporter tok is ss rs ; raise SYNTAX ERROR);
fun ae parser5

(instrm : instream) : unit = (
let val strm as {close, ...} = in char stream of instream instrm;

val do parse = slrp ′gen parser default resolver
classifier ae error handler5 (reader strm);

val = reader state := ([], true);
in while case !reader state of ([], false) => false | => true do

(do parse (!reader state); ())
handle SYNTAX ERROR =>

(if not (ExtendedIO .is term in instrm)
then (close(); raise SYNTAX ERROR)
else ())

end
);

Figure 31: A Simple Extension to the Default Error Routine

Lemma 1 Ltd. SLRP User Guide 46

SML

use"usr032b.grm.sml";
exception DONE ;
fun ae error handler6 rdr = (fn (tok , is , ss , rs) =>

let val = ae error reporter (tok , is , ss , rs);
val n = length is ;
fun is eos (LCEos ,) = true | is eos = false;
val ref tok : AE LEX VALUE ref = ref tok ;

in (while not(is eos(!ref tok))
andalso case !reader state of ([], false) => false | => true
do let val (t , s) = rdr (!reader state);

in ref tok := t
end);

case !reader state of
([], false) => raise DONE

| =>
let val (t , s) = rdr (!reader state);
in (t , s , n)
end

end
);
fun ae parser6

(instrm : instream) : unit = (
let val strm as {close, ...} = in char stream of instream instrm;

val rdr = reader strm;
val do parse =

slrp ′gen parser
default resolver
classifier
(ae error handler6 rdr)
(reader strm);

val = reader state := ([], true);
in (while case !reader state of ([], false) => false | => true do

(do parse (!reader state); ())
handle SYNTAX ERROR => (

(if not (ExtendedIO .is term in instrm)
then (close(); raise SYNTAX ERROR)
else ())

)) handle DONE => output(std out , "\nBye!\n")
end

);

Figure 32: A Simple Error Recovery Scheme

Lemma 1 Ltd. SLRP User Guide 47

B COMMAND LINE INTERFACE

B.1 Command Line Syntax

The shell script slrp runs the slrp parser generator. It is supplied as part of the ProofPower
developer toolkit. It is called from the UN*X shell command line with the following syntax:

slrp −f grammar file [−e eos] [−g] [−q quote con] [−n name con] [−l n] [−t]

B.2 Input and Output File Conventions

The -f grammar file option identifies a file containing the input for slrp. The file name must
have a “.txt” file name extension, e.g. myparser.txt, so “.txt” is appended to grammar file, if
not already present, e.g., myparser is treated as myparser.txt.

The SML code output by slrp is written to a file whose name is formed by replacing the
“.txt” extension with “.sml”, e.g., myparser.sml.

Listings (see section B.4 below), if any, are written to a log file whose name is formed by
replacing “.txt” with “.log”, e.g., myparser.log. A brief report on the results of the run is
written to standard output.

B.3 Code Generation Options

The -e eos option gives the name of the lexical class denoting end of input. The default is
“LCEos”.

The -g option causes calls on the generic reduction functions to be included in the reduction
tables for productions in the grammar which have no actions.

If -q quote con is specified, quoted constants in the grammar are interpreted as Standard
ML strings, and quote con is the name of a constructor to apply to the strings where they
appear in the action tables. If -q quote con is not specified, but -g is specified, the constructor
“LCString” is used. If neither of -q quote con and -g is specified, quoted constants in the
grammar are interpreted as Standard ML identifiers.

The option -n name con has a similar effect to -q quote con for terminal symbols given in the
grammar as names rather than quoted constants. The default constructor for names when -g
is specified is “LCIdentifier”.

Lemma 1 Ltd. SLRP User Guide 48

B.4 Listing Options

The option -l may be used to specify an integer n determining the level of log information to
be written to the file named log file, as shown in the table below. The option -l 2 is the most
useful level during development of a parser and is the default.

Level Information Logged

0 No log file is produced.
1 This gives a summary of the conflict resolution process and a listing of any

conflicts requiring dynamic resolution.
2 As 1 together with a listing of the grammar and its terminals and the state

table and a listing of any conflicts before resolution.
3 As 2 together with a listing of the full action table.
4 As 3 together with a listing of the graph of the LR(0) automaton.
11 As 4 together with a listing of the Bermudez-Logothetis state transition gram-

mar (forces LALR(1) calculations even for an SLR(1) grammar).
≥ 12 As 11 together with a list of all the LALR(1) lookahead sets. (forces calculation

of all lookahead sets).

The option -t causes execution times for to be included in the report written to standard
output at the end of the run.

Lemma 1 Ltd. SLRP User Guide 49

C SLRP INPUT FORMAT

The BNF dialect used by slrp is a subset of British Standard BNF, [4], extended to allow
fragments of ML code to be given with any alternative.

The subset is the one in which the only operators are concatenation and alternation and
in which grouping with parentheses is not allowed. Empty alternatives are allowed. An
alternative may optionally be followed by an action, which is just a fragment of Standard ML
text. We refer to such an extended grammar as an action grammar. The BNF syntax for
action grammars is as follows:

Grammar = Prod , ‘;‘
| Prod , ‘;‘, Grammar ;

Prod = Name, ‘=‘, Def ;

Def = OptAlt , OptAction | OptAlt , OptAction, ‘|‘, Def ;

OptAlt = Alt |;

Alt = Symbol | Symbol , ‘,‘, Alt ;

Symbol = Name | Constant ;

OptAction = Action | ;

The terminal symbols in the above grammar are Name :, Constant and, Action. Names
are formed using alphanumeric characters and underscores. Names can be used to denote
individual non-terminal symbols or classes of terminal symbols.

Constants start and finish with a backprime character ‘‘’. A ‘‘’ may appear within a constant
provided it is preceded by a backslash character, ‘\’. Constants are typically used to denote
individual terminal symbols.

Actions start with a left bracket, ‘(, and finish with a right bracket, ‘)’. Any brackets appear-
ing within an action must be well-balanced. Actions denote fragments of Standard ML code
to be executed by the generated parser when a particular alternative has been recognised. The
actions may be omitted, e.g., when using slrp to help design a grammar. Omitting the actions
is appropriate when one is experimenting with a grammar, e.g., to convert a non-LALR(1)
grammar into an LALR(1) one.

Comments may be included in a grammar using the Standard ML comment symbols: “
verb”(*”” and “*)”. Comments may be nested.

Lemma 1 Ltd. SLRP User Guide 50

D STANDARD ML LIBRARY

The parser driver API and the generic parser API are implemented using a library of data
types and functions borrowed from the ProofPower-HOL system. This is described in detail in
chapter 2 of the ProofPower-HOL reference manual [7].

In fact, the parser driver function and the data types that it needs only depend on one data
type from the library: the type E DICT of efficient string indexed dictionaries. If only the
parser driver function is required, it is be straightforward to compile the parser driver function
given a suitable implementation of this data type only. This allows a parser generated by SLRP
to be integrated at source level without having to import the ProofPower-HOL library.

Lemma 1 Ltd. SLRP User Guide 51

E PARSER DRIVER API

This section contains the reference documentation for the parser driver API. It includes the
Standard ML signature to which the API conforms together with brief narrative descriptions
of the types and values defined in the signature. An index to the APIs described in this
document is given in appendix G below.

SML

signature SlrpDriver = sig

Description This is the signature of the structure SlrpDriver which provides the parser
driver function and associated data types and utility functions.

SML

type STATE = int ;

type STATE STACK = STATE list ;

datatype (′tok , ′lc, ′pp) INPUT STACK ITEM
= Token of ′tok ∗ ′lc
| Parsed of ′pp;

type(′tok , ′lc, ′pp) INPUT STACK
= (′tok , ′lc, ′pp) INPUT STACK ITEM list ;

Description Parser states are represented as integers, although user code should gener-
ally not need to be aware of that. The parsing stack is represented in two parts: a state
stack and a stack of partially parsed input. These represent (respectively) the nodes and
edges making up the path from the root of LR(0) graph that has led to the current state
(in reverse order).

The partially parsed input stack contains items of two sorts: (a) unreduced tokens, given
by a pair consisting of a ′tok′ and a ′lc, ′tok being the type of the items in the input token
stream, ′lc being the type of the lexical classes used, and (b), reduced phrases represented
by a value of type ′pp.

Lemma 1 Ltd. SLRP User Guide 52

SML

datatype ACTION =
Shift of STATE

| Reduce of ((string ∗ int) ∗ int)
| Dynamic of STATE ∗ ((string ∗ int) ∗ int)
| Accept
| Error;

Description Actions are encoded in the datatype ACTION. These represent the transi-
tions that can be made by the parser driver function.

Shift(s) means shift into state s, i.e., push s and the current input token onto the parsing
stacks.

Reduce((N, a), m) means reduce to non-terminal named N using the a-th alternative for
that non-terminal and popping m entries from the parsing stacks. Before popping the
entries off the stacks, the function stored in the reduction table for the specified alternative
is called passing the input stack as the parameter. In the tables generated by SLRP, this
function will be an expression of the form fn (xm::. . . ::x1::stk) => e, where e is the action
for the alternative. Thus when the action e is evaluated, each xJ will be bounded to the
J-th symbol in the alternative and stk will be bound to the portion of the input stack
that represents the left context of the non-terminal that is being reduced (e.g., for use in
formatting diagnostic reports).

The Dynamic option is for a shift/reduce conflict which is to be resolved during parsing by
a user-defined routine. It combines the information required for the shift and the reduce
action. The parser driver calls a user-supplied RESOLVER function to decide which action
to take.

Accept means that a sentence in the language has been successfully parsed. The parser
driver returns the partially parsed input that makes up the single entry left on the input
stack.

Error means that the input is not a sentence in the language. The parser driver calls a
user-supplied error which can either raise an exception or attempt to recover from the error.
See the description of the data type ERROR ROUTINE below.

Lemma 1 Ltd. SLRP User Guide 53

SML

type (′lc)ACTION TABLE
= (′lc ∗ ACTION) list Array .array ;

type GOTO TABLE
= (string ∗ STATE) list Array .array ;

type (′tok , ′lc, ′pp)REDUCTION TABLE
= ((′tok , ′lc, ′pp)INPUT STACK −> ′pp) Array .array E DICT ;

Description The action tables are two-dimensional arrays indexed by states and lexical
classes. The action tables with which we work are held as one-dimensional arrays of lists of
lexical class-(action-state pair) pairs. If the state index for these tables is out of range then
the table has been generated incorrectly and the exception PARSER ERROR is raised if
this occurs. User error entries correspond to valid state indices for which the lexical class
in question is not represented.

Similarly the goto tables (for the non-terminal symbols) are held in a one-dimensional array
of pairs each comprising a non-terminal name and a state.

Finally, the user-defined reduction code (indexed by non-terminal names and alternative
indices) is held in string-indexed dictionaries of lists of functions from (slices of) partially
parsed input stacks to ′pp.

Indexing errors with either the goto tables or the reduction tables indicate that the table
is incorrect and cause the exception PARSER ERROR to be raised.

SML

datatype RESOLUTION = DoShift
| DoReduce
| DoError;

type (′tok , ′lc, ′pp)RESOLV ER
= (′tok ∗ ′lc) ∗ (′tok , ′lc, ′pp)INPUT STACK ∗ ((string ∗ int) ∗ int)

−> RESOLUTION ;

Description The user-defined dynamic conflict RESOLVER function takes an input
stack and the reduction information contained in the dynamic action and returns a value
indicating whether the parser should shift, reduce or report an error:

SML

type (′tok , ′lc)CLASSIFIER = ′tok −> ′lc;

Description The CLASSIFIER function that gives the lexical class of an input token is
passed to the parser driver function as a value of this type.

Lemma 1 Ltd. SLRP User Guide 54

SML

type (′tok , ′lc, ′pp, ′st)ERROR ROUTINE
= ′tok ∗ (′tok , ′lc, ′pp)INPUT STACK ∗ STATE STACK ∗ ′st

−> ′tok ∗ ′st ∗ int ;

Description The ERROR ROUTINE that can either report errors or attempt to recover
from them (or both) is passed to the parser driver function as a value of this type.

The ERROR routine must either raise an exception or return a value, (tok, st, n). The
latter case instructs the driver to continue as if the current input token is tok, the current
READER state is st after popping n entries from its parsing stacks.

SML

type (′tok , ′st)READER
= ′st −> (′tok ∗ ′st);

Description The READER function that is used to generate the input stream to be
parsed is passed to the parser driver function as a value of this type.

The type parameter ′st represents some kind of internal state of the input stream. For
example, ′st might be instantiated to (′tok)list for a parser which was to be used in a
context where all the input is to be available before parsing begins — in this case the reader
would be a function which returns the head and tail of the argument if the list was not
empty and returns the end-of-sentence symbol and an empty list otherwise. Alternatively,
for a reader which read text from a file, ′st might be instantiated to instream or unit.

Lemma 1 Ltd. SLRP User Guide 55

SML

val slrp′parse:
STATE −>
′′lc ACTION TABLE −>
GOTO TABLE −>
(′tok , ′′lc, ′pp) REDUCTION TABLE −>
(′tok , ′′lc, ′pp) RESOLVER −>
(′tok , ′′lc) CLASSIFIER −>
(′tok , ′′lc, ′pp, ′st) ERROR ROUTINE −>
(′tok , ′st) READER −> ′st −> ′pp;

Description This is the type of the parser driver function. The first parameter is the
initial parser state. The meaning of the other parameters is given in the description of the
corresponding data types above.

This function is not normally called directly from user code. Instead, the slrp parser
generator is used to generate a file of ML code which first binds the ML variables slrp’initial
state, slrp’actions, slrp’gotos, and slrp’reducers to appropriate values and then binds the
ML variable slrp’gen parser as follows:

fun slrp ′gen parser x =
slrp ′parse slrp ′initial state slrp ′actions slrp ′gotos (slrp ′reducers()) x ;

The user code then applies slrp’gen parser to a RESOLVER, a CLASSIFIER, an ERROR
ROUTINE and a READER to give a parser for the language defined by the grammar
supplied as the input to slrp.

Note: the bindings generated for slrp’reducers and slrp’gen parser are fun bindings rather
than val bindings to circumvent the limitations imposed by the value binding restriction
introduced in Standard ML ’97.

SML

exception SY NTAX ERROR;
exception PARSER ERROR of string ;

Description These two exceptions may be raised by the parser driver function and as-
sociated functions.

SY NTAX ERROR is raised by default error. It is intended to signal a syntax error in
the input to the parser.

PARSER ERROR “should not happen”: it indicates an error in the parser driver function
logic or its tables. It is also raised by the default resolver function (since that is intended
for use in situations where there are no shift/reduce conflicts, so that it is a design error if
the parser driver function encounters a dynamic action requiring it to call the RESOLVER
function).

Lemma 1 Ltd. SLRP User Guide 56

SML

val format stack : (′tok −> string) −> (′tok , ′lc, ′pp)INPUT STACK −> string ;

Description This utility function is for use in formatting diagnostic messages. It formats
the parsing stack in reverse order (i.e., in the same order as the input stream) as a string.
It formats the reduced entries as three dots and uses the supplied token printer to format
the unreduced entries.

SML

val default error:
(′tok −> string) −> (′tok , ′lc, ′pp, ′st)ERROR ROUTINE ;

Description Many applications of the parser generator will be served by the following
default error function which is parameterised by a function to print input tokens. It
writes an error message on the standard output and then raises SY NTAX ERROR. The
messages it produces have one of the following forms:

∗∗∗ ERROR Syntax error ∗∗∗
<token> not expected after : <stack print out>

∗∗∗ ERROR Syntax error ∗∗∗
<token> not expected here

Here “< token >” and “< stackprintout >” are the result of printing the offending input
token and the parsing stack using the supplied input token printer (and format stack).
The second form is produced if there is nothing on the stack to print out (i.e., the error
has occurred on the first token read, or the stack contains only reduced entries).

SML

val default resolver: (′tok , ′lc, ′pp) RESOLVER;

Description The default resolver is one which raises PARSER ERROR if it is called.
It is intended for use when there are no conflicts.

SML

val simple resolver:
((′tok ∗ ′lc) ∗ (′tok ∗ ′lc) −> RESOLUTION) −> (′tok , ′lc, ′pp) RESOLVER;

Description For grammars which do contain shift/reduce conflicts, one of the commonest
forms of conflict resolution simply compares the latest input token with the topmost token
on the stack. simple resolver helps you such a resolver. Its argument is a function which
compares two tokens (which are given as a pair in input order, i.e., the latest input token
comes second). The resulting resolver will report a syntax error if there are no tokens on
the stack, a situation which corresponds, for example, to an input whose first symbol is an
infix operator.

SML

end ; (∗ of signature SlrpDriver ∗)

Lemma 1 Ltd. SLRP User Guide 57

F GENERIC PARSER API

This section contains the reference documentation for the generic parser API. It includes the
Standard ML signature to which the API conforms together with brief narrative descriptions
of the types and values defined in the signature. An index to the APIs described in this
document is given in appendix G below.

SML

signature GenericSlrpParser = sig
include SlrpDriver ;

Description This is the signature of a structure containing the generic slrp parser API.

SML

datatype LEX CLASS =
LCIdentifier of string

| LCString of string
| LCEos;

type ′lc LEX V ALUE = ′lc ∗ (string ∗ int);
val classifier : (′lc LEX VALUE , ′lc) CLASSIFIER;
val string of lex class : LEX CLASS −> string ;
val string of lex value : LEX CLASS LEX VALUE −> string ;
val line number of lex value : ′lc LEX VALUE −> int ;

Description The types are the types of lexical classes (′lc in the parser driver API)
and of lexical values (′tok in the parser driver API) for the generic slrp parser. classifier
is the CLASSIFIER function that maps the latter onto the former. The integers in the
lexical values are source line numbers. The function string of lex value returns a textual
representation of a lexical value and is what is used as the parameter to the generic ERROR
ROUTINE function default error in the parser. line number of lex value returns what its
name suggests.

Lemma 1 Ltd. SLRP User Guide 58

SML

exception LexFail of int ∗ string ;
datatype CONTINUATION STATUS =

InComment
| InString of string list ;

datatype ′lc LEX STATUS =
Unknown

| Known of ′lc LEX VALUE
| Comment
| Continuation of int ∗ CONTINUATION STATUS ;

type ′lc LEX STATE = (string list ∗ ′lc LEX STATUS);
val rec first :

(′lc LEX STATE −> ′lc LEX STATE) list −>
′lc LEX STATE −> ′lc LEX STATE ;

val get line number : unit −> int ;

Description These types etc. are used to construct the line-at-a-time part of the lexical
analyser for the generic slrp parser. In conjunction with the function gen reader, q.v.,
they may be used to construct lexical analysers for an actual language rather than for the
slrp representation of its terminal symbols.

SML

type IN CHAR STREAM ;
val in char stream of instream : instream −> IN CHAR STREAM ;
val in char stream of file : string −> IN CHAR STREAM ;
val in char stream of string : string −> IN CHAR STREAM ;
val gen reader : ′lc −>

(′lc LEX STATE −> ′lc LEX STATE) −>IN CHAR STREAM −>
(′lc LEX VALUE , string list ∗ bool) READER;

val reader : IN CHAR STREAM −>
(LEX CLASS LEX VALUE , string list ∗ bool) READER;

Description This type and associated functions provide the READER function that the
parsing function generated by slrp uses to read a sequence of lexical tokens.

Lemma 1 Ltd. SLRP User Guide 59

SML

type ′lc SLRP GEN PARSER;
datatype ′lc GEN PARSE TREE =

Leaf of ′lc LEX VALUE
| Node of (string ∗ int) ∗ ′lc GEN PARSE TREE list ;

val generic reducer : string ∗ int −>
(′lc LEX VALUE , ′lc, ′lc GEN PARSE TREE)

INPUT STACK ITEM list −>
(′lc LEX VALUE , ′lc, ′lc GEN PARSE TREE)

INPUT STACK ITEM list −>
′lc GEN PARSE TREE ;

val output tree : (′lc LEX VALUE −> string) −> (string −> unit) −>
′lc GEN PARSE TREE −> unit ;

val print tree : LEX CLASS GEN PARSE TREE −> unit ;
val parse file : LEX CLASS SLRP GEN PARSER −> string −>

LEX CLASS GEN PARSE TREE ;
val parse string : LEX CLASS SLRP GEN PARSER −> string −>

LEX CLASS GEN PARSE TREE ;

Description The type SLRP GEN PARSER is the instance of the type of the parser
function slrp’gen parse generated by slrp.

The remaining type and associated functions support the generic action functions generated
by slrp when called with the -g option and implement the resulting parser. When used with
the supplied code for generic reducer, the parser will compute a value of type GEN PARSE
TREE. print tree and output tree may be used to print out a textual representation of such
a value .

parse file name attempts to parse sequence of lexical tokens represented in the named file.
parse string string does the same job for a sequence of tokens given in an ML string. The
lexical format for the token sequences is the same as that used in the slrp grammar. I.e.,
they are either ML-style alphanumeric identifiers or arbitrary strings given in back-quotes.
ML-style comments are allowed and ignored.

SML

end ; (∗ of signature GenericSlrpParser ∗)

Lemma 1 Ltd. SLRP User Guide 60

G API INDEX

Accept . 52
ACTION TABLE . 53
ACTION . 52
CLASSIFIER . 53
classifier . 57
Comment . 58
CONTINUATION STATUS 58
Continuation . 58
default error . 56
default resolver . 56
DoError . 53
DoReduce . 53
DoShift . 53
Dynamic . 52
ERROR ROUTINE 54
Error . 52
format stack . 56
GenericSlrpParser . 57
generic reducer . 59
GEN PARSE TREE 59
gen reader . 58
get line number . 58
GOTO TABLE . 53
InComment . 58
INPUT STACK ITEM 51
INPUT STACK . 51
INPUT STACK . 53
InString . 58
in char stream of file 58
in char stream of instream 58
in char stream of string 58
IN CHAR STREAM 58
Known . 58
LCEos . 57
LCIdentifier . 57
LCString . 57
Leaf . 59
LexFail . 58
LEX CLASS . 57
LEX STATE . 58
LEX STATUS . 58
LEX V ALUE . 57
line number of lex value 57
Node . 59
output tree . 59

Parsed . 51
PARSER ERROR . 55
parse file . 59
parse string . 59
print tree . 59
READER . 54
reader . 58
rec first . 58
Reduce . 52
REDUCTION TABLE 53
RESOLUTION . 53
RESOLV ER . 53
Shift . 52
simple resolver . 56
slrp′parse . 55
SlrpDriver . 51
SLRP GEN PARSER 59
slrp . 47
STATE STACK . 51
STATE . 51
stk . 52
string of lex class . 57
string of lex value . 57
SY NTAX ERROR . 55
Token . 51
Unknown . 58
xJ . 52

