ProofPower

Compliance Tool—Language Description

PPTex-2.9.1w2.rda.110727

Copyright © : Lemma 1 Ltd. 2006

Information on the current status of ProofPower is available on
the World-Wide Web, at URL:

http://www.lemma-one.demon.co.uk/ProofPower/index.html

This document is published by:

Lemma 1 Ltd.
2nd Floor

31A Chain Street
Reading
Berkshire

UK

RG1 2HX

e-mail: pp@lemma-one.com

PPTex-2.9.1w2.rda.110727 13:54:16 27/07/2011

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool—Language DescriptionUSR5!

CONTENTS

0 ABOUT THIS PUBLICATION 7
0.1 Purpose o e e 7
0.2 Readership e 7
0.3 Related Publications 7
0.4 Prerequisites e 7
0.5 Acknowledgements 8

1 INTRODUCTION 9

2 COMPLIANCE NOTATION SYNTAX 11
2.1 Introduction e e 11
2.2 Lexical Elements e 11

2.2.1 Character Set e e 11
2.2.2 Lexical Elements, Separators, and Delimiters 11
2.2.3 Identifiers e 12
2.2.4 Numeric Literals 12
2.2.5 Character Literals 12
2.2.6 String Literals 12
2.2.7 Comments. e 12
228 Pragmas. L e e 13
2.2.9 Reserved Words 13
2.2.10 Allowable Replacements of Characters 13
2.3 Declarations and Types 14
2.3.1 Declarations. e 14
2.3.2 Objects and Named Numbers 14
2.3.3 Types and Subtypes 14
2.3.4 Derived Types o e 15
2.3.5 Scalar Types e 15
2.3.6 Array Types 17
2.3.7 Record Types o e 18
2.3.8 Access Typeso 18
2.3.9 Declarative Parts 18
2.4 Names and Expressions o 19
241 Names o 19
2.4.2 Literals e 20
2.4.3 Aggregates e 20
2.4.4 EXPressionso e e e 21
2.4.5 Operators and Expression Evaluation 21
2.4.6 Type Conversions i i e 22
2.4.7 Qualified Expressions e 23
2.4.8 Allocators 23
2.4.9 Static Expressions and Static Subtypes oL 23

Compliance Tool

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504

Language Description

2.4.10 Universal Expressions e 23
2.5 Statements L e 23
2.5.1 Simple and Compound Statements — Sequences of Statements 23
2.5.2 Assignment Statement L Lo 25
2.5.3 If Statements L 25
2.5.4 Case Statements L 25
2.5.5 Loop Statements e e 26
2.5.6 Block Statements 26
2.5.7 Exit Statements 27
2.5.8 Return Statements 27
2.5.9 Goto Statements 27
2.6 Subprograms e e 27
2.6.1 Subprogram Declarations L o 27
2.6.2 Formal Parameter Modes 28
2.6.3 Subprogram Bodies 29
2.6.4 Subprogram Calls 29
2.6.5 Parameter and Result Type Profile — Overloading of Subprograms. 29
2.6.6 Overloading of Operators 29
2.7 Packages L 30
2.7.1 Package Structure e 30
2.7.2 Package Specifications and Declarations 31
2.7.3 Package Bodies 31
2.7.4 Private Type and Deferred Constant Declarations 32
2.8 Visibility Rules e 32
2.8.1 Declarative Region 33
2.8.2 Scope of Declarations 33
2.8.3 Visibility e 33
2.84 Use Clauses v v i v it e 33
2.8.5 Renaming Declarations o 34
2.8.6 The Package Standard 34
2.8.7 The Context of Overload Resolution 35
2.9 Tasks 35
2.10 Program Structure and Compilation Issues 35
2.10.1 Compilation Units — Library Units 35
2.10.2 Subunits of Compilation Units 36
2.11 Exceptions Lo e e 36
2.12 Generic Units L e 36
2.13 Representation Clauses and Implementation-Dependent Features 36
2.13.1 Representation Clauses e 36
2.13.2 Length Clauses e 36
2.13.3 Enumeration Representation Clauses 36
2.13.4 Record Representation Clauses 36
2.13.5 Address Clauses 37
2.13.6 Change of Representation 37
2.13.7 The Package System 37
2.13.8 Machine Code Insertion 37
2.13.9 Interface to Other Languages 37
2.13.10Unchecked Programming 37
2.14 Input-Output oL e 37
2.15 Web Clauses and Compliance Notation Scripts 37

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3 COMPLIANCE NOTATION SEMANTICS 39
3.1 Translation of Expressions 39
3.1.1 Literals o L o e 40
3.1.2 Identifiers e 40
3.1.3 Record Aggregates 40
3.1.4 Array Aggregateso o e 40
3.1.5 Unary Expressions 41
3.1.6 Binary Expressions Lo 42
3.1.7 Membership 42
3.1.8 Attributes e e 42
3.1.9 Indexed Components i e 43
3.1.10 Selected Components e 43
3.1.11 Function Calls e 44
3.1.12 Qualified Expressions e 44
3.1.13 Type Conversions v v v i i e 44
3.1.14 Array SHding 44
3.1.15 Subtype Indications and Discrete Ranges 44

3.2 Translation of Declarations 45
3.2.1 Enumeration Types 45
3.2.2 Array Types 46
3.23 Record Types o 47
3.24 Integer Types o e 48
3.25 Real Types o e 49
3.2.6 Subtypes 49
3.2.7 Constant Declarations o 51
3.2.8 Function Specifications 52

3.3 VO Generation 53
3.3.1 Null Statement e 55
3.3.2 Assignment Statemento 56
3.3.3 Specification Statement 61
3.3.4 Semicolon e e e 62
3.3.5 IfStatement 63
3.3.6 Case Statement e 64
3.3.7 Undecorated Loop Statement 65
3.3.8 While Loop Statement 66
3.3.9 For Loop Statement 67
3.3.10 Block Statement L 69
3.3.11 Exit Statement 70
3.3.12 Return Statement 72
3.3.13 Procedure Call Statement oL 74
3.3.14 Logical Constant Statement 75
3.3.15 Subprogram Body 7
3.3.16 Subprogram in Package Body 0oL 79
3.3.17 Subunit e 82
3.3.18 Package Initialisation o 83
3.3.19 Range in Type Definition L o0 84

3.4 Domain Conditionso 85
3.5 Program Structure 86
4 COMPLIANCE NOTATION TOOLKIT 87
REFERENCES 97

Compliance Tool

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504

Language Description

INDEX 99

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

List of Tables

2.1 Special Symbols. L 12

3.1 Useof Theories e 86

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

6 LIST OF TABLES

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

Chapter 0 7

ABOUT THIS PUBLICATION

0.1 Purpose

This document describes the syntax and semantics of the Compliance Notation as supported by the
Compliance Tool supplied as an extension to ProofPower.

0.2 Readership

This document provides reference material intended to be read by users of the Compliance Tool.

0.3 Related Publications
A bibliography is given on page 97 of this document.

e An overview of the of the Compliance notation can be found in the DRA document:

A commentary on the Specification of the Compliance Notation for SPARK and Z [4].

e The formal specification of the Compliance notation may be found in the DRA document:

Specification of the Compliance Notation for SPARK and Z (3 volumes) [3].

e The SPARK subset of Ada is described in the book:
High Integrity Ada — The Spark Approach [1].

e The use of the Compliance Tool is described in:

Compliance Tool — User Guide [8].
e A description of ProofPower may be found in:
ProofPower Software and Services /6],

which also contains a list of other ProofPower documentation.

e The Ada language supported by the Compliance Tool is a subset of Ada ’83. Ada 83 is defined
in the following book (referred to as ALRM in this document):

The Annotated Ada Reference Manual[2]

0.4 Prerequisites

It is assumed that the reader is familiar with Ada and Z.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

8 Chapter 0. ABOUT THIS PUBLICATION

0.5 Acknowledgements

Lemma 1 Ltd. gratefully acknowledges its debt to the many researchers (both academic and indus-
trial) who have provided intellectual capital on which ICL and then Lemma 1 have drawn in the
development of ProofPower and the Compliance Tool.

Program Validation Limited (PVL) designed the SPARK subset of Ada, on which the Compliance
Notation subset of Ada was originally based. We are indebted to the Defence Research Agency,
Malvern (DRA), now called QinetiQ, who designed the Compliance Notation and sponsored the
development of SPARK and of the Compliance Tool.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

Chapter 1 9

INTRODUCTION

The Compliance Notation allows Ada programs to be presented in a literate programming style
in which the order of presentation of program fragments is chosen by the writer rather than fixed
by the Ada syntax rules. A program presented in the Compliance Notation may be interspersed
with formal specifications of the program’s behaviour written in the specification language Z. If the
program conforms to the rules given in this language description, a Z document can be produced
automatically from its presentation using the Compliance Notation. This Z document contains Z
paragraphs representing the Ada types, functions and constants defined in the Ada program, together
with conjectures, known as verification conditions (VCs), whose proof constitutes a correctness proof
for the program against its specification.

The level of mathematical rigour in a Compliance Notation script is under the user’s control. At one
extreme, no formal material at all need be included; at the other extreme, every subprogram can
be formally specified and verified. Most practical uses of the Compliance Notation will lie between
these extremes.

The notation includes a feature allowing the syntactic and semantic rules that support formal mod-
elling to be bypassed completely so that Ada features, such as tasks, which are outside the scope of
the formal treatment, can be used.

The Compliance Notation is supported by the Compliance Tool, an extension to ProofPower. In
addition to syntax-checking, type-checking and document preparation functions, the Compliance
Tool supports extraction of the Ada program from a Compliance Notation script and the generation
of the Z document. All the facilities of ProofPower are available for proving VCs. These facilities
are augmented with a range of theorems and proof procedures which are customised for VC proofs.
The use of the Compliance Tool is described in Compliance Tool — User Guide [8].

This document describes the syntax and semantics of the Compliance Notation. The description
of the syntax follows the structure of of the Ada Language Reference Manual, [2], referred to as
ALRM in the rest of this document. Some features of Ada’95 as defined in [7] are supported in
the Compliance Notation, notably use type clauses and child packages, but ALRM is the primary
reference.

The description of the semantics of the Compliance Notaion is informal, but is based on the formal
specifications of the Compliance Notation prepared by the Defence Research Agency [3].

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

10 Chapter 1. INTRODUCTION

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

Chapter 2 11

COMPLIANCE NOTATION SYNTAX

2.1 Introduction

In this chapter, the syntax of the Compliance Notation is described. The Compliance Notation
as described here uses the ProofPower-Z dialect of Z. The syntax of ProofPower-Z is described in
ProofPower Description Manual [5].

Sections 2.2 to 2.14 give the bulk of the description following the structure of chapters 2 to 14 of
ALRM.

BNF syntax in this document is given using the same notation as in ALRM, except that reserved
words are shown in double quotation marks rather than in a bold font. Bold font is used for non-
terminal symbols at their point of introduction. An index including these symbols is given at the
end of this document.

Section 2.15 describes the web clauses which comprise the outermost level of the notation (the level
at which Compliance Notation constructs are interleaved with narrative text in a script).

In the description of the syntax, the following terminology is used:

1. A construct is not handled formally if the Compliance Notation allows the syntax for the
construct in parts of the script which do not have a formal specification, but does not support
formal reasoning about the construct.

2. A construct is not supported if the Compliance Notation does not allow the syntax for the
construct.

Unsupported constructs can be included in a script by means of the arbitrary Ada replacement
facility (see 2.15).

2.2 Lexical Elements

2.2.1 Character Set

The character set for the Compliance Notation is the ISO seven-bit coded character set augmented
with symbols required by the Z notation and certain special symbols described in section 2.2.2 below.

2.2.2 Lexical Elements, Separators, and Delimiters

The lexical elements of the Compliance Notation are the union of those for Ada as described in [2]
and those for ProofPower-Z as described in ProofPower Description Manual [5] augmented with a
small list of symbols with special significance.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

12 Chapter 2. COMPLIANCE NOTATION SYNTAX

’ Symbol ‘ Name

2
=

Compliance Notation start symbol
Compliance Notation end symbol
Statement refinement symbol
Statement replacement symbol
Declaration replacement symbol

{5 m

Arbitrary Ada replacement symbol
Left k-slot symbol

Right k-slot symbol

Specification statement symbol

Assertion statement symbol
Function specification statement symbol

|~ 7™

Table 2.1: Special Symbols

The special symbols are listed in table 2.1:

The Compliance Notation start and end symbols are used like the analogous symbols for ProofPower-
Z to delimit the Compliance Notation parts of a document (see ProofPower Description Manual [5]).
The other symbols are used within the Compliance Notation proper. Several of these symbols are
also used in Z; the grammar of the Compliance Notation is such that the extent of a Z expression or
7 predicate within a valid Compliance Notation construct can always be unambiguously determined.

2.2.3 Identifiers

The rules for identifiers are as in ALRM. The Compliance Notation reserved words are listed in
section 2.2.9 below.

While Ada is not case-sensitive, Z is: when an Ada name is translated into a Z name it is translated
into upper case.

2.2.4 Numeric Literals

Integer literals are as in ALRM.

Based real literals are not handled formally.
2.2.5 Character Literals

Character literals are as in ALRM.

2.2.6 String Literals

String literals are as in ALRM.

2.2.7 Comments

Ada comments are normally not passed on to the Ada program generated from a Compliance Notation
script. For compatibility with the SPARK examiner, comments beginning with ——# are optionally

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.2. Lexical Elements 13

passed on to the Ada program in those syntactic positions where the SPARK examiner allows or
requires annotations, as described in [1]. Comments of this form are only allowed in these syntactic
positions when the option is enabled. If this option is disabled, comments of this form are ignored.

Comments may also be passed in to the Ada program using the arbitrary Ada replacement facility.

Wherever a SPARK annotation is permitted, a k-slot (see section 2.3.9) may be used to defer provision
of the actual text of the annotation. In the case of the assert annotation, which appears as part of a
sequence of statements, use of a k-slot produces a construct which cannot be handled formally (see
section 2.5.1). To handle a deferred annotation formally, a specification statement with an empty
frame and true for the pre- and post-condition can be used; this specification statement can then be
refined (see section 2.14) by the assert annotation, which is equivalent to a null statement for the
purposes of VC generation.

2.2.8 Pragmas

Pragmas in the Compliance Notation are supported in the following places:

1. at any place where a declaration or a statement would be allowed;
2. in a declarative part;
3. immediately after a context clause;

4. where a compilation unit would be allowed.

Pragmas are just treated as data to be passed in to the Ada program generated from a Compliance
Notation script and have no effect on the Z document.

2.2.9 Reserved Words

In addition to the reserved words of the ALRM, the Compliance Notation has the following key-
words comprising a “$” character immediately followed by an identifier. The keywords are not
case-sensitive.

Sauziliary
$block

$oy

$con
$deferred
$implement
$implicit
$nothing
$references
$till

Susing

2.2.10 Allowable Replacements of Characters

The replacement characters are not supported.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

14 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.3 Declarations and Types

2.3.1 Declarations

Only the following forms of basic declaration are supported:

basic_declaration ::=
object _declaration
] number_declaration
] type_declaration
| subtype_declaration
] subprogram_declaration
| package_declaration
] renaming- declaration
| deferred_constant_declaration

A package declaration standing as a basic declaration inside a subprogram or another package dec-
laration cannot be handled formally; package declarations can only be handled formally when they
are used as library units (i.e., at the top level).

2.3.2 Objects and Named Numbers

object_declaration ::=
constant_declaration
] variable_ declaration

constant_declaration ::=
identifier_list ":" "constant" subtype_indication ":=" expression ";"

variable_declaration ::=
identifier _list ":" subtype_indication [":=" expression | ";"

number_declaration ::=
identifier_list ":" "constant" ":=" expression ";"

identifier_list ::= identifier {"," identifier}

Object declarations involving anonymous array subtypes are not supported.

2.3.3 Types and Subtypes

2.3.3.1 Type Declarations

type_declaration ::= full_type_declaration
| private_type_declaration

full_type_declaration ::= "type" identifier [discriminant_part] “is" type_definition ";"
type_definition ::= enumeration_type_definition
Compliance Tool

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.3. Declarations and Types 15

integer_type_definition
real_type_definition
array_type_definition
record _type_definition

2.3.3.2 Subtype Declarations

subtype_declaration ::= "subtype" identifier "is" subtype_indication ";"
subtype_indication ::= type_mark [constraint]

type_mark ::= name

constraint ::= range_ constraint

| floating_point _ constraint
| fized _point _constraint

| index _ constraint

] discriminant_ constraint

Note that a subtype indication need not include a constraint.

2.3.4 Derived Types

Derived types are not supported.

2.3.5 Scalar Types

range_constraint ::= "range" range

range ::= range_attribute
] sitmple_expression .. simple_expression

A range constraint must not denote a null range when used within a type definition. A VC may be
generated asserting that the range is not null if it cannot be determined whether or not the range is
null (e.g., if the range constraint appeals to compiler-dependent constants such as INTEGER'LAST).

2.3.5.1 Enumeration Types
enumeration_type_definition ::= "(" identifier {"," identifier} ")"

Character literals are not supported as enumeration literals.

2.3.5.2 Character Types

The predefined type CHARACTER may be used; however, user-defined character types are not
supported (see the restriction in section 2.3.5.1 above).

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

16 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.3.5.3 Boolean Types

No restrictions apply to this section of ALRM.

2.3.5.4 Integer Types

integer_type_definition ::=
signed _integer_type_definition | modular_type_definition

signed_integer_type_definition ::= range_constraint
modular_type_definition ::= "mod" expression

No restrictions apply to this section of ALRM.

2.3.5.5 Operations of Discrete Types

All predefined attributes of discrete types can be handled formally. See section 3.1.8 below for more
information.

2.3.5.6 Real Types

real_type_definition ::=
floating_point_constraint | fized_point_constraint

2.3.5.7 Floating Point Types

floating_point_constraint ::=
floating _accuracy_definition [range_constraint]

floating_accuracy_definition ::=
"digits" simple_expression

2.3.5.8 Operations of Floating Point Types

All predefined attributes of floating point types can be handled formally. See section 3.1.8 below for
more information.

2.3.5.9 Fixed Point Types

fixed_point_constraint ::=
fized_accuracy- definition [range_constraint]

fixed_accuracy_definition ::=
"delta" simple_expression

2.3.5.10 Operations of Fixed Point Types

All predefined attributes of fixed point types can be handled formally. See section 3.1.8 below for
more information.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.3. Declarations and Types 17

2.3.6 Array Types

array_type_definition ::=
unconstrained_array-definition | constrained_array_definition

unconstrained_array_definition ::=
“array" "(" index_subtype_definition {"," index_subtype_definition} ")" "of"
type_mark

constrained_array_definition ::=
"array" index_constraint "of" type_mark

index_subtype_definition ::= type_mark "range" "<>"
index_constraint ::= "(" discrete_range {"," discrete_range} ")"

discrete_range ::= subtype_indication | range

2.3.6.1 Index Constraints and Discrete Ranges

A discrete range in an index constraint that is not given as a type mark and which does not contain
a discriminant is treated as if transformed into one that is given as a type mark. This is done
by treating the declaration as if it were preceded by a declaration of a type with an automatically
generated type mark whose Z representation is equal to the required discrete range. The discrete
range is then treated as if it had been written using the automatically generated type mark. See
section 3.1.15.

An index constraint including a discriminant is only allowed in a record component declaration. The
translation of these constraints is described in section 3.2.6.3 below.

2.3.6.2 Operations of Array Types

All predefined attributes of array types can be handled formally. See section 3.1.8 below for more
information. In the case of the following attributes used with an argument, it must be possible to
evaluate the argument statically — see section 2.4.9 for information on static expressions.

A'FIRST(N)
A'LAST(N)
A'RANGE(N)
A'LENGTH (N)

2.3.6.3 The Type String

The type STRING is treated precisely as if defined by the following unconstrained array type defi-
nition (see section 3.2.2.2):

type STRING is array (POSITIVE range <>) of CHARACTER

The catenation and ordering operators for string types are handled formally as is concatenation of a
character and a string or a string and a character.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

18 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.3.7 Record Types
record_type_definition ::=
"record"
component _list

"end" "record"

component_list ::=
component _declaration {component_declaration}

component_declaration ::=
identifier_list ":" type_mark ";"

2.3.7.1 Discriminants

discriminant_part ::= "(" discriminant_specification {";" discriminant_specification}
discriminant_specification ::= "identifier_list ":" type_mark

2.3.7.2 Discriminant Constraints

discriminant_constraint ::= actual_parameter_part

2.3.7.3 Variant Parts

Variant parts are not supported. The syntax for choice is given in section 2.4.3.

2.3.7.4 Operations of Record Types

The attributes for record types can be handled formally. See section 3.1.8 for more information.

2.3.8 Access Types

Access types are not supported.

2.3.9 Declarative Parts

declarative_part ::=
{basic_declarative_item} {later_declarative_item}

basic_declarative_item ::=
basic_declaration | representation_clause | use_clause | k_slot | using_declaration

later_declarative_item ::= body
| subprogram_declaration | package_declaration | k_slot

body ::= proper_body | body_stub

proper_body = subprogram_body | package_body

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.4. Names and Expressions 19

A k-slot (short for Knuth-slot) serves in several places in the syntax and denotes a placeholder for
an Ada construct. The Ada constructs which can be deferred in this way are a compilation, a basic
declarative item, a statement, a visible part or a private part.

Using declarations are only allowed in the declarative part of a package body. See section 2.7.1 for
more information on using declarations. See

k_slot ::= "(" commentary ")" [tag]

tag = "(" digit{digit} ")" | identifier

Here commentary stands for an arbitrary sequence of characters not including ")". The optional
tag is used to identify the k-slot when the Ada construct whose place it is holding is provided in a
refinement or replacement step. If the tag is omitted, then an anonymous tag is implicitly introduced
to identify the k-slot. The next refinement or replacement step in the script that also omits the tag
will be treated as if it referred to this anonymous tag.

2.4 Names and Expressions

2.4.1 Names

name ;=
simple_name
] indexed_component
] selected_ component
prefix ::= name | function_call

Use of an operator symbol as a name is not supported.
Slices are not supported.

Character literals and attributes are taken as primaries rather than names.

2.4.1.1 Indexed Components
indexed_component ::= prefiz "(" expression {"," expression} ")"
2.4.1.2 Slices

Slices are not supported.

2.4.1.3 Selected Components

selected_component ::= prefiz "." selector

Other rules imply that the only supported forms of selected components denote a record component
or an entity declared in the visible part of a package.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

20 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.4.1.4 Attributes

attribute ::= prefiz """ attribute_designator
| character_literal """ attribute_designator

Only the first form of attribute can be handled formally.

2.4.2 Literals

Literals are as in ALRM except that the literal null and based real literals are not handled formally.

2.4.3 Aggregates

aggregate 1=
"(" component_associations ["," "others" "=>" exrpression| ")"
] "(" "others" "=>" expression ")"

component_associations ::=
named _association {"," named_association}
| positional _association {"," positional_association}

named_association ::=
choice {"|" choice} "=>" expression

positional_association ::= expression

choice ::=
simple_expression
] discrete_range
] "others"
| simple_name

A mixture of named and positional component associations is not supported in an aggregate (although
an others choice is permitted when positional component associations are used).

To be handled formally, an aggregate must appear either as the operand of a qualified expression
or as a component in another aggregate or in a variable or constant declaration. The restriction
means that the Ada type of the aggregate is available to guide its translation into Z. In the case of a
subaggregates, the types are given by the range attributes of the multidimensional array type that
qualifies the outermost enclosing aggegrate.

2.4.3.1 Record Aggregates

To be handled formally, a record aggregate must appear either as the operand of a qualified expression
or as the initial value in a variable or constant declaration, so that the Ada type is available to guide
the translation into Z.

A record aggregate with an others choice cannot be handled formally.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.4. Names and Expressions 21

2.4.3.2 Array Aggregates

To be handled formally, an array aggregate must appear either as the operand of a qualified expression
or as a subaggregate (i.e., inside another aggregate as part of a multidimensional aggregate) or as
the initial value in a variable or constant declaration. The restriction means that the Ada type of the
aggregate is available to guide its translation into Z. In the case of subaggregates, the types are given
by the range attributes of the multidimensional array type that qualifies the outermost enclosing
aggegrate.

2.4.4 Expressions

expression ;1=
relation {"and" relation} | relation {"and" "then" relation}
| relation {"or" relation} | relation {"or" "else" relation}

| relation {"zor" relation}

relation ::=
simple_expression [relational - operator simple_expression]
| simple_expression ["not"] "in" range
| simple_expression ["not"] "in" type_mark

simple_expression ::=
[unary_adding - operator] term {binary_adding_operator term}

term ::=
factor {multiplying_operator factor}
factor ::= primary ["xx" primary| | "abs" primary | "not" primary
primary :=
numeric_literal | aggregate | string_literal
| name | function_ call | type_ conversion
| qualified_expression | "(" expression ")" | attribute
| auziliary_expression
auxiliary_expression ::= "[" z_expression "]"

The null expression and allocators are not supported.
See section 2.4.2 for restrictions on literals.
Logical operators on boolean arrays are supported and handled formally.

z_expression stands for the construct called Ezpr in ProofPower Description Manual [5].

2.4.5 Operators and Expression Evaluation

The syntax for the six classes of operator is exactly as in ALRM except that the catenation operator
& is not supported.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

22 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.4.5.1 Logical Operators and Short-circuit Control Forms

The short-circuit control forms and then and or else are treated formally as synonymous with and
and or respectively.

2.4.5.2 Relational Operators and Membership Test
2.4.5.3 Binary Adding Operators

Addition and subtraction are only handled formally for integer types.

Catenation of one array element with another to produce a two-element array is not handled formally.
Catenation of arrays with arrays and of arrays with array elements is handled formally.

2.4.5.4 Unary Adding Operators

The unary adding operators are only handled formally for integer types.

2.4.5.5 Multiplying Operators

The multiplying operators are only handled formally for integer types.

2.4.5.6 Highest Precedence Operators

The absolute value operation is only handled formally for integer types.

2.4.5.7 Accuracy of Operations with Real Operands

Ada real types are represented in Z as subsets of the type of real numbers. The arithmetic operators
on real numbers in Ada are translated into corresponding operators in Z. These operators will
therefore have the semantics defined for them in the Z toolkit. This will typically be the semantics
of the field of real numbers of pure mathematics. The translation into Z is then an idealisation
of the Ada semantics and it is the user’s responsibility to deal with issues of numeric analysis by
formulating pre- and post-conditions appropriately.

2.4.6 Type Conversions
type_conversion ::= type_mark "(" expression ")"

A type conversion appearing as an actual parameter whose corresponding formal parameter has mode
out or in out cannot be handled formally.

A type conversion can only be handled formally if the operand and target types are integer or real
types. Type conversions from integer to real and from real to integer are supported.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.5. Statements 23

2.4.7 Qualified Expressions

qualified_expression ::=
type_mark """ "(" expression ")"
| type_mark """ aggregate

2.4.8 Allocators

Allocators are not supported.

2.4.9 Static Expressions and Static Subtypes

Not all static expressions can be completely evaluated when a Compliance Notation script is checked.
For example, the value of an attribute such as INTEGER'FIRST depends on the compiler being
used. This sometimes results in a VC being generated (see sections 2.3.5 and 3.3.19).

2.4.10 Universal Expressions

Universal expressions of integer and real types are handled formally.

2.5 Statements

2.5.1 Simple and Compound Statements — Sequences of Statements

sequence_of_statements ::= statement {statement}

The statement forms comprises the optionally labelled, simple and compound statement forms of
ALRM augmented with specification statements, assertion statements and k-slots.

statement ::=
stmple_statement
] compound _statement
| label statement
] [logical - constant _declaration] specification_statement [tag]
| assertion_statement
| k_slot_statement

All the statement forms other than those associated with tasks and machine code insertions are
supported:

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

24 Chapter 2. COMPLIANCE NOTATION SYNTAX

simple_statement ::=
null_statement
| assignment_statement
] procedure_ call_statement
] exit_statement
| return_statement
] goto_statement

compound_statement ::=
if _statement
] case_statement
| loop_statement
| block_statement

A specification statement gives a formal specification of a sequence of statements to be given later
in the script (in a refinement step or a replacement step, see section 2.15). The formal specification
comprises a list of variables called the frame and Z predicates called the pre-condition and the post-
condition. A specification statement may be preceded by an optional Z declaration defining variables
known as logical constants.

logical_constant_declaration ::= "$con" z_declaration "e"

specification_statement ::=
"A" frame "[" [pre-condition ","]| post_condition "]"
| "A" frame "{" pre_condition "}"

frame ::= [z_identifier {"," z_identifier}]
pre_condition ::= z_predicate
post_condition ::= z_predicate

Here the symbols z_declaration, z_identifier and z_predicate stand for the constructs referred
to in ProofPower Description Manual [5] as Decl, Id and Pred respectively.

Either, but not both, the pre-condition or the post-condition may be omitted. Braces are used
instead of square brackets when the post-condition that has been omitted. The omitted predicate is
taken to be true.

The semantics of specification statements are discussed in section 3.3. Z variable names ending in a
subscript 0, e,g., MY _VAR,, are called initial variables. Initial variables are allowed to appear free
in post-conditions, but may not appear free in pre-conditions.

The Z declaration in a logical constant declaration must not comprise any schemas-as-declarations.
The specification statement following a logical constant declaration must have a pre-condition,
and that pre-condition must have the form: X; = E; A Xg = Ea A ... Xy, = Ep N Aor X; =
E; NXy=FEy AN ... X, = Eyp, where X;, Xo, ... X, stand for the variables declared by the Z
declaration. The variables in the Z declaration may appear in any order, but the defining equations
in the pre-condition must satisfy a rule of definition-before-use. I.e., No X; may appear free in Ey;
only X ; may appear free in E», only X jand X2 may appear free in Eg, and so on.

Anonymous tags are introduced for specification statements appearing as statements without a tag
in the same way as for k-slots (see section 2.3.9).

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.5. Statements 25

assertion_statement ::=
npm o {" pre_condition "}"

An assertion statement cannot be refined and has no effect on the translation of a script into Ada. An
assertion statement otherwise has the same formal semantics as the specification statement obtained
by replacing the leading I" by a A.

kslot_statement ::= k_slot

A k-slot used as a statement stands as a placeholder for a sequence of statements to be given later
in the script without any formal specification. A k-slot used as a statement acts as a break in the
chain of formal development and cannot be handled formally.

label ::= "<<" simple_name ">>"

Labels have no significance in the Compliance Notation (since goto statements are not handled
formally).

null_statement ::= "null" ";" | "$nothing" ";"

The statement $nothing is semantically equivalent to null but causes no code to be generated in
the Ada program. It may be used, for example, when formally specifying an if statement whose
else part has been omitted in the Ada program: the else part can be given in the Compliance
Notation script as a specification statement which is later refined by $nothing.

2.5.2 Assignment Statement

assignment_statement ::= name ":=" expression ";"

2.5.3 If Statements

if_statement ::=
"if " condition "then"
sequence_of _statements
{ ‘“elsif" condition "then"
sequence_of _statements }
["else"
sequence_of _statements |

condition ::= expression

2.5.4 Case Statements

case_statement ::=
"case" expression 1is
case_statement_alternative
{ case_statement_alternative }
"end" "case" ";"

case_statement_alternative ::=
"when" choice { "|" choice } =>
sequence_of _statements

See section 2.4.3 for the syntax of choice.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

26 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.5.5 Loop Statements

loop_statement ::=
[block_name:]
[iteration_scheme]
[till_predicate] "loop"
sequence_of _statements
"end" "loop" [block_name] ";"

block_name ::=
simple_name
] "$block" simple_name

iteration_scheme ::=
"while" condition
| "for" loop_parameter_specification

loop_parameter_specification ::=
identifier "“in" ["reverse"| discrete_range

till_predicate ::=
"$#ill" auziliary_ expression

See section 2.4.4 for the syntax of auxiliary expression.

To be handled formally, the sequence of statements comprising the body of a loop statement must
comprise a single specification statement possibly with a tag (see section 2.5.1).

A loop which is anonymous in Ada may be given a name in the Compliance Notation using the
keyword $block.

2.5.6 Block Statements

block_statement ::=
[block_name:]
["declare"
declarative_part]
"begin"
sequence_of _statements
"end" [block_name] ";"

To be handled formally, a block statement must appear as the only statement in the sequence of
statements on the right-hand side of a refinement step or a replacement step (see section 2.15).

A block which is anonymous in Ada may be given a name in the Compliance Notation using the
keyword $block.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.6. Subprograms 27

2.5.7 Exit Statements

exit_statement ::=
"exit" [loop_name] ["when" condition] ";"

loop_name ::= identifier

To be handled formally, the loop being exited by an exit statement must have a till predicate.

2.5.8 Return Statements

return_statement ::=
"return" |expression] ";"

2.5.9 Goto Statements

goto_statement ::=
"goto" simple_name ";"

Goto statements cannot be handled formally.

2.6 Subprograms

2.6.1 Subprogram Declarations
subprogram_declaration ::= ["$implicit"| subprogram_specification ";"

subprogram_specification ::=
informal _subprogram_ specification
] formal _subprogram_specification

informal_subprogram_specification ::=
"procedure" identifier [formal_part]
| "function" designator [formal_part] "return" type_mark

formal_subprogram_specification ::=
"procedure" identifier [formal_part]
procedure_ specification_statement
] "function" designator [formal_part] “return" type_mark
function_specification_statement

designator ::= identifier

formal_part ::=
"(" parameter_specification { ";" parameter_specification } ")"

parameter_specification ::=
identifier_list : mode type_mark [":=" expression]

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

28 Chapter 2. COMPLIANCE NOTATION SYNTAX

mode ::= ["in"] | "in" "out" | "out"

procedure_specification_statement ::=
"A" frame ["E" global_dependencies] "[" [pre-condition ","] post_condition "]|"
] "A" frame ["E" global_dependencies] "{" pre_condition "}"

function_specification_statement ::=
"En global_dependencies "[" [pre_condition ","] post_condition "]|"
| "E" global_dependencies "{" pre_condition "}"

global_dependencies ::= [z_identifier {"," z_identifier} |

A subprogram declaration preceded by the Compliance Notation keyword $implicit allows a formal
subprogram declared in a package specification to be used in a package body before its body is
introduced. The subprogram declaration is not included in the Ada program.

Use of an operator symbol as a function designator is not supported for user-defined functions.

A subprogram, procedure or function is said to be a formal subprogram, procedure or function if it
has a specification statement and is said to be informal otherwise. Subprogram calls can only be
handled formally for formal subprograms.

A formal function may not have side effects — the frame of its specification statement is implicitly
empty.

A formal subprogram may read the values of variables declared outside the subprogram. Such vari-
ables must be identified in the global dependencies list of the subprogram specification statement and
must be in scope at the point that the subprogram is declared. These can either be program variables
or auxiliary variables. If auxiliary variables are used, they must be declared in a package other than
the package (if any) containing the subprogram specification. The variables need not actually be
global: they might be local to a package or subprogram containing the function specification.

In a parameter specification, if a default expression is given, the default expression can only be
handled formally if it contains no variables.

2.6.2 Formal Parameter Modes

Certain rules are applied when a formal procedure call is processed to ensure that parameter aliasing
does not compromise the soundness of the VCs generated for the call. The rules also make the
soundness of the VCs independent of the parameter passing mechanism used by the Ada compiler.

The rules are defined using the notion of an entire variable of an actual parameter of mode in out
or out. The entire variable is what is obtained by removing all array indexes and record component
selectors from the parameter. For example, the entire variable of the actual parameter A(I).DAY
is A.

1. A variable in the frame or global dependencies list of the procedure must not appear as the
entire variable in an actual parameter of mode in out or out.

2. A variable in the frame of the procedure must not appear anywhere in any expression in the
actual parameter list.

3. The entire variable of an actual parameter of mode in out or out must not occur anywhere
else in any expression in the parameter list.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.6. Subprograms 29

The last rule disallows an in out or out mode actual parameter such as B(B(I)) in which B appears
both as the entire variable and as part of the index expression.

2.6.3 Subprogram Bodies

subprogram_body ::=
["$deferred"]
subprogram_specification "is"
[declarative_part]
"begin"
sequence_of _statements
"end" [designator] ";"

Exception handlers are not supported.

A subprogram body may be preceded by the keyword $deferred is called a deferred subprogram. In a
deferred subprogram, the declarative part must contain only k-slots and the sequence of statements
must comprise a single k-slot. The generation of Z corresponding to the declarative parts and the
sequence of statements of a deferred subprogram is deferred until these k-slots are expanded.

This

2.6.4 Subprogram Calls

procedure_call_statement ::=
name [actual_parameter_part]";"

function_call ::=
name [actual_parameter_part]

actual_parameter_part ::=
"(" named_parameter {"," named_parameter} ")"
| "(" positional_parameter {"," positional_parameter}} ")"

name_parameter ::= formal_parameter "=>" expression
formal_parameter ::= simple_name
positional_parameter ::= expression

Positional and named parameter association may not be mixed within one subprogram call.

2.6.5 Parameter and Result Type Profile — Overloading of Subprograms

Overloading of subprogram names cannot be handled formally.

2.6.6 Overloading of Operators

No overloading of operator symbols is supported except for the limited form of overloading of operator
symbols using renaming declarations (see section 2.8.5).

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

30 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.7 Packages

2.7.1 Package Structure

package_declaration ::= package_specification ";"

package_specification ::=
"package" defining_program_unit_name "is"
visible_part
["private"
private_part
"end" [[parent_unit_name"."]simple_name]

defining_program_unit_name ::= [parent_unit_name"."|simple_name
parent_unit_name ::= name
visible_part ::= { package_declaration }

package_declaration ::=
{ basic_declarative_item
| subprogram_declaration
| auziliary_declaration
| renaming_declaration }

private_part ::= { package_declaration }

auxiliary_declaration ::= "Sauziliary" z_declaration ";"

Here z_declaration stands for the first alternative for the construct called BasicDecl in ProofPower
Description Manual [5], i.e., a list of Z names followed by a colon followed by a Z expression.

A variable introduced by an auxiliary declaration ia a Z variable referred to as an auxiliary variable.
Auxiliary variables are used in specification statements in a package specification as abstractions of
all or part of the state of the package body. Together with using declarations, auxiliary variables
support data refinement.

package_body ::=
"package" "body" defining_program_unit_name "is"
declarative_part
["begin"
sequence_of _statements]
"end" [[parent_unit_name"."|simple_name] ";"

using_declaration ::=
"Susing" simple_declaration { simple_declaration }
"$implement" z_identifier "$by" invariant ";"

simple_declaration ::=
object _declaration
] type_declaration
| subtype_declaration

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.7. Packages 31

invariant ::= z_predicate

Here z_identifier and z_predicate stand for the constructs called Id and Pred respectively in
ProofPower Description Manual [5].

The visible part declarations after a using declaration may not be k-slots or auxiliary variable dec-
larations.

Auxiliary declarations and using declarations together support data refinement. A using declaration
relates the values taken by one or more variables in the package body with the value of a Z variable
introduced in an auxiliary declaration in the package specification. If using declarations are given
the package body must have a sequence of statements.

2.7.2 Package Specifications and Declarations

If a procedure in a package specification has a specification statement, then it is this specification
statement which is used in the generation of VCs for calls of the procedure outside the package body.

When a package is named in a with clause, Z global variables are introduced representing the types,
constants and functions in the package. The Z variable names are derived from the Ada name
by converting it to upper case and prefixing the result with the package name (also converted to
upper case) and an ‘o’. For example a function fnc define in package pck would give rise to the
7 global variable FNCoPCK defined in an axiomatic description capturing the signature and the
formal specification of the function (if any).

2.7.3 Package Bodies

If a subprogram has a specification statement both in the package specification and in the package
body, then VCs are generated to ensure that the specification statement in the package body refines
that in the package specification.

If a subprogram has a specification statement in the package body, then it is this specification
statement which is used in the generation of VCs for calls of the subprogram inside the package
body. The subprogram will be treated as an informal procedure if it is used before its implementation
within the package body.

When a package body is introduced, Z global variables are automatically bought into scope rep-
resenting the types and constants, but not the functions in the package (as stated in the package
specification). The names of these global variables are not prefixed with the package name. Global
variables for any functions in the package are introduced as the function implementations are pro-
cessed.

A 7 global variable representing a function in the package is introduced at the point where the
implementation of the function is provided. Thus calls of the function will not be handled formally
within the package body, if they appear before the implementation of the function.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

32 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.7.4 Private Type and Deferred Constant Declarations

private_type_declaration ::=
"type" identifier "is | "limited" | "private" ";"

deferred_constant_declaration ::=
identifier_list : "constant" type_mark ";"

The Z global variables corresponding to private type declarations and deferred constant declarations
are introduced using the information in the actual declarations in the private part of the package
specification.

2.8 Visibility Rules

The visibility rules for the Compliance Notation may be described in terms of the Ada visibility
rules given the method for extracting the Ada program from a literate script. The Ada program is
extracted from a literate script as follows:
1. Any auxiliary declarations are removed;
Any using declarations are replaced by their constituent simple declarations;
Any till predicates are removed;
Any references clauses are removed;
Any specification statements not occurring as statements are removed;
Any assertion statements are removed;

Any subprogram declarations preceded by the keyword $implicit are removed;

© N o otk N

The constituent web clauses of the script are scanned in order and k-slots and specification
statements in each web clause are expanded in turn;

(a) A k-slot is expanded by replacing its text by the text on the right hand side of the
corresponding replacement step or arbitrary replacement step and then, in the case of
an ordinary replacement step, recursively expanding any k-slots or specifications in the
resulting text;

(b) A specification statement occurring as a statement is expanded by replacing its text by
the text on the right hand side of the corresponding refinement step, replacement step or
arbitrary replacement step and then recursively expanding any k-slots or specifications in
the resulting text;

)

9. All statements of the form “nothing;” are removed and any else parts, others parts or package
initialisation statements which become empty as a result are also removed.

10. Any procedure or function specification statements are removed.

The phrase “current Ada program” or “current Ada program for C” is used below to refer to the
result of carrying out the above steps on an initial fragment of the literate script, up to the point at
which some construct, C, appears.

If any k-slots or specification statements remain unexpanded after the above steps, then the script
is incomplete.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.8. Visibility Rules 33

2.8.1 Declarative Region

The declarative region in which a Compliance Notation construct occurs is determined by the declar-
ative region it occupies in the current Ada program.

2.8.2 Scope of Declarations

Within one compilation unit, the scope of a declaration includes any Compliance Notation construct,
C', which would be in the scope of the declaration in the current Ada program for C.

A compilation unit U; may only refer to entities defined in another compilation unit, Uy, under the
following circumstances: (a), U; is the package body implementing the package specification in Uy
and the entity is a type, constant or variable, or, (b), Uz gives the package specification of a package
identified in the context clause of Up. In case (a), the entity must be referred to by its simple name,
without a package name prefix.

2.8.3 Visibility

No overloading of names or operator symbols is allowed except for the limited form of overloading
of operator symbols using renaming declarations (see section 2.8.5).

Declaring a name in an inner scope which is already declared in an outer scope is not handled
formally.

2.8.4 Use Clauses

use_clause ::= use_package_clause | use_type_clause
use_package_clause ::= "use" identifier {"," identifier} ";"
use_type_clause ::= "use" "type" identifier {"," identifier} ";"

A use package clause makes the simple names declared in one or more packages available for use in
the current declarative region. Occurrences of the simple names are converted into the corresponding
expanded names when handled formally.

A package mentioned in a use clause must have been processed formally and must not contain any
unexpanded k-slots. A package may not be mentioned more than once in the use clauses occurring
in each declarative region.

The syntax of Ada ’95 use type clauses is supported. Use type clauses have no semantic effect in
the Compliance Notation (since the Z representations of the predefined operators for any type are
always directly available and may not be redefined).

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

34 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.8.5 Renaming Declarations

renaming_declaration ::=
object _renaming
| package_renaming
] operator_symbol_renaming
| subprogram_renaming

object_renaming ::= identifer ":" type_mark renames name semi
package_renaming ::= package identifier "renames" name semi

operator_symbol_renaming ::=
"function" operator_symbol formal_part "“return" type_mark
"renames" simple_name "." operator_symbol ";"

subprogram_renaming ::=
informal _subprogram_ specification
"renames" simple_name "." operator_symbol ";"
| informal_subprogram_specification “renames" name ";"

In an operator symbol renaming, the two operator symbols must be the same. This form of renaming
declaration is intended for operators such as pck."+" introduced implicitly when a numeric type is
declared in package pck.

If the object in an object renaming is a constant, a Z global variable is introduced and defined to be
equal to the renamed constant. If the object is a variable, the new name for the variable may be used
as a synonym for the old name in Ada and Z expressions in the scope of the renaming declaration.

A package renaming, package new renames old, is considered to be equivalent to the declaration
of a package named new containing a sequence of renaming declarations and subtype declarations.
Each declaration in the package new corresponds to a name declared in the package old. If a name in
the package old denotes a type, the corresponding declaration in new is a subtype declaration, e.g.,
subtype ty is old.ty. If the name is an object or subprogram, then the corresponding declaration
is a renaming declaration, e.g., x : float renames old.x.

In a subprogram renaming, if the subprogram being renamed is a formal procedure, then the formal
specification for the new procedure name is taken from that for the old one. If the subprogram being
renamed is a function or a predefined operator, a Z global variable for the new function name is
introduced and defined to be equal to the Z global variable corresponding to the renamed function
or predefined operator.

2.8.6 The Package Standard

Compliance Notation scripts are processed in an environment which includes the declarations in the
package STANDARD with the following restrictions:

1. The enumeration literals of the type CHARACTER are not provided.

2. The package ASCII is not provided.

3. The only predefined operators for the type STRING are =, &, and /=.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.9. Tasks 35

4. The type DURATION is not provided.

2.8.7 The Context of Overload Resolution

No overloading of names is supported except for the limited form of overloading of predefined op-
erators using renaming declarations (see section 2.8.5). The question of overload resolution does
not arise for predefined operators, since the underlying semantics of these operators is built into the
notation.

2.9 Tasks

Tasks are not supported.

2.10 Program Structure and Compilation Issues

2.10.1 Compilation Units — Library Units

compilation ::= k_slot | compilation_unit {compilation_unit}

compilation_unit ::= contezt_clause library_unit | context_clause secondary_unit
library_unit ::= [private] package_declaration | subprogram_body
secondary_unit ::= [ibrary_unit_body | subunit

library_unit_body ::= package_body

The only declarations allowed as compilation units are package declarations.

Generic packages are not supported.

2.10.1.1 Context Clauses — With Clauses

context_clause ::= { with_clause | references_clause | use_clause } ;
with_clause ::= "with" simple_name {"," simple_-name} ";"
references_clause ::= "$references" simple_name {"," simple_name} ";"

A with clause must refer to a package not a library subprogram.

To allow use of packages for purely informal purposes, the names in a with clause need not all identify
packages whose specifications have been provided. The use of entities declared in such packages is
not handled formally.

A context clause may also include a references clause. A references clause is used to identify packages
that are needed to specify the semantics of a compilation unit. This allows such packages to be
identified without including them in a with clause.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

36 Chapter 2. COMPLIANCE NOTATION SYNTAX

2.10.2 Subunits of Compilation Units
body_stub ::=
subprogram_specification "is" "separate" ";"

| "package" "body" simple_name "is" "separate"

subunit ::=
"separate" "(" name ")" proper_body

Tasks are not supported.

2.11 Exceptions

Exceptions are not supported.

2.12 Generic Units

Generic units are not supported.

2.13 Representation Clauses and Implementation-Dependent Fea-
tures
2.13.1 Representation Clauses

representation_clause ::= type_representation_clause | address-clause

type_representation_clause ::= length_clause
| enumeration_representation_clause | record_representation_clause

2.13.2 Length Clauses

length_clause ::= "for" attribute "use" simple_expression ";"

2.13.3 Enumeration Representation Clauses
enumeration_representation_clause ::= "for" simple_name "use" aggregate ";"
2.13.4 Record Representation Clauses

record_representation_clause ::=
"for" simple_name "use"
"record" | alignment_clause]
{ component_clause }
||6nd" llreco,rdll Il;ll

alignment_clause ::= "at" "mod" simple_expression ";"

component_clause ::= name "at" simple_expression "range" range ";"

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

2.14. Input-Output 37

2.13.5 Address Clauses

address_clause ::= "for" simple_name "“use" "at" simple_expression ";"

2.13.6 Change of Representation

Note that because derived types are not supported the approach taken in the example in section 13.6
of ALRM would not be supported by the Compliance notation.

2.13.7 The Package System

The Compliance Notation does not provide the package SYSTEM .

2.13.8 Machine Code Insertion

Machine code insertions are not supported.

2.13.9 Interface to Other Languages

The interface pragma is supported (as are any other pragmas meeting the restrictions of section
2.2.8).

2.13.10 Unchecked Programming

The generic library subprograms for unchecked storage deallocation and unchecked type conversions
are not supported.

2.14 Input-Output

The predefined packages for input-output are not provided.

2.15 Web Clauses and Compliance Notation Scripts

web_clause ::=
z_paragraph
| ®CN
compilation
|
| ®ON
refinement_step
|
| ®CN
replacement_step
|
| ®CN

arbitrary_replacement_step

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

38 Chapter 2. COMPLIANCE NOTATION SYNTAX

refinement_step ::=
[tag | "C" sequence_of _statements

replacement_step ::=

[tag | "IC" sequence_of _statements
| [tag] "=" compilation
| [tag] "=" private_part
| [tag] "=" wvisible_part
| [tag] "=" declarative_part

arbitrary_replacement_step ::=
[tag | "!=" lexical_elements

If the tag is omitted in any of the above constructs, the refinement, replacement or arbitrary re-
placement applies to the immediately preceding k-slot or specification statement without an explicit
tag.

The kind of refinement or replacement must be appropriate to the corresponding k-slot or specifica-
tion statement. For example, it is not allowed to refine a declaration k-slot or to replace a specification
statement with a declaration. This restriction does not apply to an arbitrary replacement step.

A replacement step which introduces a declaration into a declarative part has the implicit effect of
widening the frames of any specification statements in the scope of that declarative part to include the
variables declared on the right-hand side of the replacement step. Thus, local variables introduced in
this way after a specification statement become available for use in the refinement of that specification
statement.

Here, lexical_elements stands for an arbitrary sequence of the lexical elements of Ada. This means
that string and character quotation characters must be properly balanced in an arbitrary replacement
step. No other restrictions apply to the right-hand side of an arbitrary replacement step, which is
copied verbatim, with all format effectors preserved, into the Ada program when the replacement is
expanded.

compliance_notation_application ::= compliance_notation_script
{compliance_notation_script}

compliance_notation_script ::= web_clause
{web_clause}

A compliance notation application is made of one or more scripts each of which is a sequence of
web clauses. In practice, the scripts are interleaved with ProofPower metalanguage commands to
identify the scripts (see section 3.5 and Compliance Tool — User Guide [8]).

A script may contain at most one Ada compilation unit.

The compliance notation requires any formal dependencies between scripts to be expressed in a linear
sequence.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

Chapter 3 39

COMPLIANCE NOTATION SEMANTICS

The semantics of the Compliance Notation may be understood in terms of the translation of one or
more Compliance Notation script into (a) Ada source code, and (b) one or more Z documents. The
translation into Ada source code is described in section 2.8 above. The translation of a script into a
7 document is described in this chapter.

The main purpose of the Z document is to provide a set of Z conjectures, the verification condi-
tions, or VCs, whose truth entails that the formally specified parts of the Ada program satisfy their
specifications. The Z document also contains any Z paragraphs which appear in the script together
with Z paragraphs that are automatically generated from some of the Ada declarations in the script.
These Z paragraphs together with the extensions to the Z library described in chapter 4 provide the
vocabulary in terms of which the VCs are couched.

In sections 3.1 to 3.5 below, the generation of the Z document is described under the following
headings:

Expressions Ada expressions are translated into Z expressions appearing in VCs or in generated Z
paragraphs according to the context of use.

Declarations Type, constant and function declarations are translated into Z paragraphs.
VC Generation VCs are generated for refinement steps and for certain other constructs.

Domain Conditions Optionally, VCs may be generated with additional hypotheses justifying the
application of partial functions.

Program Structure The top level structure of the literate scripts gives rise to the creation of one
or more ProofPower theories.

3.1 Translation of Expressions

In this section the translation of Ada expressions into Z is described. The examples used depend on
the following definitions:

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);

subtype INDEX is INTEGER range 2 .. 5;

type ARR is array (INDEX) of DAY

type REC is record START : DAY ; FINISH : DAY; end record,;

type ARR2 is array (INDEX, DAY) of REC,

function MAX (z, y: DAY) return DAY = [true];

function CONST return INTEGER = [CONST = 1001];

function SUMXY return INTEGER £ X, Y [SUMXY (X, Y) =X + Y];
function XPLUSY (Y : INTEGER) return INTEGER £ X [XPLUSY(X)(Y) =X + Y];
ArrVar : ARR;

Arr2Var : ARRZ2;

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

40 Chapter 3. COMPLIANCE NOTATION SEMANTICS

RecVar : REC;

Sections 3.1.1 to 3.1.13 below discuss the translation of the various forms of Ada expression. Many
of these translations depend on the some extensions to the Z library which support predefined types
and their operators and attributes. These extensions are described in chapter 4.

3.1.1 Literals

Null literals and based real literals cannot be handled formally and do not have a translation.

Integer literals both based and decimal are translated into Z decimal literals. For example, both 35
and 2#0010_-0011+# are translated as 35.

Real literals are translated into expressions involving the operator (_e_). For example, 3.14159 is
translated as 314159 e ~&. The translation, ¢ e j of a real literal is always normalised so that i is
not divisible by 10.

An enumeration literal is translated in the same way as an identifier (see below).

3.1.2 Identifiers

A simple name is translated into Z as a variable (global or local) by converting all letters into upper
case. For example, both Var and var are translated as VAR.

An identifier prefixed by a package name (which is strictly speaking a selected component in Ada
terminology) is translated into a Z variable by converting all letters into upper case and replacing
each ‘. by ‘o’. For example, Pack.object is translated as PACKoOBJECT.

Attribute names are translated into Z global variables whose names are formed by converting letters
to upper case and replacing the prime with a ‘v’. For example, ARR'LENGTH is translated as
ARRvLENGTH.

3.1.3 Record Aggregates

A record aggregate using either named or positional association is translated into a Z binding display.

For example both REC'(WED, SUN) and REC'(START=>WED, FINISH=>SUN) are trans-
lated as (FINISH = SUN, START = WED).

3.1.4 Array Aggregates

A positional array aggregate with no others part is translated as a Z sequence display composed with
a numerical shift operator. For example,

ARR'(SAT, SUN, MON, TUE)

is translated as
succ 1~ ARRVFIRST o (AT SUN, MON, TUE).

A named array aggregate with no others part is translated as the union of functions with a singleton
range, and with a domain formed by representing the aggregate choice as a union of singleton sets
or integer intervals: For example,

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.1. Translation of Expressions 41

ARR'(MON .. THU | FRI => WED, SAT | SUN => TUE);

is translated as

((MON .. THU) U {FRI} x {WED}) U ({SAT, SUN} x {TUE}).

An others part is represented by a total function on the index set of the array with a singleton range.
This is overridden with the translation of the rest of the aggregate (if any) For example,

ARR!(others=>MON)

is translated as

(ARRVRANGE x {MON}),

and

ARR/(SAT, SUN, others=>MON)

is translated as

(ARRvRANGE x {MONY}) @ (succ ! — ARROFIRST o (GAT SUN)).

For n > 2, an n-dimensional array aggregate is translated by first applying the above translation
as if it were an array of arrays of arrays of arrays ... (where each array is one-dimensional). This is
done using the attributes of the n-dimensional array type in place of the qualifying type marks for
the subaggegrates. The result is then converted to the right type using one of the functions array_
agg2, array-agg3, and so on, defined in the extensions to the Z library described in chapter 4. For
example, the aggregate:

ARR2'(2 =>(
MON => REC'(MON, TUE),
others => REC'(TUE, WED)),
others => (
others => REC'(SAT, SUN)));

is translated as:

((ARR2vRANGEv1 x {ARR2uRANGEv2 x {(FINISH = SUN, START = SAT)}})
@ ({2} x {(ARR20RANGEv2 x {(FINISH = WED, START = TUE)})
@ ({MON} x {(FINISH = TUE, START = MON)})}))

3.1.5 Unary Expressions

Unary plus is simply discarded in the translation. l.e., +FEzp is translated in the same way as Fxp.

Other unary expressions are translated into an application of a Z function representing the operator
to the translation of the operand. The Z functions representing the operators are either taken from
the Z library or are defined in the theory cn described in chapter 4.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

42 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.1.6 Binary Expressions

Binary expressions are translated into an application of an infix Z function representing the operator
to the translated operands. The Z functions representing the operators are either taken from the Z
library or are defined in the theory cn described in chapter 4. For example, not(abs (—2) = (1 + y))
is translated as not (abs (~ 2) eq (1 + Y)).

3.1.7 Membership

Membership of a range is treated in the same way as the binary expressions and is supported by the
operators mem and notmem in the theory cn described in chapter 4.

3.1.8 Attributes

The names of attributes are translated into Z identifiers as follows: function calls or other complex
expressions in the prefix are replaced by the translation of their type; occurrences of the attribute
P'BASE are replaced by the Z identifier for the base type of P; the result of these replacements is
then translated as an Ada name in the usual way; the prime character before the attribute designator
is translated as a lower-case ‘v’, the attribute designator is translated into upper-case; finally, if the
attribute has an argument, then the argument is statically evaluated to give an integer, say N and
then ‘vN’ is appended to the Z identifier. For example, arr’range and arr’length(2) are translated
as ARRvRANGE and ARRvLENGTHuv2 respectively. An attribute with an argument that cannot
be statically evaluated cannot be handled formally.

The Compliance Notation divides the predefined attributes into three categories, A, B and C. The Z
paragraphs that support category A attributes are generated automatically when a type declaration
that introduces the attribute is processed. Examples of these Z paragraphs for the various sorts of
type declaration are given in section 3.2 below.

The Z paragraphs that support category B attributes are generated if necessary when a use of the
attribute is encountered. For example, when the expression float’small is processed, if the Z global
variable FLOATvSMALL is not in scope, then the following axiomatic description is generated

FLOATvSMALL : R

Attributes in category C are only supported formally if they are preceded in the script by a Z
paragraph introducing the global variable that corresponds to the attribute. (Note that this usage
is also acceptable for category B attributes, but would cause a Z type-checking error for a category
A attribute).

The category A and B attributes are listed in the following table. All other attributes except P’ BASE
are in category C. The attribute P’BASE is a special case as described in the rule for translating
attribute names above.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

Translation of Expressions

43

’ Attribute Type ‘ Category ‘
P’DELTA Real A
P’DIGITS Integer A
P’FIRST P A
P’LAST P A
P’LENGTH Integer A
P’POS Function from Integer to P A
P’PRED Function from P’BASE to P’BASE | A
P’SUCC Function from P’BASE to P’BASE | A
P’VAL Function from P to Integer A
P’RANGE Range (of elements of P) A
P’AFT Integer B
P’EMAX Integer B
P’EPSILON Real B
P’FORE Integer B
P’'LARGE Real B
P'MACHINE_EMAX Integer B
P’MACHINE_EMIN Integer B
P’MACHINE_MANTISSA Integer B
P’MACHINE_OVERFLOWS | Boolean B
P’MACHINE_RADIX Integer B
P’MACHINE_ROUNDS Boolean B
P'MANTISSA Integer B
P’SAFE_EMAX Integer B
P’SAFE_LARGE Real B
P’SAFE_SMALL Real B
P’SIZE Integer B
P’SMALL Real B

3.1.9 Indexed Components

An indexed component with a one-dimensional index is translated into a Z function application of the
function representing the array to the translation of the index expression. For example, ArrVar(3)
is translated as ARRVAR 3.

For n > 2, an indexed component with an m-dimensional into a Z function application of the
function representing the array to the Z tuple whose components are given by translating the n
index expressions. For example, Arr2Var(3, MON) is translated as ARR2VAR (3, MON).

(Note: the above description does not apply to an indexed component appearing as the left-hand
side of an assignment statement. Such an assignment is effectively treated as an assignment of an
aggregate value to the whole array, see section 3.3.2.)

3.1.10 Selected Components

Selection of a component from a record is translated into Z component selection. For example,
RecVar . START is translated as RECVAR.START. (Note: the above description does not apply to
a selected component appearing as the left-hand side of an assignment statement. Such an assignment
is effectively treated as an assignment of an aggregate value to the whole record, see section 3.3.2.)

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - —
Language Description

USR504

44 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.1.11 Function Calls

A function call using either positional or named argument association translates into a Z function
application. For example, both MAX (y=>THU, x=>FRI) and MAX (FRI, THU) are translated
as MAX(FRI, THU). A call of a function with neither global dependencies or arguments is trans-
lated as a Z global variable, for example CONST is translated as CONST. If a function has global
dependencies, then these are formed into a tuple (if there is more than one), and become an extra
argument to the Z function call. For example, the function calls SUMXY and XPLUSY (42) are
translated as SUMXY (X, Y) and PLUSX X /2 respectively.

3.1.12 Qualified Expressions

A qualified expression is translated in the same way as its operand. For example, NATURAL (/) is
translated as 4.

3.1.13 Type Conversions

A type conversion is translated in the same way as its operand provided both the operand and the
result both have integer types or both have real types. For example, NATURAL(4) is translated as

/.

A type conversion from an integer type to a real type or from a real type to an integer type is
translated into an application of an appropriate numeric conversion function (real_to_integer or
integer_to_real). For example, FLOAT(4) is translated as integer_to_real 4.

Type conversions involving types other than integer or real types cannot be handled formally and
are not translated.

3.1.14 Array Sliding

Section 5.2.1 of ALRM describes an implicit conversion that may apply to expressions whose type is
a subtype of an unconstrained array type. This implicit conversion is referred to in this document
as sliding. It may apply to the left-hand side of an assignment statement and to in mode actual
parameters in function or procedure calls. When the sliding conversion is applicable, the expression
is translated as slide(e, r) where e is the translation of the unconverted expression and ris a Z
identifier denoting the range of the converted array.

The sliding conversion also applies in ALRM to in and in out mode parameters. When it does apply,
a verification condition is generated, see section refVCG.

3.1.15 Subtype Indications and Discrete Ranges

Object declarations, discrete ranges and component declarations involving subtypes which are not
type marks are translated as if subtype declarations for the subtypes had been introduced. The Z
identifiers for these type marks are automatically generated so as to be distinct from 7 identifiers
representing names in the Ada program. For example, the type declaration:

type sti_eg is array(index) of integer range 1 .. 10;
is translated into the following Z paragraphs:

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.2. Translation of Declarations 45

1. A definition of an automatically generated name for the anonymous subtype of integer:

In

2. Definitions

In

..etc.

formal Z

INTEGERs1 =1 .. 10

of the attributes of the anonymous subtype:

formal Z

INTEGERsIvFIRST = 1

3. A definition for the array type sti_eg:

Informal Z

STI_EG = INDEX — INTEGERs1

4. Definitions for the attributes of the array type:

Informal Z

..etc.

STI_EGuFIRST = INDEXvFIRST

Discrete ranges that do not include a type mark are translated using the Z name universal_discrete
in place of the type mark.

3.2 Translation of Declarations

3.2.1 Enumeration Types

An enumeration

type is represented in Z as a range of integers starting at 0. Global variables are

introduced corresponding to the type name, the enumeration literals and the supported attributes

of the type.

For example, the enumeration type declaration:

type EN

UM_TYPE is (LIT1, LIT2, LIT3);

is translated into a sequence of abbreviation definitions as follows:

LIT1 =
LIT?2 =
LITS =

0
1
2

ENUM_TYPE = LIT1 .. LIT3

ENUM _TYPEvFIRST = LIT1

ENUM_TYPEvLAST = LIT3

ENUM _TYPEvSUCC = (ENUM_TYPE \ {ENUM_TYPEvLAST}) < succ
ENUM_TYPEvPRED = ENUM_TYPEvSUCC ~

ENUM_TYPEvPOS = id ENUM_TYPE

ENUM_TYPEvVAL = ENUM_TYPEvPOS ~

Compliance Tool

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504

Language Description

46 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.2.2 Array Types
3.2.2.1 Constrained Array Types

A constrained array type is represented as a set of total functions. Z global variables are introduced
corresponding to the type name and the supported attributes of the type. The attributes are only
supported for one-dimensional arrays.

For example, the one-dimensional array type:

type ARRAY _TYPE is array (INDEX_TYPE) of ELEMENT _TYPE;

is translated into a sequence of abbreviation definitions as follows:

ARRAY _TYPE = INDEX_TYPE — ELEMENT_TYPE
ARRAY _TYPEvFIRST = INDEX _TYPEvFIRST
ARRAY _TYPEvLAST = INDEX_TYPEvLAST
ARRAY _TYPEvLENGTH = # INDEX _TYPFE

ARRAY _TYPEvRANGE = INDEX_TYPE

ARRAY _TYPEvFIRSTvl = INDEX_TYPFEvFIRST
ARRAY _TYPFEvLASTvl = INDEX_TYPEvLAST
ARRAY _TYPEvLENGTHvl = # INDEX_TYPE

ARRAY _TYPEvRANGEvl = INDEX_TYPE

A 2-dimensional array type:

type ARRAY _TYPE? is
array (INDEX_TYPE1, INDEX_TYPE?2) of ELEMENT_TYPE;

is translated into the sequence of abbreviation definitions:

ARRAY _TYPE2 = INDEX_TYPE! x INDEX_TYPE2 — ELEMENT_TYPE
ARRAY _TYPE2vFIRST = INDEX_TYPEIvFIRST
ARRAY _TYPE2vLAST = INDEX _TYPE1vLAST
ARRAY _TYPE2vLENGTH = # INDEX_TYPFE1
ARRAY _TYPE2vRANGE = INDEX_TYPE1

ARRAY _TYPE2vFIRSTvl = INDEX_TYPEIvFIRST
ARRAY _TYPE2vLASTvl = INDEX_TYPEIvLAST
ARRAY _TYPE2oLENGTHvl = # INDEX_TYPFE1
ARRAY _TYPE2vRANGEv1 = INDEX _TYPFE1

ARRAY _TYPE2vFIRSTv2 = INDEX_TYPE2vFIRST
ARRAY _TYPE2vLASTv2 = INDEX _TYPE2vLAST
ARRAY _TYPE2vLENGTHv2 = # INDEX_TYPE?2
ARRAY _TYPE2vRANGEv2 = INDEX _TYPE2=TEX

3.2.2.2 Unconstrained Array Types

An unconstrained array type is represented as a set of partial functions. For example, the uncon-
strained array type:

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.2. Translation of Declarations 47

type ARRAY _TYPES is array (INDEX_TYPE range <>) of ELEMENT_TYPE;

is translated as:

Informal Z

ARRAY _TYPES : P (INDEX_TYPE +— ELEMENT_TYPE)

3.2.3 Record Types

A record type is represented as a schema type. To support the generation of VCs for assignments to
components of records, record update functions are also introduced. For example, the record type:

type date is record d : DAY ; m : MONTH; y : YEAR; end record;

is translated as follows:

Informal Z

| DATE = [D : DAY; M : MONTH; Y : YEAR]

Informal Z

—lg1,92, 93]
DATEuD : [D : gl; W :g2; Y : 98] x g1 — [D :gl; W :g2; Y :g3];
DATEuM : [D : g1; W : g2; Y : 98] x g2 — [D : gl; W : g2, Y : g3];
DATEuY :[D :gl; W : g2, Y : g3 x g3 — [D :g1l; W: g2 Y : g3]

Vor:[D:gl; W:g2 Y :g3];xl:gl; 22 : g2; 23 : g3

e DATBEuD (r,21) = (D = al, W 2 r.W, Y = r.Y)
A DATEuW (r, 22) = (D =r.D, W =22, Y =r.Y)
A DATEuY (r,z3)=(D=r.D, W=r.W, Y = 13)

A record type with a discriminant part is translated similarly using a predicate in the schema to
express the formal discriminant constraints. For example, the record type:

type buffer(size : integer) is record data : string (1 .. size); end record;

is translated into the following schema (followed by the record update functions for the two compo-
nents of the schema).

Informal Z

\ BUFFER =
| [SIZE : INTEGER; DATA : STRING
‘ | DATA € {array : STRING | dom array = 1 .. SIZE}]

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

48 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.2.4 Integer Types

A signed integer type declaration is represented as a range of integers. Z global variables are in-
troduced corresponding to the type name and the supported attributes of the type. The attributes
that are functions have Z signatures but no defining properties (since the defining properties are
compiler-dependent as regards arithmetic overflow).

For example, the integer type declaration:

type INTEGER_TYPE 1is range —1000 .. 1000;

is translated as the sequence of abbreviation definitions: Z global variables are introduced corre-
sponding to the type name and the supported attributes of the type.

\ INTEGER_TYPE = ~ 1000 .. 1000
\ INTEGER_TYPEvFIRST = ~ 1000
\ INTEGER_TYPEvLAST = 1000

followed by the sequence of axiomatic descriptions:

\ INTEGER_TYPEvSUCC :Z + 7
| INTEGER_TYPEvPRED : 7 + 7
\ INTEGER_TYPEvPOS : 7. + 7
\ INTEGER_TYPEvVAL : 7 + Z

A modular type is represented by a free type with one constructor representing the Val attribute of
the type. The domain of the constructor is the set of integers representable in the modular type.
The free type definition is preceded by an abbreviation definition for the Modulus attribute and
followed by an axiom description for the function which maps the integers onto the modular type
and abbreviation definitions for the other attributes of the type.

For example, the modular type declaration:

type mod5 is mod J;

is translated into the following sequence of Z paragraphs:

MOD55vMODULUS = 5
MODS5 ::= MOD5vVAL (0 .. MOD5vMODULUS — 1)

MODS5 _of _int : Z — MODS

Vi:Ze MOD5_of _int i = MOD5vVAL (i mod MOD5vMODULUS)

MODSvFIRST = MOD5SvVAL 0

MOD5vLAST = MOD5vVAL (MOD5vMODULUS — 1)
MOD5vPOS = MOD5vVAL™

MOD5vSUCC = MOD5vPOS § succy MODS_of _int
MOD5SvPRED = MOD5vSUCC™

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.2. Translation of Declarations 49

3.2.5 Real Types
A real type (floating point or fixed point) is represented as a subset of the set of real numbers in Z.
The category A attributes for the type are defined when the type is declared.

For example, the fixed point type declaration:

type FIX is delta 0.1 range 5.1 .. 10.0;

is translated as

\ FIX =51 e~1. 10 € 0
\ FIXvDELTA = 1 e ~1

\ FIXvFIRST = 51 e ~1

\ FIXvLAST = 1 e 1

The floating point type declaration:

type FLOAT1 is digits 7 range —1.0 .. 1.0;

is translated as

| FLOAT1 = ~r (1 e 0) ..p 1 €0
\ FLOAT1vDIGITS = 7

\ FLOATIvFIRST = ~p 1 e 0

\ FLOATIvLAST = 1 e 0

A floating point type declaration with no range such as

type FLOATZ2 is digits 6;

is translated as

\ FLOAT2vFIRST : R

\ FLOAT2vLAST : R

| FLOAT2 = FLOAT2vFIRST .. FLOAT2vLAST
\ FLOAT2vDIGITS = 6

3.2.6 Subtypes
3.2.6.1 Integer Subtypes

A signed integer subtype is represented as a range of integers. Z global variables are introduced
corresponding to the type name and the supported attributes of the type. The attributes are defined
to be equal to the corresponding attributes of the base type.

For example, the subtype declaration:

subtype INTEGER_SUBTYPFE is INTEGER_TYPE range —10 .. 10;

is translated as the sequence of abbreviation definitions:

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

50 Chapter 3. COMPLIANCE NOTATION SEMANTICS

INTEGER_SUBTYPE = ~ 10 .. 10
INTEGER_SUBTYPEvFIRST = ~ 10
INTEGER_SUBTYPEvLAST = 10
INTEGER_SUBTYPEu0SUCC = INTEGER_TYPEvSUCC
INTEGER_SUBTYPEvPRED = INTEGER_TYPFEvPRED
INTEGER_SUBTYPEvPOS = INTEGER_TYPEvPOS
INTEGER_SUBTYPEvVAL = INTEGER_TYPFEvVAL

A modular subtype is represented as a subset of the free type representing the base type. The First
and Last attributes are derived from the range in the subtype definition and the other attributes are
defined equal to the corresponding attributes of the supertype. For example, the subtype declaration:

subtype ttf is mod5 range 2 .. 4;

is translated as the following sequence of abbreviation definitions:

TTF = MODSvVAL (2 .. /)
TTFvFIRST = MODS5vVAL 2
TTFvLAST = MOD5vVAL
TTFuMODULUS = MOD5vMODULUS
TTFvPOS = MOD5vPOS

TTFuSUCC = MOD5vSUCC
TTFvPRED = MOD5vPRED
TTFyVAL = MOD5vVAL

3.2.6.2 Array Subtypes

An array subtype, i.e. a subtype with an index constraint, is represented as an appropriate subset of
the set of functions which represents the base type. Z global variables are introduced corresponding
to the type name and the supported attributes of the type.

For example, the subtype declaration:

subtype ARRAY _SUBTYPE is ARRAY _TYPE3(INDEX _TYPE);

is translated as:
ARRAY _SUBTYPE = {array : ARRAY _TYPES3 | dom array = INDEX_TYPE}
ARRAY _SUBTYPEvFIRST = INDEX _TYPEvFIRST
ARRAY _SUBTYPEvLAST = INDEX_TYPEvLAST
ARRAY _SUBTYPEvLENGTH = # INDEX_TYPE
ARRAY _SUBTYPEvRANGE = INDEX_TYPE
ARRAY _SUBTYPEvFIRSTvl = INDEX _TYPEvFIRST
ARRAY SUBTYPEvLASTvl = INDEX_TYPEvLAST
ARRAY _SUBTYPEvLENGTHvl = # INDEX_TYPE
ARRAY _SUBTYPEvRANGEv1 = INDEX_TYPE

For a multi-dimensional array, the domain in the first abbreviation definition is given by an appro-
priate cartesian product and then abbreviation definitions giving attributes for each dimension are
introduced.

If a discrete range in an index constraint is not just a type mark, a Z declaration are introduced for
the range as described section 3.1.15.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.2. Translation of Declarations 51

3.2.6.3 Record Subtypes

A record subtype, i.e., a subtype with a discriminant constraint is translated into a schema definition
with the declaration given by the base type and with a predicate expressing the actual discriminant
constraints. For example, the record subtype:

subtype line_buffer is buffer(80);

is translated as:

Informal Z

LINE_BUFFER = [BUFFER | SIZE = 80]

3.2.6.4 Other Subtypes

Unconstrained subtypes have type attributes introduced for each of the type attributes of the base
type of the subtype. Otherwise, subtypes of forms other than those discussed in section 3.2.6.1 and
3.2.6.2 above are represented in a similar way to real types as described in section 3.2.5. If a subtype
involves expressions that cannot be handled formally, then a given set paragraph is generated to
represent the type (and the predefined operators on the type other than equality will not be handled
formally).

3.2.7 Constant Declarations

An Ada constant is represented in Z as a global variable. The form of definition for this global
variable depends on whether the defining expression for the constant can be handled formally.

Provided EXPRESSION can be handled formally, the constant declaration:

CONST_NAME : constant TYPE_NAME := EXPRESSION

is translated as the axiomatic description:

Informal Z

CONST_NAME : TYPE_NAME

CONST_NAME = EXPRESSION

If EXPRESSION cannot be handled formally, the constant declaration above would be translated
as the axiomatic description:

Informal Z

CONST_NAME : TYPE_NAME

A constant declaration defining more than one constant is treated as the equivalent sequence of
single-constant declarations.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

52 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.2.8 Function Specifications

An Ada function is represented in Z as a global variable defined via an axiomatic description. The
form of the axiomatic description depends on whether or not the function is a formal function (i.e.,
whether or not the function specification includes a function specification statement).

An informal function (i.e., a function without a function specification statement) is translated into
a member of the given set Informal_Function. Informal functions have no defining property and
are only translated into Z to prevent their use in expressions in the formal parts of a Compliance
Notation script. For example, a function specified as:

function INF_FUN (A : in INTEGER) return INTEGER;

is translated into Z as:

Informal Z

INF_FUN : Informal_Function

|
\
|
‘ true

A formal function is translated into a global variable whose type is derived from the global depen-
dencies, formal parameters and return type of the function and whose defining property is derived
from the pre- and post-conditions in the function specification statement. For example, the functions
specified as follows:

function FORM_FUN_00 return RTYPE

E [FORM_FUN_00 = 100 |

function FORM_FUN_01 (A : PTYPE) return RTYPE

E [FORM_FUN_01 A= A=x A]

function FORM_FUN_10 return RTYPE

Z G|[G >0, FORM_FUN_10 G = G]

function FORM_FUN_23 (A, B, C : PTYPE) return RTYPE

ZG,H[H >0, FORM_FUN_23 (G,H) (A, B,C)=G+ H+ A+ B+ C|

are translated into the following axiomatic descriptions.

Informal Z

FORM_FUN_00 : RTYPE

\
\
\ true = FORM_FUN_00 = 100

Informal Z

FORM_FUN_01 : PTYPE — RTYPE

V' A: PTYPE e true = FORM_FUN_01 A= A% A

Informal Z

FORM_FUN_10 : GTYPE — RTYPE

VG:GIYPE ¢ G > 0 = FORM_FUN_10 G = G

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 53

Informal Z

FORM_FUN_23 : GTYPE x HIT'YPE — PTYPE x PTYPE x PITYPE — RTYPE

Y G : GTYPE; H : HTYPE
eV A B, C: PTYPE
eH > 0= FORM_FUN_23 (G, H) (A, B,C) =G+ H+ A+ B+ C

3.3 VC Generation

A number of language constructs give rise to verification conditions (VCs). These constructs are as
follows.

1. A refinement step gives rise to VCs demanding that the sequence of statements on the right-
hand side of the refinement symbol correctly implements the specification statement being
refined.

2. A subprogram body with a formal subprogram specification gives rise to VCs demanding that
the sequence of statements in the body correctly implements the specification statement in the
subprogram specification.

3. If a subprogram specification in a package body and the corresponding subprogram specifi-
cation in the package declaration are both formal, then VCs are generated demanding that
the specification statement in the package body correctly implements the one in the package
declaration.

4. If a subprogram specification in a subunit and the corresponding subprogram specification in
the corresponding body stub are both formal, then VCs are generated demanding that the
specification statement in the subunit correctly implements the one in the body stub.

5. A package body which implements a package containing using declarations gives rise to VCs
demanding that the package initialisation statements establishes the invariants given in the
using declarations.

6. If it cannot be determined whether a range in a type definition is non-empty, a VC is generated
asserting that the type is non-empty; this VC always has the form - TYPENAME # @.

7. In a call of a procedure with a formal parameter whose mode is out or in out and whose type
is a subtype of an unconstrained array type, a VC is generated asserting that the range of the
array passed as the actual parameter is the same as the range of the subtype specified in the
procedure declaration. That is to say, the VC asserts that the sliding conversion is not needed
(see section 3.1.14 above).

The first four forms of VC generation in the above list are concerned with one or more specification
statements. A specification statement is a general means for making assertions about program state
changes. The specification statement with frame variables A, B, C ...:

A A, B, C .. [PRE_.CONDITION, POST_CONDITION]

effectively denotes the set of all pairs (S7,S2) where: each S; is a program state; the pre-condition
holds in Sy; the post-condition holds in S2; and S; and Sz only differ with respect to the values

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

54 Chapter 3. COMPLIANCE NOTATION SEMANTICS

of the frame variables A, B, C' ... (but see also the remarks about replacement steps which declare
new local variables in section 2.15, and the discussion of domain conditions in section 3.4). In the
post-condition the initial values of the frame variables may be referred to by adding a subscript 0 to
the name. For example, the specification statement:

A A [true, A = Ag + 1]

asserts that the integer variable A should be increased by 1.

The Compliance Notation VC generation algorithm is based on the notion of partial correctness.
If all VCs of a refinement step can be proved, then at run-time, the refining code either meets its
specification or fails to terminate or raises an exception. The soundness of the algorithm requires
that the script conform to the rules in chapter 2 above and that the Ada program generated from
the script conforms to the rules of the ALRM.

In generating the VCs that give the conditions under which a sequence of statements refine a spec-
ification statement, ertain statement forms must be restricted. The statement forms in question
are:

specification statements that refer to initial variables

logical constant statements

e procedure calls, where the specification statement for the procedure refers to initial variables

for-loops whose bounds are not static expressions

Such statements are restricted to appearing in positions where no code with side effects could be
executed before them in the sequence of statements. This condition is formulated syntactically as
follows: the above four statement forms may only appear in positions in the sequence of statements
which are suitable in the following sense:

e the first statement in a sequence is suitable;

e the first statement in a branch of a case statement which is itself in a suitable position is also
suitable;

e the first statement in a branch of an if statement which is itself in a suitable position is also
suitable.

The form of VCs generated for refinement steps involving the various forms of statement are de-
scribed, by means of symbolic examples, in sections 3.3.1 to 3.3.14 below. Sections 3.3.15 to 3.3.19
below give symbolic examples for the other kinds of VC generation.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 55

3.3.1 Null Statement

Compliance Notation Script: Null Statement

Compliance Notation

procedure ve_null
18

X : INTEGER,
begin
A X [PRE X, POST X | (111)

end ve_null;

Compliance Notation

(111) C NULL;

Generated VCs

velll_ 1 V' X : INTEGER | PRE X e POST X

Notes

A null statement can only achieve its specification if the pre-condition already implies the post-
condition so that no action needs to be taken.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

56 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.3.2 Assignment Statement

Compliance Notation Script: Assignment: Case 1

Compliance Notation

procedure vc_assignmentl
18
LHS, RHS : INTEGER,;
begin
A LHS | PRE (LHS, RHS), POST (LHS, RHS, LHS))] (211)
end vc_assignmentl;

Compliance Notation

(211) C LHS := RHS;

Generated VCs

ve211_1 V LHS, RHS : INTEGER
| PRE (LHS, RHS)
e POST (RHS, RHS, LHS)

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 57

Compliance Notation Script: Assignment: Case 2

Compliance Notation

procedure ve_assignment2
18
type DAY is range 1 .. 31,
type MONTH is range 1 .. 12;
type YEAR is range —10000 .. +10000;
type DATE is record D : DAY; M : MONTH; Y : YEAR; end record;
LHS : DATFE,

RHS : DAY
begin
A LHS [PRE (LHS, RHS), POST (LHS, RHS, LHSy)] (221)

end vc_assignmentZ;

Compliance Notation

(221) C LHS.D := RHS;

Generated VCs

ve221_1 V LHS : DATE; RHS : DAY
| PRE (LHS, RHS)
e POST (DATEuD (LHS, RHS), RHS, LHS)

Notes

Assignment to a record component results in VC containing a call to the record update function for
that component (see section 3.2.3).

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

58 Chapter 3. COMPLIANCE NOTATION SEMANTICS

Compliance Notation Script: Assignment: Case 3

Compliance Notation

procedure vc_assignments
is
type TRIAD is (ONE, TWO, THREE);
type ARRAYS3 is array (TRIAD) of INTEGER;
LHS : ARRAYS3,;
RHS : INTEGER;
INDEX : TRIAD;
begin
A LHS [PRE (LHS, RHS), POST (LHS, RHS, LHS;) | (231)

end vc_assignments;

Compliance Notation

(231) T LHS(INDEX) := RHS;

Generated VCs

ve231_1 V LHS : ARRAYS; RHS : INTEGER; INDEX : TRIAD
| PRE (LHS, RHS)
o POST (LHS & {INDEX +— RHSY}, RHS, LHS)

Notes

Assignment to an array element results in a singleton override on the Z function representing the
array in the VC.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 59

Compliance Notation Script: Assignment: Case 4

Compliance Notation

procedure vc_assignment/,
18
type REC_XY s record X : INTEGER; Y : INTEGER; end record;
type DYAD is (EINS, ZWEI);
type ARRAY2_REC is array (DYAD) of REC_XY;
LHS : ARRAY2_REC,
RHS : INTEGER;
INDEX : DYAD;
begin
A LHS [PRE (LHS, RHS), POST (LHS, RHS, LHSy)] (241)
end vc_assignments;

Compliance Notation

(241) C LHS(INDEX).X := RHS;

Generated VCs

ve241_1 V LHS : ARRAY2_REC; INDEX : DYAD; RHS : INTEGER
| PRE (LHS, RHS)
e POST (LHS & {INDEX — REC_XYuX (LHS INDEX, RHS)},
RHS,
LHS)

Notes

Assignments with more complex right hand-sides produce a mixture of record update operations and
singleton overrides in the VC.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

60 Chapter 3. COMPLIANCE NOTATION SEMANTICS

Compliance Notation Script: Assignment: Case 5

Compliance Notation

procedure vc_assignments
18
type DYAD is (EINS, ZWEI);
type ARRAY2_INT is array (DYAD) of INTEGER,
type REC_AB is record A : ARRAY2_INT; B : ARRAY2_INT; end record,
LHS : REC_AB;
RHS : INTEGER,
INDEX : DYAD:;
begin
A LHS [PRE (LHS, RHS), POST (LHS, RHS, LHSy) | (251)
end vc_assignmentd;

Compliance Notation

(251) C LHS.A(INDEX) := RHS;

Generated VCs

ve251_1 V INDEX : DYAD; RHS : INTEGER; LHS : REC_AB
| PRE (LHS, RHS)
e POST (REC_ABuA (LHS, LHS.A & {INDEX — RHS}),
RHS,
LHS)

Notes

Assignments with more complex right hand-sides produce a mixture of binding displays and singleton
overrides in the VC.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 61

3.3.3 Specification Statement

Compliance Notation Script: Specification Statement

Compliance Notation

procedure vc_specification
18

X : INTEGER,
begin
A X [PRE X, POST (X, Xy) | (311)

end vc_specification;

Compliance Notation

(311) T A X [PRE1 X, POST1 (X, X4)] (312)

Generated VCs

ve311_1 V X : INTEGER | PRE X e PREI X
ve311_2 V X, X, : INTEGER

| PRE Xy A POST1 (X, Xg)

e POST (X, Xy)

Notes

Note that PRFE rather than PRE1 appears in the second VC. Since the first VC requires PRE to be
at least as strong PRFE1 this is no loss, and could be a gain.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

62 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.3.4 Semicolon

Compliance Notation Script: Sequence of Statements

Compliance Notation

procedure vc_sequence_of _statements
18

X : INTEGER,
begin
A X [PRE X, POST (X, Xy) | (411)

end vc_sequence_of _statements;

Compliance Notation
(411) C [PRE1 X, POST1 (X, Xy)] (412)

AX
A X [PRE2 X, POST2 X | (413)

Generated VCs

ve4ll_-1 V X : INTEGER | PRE X e PRE1 X

vcd4ll_2 V X, X9 : INTEGER | PRE Xy N POST!1 (X, Xy) ¢ PRE2 X
vc411_3 V X, X9 : INTEGER | PRE Xy N POST2 X e POST (X, Xy)
Notes

It is not permitted to refer to initial values of variables in the second statement.

The intermediate post-condition POSTI only as appears as part of the assumptions under which
the second VC requires us to prove PRE2. If POST1 or some part of POST! is needed in POST,

then it must be included in POST2 and PRE?2.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

Compliance Tool

Language Description

USR504

3.3. VC Generation

63

3.3.5 If Statement

Compliance Notation Script: If Statement

Compliance Notation

with FUNS,

procedure vc_if

18

X : INTEGER;

begin

A X [PRE X, POST X | (511)

end ve_if;

Compliance Notation

(511) C

if FUNS.TEST(X)

then A X [PRE1 X, POST1 X | (512)
else A X [PRE2 X, POST2 X | (513)
end if;

Generated VCs

vebll 1
vebll_ 2
veb11_3
ved11_4

Notes

V' X : INTEGER | PRE X N FUNSoTEST X = TRUE e PRE1 X
VY X : INTEGER | PRE X N FUNSoTEST X = FALSE e PRE2 X

V X, X9 : INTEGER | PRE Xy AN POST1 X e POST X
V X, Xy : INTEGER | PRE Xy N POST2 X e POST X

Initial variables are not allowed in the arms of the if statement.

If the else part is omitted then POST appears in the second VC in place of PRE2 and the fourth
VC does not appear.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

Compliance Tool

Language Description

USR504

64 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.3.6 Case Statement

Compliance Notation Script: Case Statement

Compliance Notation
with FUNS,
procedure vc_case
18
type T_CASE is range 1 .. 9;

X : T_CASE;
begin
A X [PRE X, POST X | (611)

end vc_case;

Compliance Notation

(611) C case T_CASE(FUNS. COMPUTE(X)) is
when 1 => A X [PRE1 X, POST1 X | (612)
when & .. 7T => A X [PRE2 X, POST2 X | (613)
when 2 .. 4 | 819 => A X [PRE3 X, POST3 X | (614)
end case;

Generated VCs

vc611_1 V X : T_.CASE | PRE X N FUNSoCOMPUTE X € {1} ¢« PRE1 X
vc611_2 VX : T_-CASE | PRE X N FUNSoCOMPUTE X € 5 .. 7 ¢« PRE2 X
vc611_3 VX : T_CASE
| PRE X N FUNSoCOMPUTE X € (2 .. 4) U {8, 9}
e PRES X
vc611_4 VX, Xyp: T_-CASE | PRE Xy AN POST!1 X e POST X
vc611_5 V X, Xg: T_-CASE | PRE Xy N POST2 X e POST X
vc611_6 V X, Xg: T_-CASE | PRE Xy N POSTS X e POST X
Notes

Initial variables are not allowed in the specification statements in the arms of the case statement.

If the fact that the case expression is in one of the ranges is needed in the corresponding arm, then
that needs to be stated in the pre-condition for that arm. (E.g. if we need to know that the expression
is 1 in the first arm here, we need to say that in PRE1).

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation

65

3.3.7 Undecorated Loop Statement

Compliance Notation Script: Undecorated Loop Statement

Compliance Notation

procedure vc_undecorated_loop
18

X : INTEGER,
begin
A X [PRE X, POST X | (711)

end vc_undecorated_loop;

Compliance Notation
(711) = $till [TILL X]
loop
A X [PRE1 X, POST1 X | (712)

end loop;

Generated VCs

ve711_1 V X : INTEGER | PRE X e PRE1 X

ve711_2 V X, X9 : INTEGER | PRE Xy AN POST1 X e PRE1 X
ve711_.3 V X, X9 : INTEGER | PRE Xy N TILL X o POST X
Notes

If the till predicate is omitted, then the last VC is not produced (and there is no formally handled
way of leaving the loop, since an exit statement is not allowed in a loop with no till predicate).

Compliance Tool

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

Language Description

USR504

66 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.3.8 While Loop Statement

Compliance Notation Script: While Loop Statement

Compliance Notation

with FUNS,
procedure ve_while_loop
18

X : INTEGER;
begin
A X [PRE X, POST X | (811)

end vc_while_loop;

Compliance Notation

(811) C while FUNS.TEST(X) $till [TILL X |
loop
A X [PRE1 X, POST1 X | (812)
end loop;

Generated VCs

ve811_1 V X : INTEGER | PRE X N FUNSoTEST X = TRUE e PRE1 X
vc811_2 V X : INTEGER | PRE X N FUNSoTEST X = FALSE e POST X
vc811_3 V X, Xy : INTEGER

| PRE Xy N POST1 X N FUNSoTEST X = TRUE

e PRE1 X
vc811_4 VX, Xy : INTEGER

| PRE Xy N POST1 X N FUNSoTEST X = FALSE

e POST X
vc811_5 V X, X9 : INTEGER | PRE Xy N TILL X o POST X
Notes

If the till predicate is omitted, then the last VC is not produced.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 67

3.3.9 For Loop Statement

Compliance Notation Script: For Loop Statement: Case 1

Compliance Notation

procedure vc_for_loopl
18

X : INTEGER,
begin
A X [PRE X, POST X | (911)

end ve_for_loopl;

Compliance Notation

(911) C for I in INTEGER range 1 .. 10 $till [TILL (X, I)]
loop
A X [PRE1 (X, I), POSTI (X, I)] (912)

end loop;

Generated VCs

ve911_1 V X : INTEGER | PRE X A 1 < 10 o PRE1 (X, 1)
ve911_2 V X : INTEGER | PRE X A 1 > 10 o POST X
ve911_3 VI, X, Xy : INTEGER

| PRE Xg AT €1 .10 AT # 10 A POSTI (X, I)
e PRE1 (X, I+ 1)

vc911_4 V X, X9 : INTEGER | PRE Xy N POST1 (X, 10) ¢ POST X
vc9ll_5 VI, X, Xy:INTEGER

| PRE Xo N1 €1 ..10 N TILL (X, I)

e POST X
Notes

If the till predicate is omitted, then the last VC is not produced.

If the type mark in the loop parameter specification is omitted it will be taken to be universal_
discrete in any VCs involving the loop control variable.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

68 Chapter 3. COMPLIANCE NOTATION SEMANTICS

Compliance Notation Script: For Loop Statement: Case 2

Compliance Notation

procedure vc_for_loop2
18
type T_FOR_LOOP2 is range 1 .. 10;

X : INTEGER;
begin
A X | PRE X, POST X | (921)

end ve_for_loop2;

Compliance Notation

(921) C for I in T_.FOR_LOOP2 $till [TILL (X, I) |
loop
A X [PRE1 (X, I), POST1 (X, I)] (922)
end loop;

Generated VCs

vec921_1 V X : INTEGER
| PRE X N T_-FOR_LOOP2vFIRST < T_FOR_LOOP2vLAST
e PRE1 (X, T_-FOR_LOOP2vFIRST)

vc921_2 V X : INTEGER
| PRE X N T_-FOR_LOOP2vFIRST > T_-FOR_LOOP2vLAST
e POST X

vc921_3 VX, Xy : INTEGER; I : T_.FOR_LOOP2

| PRE Xy A I # T_-FOR_LOOP20LAST A POST1 (X, I)
e PRE1 (X, I + 1)

vc921_4 V X, Xy : INTEGER
| PRE Xy N POST1 (X, T_-FOR_LOOP2vLAST)
e POST X
vc921_5 VX, Xy :INTEGER; I : T_.FOR_LOOP2
| PRE Xy N TILL (X, I)
e POST X
Notes

If the till predicate is omitted, then the last VC is not produced.

If the type mark in the loop parameter specification is omitted it will be taken to be universal_
discrete in any VCs involving the loop control variable.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 69

3.3.10 Block Statement

Compliance Notation Script: Block Statement

Compliance Notation

procedure vc_block
18

X : INTEGER,
begin
A X [PRE X, POST X | (1411)

end vc_block;

Compliance Notation
(1411) C
blk:
declare
Y . INTEGER = 0;
begin
A X, Y [PREI(X,Y), POST1(X, Y)]
end blk;

Generated VCs

vcl411_1 V X, Y :INTEGER | PRE X N Y = 0 e PRE1 (X, Y)
vcl411_2 VX, Xy, Y, Yy: INTEGER

| (PRE X9 N Yy =0)ANPOST! (X, Y)

e POST X
Notes

Equations derived from any initial values in variable declarations in the block are conjoined with the
pre-condition, PRE X.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

70 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.3.11 Exit Statement

Compliance Notation Script: Exit Statement: Case 1

Compliance Notation

with FUNS,
procedure vc_exitl
18

X : INTEGER;
begin
A X [PRE X, POST X | (1011)

end vc_exitl;

Compliance Notation

(1011) C for I in INTEGER range 1 .. 10 $till [TILL X]
loop
A X [PRE1 (X, I), POST! (X, I)] (1012)
end loop;

Compliance Notation

(1012) T A X[PRE2 X, POST2 X]
exit when FUNS.TEST(X);

Generated VCs

vel012_1 VI, X : INTEGER | PRE1 (X, I) « PRE2 X

vel012_2 VI, X, Xy: INTEGER
| PRE1 (Xg, I) A POST2 X A FUNSoTEST X = TRUE
o TILL X

vel012_3 VI, X, X, : INTEGER

| PRE? (Xy, I) A POST2 X A FUNSoTEST X = FALSE
e POSTI (X, I)

Notes

For clarity, the VCs from the first refinement step are not shown above.

The till predicate must not be omitted on the loop being exited. For an exit with a loop name, the
till predicate is taken from the corresponding enclosing named loop.

If the statement before the exit is omitted the first VC does not appear.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 71

Compliance Notation Script: Exit Statement: Case 2

Compliance Notation

with FUNS;
procedure vc_exit2
18

X : INTEGER;
begin
A X | PRE X, POST X | (1021)

end vc_exit2;

Compliance Notation

(1021) C for I in INTEGER range 1 .. 10 $till [TILL X]
loop
A X [PRE1 (X, I), POST! (X, I)] (1022)
end loop;

Compliance Notation

(1022) T if FUNS.TEST(X)
then A X[PRE2 X, POST2 X]

exit;
end if;
Generated VCs
vcl022_1 VI, X :INTEGER
| PRE1 (X, I) N FUNSoTEST X = TRUE
e PRE2 X
vcl022_2 VI, X : INTEGER

| PRE1 (X, I) A FUNSoTEST X = FALSE
e POST! (X, I)

vcl022_3 VI, X, Xy: INTEGER
| PRE1 (X, I) N POST2 X
o TILL X

Notes

For clarity, the VCs from the first refinement step have been omitted.
The till predicate must not be omitted.

If the statement before the exit is omitted the first VC does not appear.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

72 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.3.12 Return Statement

Compliance Notation Script: Return Statement: Case 1

Compliance Notation
with FUNS,
function ve_returnl (A : INTEGER) return INTEGER
Z [PRE A, POST (A, VC_RETURN1(A))]
8
begin
return FUNS.COMPUTE(A);
end ve_returnl;

Generated VCs

vcVC_RETURN1_1
V A: INTEGER; VC_RETURNI1 : INTEGER — INTEGER
| PRE AN VC_RETURN1 A = FUNSoCOMPUTE A
e POST (A, VC_RETURNI1 A)

For a return from a procedure, i.e., without an expression, the equation defining the returned value
is omitted from the VC.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 73

Compliance Notation Script: Return Statement: Case 2

Compliance Notation

with FUNS;
function ve_return2 (A : INTEGER) return INTEGER
= [PRE A, POST (A, VC_RETURN2(A))]
18
begin
A [PRE1 A, false] (1121)
end vc_return2;

Compliance Notation

(1121) C return FUNS.COMPUTE(A);

Generated VCs

vcVC_RETURN2_1
V' A: INTEGER | PRE A e PRE1 A
vcVC_RETURN2_2
V A: INTEGER; VOC_RETURN?2 : INTEGER — INTEGER
| PRE A A false
e POST (A, VC_RETURNZ2 A)
vell21_ 1 V' A : INTEGER; VC_RETURN?2 : INTEGER — INTEGER
| PRE1 A N VC_RETURN2 A = FUNSoCOMPUTE A
e POST (A, VC_RETURNZ2 A)

Notes

The post-condition for the body of a function can be false since control never returns from the body
(instead, control returns to the caller of the function when the return statement is executed). By
using false we ensure that the second VC is a tautology.

For a return from a procedure, i.e., without an expression, the equation defining the returned value
is omitted from the last VC. A post-condition of false is also appropriate for a procedure if all paths
through the body of the procedure end in a return statement.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

74 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.3.13 Procedure Call Statement

Compliance Notation Script: Procedure Call Statement

Compliance Notation

procedure vc_procedure_ call

18
procedure PROC (A : in out INTEGER)
A [PRE1 A, PRE1 (Ay, 4)]
18 separate;

X : INTEGER;
begin
A X [PRE X, POST X | (1211)

end vc_procedure_ call;

Compliance Notation

(1211) © PROC(X);

Generated VCs

vcl211_1 V X : INTEGER | PRE X e PRE1 X

vcl211_2 V X, X9 : INTEGER | PRE X N PRE1 (Xyp, X) ¢ POST X

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

Compliance Tool

Language Description

USR504

3.3. VC Generation 75

3.3.14 Logical Constant Statement

Compliance Notation Script: Logical Constant Statement: Case 1

Compliance Notation

procedure vc_logical - constantl
18

X : INTEGER,
begin
A X [PRE X, POST X | (1311)

end vc_logical _constantl;

Compliance Notation

(1811) T $CON X_INIT : Ze
A X [X_INIT = X A PRE1 X, POSTI(X, X_INIT)] (1312)

Compliance Notation
(1812) C [PRE2 X, POST2(X, X_INIT)] (1313)

[PRES(X, X_INIT), POST3(X, X_INIT)] (1314)

b b

A
A

Generated VCs

vel311_1 V X : INTEGER; X_INIT : Z| PRE X N X_INIT = X e PREI X
vel311_2 V X : INTEGER | PRE X o X € Z
vcl311_3 V X, Xy : INTEGER; X_INIT : 7
| PRE Xy A X_INIT = Xy A POST1 (X, X_INIT)
e POST X
vel312_1 V X : INTEGER; X_INIT : 7.
| X_INIT = X A PRE1 X
e PRE2 X
vel312_2 V X, Xy : INTEGER; X_INIT : 7.

| (X_INIT = Xy A PRE1 X,) A POST2 (X, X_INIT)
e PRES (X, X_INIT)

vel312_3 V X, Xy : INTEGER; X_INIT : Z
| (X_INIT = Xy A PRE1 X,) A POST3 (X, X_INIT)
e POST! (X, X_INIT)

Notes

A refinement of the logical constant statement into a sequence of statements i s shown to illustrate
how the statement may be used to capture an initial value.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

76 Chapter 3. COMPLIANCE NOTATION SEMANTICS

Compliance Notation Script: Logical Constant Statement: Case 2

Compliance Notation

procedure vc_logical - constant?
18

X : INTEGER,
begin
A X [PRE X, POST X | (1321)

end vc_logical_constant?;

Compliance Notation

(1821) T $CON Y, Z : Ze
AX|[Y =X+X AZ=Y+Y A PRE1 X, POST1(X, Y, Z)] (1312)

Generated VCs

vel321_1 V X : INTEGER: Y, 7 - 7,

| PREXANY =X+XANZ=YxY

e PRE1 X
vcl321_2 V X : INTEGER | PRE X ¢ X + X € Z
vcl321_3 VX :INTEGER; Y :Z | PREXANY =X+ Xe Y xY cZ
vel321_4 V X, X, : INTEGER: Y, 7 - 7,

| PRE X,

ANY =X+ Xy

NZ=YxY

A POSTI (X, Y, Z)

e POST X

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation Vid

3.3.15 Subprogram Body

Compliance Notation Script: Subprogram Body: Case 1 (Procedure)

Compliance Notation

procedure ve_procedure_body(X : in out INTEGER)
A X[PRE X, POST X |
18
Y : INTEGER = 0;
begin
A X [PRE1 (X, Y), POST! (X, Y)]
end vc_procedure_body;

Generated VCs

vcVC_PROCEDURE_BODY _1
VX, Y :INTEGER | PRE X A'Y = 0 e PRE1 (X, Y)
vcVC_PROCEDURE_BODY _2
V X, Xy, Y : INTEGER
| (PRE Xy AY = 0) A POST1 (X, Y)
o POST X

Notes

This shows the VCs generated for a formal procedure body. The VCs assert that the sequence
of statements in the body (given in the example as a single specification statement) refines the
specification statement in the procedure specification. Equations derived from any initial values in
variable declarations in the subprogram are conjoined with the pre-condition, PRFE X.

If the body contains one or more program statements then the VCs generated are similar to those
generated if the statements were used to implement the specification statement in a refinement step
as described in sections 3.3.1 to 3.3.14 above.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

78 Chapter 3. COMPLIANCE NOTATION SEMANTICS

Compliance Notation Script: Subprogram Body: Case 2 (Function)

Compliance Notation

function ve_function_body(X : in INTEGER) return INTEGER
Z | PRE X, POST (X, VC_FUNCTION_BODY X)]
is
Y : INTEGER;
begin
A Y | PREI (X, Y), POSTI (X, Y) |
end vc_function_body;

Generated VCs

veVC_FUNCTION_BODY_1
V X, Y : INTEGER | PRE X o PRE1 (X, Y)
veVC_FUNCTION_BODY_2
V X, Y : INTEGER; VC_FUNCTION_BODY : INTEGER — INTEGER
| PRE X A POST1 (X, Y)
e POST (X, VC_FUNCTION_BODY X)

Notes

This shows the VCs generated for a formal function body. The VCs assert that the sequence of state-
ments in the body (given in the example as a single specification statement) refines the specification
statement in the function specification.

Here, and in further refinements of the sequence of statements, the function itself appears under a
universal quantifier, so that the translation of the function as a Z global variable is not available
inside the formal development of the function itself.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504

Language Description

3.3. VC Generation 79

3.3.16 Subprogram in Package Body

Compliance Notation Script: Subprogram in Package Body: Case 1

Compliance Notation

package vc_pack_bodyl
18

X : INTEGER,;

procedure P

A VC_PACK_BODY10oX|[PRE VC_PACK_BODY10X, POST VC_PACK_BODY10X]| ;
end ve_pack_bodyl;

Compliance Notation

package body vc_pack_bodyl

18
procedure P
A VC_PACK_BODY1oX|[PRE1 VC_PACK_BODY10X, POST!1 VC_PACK_BODY10X]
18
begin
A VC_PACK_BODY10X[PRE2 VC_PACK_BODY10X, POST2 VC_PACK_BODY10X]
end P;

end ve_pack_bodyl;

Generated VCs

vcVC_PACK_BODY1_1
VY VC_PACK_BODY10X : INTEGER
| PRE VC_PACK_BODYl10X
e PRE! VC_PACK_BODY10X
vcVC_PACK_BODY1_2
V VC_PACK_BODY10X, VC_PACK_BODY10Xy : INTEGER
| PRE VC_PACK_BODY10Xy N POST1 VC_PACK_BODY10X
e POST VC_PACK_BODYl1loX

Notes

The subprogram body in this example cause 2 additional VCs to be generated that are not shown
here. See sections 3.3.15 for these VCs.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504

Language Description

80 Chapter 3. COMPLIANCE NOTATION SEMANTICS

Compliance Notation Script: Subprogram in Package Body: Case 2

Compliance Notation

package ve_pack_body2
18
Sauziliary A : N;
procedure P
A A APRE A, APOST A | ;

end vc_pack_body2;

Compliance Notation

package body vc_pack_body2
is
$using C : INTEGER; $implement A $by INV (A, C);
procedure P
A C | CPRE C, CPOST C]
is begin
A C [SPRE C, SPOST (] (1)
end P;
begin
A C[IPRE C, IPOST C] (2)
end vc_pack_body2;

Generated VCs

vcVC_PACK_BODY2_1
V C:INTEGER |3 A:Ne APRE A N INV (A, C) e CPRE C
vcVC_PACK_BODY2_2
Y C, Cyp : INTEGER
| (3A:Ne APRE A A INV (A, Cy)) A CPOST C
oV A() : N
e APRE Ay A INV (Ag, Cy)
= (3 A:Ne APOST A A INV (A, C))

Notes

This example shows a data refinement: the situation in which one or more auxiliary variables are
used in the package specification to model the state of the package. If the using clause is omitted,
then the invariant INV (A, C') does not appear in the VCs (which will typically not then be provable).

The subprogram body and the package initialisation in this example cause additional VCs to be
generated that are not shown here. See sections 3.3.15 and 3.3.18 for these VCs.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.3. VC Generation 81

Compliance Notation Script: Subprogram in Package Body: Case 3

Compliance Notation

package vc_pack_body3
18

Sauziliary A : N;

procedure Q(X : in out INTEGER)

A X 5 AJAPRE (A, X), APOST(A, X, Xy)] ;
end vc_pack_body3;

Compliance Notation

package body vc_pack_body3
is
$using C : INTEGER; $implement A $by INV (A, C);
procedure Q(X : in out INTEGER)
A X, C [CPRE C, CPOST(C, X, Xy)]
is begin
A X, C [SPRE C, SPOST(C, X, Xy)] (1)
end Q;
begin
A C[IPRE C, IPOST C] (2)
end vc_pack_body3;

Generated VCs

vcVC_PACK_BODY3_1
Y C, X : INTEGER
|3 A:Ne APRE (A, X) A INV (4, C)
e CPRE C
vcVC_PACK_BODY3_2
V C, Cy, X, Xy : INTEGER
| (3 A:Ne APRE (A, Xg) A INV (A, Cy))
A CPOST (C, X, X,)

eV Ay : N
e APRE (Ay, X9) N INV (Ay, Cyp)
= (3A4:N

o (APOST (A, X, X9) AN A = Ay) A INV (4, C))

Notes

This case shows a data refinement in which a procedure specification does not refer to the auxiliary
variables in its frame. In this case, equations requiring that the procedure does not change the
auxiliary variable are introduced.

The subprogram body and the package initialisation in this example cause additional VCs to be
generated that are not shown here. See sections 3.3.15 and 3.3.18 for these VCs.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

82 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.3.17 Subunit

Compliance Notation Script: Subunit

Compliance Notation

procedure vc_ subunit
18
X : INTEGER,;
procedure P
A X[PRE X, POST X |
1S separate;
begin
null;
end vc_subunit;

Compliance Notation

separate (ve_subunit)
procedure P
A X[PRE1 X, POST1 X |
18
begin
A X[PRE2 X, POST2 X]
end P;

Generated VCs

vceVC_SUBUNIToP_1

V X : INTEGER | PRE X e PRE1 X

vcVC_SUBUNIToP_2

VY X, X9 : INTEGER | PRE Xy N POST1 X e POST X

vcVC_SUBUNIToP_3

V X : INTEGER | PRE1 X e PRE2 X

vcVC_SUBUNIToP_4

VY X, X9 : INTEGER | PRE1 Xy N POST2 X e POSTI X

Notes

The ProofPower-ML command required to introduce the new script to contain the subunit has been
suppressed for clarity. The first two VCs assert that the subunit specification statement refines the
specification statement in the stub. The second two VCs arise from the subprogram body as in

section 3.3.15.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

Compliance Tool
— USR504
Language Description

3.3. VC Generation 83

3.3.18 Package Initialisation

Compliance Notation Script: Package Initialisation

Compliance Notation
package package_initialisation
18

Sauziliary A : N;

procedure Q(X : in out INTEGER)

A X 5 A[APRE (A, X), APOST(A, X, Xy)] ;
end package_initialisation;

Compliance Notation

package body package_initialisation
is
$using C : INTEGER; $implement A $by INV (A, C);
procedure Q(X : in out INTEGER)
A X, C [CPRE C, CPOST(C, X, Xy)]
is begin
A X, C [SPRE C, SPOST(C, X, Xy)] (1)
end Q;
begin
A C[IPRE C, IPOST C] (2)

end package_initialisation;

Generated VCs

vcPACKAGE_INITIALISATION_3
VY C : INTEGER e IPRE C
vcPACKAGE_INITIALISATION_4
Y C : INTEGER | true A IPOST C « 3 A: N e INV (4, C)

Notes

The ProofPower-ML command required to introduce the new script to contain the subunit has been
suppressed for clarity. The first 4 VCs generated by this example do not relate to the package
initialisation and may be seen in cases 2 and 3 in section 3.3.16 above.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

84 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.3.19 Range in Type Definition

Compliance Notation Script: Range in Type Definition

Compliance Notation

procedure range_type

is

type T3 is (ONE, TWO, THREE);

subtype SUB is T3 range ONE .. T3'SUCC(ONE);
begin

null;

end range_type;

Generated VCs

vcSUB_1 SUB # @

Notes

Here, the heuristics used in the attempt to prove that the type SUB is non-empty did not succeed
(because of the use of the successor attribute) and a VC has been generated. In normal use, the
heuristics typically succeed in evaluating the bounds of the range and such a VC is not generated.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

3.4. Domain Conditions 85

3.4 Domain Conditions

The Z translation of an Ada expression as described in section 3.1 may involve applications of partial
functions. For example, the expression 1 / X, is translated into 1 intdiv X, which is an application of
the partial function _intdiv_. Typically, application of a partial function to a value outside its domain
would correspond to a situation in which execution of the expression would cause an exception to
be raised. For example, ALRM requires execution of the expression 1 / X to cause the exception
NUMERIC_ERROR to be raised if X is equal to zero.

The Compliance Tool has an option to generate domain conditions derived from the Ada expressions
in the program. These appear as additional hypotheses in the VCs. For example, the domain con-
dition derived from the expression 1 / X would be the hypothesis X # 0. These domain conditions
satisfy the following soundness condition: if A is a domain condition, then any assignment of values
to variables which makes h false would cause the code from which h has been derived to raise an
exception.

Domain conditions are intended to enable the proof of VCs that would be unprovable without them.
Domain conditions are not generated for operations such as integer addition which may raise an
exception but which are represented in Z by total functions.

ALRM does not require real arithmetic operations to detect error conditions and raise exceptions
in erroneous cases. The compiler-dependent value of the attribute PPMACHINE_OVERFLOWS
indicates whether or not arithmetic on the real type P will cause exceptions to be raised for errors
such as division by 0. If generation of domain conditions for real arithmetic is enabled, the VCs
produced are sound subject to the proviso that this attribute is true for all real types used in the
program.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

86 Chapter 3. COMPLIANCE NOTATION SEMANTICS

3.5 Program Structure

The 7Z paragraphs in a Z document produced by processing a Compliance Notation script are put
in ProofPower theories so as to manage the namespace in a way which represents the Ada program
structure. For this to work correctly, the following rules are imposed: () a script may contain at most
one compilation unit, and, (b), a script delimits the scope of all the k-slots tags and specification
statement tags it contains, i.e., the refinement, replacement, or arbitrary replacement step that
expands a tag must be given in the same script as the k-slot or specification statement that introduced
the tag.

A 7 theory, referred to as the script theory is created for each compilation unit. The script theory
is to be named according to conventions based on the name and type of the compilation unit in
the script as shown in table 3.1. (The name is given as a parameter to the function new_script or
new_script! called by convention at the beginning of each script, see Compliance Tool — User Guide

[8])-

The script theory holds the Z paragraphs arising from the declarative part of the compilation unit.
For each subprogram body, subprogram stub or block statement a theory is generated to hold the Z
paragraphs associated with the declarative part of that subprogram body or block. A subprogram
theory has as its parent a context theory which holds a snapshot of the state of the theory for the
enclosing declarative part. A block theory has as its parent the theory associated with the enclosing
declarative part. Any VCs arising from a declarative part go in the corresponding theory. Any VCs
arising from the formal development of a sequence of statements go in the theory associated with
the immediately enclosing declarative part.

A command open_scope is provided to navigate into the appropriate theory for a given declarative
region. See Compliance Tool — User Guide [8] for more information.

The scheme for naming the theories is shown in figure 3.1. Note that the expanded names of blocks
will include the names of any enclosing loop and block statements and these may be omitted in Ada.
Omitted loop or block names are treated as empty strings and may give rise to clashes. The $block
keyword may be used, if necessary, to provide a Compliance Notation name for an anonymous loop
or block (see sections 2.5.5 and 2.5.6 for details).

Compilation Example Example
Unit/Ttem Type Unit Name Script Name
Package Specification utils UTILS spec
Package Body utils UTILS body
Procedure Body update UPDATE’proc
utils.write UTILSoWRITE proc
Function Body head HEAD func
utils.READ UTILSoREAD func
Context Theory utils.sort UTILSoSORT context
Block Statement utils.sort.local UTILSoSORToLOCALblock

Table 3.1: Use of Theories

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

Chapter 4 87

COMPLIANCE NOTATION TOOLKIT

The Z paragraphs below support the translation of expressions and declaration into Z as described
in chapter 3.

Essentially these paragraphs define the representations of the supported predefined types and their
supported attributes. They also give representations for those predefined operators of Ada which are
not directly supported by the Z library and provide for the translation of multi-dimensional array
aggregates into Z.

Z

function 0 char_lit _

VA

function 0 string_lit _

Z

function 0 _ and _, _ or _, _ xor _
VA
function 0 - and_then _, _ or_else _
VA
function 0 _ array_and _, _ array_or _, _ array_Xor _
VA
function 0 - mod_and _, - mod_or _, - mod_xor _
VA
function 10 _ mem _, - notmem _, _ eq _, - noteq _
VA
function 20 _ less _, _ less_eq _, _ greater _, _ greater_eq _
VA
function 20 _ real_less _, _ real_less_eq _, _ real _greater _, _ real _greater_eq _
VA
function 20 _ array_less _, _ array_less_eq _,
_ array_greater _, _ array_greater_eq -

Z

function 30 _ &o -, - &1 -, - &2 -

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

88 Chapter 4. COMPLIANCE NOTATION TOOLKIT

VA

function 40 _ intdiv _, _ rem _, _ intmod _

Z

function 50 _ xx _, not _, array_not _, mod_not _

FALSE

I
S

TRUE = ¢

Z

BOOLEAN = FALSE..TRUE

Z

BOOLEANvVFIRST = FALSE

Z

BOOLEANvVLAST = TRUE

Z

BOOLEANvSUCC = (BOOLEAN \ {BOOLEANvLASTY}) < succ

z

BOOLEANVPRED = BOOLEANvSUCC™

Z

BOOLEANvVPOS = id BOOLEAN

Z

BOOLEANvVVAL = BOOLEANvPOS™

Z
not _ : BOOLEAN — BOOLFEAN;
~and _, _or _, - xor _ : (BOOLEAN x BOOLEAN) — BOOLEAN

V b : BOOLEAN e
not FALSE = TRUE A not TRUE = FALSE A
(b and FALSE = FALSE A b and TRUE = b) A
(b or FALSE = b A b or TRUE = TRUE) A
(b zor FALSE = b A b xor TRUE = not b)

Z

_ and_then _, _ or_else _: (BOOLEAN x BOOLFEAN) — BOOLEAN

(- and_then _) = (= and _) A (= or_else _) = (- or _)

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

89

VA

=[X]

_mem _, - notmem _: (X x P X) - BOOLEAN;
_eq ., - noteq _ : (X x X) - BOOLEAN

Vo, y: X;8:P X;b: BOOLEAN e
(b=2mem S & (b =TRUE & z € 5)) A
(b =z notmem S < (b= TRUE < z ¢ S)) A
(b=zeqy< (b=TRUE &z =y)) A
(b =z noteq y < (b = TRUE & z # y))

Z

—[X]
. 1
array_not _ : (X - BOOLFAN) — (X - BOOLFAN);
_ array_and _,
_ array_or _,

Va,b: X + BOOLEAN e
array_not a = (Ai : dom ae not (a i)) A
a array-and b = (Xi : dom a N dom be a i and b i) A
a array-or b = (Ai : dom a N dom be a i or b i) A

a array-zor b = (Ai : dom a N dom be a i zor b i)

_array_xor _ : ((X -+ BOOLFAN) x (X -+ BOOLEAN)) — (X - BOOLEAN)

Z
_less _, _ less_eq _, _ greater _,
_ greater_eq _ : (Z x Z) — BOOLEAN

Va,y:7Z;b: BOOLEAN e
(b==xless y < (b= TRUE & z < y)) A
(b==xless.eq y & (b= TRUE & z < y)) A
(b = z greater y & (b = TRUE & z > y)) A
(b = x greater_eq y < (b = TRUE & z > y))

Z
_real_less _, _ real_less_eq _, - real_greater _,
- real_greater_eq - : (R x R) — BOOLEAN

Va,y:R;b: BOOLEAN e
(b =z real_less y < (b = TRUE & z <p y)) A
(b == real_less_eq y < (b = TRUE & x <p y)) A
(b = z real_greater y < (b = TRUE & © >R y)) A
(b = x real_greater_eq y < (b = TRUE < © >R y))

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

Compliance Tool

Language Description

USR504

90 Chapter 4. COMPLIANCE NOTATION TOOLKIT

_ array_less _,
_ array_less_eq _,

_ array._greater _,
_ array_greater_eq _ : ((Z -~ Z) x (Z - Z)) — BOOLEAN

Va, b:Z +~7Z e
(a array-less b = TRUE &
(Fi, j, k : Ze
{t, 57} CdombANi—1&dombANi+k—1¢doma
VMt:i..j—1et+kedomaAbdbt=a(t+k)
j+kedoma=a(j+Fk) <bj)A
array_less_eq b = a array_less b or a eq b A
array_greater b = b array_less a A

22 > >

array_greater_eq b = b array_less_eq a

VA

_intdiv _, _ rem _, _ intmod _ : (Z x Z \ {0}) — Z

Ve, y:Z|y#0e

(zxy > 0 = z intdiv y = abs z div abs y)

(zxy < 0 = z intdiv y = ~(abs x div abs y))
zremy =z — (x intdiv y) *x y

(zxy > 0V zremy=0= xintmod y =x rem y)
(zxy < O Nz rem y # 0 = x intmod y = x rem y + y)

> > > >

_wk - (L x N) = Z

\
|
‘Vm:Z;y:Nox**OzlAx**(y+1):m*x**y

Z

integer_to_real: Z — R

YV i : Z e integer_to_real 1 = real i

Z

real_to_integer : R — Z

Vz:Re~g 0.5 <gx —pg real (real_to_integer z) <gr 0.5

Compliance Tool

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

91

_mod_and _, _ mod_or _, _ mod_xor _ : N x N - N

Vi : Ne 1 mod_and 0 = 0;
Vi:N;j:Nje

i mod_and j
Vi : Ne ¢ mod_or 0 = 1;
Vi:N;j:Nje

Vi : Ne ¢ mod_zor 0 = i;

Vi:N;j:Nje

Z
\
|

Vi, modulus : Ze mod_not(i, modulus) = modulus — (i + 1)

z

‘ INTEGER : P Z

zZ
‘ INTEGERVFIRST, INTEGERVLAST : Z ;
‘ INTEGERvSUCC, INTEGERVPRED,

‘ INTEGERvVPOS, INTEGERVVAL : Z + Z

Z

NATURAL = 0 .. INTEGERvLAST

Z

NATURALvVFIRST = 0

VA

NATURALVLAST = INTEGERvLAST

Z

NATURALvSUCC = INTEGERvSUCC

Z

NATURALvVPRED = INTEGERvPRED

Z

NATURALvVPOS = INTEGERvPOS

Z

NATURALvVVAL = INTEGERvVAL

Z

POSITIVE = [.. INTEGERvLAST

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

2x(i div 2 mod_and j div 2) + (i mod 2)x(j mod 2);

i mod_or j = 2x(i div 2 mod_or j div 2) + maz{i mod 2, j mod 2};

i mod_zor j = 2x%(i div 2 mod_zor j div 2) + (i + j) mod 2

Compliance Tool

Language Description

USR504

92 Chapter 4. COMPLIANCE NOTATION TOOLKIT

VA

POSITIVEVFIRST = [

Z

POSITIVEVLAST = INTEGERvLAST

Z

POSITIVEvSUCC = INTEGERvSUCC

Z

POSITIVEvVPRED = INTEGERvPRED

Z

POSITIVEvVPOS = INTEGERvPOS

Z

POSITIVEvVVAL = INTEGERvVAL

Z

‘ LONG_INTEGER : P Z

z

‘ LONG_INTEGERVFIRST, LONG_INTEGERVLAST : Z ;
‘ LONG_INTEGERvSUCC, LONG_INTEGERVPRED,

‘ LONG_INTEGERvVPOS, LONG_INTEGERvVVAL : Z +~ Z

Z

‘ SHORT_INTEGER : P Z

Z

| SHORT_INTEGERVFIRST, SHORT_INTEGERVLAST : Z ;
| SHORT_INTEGERvSUCC, SHORT_INTEGERvVPRED,

| SHORT_INTEGERvPOS, SHORT_INTEGERVVAL : Z - Z

z

‘ universal_discrete : PZ

Z

‘ universal_discretevFIRST, universal_discretevLAST : Z ;
‘ universal_discretevSUCC, universal_discretevPRED,

‘ universal_discretevPOS, universal_discretevVAL : Z + Z

Z

‘ FLOAT : PR

Z
| FLOATVFIRST, FLOATVLAST : R ;
| FLOATVDIGITS : Z

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

93

VA

‘ SHORT _FLOAT : P R

Z
\ SHORT_FLOATVFIRST, SHORT_FLOATvVLAST : R ;
\ SHORT_FLOATvVDIGITS : Z

Z

‘ LONG_FLOAT : P R

Z

‘ LONG_FLOATVFIRST, LONG_FLOATVLAST : R ;
‘ LONG_FLOATvDIGITS : Z

Z

CHARACTERVFIRST = ¢

CHARACTERVLAST : Z

Z
\
|

CHARACTERvLAST > 127

Z

CHARACTER = CHARACTERvFIRST .. CHARACTERvLAST

Z

CHARACTERvSUCC = (CHARACTER \ {CHARACTERvLASTY}) < succ

Z

CHARACTERvVPRED = CHARACTERvSUCC™

VA

CHARACTERVPOS =

id CHARACTER

Z

CHARACTERVVAL = CHARACTERvPOS™

Z

STRING : P (POSITIVE - CHARACTER)
Z_CHAR = seq S
Z

Z_STRING = seq S

dest_char : S — Z

Z
|
‘ Veh 2 Se dest_char ch = "NZ (RepChar ch)’

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

Compliance Tool

Language Description

USR504

94 Chapter 4. COMPLIANCE NOTATION TOOLKIT

VA

‘ string_lit _ : Z_STRING — seq CHARACTER

Vstr : Z_STRINGe string_lit str = dest_char o str

Z

‘ char_ lit = : Z_CHAR — CHARACTER

(char_lit _) = head o (string_lit)

Z

[Informal_Function]

Z

—=[X]
&o-:(Z + X)x (Z+ X)— (Z + X);
&1 (Z+ X) x X - (Z - X);
Koo X X (Z - X)— (Z + X)

Ya, b:Z - X;m,n:7Z

| dom a — m € mazx A dom b +— n € min e
a&pb=a@®{i:dombei+m-+1—n—bi};

Va:7Z + Xeakyd=a;

Va:Z -+ X;z: Xeak&; x=ab&y (z)

Va:Z+ X;z: Xex &s a={(z)&p a

Z
slide: (X » YY) xPX - (X +» V)

Vi:X +» Y;r:PX | dom f=reslide(f, r) =f

Informal Z
—([X1, X2, X]
array_agg? : (X1 — X2 — X) - (X1 x X2 — X)

Vf: X1 — X2 — X;z1 : XI; 22 : X2e
array_agg2 f (z1, z2) = f x1 22

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

95

Informal Z
—[X1,X2, X3, X]
array_aggs : (X1 — X2 - X3 — X) — (X1 x X2 x X3 — X)

Vf: Xl - X2 - X8 — X;xl : X1; 22 : X2; 283 : X3e
array_aggs [(x1, 22, z3) = f 1 22 23

Informal Z
—[X1,X2,X3, X/, X]
array_agg4 : (X1 — X2 - X3 - X4 — X) = (X1 x X2 x X3 x X4 — X)

Vf: Xl - X2 - X8 — X4 — X;al : X1;22: X2, 28 : X3, 24 : Xje
array_aggs [(x1, 22, 3, x4) = f x1 22 z3 z/

and so on up to array-agg20.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

96 Chapter 4. COMPLIANCE NOTATION TOOLKIT

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

REFERENCES

[1] John Barnes. High Integrity Ada — The Spark Approach. Addison-Wesley, 1997.

[2] ANSI/MIL-STD-1815A-1983. The Annotated Ada Reference Manual. Karl A. Nyberg, Ada
Joint Program Office, 1983.

[3] DRA/CIS/CSE3/TR/94/27. Specification of the compliance notation for SPARK and Z. (3
Volumes). C.M. O’Halloran, C.T. Sennett, and A. Smith, Defence Research Agency, Malvern.

[4] DRA/CIS(SE2)/PROJ/SWI/TR/1/1.1. A commentary on the specification of the compliance
notation for SPARK and Z. C.M. O’Halloran, C.T. Sennett, and A. Smith, Defence Research
Agency, Malvern, 1st November 1995.

[5] DS/FMU/IED/USR005. ProofPower Description Manual. Lemma 1 Ltd.,

http://www.lemma-one. com.

[6] DS/FMU/IED/USRO014. ProofPower Software and Services. Lemma 1 Ltd.,
http://www.lemma-one.com.

[7] ISO/IEC 8652:1995. Ada Reference Manual. International Standards Organisation, 1995.

[8] ISS/HAT/DAZ/USR501. Compliance Tool — User Guide. Lemma 1 Ltd.,
http://www.lemma-one.com.

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

98 Chapter 4. COMPLIANCE NOTATION TOOLKIT

Compliance Tool
© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - — USR504
Language Description

INDEX

B L e e e e e e e e 88
HK e e e e e e e 90
actual_parameter_part, 29
address_clause i 37
AGATEGATE . . v 20
alignment_clause 36
and_then 87
and_then 88
2 87
£ 88
arbitrary_replacement_step 38
ARR2Z .o 39
ArTAY_GNAd .. 87
Array_and ... 89
ATTAY_GTeALer_€q . . . oottt 87
ATTAY_Grealer_eq, 90
ATTAY_GTeater i 87
ATTAY_GTealer oo i 90
array_less_eqo 87
Array-less_eq 90
Array-_less 87
ATTQY_LESS . o o oot 90
ATTAY-TOL oot e 88
ATTAY-NOL ..ot 89
ATTAY_OT « ot ittt e et 87
ATTAY_OT © oot it et e 89
array_type_definition 17
ATTQY-TOT oo oottt e e 87
ATTAY_TOT oot e ittt e 89
ARR .o 39
assertion_statement 25
assignment_statement 25
attribute 20
auziliary_declaration 30
AUTIAry_ eTPression 21
auziliary variable o ... 30
basic_declaration 14
basic_declarative_item 18
block_mame 26
block_statement 26
body_stub 36
body 18
BOOLEANvFIRST ... 88
BOOLEANvLAST ... 88
BOOLEANvPOS ... i 88
BOOLEANvPRED 88
BOOLEANvSUCC 88
BOOLEANvVAL ... o i 88
BOOLEAN i 88

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

case_statement_alternative

case_statement
CHARACTERvFIRST

CHARACTERvLAST

CHARACTERvPOS

CHARACTERvPRED
CHARACTERvSUCC
CHARACTERvVAL...................

CHARACTER

COMMENEATY « « o v oo v i e e
compilation_unit

compilation

compliance_notation_application
compliance_notation_script.............
component_associations
component_clause
component_declaration.................

component_list
compound _statement
condition
constant_declaration

constrained _array_definition............
CONSITaInto

CONST

context_clause

data refinement

DAY
declarative_part

deferred _constant _declaration

defining_program_unit_name

designator

dest_char
discrete_range
discriminant_constraint
discriminant_part
discriminant_specification
enumeration_representation_clause
enumeration_type_definition

factor

FALSE
fixed_accuracy_definition.

fixed_point_constraint

Compliance Tool

Language Description

USR504

Chapter 4. COMPLIANCE NOTATION TOOLKIT

100

floating - accuracy_definition 16
floating_point_constraint 16
FLOATuDIGITS ..., 92
FLOATUFIRST ... i 92
FLOATuLAST ... i 92
FLOAT ... e 92
formal_parameter 29
formal_part 27
formal_subprogram_specification 27
frame ..o 24
FRI ..o 39
Sfull_type_declaration 14
function_call 29
function_specification_statement 28
global_dependencies 28
goto_statement 27
GUAtET_CQ . . . v vttt 87
GUeAteT_€q oo 89
GTEALET .ot 87
GTEAtET ..t 89
identifier_list 14
if _statement 25
indexred_componentc..c.. ... 19
index_constraint i 17
index_subtype_definition 17
INDEX ..o 39
Informal_Function 94
informal - subprogram_ specification 27
INEATY oo 88
LIV .« o 90
INTEGERvFIRST, 91
INTEGERvLAST i 91
INTEGERvPOS i 91
INTEGERvPRED oo, 91
INTEGERvSUCC ..., 91
INTEGERVVAL i, 91
integer_to_real 90
integer_type_definition 16
INTEGER 91
IMEMOA .« oo 88
MEMOA . oo 90
TVATEANE © o oottt e e e e e 31
iteration_scheme, 26
kslot_statement 25
koslot ..o 19
label. 25
later_declarative_item 18
length_clause i i 36
l6SS_€Q o oo 87
leSS_€q o oo 89
LSS v 87
1688 vt e 89
lezical_elements 38
Library_unit_body 35
bLbrary_unit 35
logical _constant_declaration 24
LONG_FLOATvDIGITS 93
LONG_FLOATvFIRST 93

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

LONG_FLOATvLAST

LONG_FLOAT
LONG_INTEGERvFIRST
LONG_INTEGERvLAST
LONG_INTEGERvPOS

LONG_INTEGERvPRED

LONG_INTEGERvSUCC

LONG_INTEGERvVAL

LONG_INTEGER

loop_name

loop_parameter_specification............

loop_statement
MAX

modular_type_definition
mod_and

MOA_MNOT _ .o

NATURALvPOS

NATURALvPRED
NATURALvSUCC
NATURALvVAL
NATURAL,

MOTEG « oo oo

notmem
notmem
not
null_statement
number_declaration

object_declaration

object_renaming

operator_symbol_renaming

or_else
or_else

OT e e e e e
package_body

package_declaration

PAckage_Tenaming

package_specification

parameter_specification
parent_unit_name.

positional_association

positional_parameter

POSITIVEvFIRST
POSITIVEvLAST
POSITIVEvPOS

Compliance Tool

Language Description

....... 87
....... 91

USR504

101

POSITIVEVPRED 0. i, 92
POSITIVEuSUCC ... 92
POSITIVEOVAL 92
POSITIVE ... e 91
POSE_CONATEION . . oo oot 24
DIEfIT . o et e 19
Pre_CONAditiono v 24
PTEMATY « o e e e e e e e e e e et e 21
Privale_part 30
private_type_declaration 32
procedure_call_statement 29
procedure_specification_statement 28
Proper_body 18
qualified _expressionc. .. 23
TANGE_CONSITAINT « . o oottt 15
TAMGE . o oottt 15
real_greater_eq i 87
real_greater_eq i 89
real_greater 87
real_greater 89
real_less_eq 87
real_less_eq 89
real_less 87
real_less ... 89
real_to_integer 90
real_type_definition 16
record_representation_clause 36
record_type_definition 18
REC .. 39
REC .. 40
references_clause 35
Tefinement _Stepo 38
Telation 21
TEML ot ettt e 88
TEM ©oe et ettt 90
renaming_declaration 34
replacement_step......... ..., 38
representation_clause 36
return_statement 27
SAT 39
SECONAATY_UNTL .« oo vt 35
selected_component, 19
sequence_of _statements 23
SHORT_FLOATvDIGITS 93
SHORT_FLOATvFIRST 93
SHORT_FLOATvLAST 93
SHORT_FLOAT 93
SHORT_INTEGERvFIRST 92
SHORT_INTEGERvLAST 92
SHORT_INTEGERvPOS 92
SHORT_INTEGERvPRED 92
SHORT_INTEGERvSUCC 92
SHORT_INTEGERvVAL 92
SHORT_INTEGER 92
signed_integer_type_definition 16
simple_declaration 30
SIMPle_€TPTESSTON « v oot 21
simple_statement 24

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

slide ..o 94
specification_statement 24
statement 23
String Uit ... 87
string Uit ... 94
STRINGo 93
subprogram_body o .. 29
subprogram_declaration 27
subprogram_renaming 34
subprogram_specification, 27
subtype_declaration, 15
subtype_indication 15
Subunit ... 36
SUMXY .o 39
SUN 39
Tag ... 19
TETM o 21
THU . oo e 39
tll_predicatec. i, 26
TRUE . ..o e 88
TUE . o 39
LYPE_CONVETSTOM .« o v oottt e 22
type_declaration 14
type_definition 14
type-mark 15
type_representation_clause 36
unconstrained_array_definition 17
universal_discretevFIRST 92
universal_discretevLAST 92
universal_discretevPOS 92
universal_discretevPRED 92
universal_discretevSUCC 92
universal_discreteoVAL 92
untversal_discreteo oo i i 92
USE_ClAUSE . oot 33
use_package_clause 33
use_type_clause 33
using_declaration 30
variable_declaration 14
vistble_part 30
web_clause 37
WED .. 39
With_clause 35
TOT oot e e 87
TOT oottt e 88
XPLUSY o 39
Z_CHAR ... 93
z_declaration 24
Z_ELPTESSTOTL « oot ettt e et e e e e e e 21
ZoAdentifier ... 24
ZoAdentifier ... 31
Zopredicate 24
ZoPTEdiCate . ..o 31
Z _STRING i 93
) 87
) 94
& 87
& 94
Compliance Tool
— USR504

Language Description

102 Chapter 4. COMPLIANCE NOTATION TOOLKIT

& n e 87
&g 94

MOd_and _ 91
L MOA_0T — 91
CMOA_TOT _ 91

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 -

Compliance Tool

Language Description

USR504

