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1 INTRODUCTION

The CLI technical report, [2], uses the finite exponent 2 version of Ramsey’s Theorem as a bench-
mark to compare the NQTHM (Boyer-Moore) and Nuprl theorem provers. In order to compare ICL’s
ProofPower-HOL theorem prover with NQTHM and Nuprl, this theorem has been formulated and
proved using ProofPower-HOL. As [2] shows of NQTHM and Nuprl, the comparison indicates that
ProofPower-HOL has its own particular advantages and disadvantages arising from the philosophies
behind its design.

2 THE HOL LOGIC

Like NQTHM and Nuprl, if not more so, the ProofPower-HOL prover uses a well-defined and well-
understood logic, namely a polymorphic variant of Church’s simple type theory originally due to
M.J.C. Gordon.

The logic is classical and may be viewed as polymorphically typed formulation of a set theory with
the axiom of choice (but not the axiom of replacement). The language is at heart just the simply-
typed λ-calculus with a polymorphic type system similar in spirit to that of Standard ML. On top of
this core language, derived syntactic constructions, such as let-expressions and set comprehensions,
are defined giving a surface syntax which is very like that of conventional formal mathematics.

The logic provides conservative extension mechanisms for introducing new types and constants.
These mechanisms take as parameters theorems which justify the conservativeness of the extension.
For example, on the basis of a theorem of the form ` ∃x • p[x/x] we may conservatively introduce
a new constant c satisfying the defining axiom ` p[c/x ]. The HOL theorem prover carefully dis-
tinguishes the conservative defining axioms from other axioms in the database of theories which it
manages. The axiomatic basis for the theory described in the present document comprises only the
agreed axioms for HOL as defined in [3] (which is based on the formulation of HOL used in the
Cambridge HOL system described in [4]).

The logic supports the polymorphism in that it allows polymorphic theorems to be instantiated to
particular types as required. For example, the polymorphic theorem:

` ∀ x :′a• Size {x} = 1

giving the size of a singleton set may be used as a rewrite rule to prove any of the following theorems:

` Size {1} = 1
` Size {(1 ,2 )} = 1
` Size {Cons 1 []} = 1

in which the type variable ′a has been instantiated to natural numbers, pairs of natural numbers and
lists of natural numbers respectively.
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3 THE THEOREM PROVER

The ProofPower-HOL theorem prover actually provides support both for developing specifications
in HOL as well as carrying out proofs. The definitions in terms of which we formulate Ramsey’s
theorem constitute such a specification and are given in section 4 below.

The system is normally used to develop specifications or proofs interactively, an off-the-shelf window-
ing system and editor supplying the user-interface. The command language (or metalanguage) with
which the user controls the system is an extension of the strongly-typed functional programming
language, Standard ML. Like Nuprl, the system is constructed following the LCF paradigm, [1],
which affords a good degree of assurance in the integrity of the implementation of the logic. The ML
type discipline is used to guarantee that all inference is ultimately channelled through one of a small
number of primitive inference rules implemented as ML functions computing values of an abstract
datatype, THM , of theorems.

The extensions to ML essentially comprise a macro-processing front-end which allow convenient
entry of object language constructs such as specification paragraphs or terms needed as parameters
to proof rules.

While the primitive inference system is defined solely using forward inference rules, it is possible
to construct powerful proof procedures which work either forwards or backwards. Most proof de-
velopment work is carried out using the so-called subgoal package which provides an interactive
environment for developing proofs in a goal-oriented (i.e. backwards) style. At the detailed level,
both forwards and backwards steps may be taken within the subgoal package.

4 THE SPECIFICATION

In order to state the Ramsey theorem, the graph-theoretic notions involved in its statement are
required. ProofPower-HOL comes supplied with a library of theories1including a theory of relations
viewed as sets of pairs. There is also a theory of finiteness, which has the theory of relations as an
ancestor.The theory in which we work is therefore set up as a child of the theory of finiteness using
the following metalanguage commands:

SML

open theory"fin thms";
new theory"ramsey";

First we define the notion of a symmetric graph. The following specification paragraph introduces a
new constant symg which is the (polymorphic) set of all pairs (V, E) in which V is a set and E is a
binary relation in V . Note that the set type constructor P is written as a post-fix operator and that
the polymorphic type ′a P comprises the set of all subsets of ′a finite or infinite. ↔ is defined in the

1In ProofPower a “theory”, is analogous to a module in programming language terms. A theory comprises sets of
axioms, definitions, and theorems, together with additional information, e.g., the fixity of operators. As with the theory
developed in this document, the set of axioms is typically empty, indicating that the theory is a conservative extension
of its ancestors. The ProofPower system manages a database of theories organised as a directed acyclic graph.
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theory of relations as an infix operator which assigns to two sets, A and B say, the set A ↔ B of
binary relations between A and B.

HOL Constant

symg : (′a P × (′a ↔ ′a))P

∀ (V ,E )• (V ,E ) ∈ symg

⇔ E ∈ (V↔V ) ∧ ∀ x y• (x ,y) ∈ E ⇔ (y ,x ) ∈ E

Now we define an infix operator clique of such that C clique of (V , E ) is true iff. C is a clique in
the graph (V,E). The term (C × C )\(Id C ) is the set-theoretic difference of the complete relation
(C × C ) on C and the identity relation Id C on C. Thus the second conjunct asserts that any
pair of distinct elements of C are related by E.

SML

declare infix (300 , "clique of ");

HOL Constant

$clique of : ′a P → (′a P × (′a ↔ ′a)) → BOOL

∀ C (V ,E )• C clique of (V ,E )

⇔ C ⊆ V ∧ (C × C )\(Id C ) ⊆ E

In a similar way we define an infix operator indep of such that C indep of (V , E ) is true iff. C is
an independent subset in the graph (V, E):

SML

declare infix (300 , "indep of ");

HOL Constant

$indep of : ′a P → (′a P × (′a ↔ ′a)) → BOOL

∀ C (V ,E )• C indep of (V ,E )

⇔ C ⊆ V ∧ (C × C ) ∩ E ⊆ Id C

That completes the specification. A listing of the theory introduced by this specification (together
with the theorems which have been proved about it) may be found in Appendix A. The listing is
incorporated using a simple interface between the ProofPower tool and the LATEX document prepa-
ration system.
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5 PROOF STRATEGY

Ramsey’s theorem, in the finite exponent 2 case we are interested in, is the following conjecture:

∀ a b • ∃n •
∀ (V ,E ) •
(V ,E ) ∈ symg ∧ V ∈ Finite ∧ #V ≥ n ⇒

(∃ C • C clique of (V ,E ) ∧ #C = a
∨ C indep of (V ,E ) ∧ #C = b)

That is to say, for any natural numbers, a and b there is an n such that any finite symmetric graph
with at least n vertices contains either a clique with a vertices or an independent set with b vertices.

An informal proof of this conjecture is given in [2], and the proof strategy we take is essentially
to follow that proof, with the slight difference that it turns out to be valid and easier to start the
induction at 0 rather than at 2. The proof consists of 13 lemmas of which one is a simple generality
about finite sets which was not available in the desired form in the theory of finite sets (which was
under development during the production of the present proof). 7 of the other lemmas are trivialities
about cliques and independent subsets etc. which are needed in several places in the proof. The
other 5 lemmas are essentially dedicated to reducing the complexity of the proof of the conjecture
by breaking it into manageable pieces. The theory listing in appendix A shows the 13 lemmas and
the Ramsey theorem itself.

In more detail, what was done was to analyse the inductive step in [2] to get an understanding of
the constructions it makes. The main content of the inductive step is captured in lemma 12. This is
itself broken down into an argument about the size of a set given as the union of three subsets one
of which is a singleton (lemma 11) and into the construction of two subgraphs one or other of which
either contains or can be extended by one element to contain the desired clique or independent set
(lemmas 9 and 10 justify the construction). Lemma 13 gives the base case of the induction.

6 THE PROOF

Space does not permit the inclusion of the full proof here. We just show the preamble and the proof
of the first lemma.

We prepare for the proof by assigning ML names to the specifications and setting the proof context2:
SML

val symg def = get specpsymgq;
val clique of def = get specp$clique of q;
val indep of def = get specp$indep of q;
set pc"hol";

2A proof context in ProofPower is a named collection of settings for global parameters which affect the operation
of many of the more commonly used proof procedures. It allows domain-specific information to be made available to
these proof procedures in a way which is uniform for the implementer and convenient for the user.
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We invoke the subgoal package to begin the proof of the first lemma as follows.

SML

set goal([], p
∀(V , E ); U •
(V , E ) ∈ symg ∧ U ⊆ V ⇒ (U , (U × U ) ∩ E ) ∈ symg

q);

We first rewrite with definitions to reduce an assertion about symmetric graphs into a set-theoretic
assertion:
SML

a(rewrite tac[symg def , × def , ↔ def ]);

This gives the following output:

ProofPower Output

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) p∀ (V , E ) U
• (E ∈ P {(v , w)|v ∈ V ∧ w ∈ V } ∧ (∀ x y• (x , y) ∈ E ⇔ (y , x ) ∈ E ))

∧ U ⊆ V
⇒ {(v , w)|v ∈ U ∧ w ∈ U } ∩ E ∈ P {(v , w)|v ∈ U ∧ w ∈ U }
∧ (∀ x y
• (x , y) ∈ {(v , w)|v ∈ U ∧ w ∈ U } ∩ E

⇔ (y , x ) ∈ {(v , w)|v ∈ U ∧ w ∈ U } ∩ E )q

We now attack this with a standard tactic for breaking down a goal using a proof context hol1 which
is good for proving set-theoretic results by element level reasoning.

SML

a(REPEAT (PC T "hol1" strip tac));

This gives the following output3 which indicates that we have 6 assumptions on the basis of which
we must prove (y , x ) ∈ E .

3In fact the output in this case contains a little more than what is shown. There are actually two subgoals which
turn out to be the same modulo renaming of variables. The subgoal package informs us of this, but only requires us to
prove one of the subgoals. This phenomenon is not very common but it is a useful labour-saver when it occurs.
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ProofPower Output

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 6 ∗) p∀ x• x ∈ E ⇒ x ∈ {(v , w)|v ∈ V ∧ w ∈ V }q
(∗ 5 ∗) p∀ x y• (x , y) ∈ E ⇔ (y , x ) ∈ Eq
(∗ 4 ∗) p∀ x• x ∈ U ⇒ x ∈ V q
(∗ 3 ∗) px ∈ U q
(∗ 2 ∗) py ∈ U q
(∗ 1 ∗) p(x , y) ∈ Eq

(∗ ?` ∗) p(y , x ) ∈ Eq

We now use a tactic which works by forward chaining using the assumptions to complete the proof:

SML

a(asm fc tac[]);

Resulting in the following output:

ProofPower Output

Tactic produced 0 subgoals:
Current and main goal achieved

We save the theorem in the theory for future reference as follows:

SML

val lemma1 = save pop thm"lemma1";

This results in the following output from the metalanguage compiler indicating that we have suc-
ceeded in computing a theorem and assigning it to the metalanguage variable lemma1.

ProofPower Output

val lemma1 = ` ∀(V , E ) U • (V , E ) ∈ symg ∧ U ⊆ V ⇒ (U , (U × U ) ∩ E ) ∈ symg : THM

In fact the above proof has been broken down into smaller steps than an experienced user of the
system would typically use. In particular the first two steps would commonly be entered on one line
using a tactic combinator to compose the tactics to avoid seeing the unstripped form of the rewritten
goal.

7 STATISTICS

The total specification and proof effort was about 10 hours. The first author prepared and debugged
the specification (by attempting various parts of the proof) in about an hour and the second author
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proved the result in about 9 hours, of which at least one was spent proving conjectures which turned
out to be irrelevant to the main proof.

The proof script contains 225 tactic applications and about 2,600 tokens. The replay time for the
script is 8.0 minutes4 and the script causes 47,489 primitive inference steps to be invoked.

We give the above token count for comparison with [2]. It is however felt that the simple time taken
to type the script in is not a big inhibitor. Also several parts of the script were rapidly generated
by cut-and-paste methods, since the symmetries in the problem mean that many proofs are rather
similar (e.g. the proof of lemma 10 took about 5 minutes to find once the proof of lemma 9 was
available).

4The timing was taken using a Sun SPARCStation 1+ with 12 megabytes of memory.
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A THE THEORY ramsey

A.1 Parents

fin thms

A.2 Constants

symg (′a SET × (′a × ′a) SET ) SET
$clique of ′a SET → ′a SET × (′a × ′a) SET → BOOL
$indep of ′a SET → ′a SET × (′a × ′a) SET → BOOL

A.3 Fixity

Right Infix 300 :
clique of indep of

A.4 Definitions

symg ` ∀ (V , E )
• (V , E ) ∈ symg

⇔ E ∈ V ↔ V ∧ (∀ x y• (x , y) ∈ E ⇔ (y , x ) ∈ E )
clique of ` ∀ C (V , E )

• C clique of (V , E ) ⇔ C ⊆ V ∧ (C × C ) \ Id C ⊆ E
indep of ` ∀ C (V , E )

• C indep of (V , E ) ⇔ C ⊆ V ∧ (C × C ) ∩ E ⊆ Id C

A.5 Theorems

lemma1 ` ∀ (V , E ) U
• (V , E ) ∈ symg ∧ U ⊆ V ⇒ (U , (U × U ) ∩ E ) ∈ symg

lemma2 ` ∀ (V , E ) U C
• U ⊆ V ∧ C clique of (U , (U × U ) ∩ E )

⇒ C clique of (V , E )
lemma3 ` ∀ (V , E ) U C

• U ⊆ V ∧ C indep of (U , (U × U ) ∩ E )
⇒ C indep of (V , E )

lemma4 ` ∀ (V , E ) U C
• C ⊆ U ∧ C indep of (V , E ) ⇒ C indep of (U , E )

lemma5 ` ∀ (V , E ) U C
• U ⊆ V ∧ C clique of (U , E ) ⇒ C clique of (V , E )

lemma6 ` ∀ (V , E ) U C
• U ⊆ V ∧ C indep of (U , E ) ⇒ C indep of (V , E )

lemma7 ` ({}, {}) ∈ symg
lemma8 ` ∀ a• a ∈ Finite ⇒ (# a = 0 ⇔ a = {})
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lemma9 ` ∀ (V , E ) v S i j
• (let R = {x |x ∈ V \ {v} ∧ (v , x ) ∈ E}

in (V , E ) ∈ symg
∧ V ∈ Finite
∧ v ∈ V
∧ S ⊆ R
∧ (S clique of (V , (R × R) ∩ E ) ∧ # S = i
∨ S indep of (V , (R × R) ∩ E ) ∧ # S = j )

⇒ (∃ S ′

• S ′ clique of (V , E ) ∧ # S ′ = i + 1
∨ S ′ indep of (V , E ) ∧ # S ′ = j ))

lemma10 ` ∀ (V , E ) v S i j
• (let R = {x |x ∈ V \ {v} ∧ ¬ (v , x ) ∈ E}

in (V , E ) ∈ symg
∧ V ∈ Finite
∧ v ∈ V
∧ S ⊆ R
∧ (S clique of (V , (R × R) ∩ E ) ∧ # S = i
∨ S indep of (V , (R × R) ∩ E ) ∧ # S = j )

⇒ (∃ S ′

• S ′ clique of (V , E ) ∧ # S ′ = i
∨ S ′ indep of (V , E ) ∧ # S ′ = j + 1 ))

lemma11 ` ∀ a b c x m n
• a ∈ Finite ∧ # a ≥ m + n ∧ a = {x} ∪ b ∪ c

⇒ # b ≥ m ∨ # c ≥ n
lemma12 ` ∀ a b m n

• 0 < m
∧ 0 < n
∧ (∀ (V , E )
• (V , E ) ∈ symg ∧ V ∈ Finite ∧ # V ≥ m

⇒ (∃ C
• C clique of (V , E ) ∧ # C = a

∨ C indep of (V , E ) ∧ # C = b + 1 ))
∧ (∀ (V , E )
• (V , E ) ∈ symg ∧ V ∈ Finite ∧ # V ≥ n

⇒ (∃ C
• C clique of (V , E ) ∧ # C = a + 1

∨ C indep of (V , E ) ∧ # C = b))
⇒ (∀ (V , E )
• (V , E ) ∈ symg ∧ V ∈ Finite ∧ # V ≥ m + n

⇒ (∃ C
• C clique of (V , E ) ∧ # C = a + 1

∨ C indep of (V , E ) ∧ # C = b + 1 ))
lemma13 ` ∀ (V , E )• {} clique of (V , E ) ∧ {} indep of (V , E )
fin exp 2 ramsey thm

` ∀ a b
• ∃ n
• ∀ (V , E )
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• (V , E ) ∈ symg ∧ V ∈ Finite ∧ # V ≥ n
⇒ (∃ C
• C clique of (V , E ) ∧ # C = a

∨ C indep of (V , E ) ∧ # C = b)
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