
Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

Project: DAZ PROJECT

Title: Calculator Example

Ref: ISS/HAT/DAZ/WRK507 Issue: 1.31 Date: 22 July 2011

Status: Informal Type: Technical

Author:

Name Location Signature Date

R.D. Arthan WIN01

Abstract: This document gives an example of the Compliance Notation.

Distribution: Library

Copyright c© : Lemma 1 Ltd 2011

Page 1 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

0 DOCUMENT CONTROL

0.1 Contents List

0 DOCUMENT CONTROL 2
0.1 Contents List . 2
0.2 Document Cross References . 2

1 INTRODUCTION 3

2 PREAMBLE 3

3 BASIC DEFINITIONS 4

4 THE STATE 5

5 THE OPERATIONS 6
5.1 Package Specification . 6

5.1.1 Z Preliminaries . 6
5.2 The SPARK Package . 9
5.3 Package Implementation . 10

5.3.1 Package Body . 10
5.3.2 Supporting Functions . 12
5.3.3 Algorithm for Factorial . 13
5.3.4 Algorithm for Square Root . 15
5.3.5 Digit Button Algorithm . 18
5.3.6 Operation Button Algorithm . 19

6 EPILOGUE 21

0.2 Document Cross References

[1] ISS/HAT/DAZ/USR501. Compliance Tool — User Guide. Lemma 1 Ltd.,
http://www.lemma-one.com.

[2] ISS/HAT/DAZ/USR503. Compliance Tool — Proving VCs. Lemma 1 Ltd.,
http://www.lemma-one.com.

[3] ISS/HAT/DAZ/WRK513. Calculator Example VCs Proof Scripts. R.D. Arthan and G.M. Prout,
Lemma 1 Ltd., http://www.lemma-one.com.

Page 2 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

1 INTRODUCTION

This document contains an example of the Compliance Notation. The example is concerned with
the computational aspects of a simple calculator.

Part of the purpose of this example is to demonstrate the insertion of hypertext links in the script
by the compliance tool (see [1]). For this reason, the example adopts the rather unusual policy of
giving proofs of VCs immediately after the Compliance Notation clause which generates them (so
that the interleaving of refinement steps and proofs is fairly complicated).

This example has also been used in the Compliance Tool — Proving VCs tutorial, [2]. For reference
purposes, a proof script for all the VCs has been supplied in [3]. These proofs illustrate the techniques
advocated in the tutorial, and differ slightly from those presented here.

2 PREAMBLE

The following Standard ML command sets up the Compliance Tool to process the rest of the script.

SML

force delete theory"BASICS ′spec" handle Fail => ();
new script {name="BASICS", unit type="spec"};

Page 3 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

3 BASIC DEFINITIONS

In this section, we define types and constants which will be of use throughout the rest of the script.

The SPARK package BASICS below helps record the following facts:

The calculator deals with signed integers expressed using up to six decimal digits. It
has a numeric keypad and 6 operation buttons labelled +, −, ×, +/−, !, √, and =.

Compliance Notation

package BASICS is

BASE : constant INTEGER := 10 ;
PRECISION : constant INTEGER := 6 ;
MAX NUMBER : constant INTEGER := BASE ∗∗ PRECISION − 1 ;
MIN NUMBER : constant INTEGER := −MAX NUMBER;

subtype DIGIT is INTEGER range 0 .. BASE − 1 ;

subtype NUMBER is INTEGER range MIN NUMBER .. MAX NUMBER;

type OPERATION is
(PLUS , MINUS , TIMES , CHANGE SIGN , SQUARE ROOT , FACTORIAL, EQUALS);

end BASICS ;

SML

output ada program{script="BASICS ′spec", out file="wrk507 .ada"};
output hypertext edit script{out file="wrk507 .ex"};

Page 4 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

4 THE STATE

In this section, we define a package which contains all the state variables of the calculator.

The package STATE below defines the variables we will use to implement the following informal
description of part of the calculator’s behaviour:

The calculator has two numeric state variables: the display, which contains the number
currently being entered, and the accumulator, which contains the last result calculated.

The user is considered to be in the process of entering a number whenever a digit
button is pressed, and entry of a number is terminated by pressing one of the operation
keys.

When a binary operation key is pressed, the operation is remembered so that it can
be calculated when the second operand has been entered.

SML

new script {name="STATE", unit type="spec"};

Compliance Notation

with BASICS ;
package STATE is

DISPLAY , ACCUMULATOR : BASICS .NUMBER;

LAST OP : BASICS .OPERATION ;

IN NUMBER : BOOLEAN ;

end STATE ;

SML

output ada program{script="−", out file="wrk507a.ada"};
output hypertext edit script{out file="wrk507a.ex"};

Page 5 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

5 THE OPERATIONS

In this section, we define a package which contains procedures corresponding to pressing the calculator
buttons.

5.1 Package Specification

We now want to introduce a package OPERATIONS which implements the following informal de-
scription ofhow the calculator responds to button presses:

The behaviour when a digit button is pressed depends on whether a number is cur-
rently being entered into the display. If a number is being entered, then the digit is taken
as part of the number. If a number is not being entered (e.g., if an operation button has
just been pressed), then the digit is taken as the most significant digit of a new number
in the display.

When a binary operation button is pressed, any outstanding calculation is carried
out and the answer (which will be the first operand of the operation) is displayed; the
calculator is then ready for the user to enter the other operand of the operation.

When a unary operation button is pressed, the result of performing that operation
to the displayed number is computed and displayed; the accumulator is unchanged, but
entry of the displayed number is considered to be complete.

When the button marked = is pressed, any outstanding calculation is carried out and
the answer is displayed.

The package implementing this is defined in section 5.2 below after we have dealt with some prelim-
inaries.

5.1.1 Z Preliminaries

SML

open theory "BASICS ′spec";
new theory "preliminaries";

To abbreviate the description of the package, we do some work in Z first, corresponding to the various
sorts of button press.

Note that the use of Z rather than BASICSoNUMBER reflects the fact that we are ignoring questions
of arithmetic overflow here. If we used the Z set which accurately represents the SPARK type, then
we would have to add in pre-conditions saying that the operations do not overflow. The following
schema defines what happens when a digit button is pressed.

Page 6 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

Z

DO DIGIT
DISPLAY 0 , DISPLAY : Z;
IN NUMBER0 , IN NUMBER : BOOLEAN ;
D : BASICSoDIGIT

IN NUMBER0 = TRUE ⇒ DISPLAY = DISPLAY 0∗BASICSoBASE + D ;
IN NUMBER0 = FALSE ⇒ DISPLAY = D ;
IN NUMBER = TRUE

We now define sets UNARY and BINARY which partition the two sorts of operation key. Note that
= can be considered as a sort of binary operation (which given operands x and y returns x).

Z

UNARY =̂ {BASICSoCHANGE SIGN , BASICSoFACTORIAL, BASICSoSQUARE ROOT}

Z

BINARY =̂ BASICSoOPERATION \ UNARY

We need to define a function for computing factorials in order to define the response to the factorial
operation button.

Z

fact : N → N

fact 0 = 1 ;
∀m:N• fact(m+1) = (m + 1) ∗ fact m

Unary operations behave as specified by the following schema. In which we do specify explicitly that
the accumulator and last operation values are unchanged for clarity and for simplicity later on (when
we group the unary and binary operations together).

Z

DO UNARY OPERATION
ACCUMULATOR0 , ACCUMULATOR : Z;
DISPLAY 0 , DISPLAY : Z;
LAST OP0 , LAST OP : Z;
IN NUMBER : BOOLEAN ;
O : UNARY

IN NUMBER = FALSE ;
ACCUMULATOR = ACCUMULATOR0 ;
LAST OP = LAST OP0 ;
O = BASICSoCHANGE SIGN ⇒ DISPLAY = ∼DISPLAY 0 ;

Page 7 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

O = BASICSoFACTORIAL ∧ DISPLAY 0 ≥ 0 ⇒ DISPLAY = fact DISPLAY 0 ;
O = BASICSoSQUARE ROOT ∧ DISPLAY 0 ≥ 0 ⇒

DISPLAY ∗∗ 2 ≤ DISPLAY 0 < (DISPLAY + 1) ∗∗ 2

The binary operations are specified by the following schema.

Z

DO BINARY OPERATION
ACCUMULATOR0 , ACCUMULATOR : Z;
DISPLAY 0 , DISPLAY : Z;
LAST OP0 , LAST OP : Z;
IN NUMBER : BOOLEAN ;
O : BINARY

IN NUMBER = FALSE ;
DISPLAY = ACCUMULATOR;
LAST OP = O ;
LAST OP0 = BASICSoEQUALS ⇒

ACCUMULATOR = DISPLAY 0 ;
LAST OP0 = BASICSoPLUS ⇒

ACCUMULATOR = ACCUMULATOR0 + DISPLAY 0 ;
LAST OP0 = BASICSoMINUS ⇒

ACCUMULATOR = ACCUMULATOR0 − DISPLAY 0 ;
LAST OP0 = BASICSoTIMES ⇒

ACCUMULATOR = ACCUMULATOR0 ∗ DISPLAY 0

The disjunction of the schemas for the unary and binary operations is then what is needed to define
the response to pressing an arbitrary button press.

Z

DO OPERATION =̂ DO UNARY OPERATION ∨ DO BINARY OPERATION

Page 8 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

5.2 The SPARK Package

We will now use the schemas of the previous section to define the package OPERATIONS . First we
set up the script in which to develop the package.

SML

new script1 {name="OPERATIONS", unit type="spec", library theories=["preliminaries"]};

Since we used the short forms of the SPARK names in the previous section, we need to rename the
schema signature variables to prefix them with the appropriate package names.

Compliance Notation

with BASICS , STATE ;
package OPERATIONS is
procedure DIGIT BUTTON (D : in BASICS .DIGIT)

∆ STATEoDISPLAY , STATEoIN NUMBER [
DO DIGIT [

STATEoDISPLAY 0/DISPLAY 0 , STATEoDISPLAY /DISPLAY ,

STATEoIN NUMBER0/IN NUMBER0 , STATEoIN NUMBER/IN NUMBER,

D/D]] ;
procedure OPERATION BUTTON (O : in BASICS .OPERATION)

∆ STATEoACCUMULATOR, STATEoDISPLAY ,

STATEoIN NUMBER, STATEoLAST OP [
DO OPERATION [
STATEoACCUMULATOR0/ACCUMULATOR0 ,

STATEoACCUMULATOR/ACCUMULATOR,

STATEoDISPLAY 0/DISPLAY 0 , STATEoDISPLAY /DISPLAY ,

STATEoLAST OP0/LAST OP0 , STATEoLAST OP/LAST OP ,

STATEoIN NUMBER0/IN NUMBER0 , STATEoIN NUMBER/IN NUMBER,

D/D]] ;
end OPERATIONS ;

SML

output ada program{script="−", out file="wrk507b.ada"};
output hypertext edit script{out file="wrk507b.ex"};

Page 9 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

5.3 Package Implementation

5.3.1 Package Body

The following specification of the package body is derived from the package specification in the
obvious way. We leave a k-slot for any extra declarations we may need.
SML

new script {name="OPERATIONS", unit type="body"};

Compliance Notation

$references BASICS , STATE ;
package body OPERATIONS is
procedure DIGIT BUTTON (D : in BASICS .DIGIT)

∆ STATEoDISPLAY , STATEoIN NUMBER [
DO DIGIT [

STATEoDISPLAY 0/DISPLAY 0 , STATEoDISPLAY /DISPLAY ,

STATEoIN NUMBER0/IN NUMBER0 , STATEoIN NUMBER/IN NUMBER,

D/D]]
is begin

∆ STATEoDISPLAY , STATEoIN NUMBER [
DO DIGIT [STATEoDISPLAY 0/DISPLAY 0 , STATEoDISPLAY /DISPLAY ,

STATEoIN NUMBER0/IN NUMBER0 , STATEoIN NUMBER/IN NUMBER,

D/D]] (3001)
end DIGIT BUTTON ;

procedure OPERATION BUTTON (O : in BASICS .OPERATION)
∆ STATEoACCUMULATOR, STATEoDISPLAY ,

STATEoIN NUMBER, STATEoLAST OP [
DO OPERATION [
STATEoACCUMULATOR0/ACCUMULATOR0 ,

STATEoACCUMULATOR/ACCUMULATOR,

STATEoDISPLAY 0/DISPLAY 0 , STATEoDISPLAY /DISPLAY ,

STATEoLAST OP0/LAST OP0 , STATEoLAST OP/LAST OP ,

STATEoIN NUMBER0/IN NUMBER0 , STATEoIN NUMBER/IN NUMBER,

D/D]]
is
〈 Extra Declarations 〉 (500)

begin
∆ STATEoACCUMULATOR, STATEoDISPLAY ,

STATEoIN NUMBER, STATEoLAST OP [
DO OPERATION [STATEoACCUMULATOR0/ACCUMULATOR0 ,

STATEoACCUMULATOR/ACCUMULATOR,

STATEoDISPLAY 0/DISPLAY 0 , STATEoDISPLAY /DISPLAY ,

STATEoLAST OP0/LAST OP0 , STATEoLAST OP/LAST OP ,

Page 10 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

STATEoIN NUMBER0/IN NUMBER0 , STATEoIN NUMBER/IN NUMBER,

D/D]] (3002)
end OPERATION BUTTON ;

end OPERATIONS ;

Introducing the package body gives us 8 very trivial VCs to prove:
SML

open theory "cn";
set pc"cn";
open theory "OPERATIONS ′body";
set goal([], get conjecture"−""vcOPERATIONS 1");
a(REPEAT strip tac);
val = save pop thm "vcOPERATIONS 1";

SML

set goal([], get conjecture"−""vcOPERATIONS 2");
a(REPEAT strip tac);
val = save pop thm "vcOPERATIONS 2";

SML

set goal([], get conjecture"−""vcOPERATIONS 3");
a(REPEAT strip tac);
val = save pop thm "vcOPERATIONS 3";

SML

set goal([], get conjecture"−""vcOPERATIONS 4");
a(REPEAT strip tac);
val = save pop thm "vcOPERATIONS 4";

SML

open theory "OPERATIONSoDIGIT BUTTON ′proc";
set goal([], get conjecture"−""vcOPERATIONSoDIGIT BUTTON 1");
a(REPEAT strip tac);
val = save pop thm "vcOPERATIONSoDIGIT BUTTON 1";

SML

set goal([], get conjecture"−""vcOPERATIONSoDIGIT BUTTON 2");
a(REPEAT strip tac);
val = save pop thm "vcOPERATIONSoDIGIT BUTTON 2";

SML

open theory "OPERATIONSoOPERATION BUTTON ′proc";
set goal([], get conjecture"−""vcOPERATIONSoOPERATION BUTTON 1");
a(REPEAT strip tac);
val = save pop thm "vcOPERATIONSoOPERATION BUTTON 1";

Page 11 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

SML

set goal([], get conjecture"−""vcOPERATIONSoOPERATION BUTTON 2");
a(REPEAT strip tac);
val = save pop thm "vcOPERATIONSoOPERATION BUTTON 2";

5.3.2 Supporting Functions

We choose to separate out the computation of factorials and square roots into separate functions
which replace the k-slot labelled 500. In both cases, we prepare for the necessary algorithms. Our
approach for both functions is to introduce and initialise appropriately a variable called RESULT ,
demand that this be set to the desired function return value and return that value.
SML

open scope "OPERATIONS .OPERATION BUTTON ";

Compliance Notation

(500) ≡
function FACT (M : NATURAL) return NATURAL

Ξ [FACT (M) = fact(M)]
is

RESULT : NATURAL;
begin

RESULT := 1 ;
∆ RESULT [M ≥ 0 ∧ RESULT = 1 , RESULT = fact M] (1001)
return RESULT ;

end FACT ;

function SQRT (M : NATURAL) return NATURAL
Ξ [SQRT (M) ∗∗ 2 ≤ M < (SQRT (M) + 1) ∗∗ 2]

is
RESULT : NATURAL;
〈 other local vars 〉 (2)

begin
RESULT := 0 ;
∆ RESULT [RESULT = 0 , RESULT ∗∗ 2 ≤ M < (RESULT + 1) ∗∗ 2] (2001)

return RESULT ;
end SQRT ;

The above results in a number of VCs to show that the function bodies achieve what is demanded
in the function specification. We now prove these VCs, some of which require the following lemma
about SPARK natural numbers.

Page 12 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

SML

open theory "preliminaries";
set goal([], pZ∀m : NATURAL• m ≥ 0q);
a(rewrite tac[z get specpZNATURALq] THEN REPEAT strip tac);
val natural thm = save pop thm"natural thm";
open scope "OPERATIONS .OPERATION BUTTON .FACT";

SML

set goal([], get conjecture"−""vcOPERATIONSoOPERATION BUTTONoFACT 1");
a(REPEAT strip tac THEN all fc tac[natural thm]);
val = save pop thm "vcOPERATIONSoOPERATION BUTTONoFACT 1";

SML

set goal([], get conjecture"−""vcOPERATIONSoOPERATION BUTTONoFACT 2");
a(REPEAT strip tac THEN all var elim asm tac1);
val = save pop thm "vcOPERATIONSoOPERATION BUTTONoFACT 2";

SML

open scope "OPERATIONS .OPERATION BUTTON .SQRT";
set goal([], get conjecture"−""vcOPERATIONSoOPERATION BUTTONoSQRT 1");
a(REPEAT strip tac);
val = save pop thm "vcOPERATIONSoOPERATION BUTTONoSQRT 1";

SML

set goal([], get conjecture"−""vcOPERATIONSoOPERATION BUTTONoSQRT 2");
a(REPEAT strip tac THEN all var elim asm tac1);
val = save pop thm "vcOPERATIONSoOPERATION BUTTONoSQRT 2";

SML

open scope "OPERATIONS";

5.3.3 Algorithm for Factorial

Factorial is implemented by a for-loop with loop-counter J and an invariant requiring that as J steps
from 2 up to M , RESULT is kept equal to the factorial of J :
SML

open scope "OPERATIONS .OPERATION BUTTON .FACT";

Compliance Notation

(1001) v
for J in INTEGER range 2 .. M
loop

∆ RESULT [J ≥ 1 ∧ RESULT = fact (J−1), RESULT = fact J] (1002)
end loop;

Page 13 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

This produces 4 VCs, which we proceed to prove, beginning with a lemma about the first two values
of factorial (needed because our algorithm avoids the unnecessary pass through the loop with J = 1).

SML

set goal([], pZ fact 0 = 1 ∧ fact 1 = 1q);
a(rewrite tac[z get specpZ factq,

(rewrite rule[z get specpZ factq] o z ∀ elimpZ0q o
∧ right elim o ∧ right elim o z get spec)pZ factq

]);
val fact thm = save pop thm"fact thm";

SML

set goal([], get conjecture"−""vc1001 1");
a(REPEAT strip tac THEN asm rewrite tac[fact thm]);
val = save pop thm "vc1001 1";

SML

set goal([], get conjecture"−""vc1001 2");
a(REPEAT strip tac THEN all var elim asm tac1);
a(lemma tacpZM = 0 ∨ M = 1q);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(PC T1 "z lin arith" asm prove tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(asm rewrite tac[fact thm]);
(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
a(asm rewrite tac[fact thm]);
val = save pop thm "vc1001 2";

SML

set goal([], get conjecture"−""vc1001 3");
a(REPEAT strip tac);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(asm ante tacpZ2 ≤ Jq THEN PC T1 "z lin arith" prove tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(asm rewrite tac[z plus assoc thm]);
val = save pop thm "vc1001 3";

SML

set goal([], get conjecture"−""vc1001 4");
a(REPEAT strip tac THEN asm rewrite tac[]);
val = save pop thm "vc1001 4";

Now we can complete the implementation of the factorial function by providing the loop body:

Page 14 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

Compliance Notation

(1002) v
RESULT := J ∗ RESULT ;

Again this gives rise to a VC which we prove immediately, completing the implementation and
verification of the factorial function:
SML

set goal([], get conjecture"−""vc1002 1");
a(REPEAT strip tac THEN all var elim asm tac1);
a(lemma tacpZ∃K :U• K + 1 = Jq);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(z ∃ tacpZJ − 1q THEN PC T1 "z lin arith" prove tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(all var elim asm tac1);
a(rewrite tac[z plus assoc thm]);
a(ALL FC T rewrite tac[z get specpZ factq]);
val = save pop thm "vc1002 1";

5.3.4 Algorithm for Square Root

For square root, we need two extra variables to implement a binary search for the square root.

SML

open scope"OPERATIONS .OPERATION BUTTON .SQRT";

Compliance Notation

(2) ≡
MID , HI : INTEGER;

The following just says that we propose to achieve the desired effect on RESULT using MID and
HI as well.
Compliance Notation

(2001) v
∆ RESULT , MID , HI

[RESULT = 0 , RESULT ∗∗ 2 ≤ M < (RESULT + 1) ∗∗ 2] (2002)

This produces two very trivial VCs:

SML

set goal([], get conjecture "−" "vc2001 1");
a(REPEAT strip tac);
val = save pop thm "vc2001 1";

Page 15 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

SML

set goal([], get conjecture "−" "vc2001 2");
a(REPEAT strip tac);
val = save pop thm "vc2001 2";

Now we give the initialisation for HI and describe the loop which will find the square root:

Compliance Notation

(2002) v
HI := M + 1 ;
$till [[RESULT ∗∗ 2 ≤ M < (RESULT + 1) ∗∗ 2]]
loop

∆ RESULT , MID , HI
[RESULT ∗∗ 2 ≤ M < HI ∗∗ 2 , RESULT ∗∗ 2 ≤ M < HI ∗∗ 2] (2003)

end loop;

This gives us 3 more VCs to prove, which depend on a few mathematical facts about the exponen-
tiation operator:

SML

set goal([], pZ∀x : Z• x ∗∗ 1 = xq);
a(REPEAT strip tac);
a(rewrite tac[rewrite rule[](

z ∀ elimpZ(x =̂ x , y =̂ 0)q (∧ right elim(z get specpZ(∗∗)q)))]);
val star star 1 thm = pop thm();

SML

set goal([], pZ∀x : Z• x ∗∗ 2 = x ∗ xq);
a(REPEAT strip tac);
a(rewrite tac[star star 1 thm, rewrite rule[](

z ∀ elimpZ(x =̂ x , y =̂ 1)q (∧ right elim(z get specpZ(∗∗)q)))]);
val star star 2 thm = pop thm();

SML

set goal([], get conjecture "−" "vc2002 1");
a(REPEAT strip tac THEN all fc tac[natural thm]);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(asm rewrite tac[star star 1 thm, star star 2 thm]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(POP ASM T ante tac THEN DROP ASMS T discard tac THEN strip tac);
a(z ≤ induction tacpZM q);
(∗ ∗∗∗ Goal "2 .1" ∗∗∗ ∗)
a(rewrite tac[star star 1 thm, star star 2 thm]);
(∗ ∗∗∗ Goal "2 .2" ∗∗∗ ∗)

Page 16 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

a(POP ASM T ante tac);
a(rewrite tac[star star 2 thm]);
a(PC T1 "z lin arith" asm prove tac[]);
val = save pop thm "vc2002 1";

SML

set goal([], get conjecture "−" "vc2002 2");
a(REPEAT strip tac);
val = save pop thm "vc2002 2";

SML

set goal([], get conjecture "−" "vc2002 3");
a(REPEAT strip tac);
val = save pop thm "vc2002 3";

Now we implement the exit for the loop and specify the next step:

Compliance Notation

(2003) v
exit when RESULT + 1 = HI ;
∆ RESULT , MID , HI

[RESULT ∗∗ 2 ≤ M < HI ∗∗ 2 , RESULT ∗∗ 2 ≤ M < HI ∗∗ 2] (2004)

Again we get VCs which we now prove:

SML

set goal([], get conjecture "−" "vc2003 1");
a(rewrite tac[]);
a(REPEAT strip tac);
a(all var elim asm tac1);
val = save pop thm "vc2003 1";

SML

set goal([], get conjecture "−" "vc2003 2");
a(REPEAT strip tac);
val = save pop thm "vc2003 2";

SML

set goal([], get conjecture "−" "vc2003 3");
a(REPEAT strip tac);
val = save pop thm "vc2003 3";

Now we can fill in the last part of the loop:

Page 17 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

Compliance Notation

(2004) v
MID := (RESULT + HI + 1) / 2 ;
if MID ∗∗ 2 > M
then HI := MID ;
else RESULT := MID ;
end if ;

We now prove the 2 VCs produced, which completes the implementation and verification of the
square root function.
SML

set goal([], get conjecture "−" "vc2004 1");
a(rewrite tac[star star 2 thm]);
a(REPEAT strip tac);
val = save pop thm "vc2004 1";

SML

set goal([], get conjecture "−" "vc2004 2");
a(rewrite tac[star star 2 thm]);
a(REPEAT strip tac);
val = save pop thm "vc2004 2";

5.3.5 Digit Button Algorithm

We now continue with the body of the digit button procedure. An if-statement handling the two
cases for updating the display, followed by an assignment to the flag should meet the bill here.
SML

open scope"OPERATIONS .DIGIT BUTTON ";

Compliance Notation

(3001) v
if STATE .IN NUMBER
then STATE .DISPLAY := STATE .DISPLAY ∗ BASICS .BASE + D ;
else STATE .DISPLAY := D ;
end if ;
STATE .IN NUMBER := true;

This produces 2 VCs corresponding to the two branches of the if-statement. Both are easy to prove:
SML

set goal([], get conjecture"−""vc3001 1");
a(REPEAT strip tac);
a(asm rewrite tac[z get specpZDO DIGITq]);
a(REPEAT strip tac);
val = save pop thm "vc3001 1";

Page 18 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

SML

set goal([], get conjecture"−""vc3001 2");
a(REPEAT strip tac);
a(asm rewrite tac[z get specpZDO DIGITq]);
val = save pop thm "vc3001 2";

5.3.6 Operation Button Algorithm

We now complete the implementation and verification of the package OPERATIONS by giving the
body of the procedure for handling the operation buttons.
SML

open scope "OPERATIONS .OPERATION BUTTON ";

Compliance Notation

(3002) v
if O = BASICS .CHANGE SIGN
then STATE .DISPLAY := −STATE .DISPLAY ;
elsif O = BASICS .FACTORIAL
then STATE .DISPLAY := FACT (STATE .DISPLAY);
elsif O = BASICS .SQUARE ROOT
then STATE .DISPLAY := SQRT (STATE .DISPLAY);
else if STATE .LAST OP = BASICS .EQUALS

then STATE .ACCUMULATOR := STATE .DISPLAY ;
elsif STATE .LAST OP = BASICS .PLUS
then STATE .ACCUMULATOR := STATE .ACCUMULATOR + STATE .DISPLAY ;
elsif STATE .LAST OP = BASICS .MINUS
then STATE .ACCUMULATOR := STATE .ACCUMULATOR − STATE .DISPLAY ;
elsif STATE .LAST OP = BASICS .TIMES
then STATE .ACCUMULATOR := STATE .ACCUMULATOR ∗ STATE .DISPLAY ;
end if ;
STATE .DISPLAY := STATE .ACCUMULATOR;
STATE .LAST OP := O ;

end if ;
STATE .IN NUMBER := false;

SML

open theory "preliminaries";
val basics defs = map z get spec(get consts"BASICS ′spec");
val op defs = map z get spec(flat(

map get consts ["preliminaries", "OPERATIONS ′body", "OPERATIONS ′spec"]));

The first three VCs are concerned with the unary operations.

Page 19 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

SML

open scope "OPERATIONS .OPERATION BUTTON ";
set goal([], get conjecture"−""vc3002 1");
a(rewrite tac op defs);
a(z ∀ tac THEN ⇒ tac THEN asm rewrite tac basics defs);
val = save pop thm "vc3002 1";

For the next two VCs, it is necessary to make the (reasonable) assumption that a non-negative
number of the precision handled by the calculator will fit in a SPARK NATURAL. This amounts to
the following axiom:
Z

BASICSoMAX NUMBER ≤ INTEGERvLAST

SML

val number ax = snd(hd(get axioms"−"));
set goal([], get conjecture"−""vc3002 2");
a(rewrite tac op defs);
a(z ∀ tac THEN ⇒ tac THEN asm rewrite tac basics defs);
a(all var elim asm tac1 THEN strip tac);
a(lemma tac pZSTATEoDISPLAY ∈ NATURALq);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(DROP NTH ASM T 5 ante tac);
a(ante tac number ax);
a(asm rewrite tac(z get specpZNATURALq :: basics defs));
a(PC T1 "z lin arith" prove tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(ALL FC T rewrite tac[z get specpZFACTq]);
val = save pop thm "vc3002 2";

SML

set goal([], get conjecture"−""vc3002 3");
a(rewrite tac op defs);
a(z ∀ tac THEN ⇒ tac THEN asm rewrite tac basics defs);
a(all var elim asm tac1 THEN strip tac);
a(lemma tac pZSTATEoDISPLAY ∈ NATURALq);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(DROP NTH ASM T 6 ante tac);
a(ante tac number ax);
a(asm rewrite tac(z get specpZNATURALq :: basics defs));
a(PC T1 "z lin arith" prove tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(all fc tac[z get specpZSQRTq]);
a(REPEAT strip tac);
val = save pop thm "vc3002 3";

Page 20 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

Because the binary operations only involve built-in arithmetic operators, they are a little easier to
verify than the unary ones.

SML

set goal([], get conjecture"−""vc3002 4");
a(rewrite tac op defs);
a(z ∀ tac THEN ⇒ tac THEN asm rewrite tac basics defs);
val = save pop thm "vc3002 4";

SML

set goal([], get conjecture"−""vc3002 5");
a(rewrite tac op defs);
a(z ∀ tac THEN ⇒ tac THEN asm rewrite tac basics defs);
val = save pop thm "vc3002 5";

SML

set goal([], get conjecture"−""vc3002 6");
a(rewrite tac op defs);
a(z ∀ tac THEN ⇒ tac THEN asm rewrite tac basics defs);
val = save pop thm "vc3002 6";

SML

set goal([], get conjecture"−""vc3002 7");
a(rewrite tac op defs);
a(z ∀ tac THEN ⇒ tac THEN asm rewrite tac basics defs);
val = save pop thm "vc3002 7";

SML

set goal([], get conjecture"−""vc3002 8");
a(rewrite tac op defs);
a(z ∀ tac THEN ⇒ tac THEN asm rewrite tac basics defs);
val = save pop thm "vc3002 8";

That completes the formal verification of the calculator packages.

SML

output ada program{script="OPERATIONS ′body", out file="wrk507c.ada"};
output hypertext edit script{out file="wrk507c.ex"};

6 EPILOGUE

The following ProofPower-ML commands produce the various parts of the Z document and then
print out a message for use when this script is used as part of the Compliance Tool test suite.

Page 21 of 22

Lemma 1 Ltd.
DAZ PROJECT

Calculator Example

Ref: ISS/HAT/DAZ/WRK507
Issue: 1.31

Date: 22 July 2011

SML

output z document{script="BASICS ′spec", out file="wrk507 .zdoc"};
output z document{script="STATE ′spec", out file="wrk507a.zdoc"};
output z document{script="OPERATIONS ′spec", out file="wrk507b.zdoc"};
output z document{script="OPERATIONS ′body", out file="wrk507c.zdoc"};

The following commands check that all the VCs have been proved.

SML

val thys = get descendants "cn" less "cn";
val unproved =
map (fn thy => (open theory thy ; (thy , get unproved conjectures thy))) thys drop (is nil o snd);
val =

if is nil unproved
then diag line "All module tests passed"
else diag line "Some VCs have not been proved";

Page 22 of 22

