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Abstract

This ProofPower-HOL document contains definitions and proofs concerning some basics of
abstract topology, metric space theory and algebraic topology (more precisely, elementary homo-
topy theory). It presents the material using the approach taken in [1]: the main body of the
document contains the definitions together with a narrative commentary including a discussion
of the theorems that have been proved. This is followed by a listing of the theory and an index
to the theorems and definitions. The source text of this document also contains the proof scripts,
but these are suppressed from the printed form by default.

The coverage of abstract topology includes the definitions of the following: topologies; con-
struction of new topologies from old as (binary) product spaces or subspaces; continuity, Haus-
dorff spaces; connectedness; compactness, the interior, boundary and closure operators; a notion
of protocomplex that we later use to define CW complexes. A range of basic theorems are proved,
including: continuity of functional composition and of the structural maps for products; preserva-
tion of compactness and connectedness under continuous maps; connectedness resp. compactness
of products of connected resp. compact spaces.

The coverage of metric spaces is very minimal. The standard arguments in the algebraic
topology we are interested in can be done with almost no metric space ideas. The main idea that
is needed is the notion of the Lebesgue number of a covering (which is needed to show that if
you cover an interval or a square with open sets, then on some suitably fine subdivision of the
interval or square, each subinterval or grid cell is contained in one of the covering sets). With
these applications in view, the metrics for the real line and the plane are defined. We also define
euclidean n-space in general using lists of reals for the representation and use these to define
cubes, spheres and CW complexes. (Technical note: we actually use the L; (Manhattan taxi-cab)
metric on product spaces, not the more usual Ly (Euclidean) metric. The L; metric gives the
same topology and makes the arithmetic easier in most cases.)

Finally, we deal with some basics of homotopy theory. This material is very far from complete.
Currently we have: the definition of path connectedness and the proof that path connected spaces
are connected; definitions of the notions of homotopy and of homotopy classes with the proofs
that the homotopy relation is an equivalence relation; definitions of the path space (qua set, not
qua space, in fact) together with the of the operations that induce a groupoid structure on the
homotopy classes in the path space together with the proofs that these operations do indeed give
a groupoid modulo homotopy equivalence; definition of the fundamental group and the proof that
it is a group; definition of a covering projection and a proof that covering projections enjoy the
unique lifting property and the homotopy lifting property.

Copyright © : Lemma 1 Ltd 2004—2017
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1 ABSTRACT TOPOLOGY

1.1 Technical Prelude

The following ML commands set up a theory “topology” to hold the definitions and theorems and set
up a convenient proof context. The parents of the theory are the theory “bin_rel” of binary relations
and the theory “fincomb” of finite combinatorics.

SML

force_delete_theory "topology" handle Fail - => ();

open_theory "“bin_rel";

set_merge_pcs["basic_holl", "' sets_alg"];

new_theory "“topology";

new_parent" fincomb";

1.2 Topologies

We begin with the definition of a topology. We follow the most common tradition of defining a
topology by specifying its set of open sets. The polymorphic set Topology is the set of all sets of
sets that we will consider to be topologies. We do not require a topology to form a topology on the
universe of the type of its points. For example, we wish to consider sets such as the unit interval in
the real line to be topological spaces in their own right. This actually simplifies the definition: we just
require a topology to be a set of sets that is closed under arbitrary unions and binary intersections.
We do not require the carrier set of the topology to be a non-empty set (as some elementary text
books do, unnecessarily). Nor do we need to make a special case of the empty set — it will be shown
to be an open set in any topology (as the union of an empty set of open sets).

SML

HOL Constant

Topology : 'a SET SET SET

Topology =
{t|(WWeVCr=JVer)ANVABeActTANBeT=ANDBecrT)}

We can recover the carrier set of a topology as the union of all its open sets. It reads quite nicely to
call this the space of the topology.

SML

HOL Constant

Spacer :'a SET SET — 'a SET

\
|
‘ Vr1e Spacer T = T

A set is closed with respect to a topology, 7, if it is the complement of an open set (i.e., a member of
7) relative to the space of 7. For this and several other concepts, we use postfix notation to suggest
informal notations like “7—closed”.



SML

‘ declare_postfiz(400, " Closed");

HOL Constant

$Closed : 'a SET SET — 'a SET SET

Vre 7 Closed = {A | 3BeB € 7 N A = Spacer 7 \ B}

Note that in the above definition and in those that follow, we do no stipulate that 7 actually be
a topology. We will agree, however, in stating theorems, to make that an assumption whenever
necessary (which is nearly always in theorems of any interest).

The theorems begin with some preliminary lemmas about enumerated sets, finite sets and maxima
and minima that belong elsewhere eventually.

enum_set_C_thm finite_image_thm
- enum_set_clauses C_size_thm
N-enum_set_clauses

Now comes a batch of useful basic facts about open and closed sets: the empty set and the space
of a topology are both open and both closed; a set is open iff it contains an open neighbourhood of
each of its points; a set is closed iff its complement contains an open neighbourhood of each of its
points; any member of an open set is a member of the space (a technical convenience in later proofs);
binary unions and, more generally, arbitrary unions of open sets are open; binary intersections and,
more generally, finite intersections of open sets are open.

empty_open_thm €_space_t_thm
space_t_open_thm U_open_thm
empty_closed_thm \J-open_thm
space_t_closed_thm N_open_thm
open_open_neighbourhood _thm finite_(\-open_thm

closed _open_netghbourhood_thm

1.3 New Topologies from Old: Subspace and Product Topologies

We borrow the Z symbol for range restriction (decorated with a subscript to avoid overloading) for
the operator that forms the subspace of a topological space defined by some subset of the universe
of its points. If that subset contains points outside the carrier set of the topological space they are
ignored. A set is open with respect to the subspace topology defined by a subset X of the space of
the topology iff it is the intersection of an open set with X.

SML

declare_infix (280, "<p");



HOL Constant

$<r :'a SET — 'a SET SET — 'a SET SET

VX (X <r 1)
{A[HB-BGT/\A:BOX}

We now give basic facts about the subspace topology induced by a subset of the space of a topology:
it is a topology; its space is the subset; if the subset is the space of the topology, the subspace
topology and the original are the same.

subspace_topology_thm subspace_topology_space_t_thm trivial_subspace_topology_thm

The definition of the (binary) product topology is the usual one (which amounts to saying that the
sets of the form A x B where A and B are open in the factors of the product provide a basis for the
product topology).

SML

‘ declare_infix (290, "x p");

HOL Constant

$xr :'a SET SET —'b SET SET — ('a x 'b) SET SET

Vo 1e (0 xp 7) ={C |V z ye (z,y) € C
= JABeAcoANBerTAhNzeANye BAN(AXx B)C(C}

The product topology is indeed a product topology and the space of the product topology is the
product of the spaces of the factors:

product_topology_thm product_topology _space_t_thm

The trivial topology on a 1-point type is useful.

HOL Constant

$17 : ONE SET SET

17 = {{}; {One}}

unit_topology_thm unit_topology _space_t_thm

Now we define the n-th power topology for finite n: if the space of 7 is X It n 7 is the usual
topology on X™.



HOL Constant

$I17 : N — 'a SET SET — 'a LIST SET SET

VT ne Iy 07 ={{s{l}}
A (I (n+1) 1) ={C | -] €e CAV 2z ve ConszveC=
JABeAertANBellrntTNANzeANveBA
Vy wey € AANw € B = Cons ywe C}

Apart from the easy lemma which says that the lists in Il n 7 are all of length n and the fact that
the power topology is a topology, we defer proofs about the power topology until we have defined
homeomorphisms.

power_topology _length_thm power_topology_thm

1.4 Continuity

There are some issues about the precise formalisation of continuity. The interesting part is completely
standard: a function is continuous iff the inverse images of open sets are open sets. Clearly, there
are two topologies here: one for the domain of the function and one for its range. It is technically
convenient to work with functions that are total on the universe of the type of the domain. In any
case, we want to support something like the usual way of thinking in the calculus where one doesn’t
carefully restrict every function to the domain of interest. E.g., one says things like “1/sin x is
continuous from (0, 7/2) to the positive real numbers.“.

The upshot is the following definition of a continuous function from the topological space o to the
topological space 7. The function is required to map the carrier set of o to that of 7. It may well
also map things outside the carrier set of ¢ into that of 7, and these need to be filtered out when we
are testing whether the inverse image of an open set is open.

SML

‘ declare_postfiz(400, " Continuous");

HOL Constant

$Continuous : ('a SET SET x 'b SET SET) — ("a — 'b) SET

Vo 1e (o, ) Continuous =

{f

| (Vze x € Spacer o = f x € Spacer T)
A (VAo A€ 7= {z |z € Spacer o AN f xz € A} € o)}

We now give some principles for recognising continuous functions. First of all a function is continuous
iff the inverse image of each closed set is closed. The restriction of a continuous function to a subspace
is continuous. The following are all continuous: constant functions, identity functions, compositions
of continuous functions, the projections of a product onto its factors, the pointwise product of two
continuous functions with common domain, the natural injections of a factor of a product into the
product, the inclusion of the diagonal into the product of a topological space with itself, a function
whose domain or range is the unit topological space, and, finally, a function defined by cases under



suitable hypotheses. The last-mentioned principle says that, given two continuous functions, f and
g, on the same topological space and a subset, X, of their domain, the function that agrees with f
on X and with g elsewhere is continuous provided f and g agree on each point which lies both in
the closure of X and in the closure of its complement.

continuous_closed_thm left_product_inj_continuous_thm
subspace_ continuous_thm right_product_inj _ continuous_thm
const_continuous_thm domain_unit_topology_ continuous_thm
id _continuous_thm range_unit_topology _ continuous_thm
comp_continuous_thm diag_inj _ continuous_thm

left_proj_ continuous_thm cond _continuous_thm

right_proj _ continuous_thm
product_ continuous_thm
product _ continuous_<_thm

1.5 Hausforff Separation Condition

Now we define the Hausdorff separation condition. A topology is Hausdorff iff any two distinct
elements possess disjoint open neighbourhoods.

SML

HOL Constant

Hausdorff :'a SET SET SET

Hausdorff =
{T | Vo yo & € Spacer T N y € Spacer T N —x =y
= JABeAerTANBerthzeANye BANANB={}}

A subspace of a Hausdorff space is Hausdorff as is the product of two Hausdorfl spaces:

subspace_topology_hausdorff _thm product_topology _hausdorff _thm

1.6 Compactness

The definition of compactness is the standard one (a topology is compact iff every open covering has
a finite subcovering), together with the explicit requirement that the compact set be a subset of the
space of the topology in question.

SML

declare_postfiz (400, " Compact");



HOL Constant

$Compact : 'a SET SET — 'a SET SET

Vre 7 Compact =
{4
| A C Spacer T
A VVe VCrTANACUYUV =3IWe W CV AW € Finite NACJ W}

Compactness is a topological property, i.e., compactness of a set depends only on the topology induced
on the set and not on how the set is embedded in the containing topological space; continuous
functions map compact sets to compact sets; the union of two compact sets is again compact; a
compact subset of a Hausdorff space is closed. The final result is preceded by a simple lemma about
separating a point from the union of a finite set of sets.

compact_topological _thm compact_closed_lemma
image_compact _thm compact_closed_thm
U_compact_thm

Now we show that the product of two compact sets is compact. This is the finite case of Tychonov’s
theorem. The proof in the finite case is much simpler than the general case. Moreover the general
case is probably best stated in terms of a topology on a function space and we do not wish to
consider such topologies yet. We sneak up on the proof in three steps: the first two are of general
use: compact_basis_thm says that given a basis for a topology, to check compactness of a set one only
needs to consider coverings by basic open sets and compact_basis_product_topology_thm is the special
case of this where the topology is the product topology and the basis is the basis that defines the
product topology. compact_product_lemma is a somewhat ad hoc lemma that is needed in the proof
of the main theorem and might be of use elsewhere.

compact_basis_thm compact_product_lemma
compact_basis_product_topology_thm product_compact_thm

Finally, for use in producing Lebesgue numbers of coverings of compact subsets of metric spaces, we
prove that compact sets are sequentially compact (every countable subset has a limit point). We
precede the proof by a lemma saying that if a (countably infinite) sequence ranges over the union of
a finite family of sets, then some member of the family is visited infinitely often.

compact_sequentially_compact_lemma compact_sequentially_compact_thm

1.7 Connectedness

Similarly, the definition of connectedness is the standard one (a topology is connected if its space
cannot be written as the union of two disjoint open sets), again together with the explicit requirement
that the connected set be a subset of the carrier set of the topology in question.

SML

declare_postfiz(400, " Connected");

10



HOL Constant

$Connected : 'a SET SET — 'a SET SET

Vre 7 Connected =
{A| A C Spacer T
AVBCeBeTANCETAACBUCAANBNC={}=(ACBVACC)}

Connectedness is a topological property!. a set is connected iff it cannot be separated by two closed
sets; a set is connected iff any two of its points are contained in a connected subset of the set (which
doesn’t sound very useful, but is, so much so that we present it both as a conditional rewrite rule
and in a form suitable for back-chaining);

connected_topological _thm connected _pointwise_thm
connected_closed_thm connected _pointwise_bc_thm

The empty set is connected as is any singleton set; continuous functions map connected sets to
connected sets; the union of two non-disjoint connected sets is connected as is the product of any
two connected sets. If the union of two non-empty open (or closed) sets is connected the two sets
cannot be disjoint.

empty - connected_thm U_connected_thm U_open_connected_thm
singleton_connected _thm product _connected _thm U_closed _connected_thm
image_connected_thm

Results of the following sort capture common ways of thinking about spaces such as geometric
simplicial complexes or CW complexes constructed by gluing together connected pieces:

e the union of three connected sets is connected if they can be listed, so that each member meets
the next member in the list;

e if a connected set is covered by a set of connected sets, then the union of the covering sets is
itself connected;

e if the union of two connected sets is not connected, then the two sets can be separated (by two
open sets, which may not be disjoint in general, but are each disjoint from the union);

e if a connected set can be separated from each of a finite family of connected sets, then it can
be separated from the union of the family;

e given a finite family of non-empty connected sets U and a connected set B such that B is
connected as is the union of B and the sets in U, if B does not contain every set in U, then
there is some set A in U such that the union of A and B is connected;

e given a finite family of non-empty connected sets U and a member A of U, one can begin with
A and deal out sets from U such that at each stage the union of the sets that have been dealt

'The use of AN BN C = {} rather than BN C = {} in the definition is perhaps surprising, but connectedness would
not be a topological property with the latter formulation. To see this, consider a space X with three points z, y and
z, topologised so that O is open iff O = {} or z € O. Then z and y cannot be separated by disjoint open sets in X,
but {z,y} is not connected under the subspace topology.

11



is connected, such that each set dealt adds to this union whenever that is possible, and such
that eventually the union of the sets that have been dealt is equal to the union of all the sets
in U,

e given a finite family of non-empty connected sets U and a member A of U, either A contains
the union of all the sets in U, or there is a B in U not equal to A and such that the union of
the sets in U other than B is connected and does not contain B.

U_U_connected_thm connected _ extension_thm
cover_connected_thm connected_ chain_thm
separation_thm connected_step_thm

finite_separation_thm

1.8 Homeomorphisms

A homeomorphism is a continuous mapping with a continuous two-sided inverse:
SML

‘ declare_postfiz(400, " Homeomorphism");

HOL Constant

$Homeomorphism : ("a SET SET x 'b SET SET) — ("a — 'b) SET

Vo 1e (o, T) Homeomorphism =

{f

\ [ € (o, 7) Continuous

A dge g € (1, o) Continuous
A (Vzex € Spacer 0 = ¢(f =) = x)
A (Vyey € Spacer 7 = f(g9 y) = y)}

The identity function is a homeomorphism as is the composite of two homeomorphisms, the product
of a pair of homeomorphisms, the natural mapping from a space and its product with a one-point
space and the function on product that interchanges the factors; a homeomorphism is an open
mapping (i.e., it sends open sets to open sets) and is also one-to-one; a function is a homeomorphism
iff it is a one-to-one, onto, continuous open mapping. Finally, a useful principle for recognising
homeomorphisms obtained by restricting continuous functions defined on compact Hausdorff spaces.

1d_homeomorphism_thm homeomorphism_open_mapping_thm
comp_homeomorphism_thm homeomorphism_one_one_thm
product_homeomorphism_thm homeomorphism_onto_thm
product_unit_homeomorphism_thm homeomorphism_one_one_open_mapping_thm
swap_homeomorphism_thm C_compact_homeomorphism_thm

The useful principle is this: Let C and X be Hausdorff spaces with C' compact and let f be a
continuous function from C to X. If B C C is such that for every y € f(B) there is a unique x in
C such that f(x) =y, then f restricts to a homeomorphism between B and f(B). To see this, note

12



that it is enough to prove that the restriction of f to B is a closed mapping, since evidently f is
one-one and continuous on B. Given a closed subset A of B, we have A = BN D where D is some
closed and hence compact subset of C. By assumption f(D\B) is disjoint from f(B), which implies
that f(DN B) = f(D)N f(B). Since D is compact, so also is f(D), whence f(D) is closed. Thus
f(A) = f(D)nN f(B) is a closed subset of f(B).

1.9 Interior, Boundary and Closure Operators

Our definitions of the interior, boundary and Closure operators are standard, but as we have to be
explicit about the ambient topology, we take them to be infix operators, reflecting usages like “the
T-interior of A” that one might use when working with several different topologies on the same set.
SML

‘declare-inﬁxuOO, " Interior");

‘declare_z'nﬁz(400, "Boundary");

‘ declare_infix (400, " Closure");

The 7-interior of A comprises the points that lie in 7-open subsets of A; the 7-boundary comprises
the points (of the space) all of whose open neighbourhoods meet both A and its complement; the
T-closure of A is the smallest 7-closed set containing (the points of the space belonging to) A.

HOL Constant

$Interior $ Boundary $Closure: 'a SET SET — 'a SET — 'a SET

V7 Ae

7 Interior A = {zx | JBe Be T ANz € BANB C A}
A T Boundary A =

{z |z € Spacer T N\VBe Be T ANz € B=-BnNA={}AN-B\A={}}
A T Closure A = (\{B | B € 7 Closed N A N Spacer T C B}

The interior and boundary of a set are subsets of the ambient space and the interior is a subset of
the set; the boundary of a set is the complement of the union of its interior and the complement of
its interior; the interior of the product of two sets is the product of their interiors; a set is open iff it
is disjoint from its boundary and closed iff it contains its boundary; the interior of a set is the union
of its open subsets; the closure of a set is the complement of the interior of its complement.

interior_boundary_C_space_t_thm open_<_disjoint_boundary_thm
interior_C_thm closed_<_boundary_C_thm
boundary_interior_thm interior _|J_thm

interior_X_thm closure_interior_complement_thm

1.10 The discrete topology

A topology is discrete if any subset of its space is open.
HOL Constant

$Discreter : 'a SET SET SET

Discretep = {7 | VAo A C Spacer 7 = A € 7}

13



We prove that continuity is trivial for mappings on a space with the discrete topology, that a topology
is discrete iff the singletons are open and that a mapping from a non-empty connected space to a
discrete space has a singleton range.

discrete_t_continuous_thm
open_singletons_discrete_thm
connected _ continuous_discrete_thm

1.11 Covering Projections

Our definition of covering projection is completely standard: a continuous function is a covering
projection if every point in its range has a neighbourhood C' whose inverse image is a disjoint union
of open sets each of which is mapped homeomorphically onto C.

SML

‘ declare_postfiz(400, " CoveringProjection");

HOL Constant

$CoveringProjection : ('a SET SET x 'b SET SET) — ("a — 'b) SET

Vo Te (0, ) CoveringProjection =

{p
| p € (o, ) Continuous

A Yye y € Spacer T
= JCe ye CANCeTA
dUe U Co
A (Vze z € Spacer o AN p xz € C

= JAez € ANA€U)
AN (VABeAcUABeUA-ANB={ = A=B)
A (VAo A€ U = pe (A<r o, C<r 1) Homeomorphism)}

We define the unique lifting property of a function p from a space ¢ to a space 7 for functions from
a space p.

HOL Constant

UniqueLiftingProperty : ("a SET SET x (b — 'c) x 'b SET SET x '¢ SET SET)) SET

Vp o T pe
(p, (p, o, 7)) € UniqueLiftingProperty <
Vfg:'a—"b;a:’ae
f € (p, o) Continuous
g € (p, o) Continuous
(Vze z € Spacer p = p(f z) = p(g x))
a € Spacer p
ga=fa
Ve x € Spacer p = gx=fz

p> > > >

14



We prove two lemmas that fit together to give the unique lifting property for continuous functions
from a connected space into the base space of a covering projection.

unique_lifting_lemmal unique_lifting_thm
unique_lifting_lemma2 unique_lifting_bc_thm

1.12 Protocomplexes

In a later version of this document we intend to define the notion of a CW complex. To support
this, it is convenient to define some purely topological notions. A protocomplex will comprise a set
of pairs representing a partial function from certain closed subsets of a topological space X to the
natural numbers. The sets in the domain of this function will be referred to as cells and the natural
number associated with a cell will be called its dimension. Informally, we call a cell of dimension m
an m-cell. The union of all the cells is the space of the protocomplex:

HOL Constant

Spacek : ('a SET x N) SET — 'a SET

VCe Spacex C = U{c | Ime (¢, m) € C}

(We distinguish the name with a subscript K as in the German Komplez, since we use C' elsewhere
for the complex numbers.)

We define the n-skeleton of C' to be the union of all cells of dimension at most n.
SML

‘ declare_infix (400, " Skeleton");

HOL Constant

$Skeleton : N — ("a SET x N) SET — 'a SET

Vn Ce n Skeleton C = J{c | Imem < n A (¢, m) € C}

Our requirements on a protocomplex are as follows: (i) each cell is a closed set, (ii) for every x in
X there is a unique m-cell ¢ such that x lies in the interior of ¢ with respect to the relative topology
on the m-skeleton of C, (iii) a subset A of X is closed if ANc is closed for every cell ¢, and (iv) each
m-cell meets only finitely many cells of lower dimension.

HOL Constant

Protocomplex : 'a SET SET — ('a SET x N) SET SET

VC 1e(C € Protocomplex T <
(V¢ me (¢, m) € C = ¢ € 7 Closed)
A (Vze z € Spacex C =
s (¢, m)e (¢, m) € C Nz € ((m Skeleton C) < 7) Interior c)
A (VAe A C Spacex C N (Ve me (¢, m) € C = AN c e Closed) = A € 7 Closed)
A (Ve me (¢, m) € C = {(d, n) | (d,n) e CAn<mA-cnd={}} € Finite)

15



2 METRIC SPACES — DEFINITIONS

In the following, we bring in the theory of analysis from [1], although we could make do just with
the real numbers to start with.

SML

force_delete_theory "metric_spaces" handle Fail - => ();
open_theory "topology";

new_theory "“metric_spaces";

new_parent" analysis";

new_parent" trees";

set_merge_pcs["basic_holl", "'sets_alg", "'Z", ""R"];

Our treatment of metric spaces is very minimal. The main fact we are interested in will be that

coverings of compact subsets of metric spaces have a Lebesgue number. The definitions involved are
the concept of a metric:

HOL Constant

Metric : ('a x 'a - R) SET

Metric =

{ D

| (Vz yo NR 0 < D(z, y))

A (Vx yoe D(z, y) = NR 0 & z = y)

A (Vz yo D(z, y) = D (y, z))

A (Vo yse D(z, 2) < D (3, y) + Diy, )}

..and the concept of the metric topology, which we write as a postfix since otherwise the notation
for concepts such as “compact with respect to the metric topology induced by D” look rather strange.

SML

‘ declare_postfiz (400, " Metric Topology");

HOL Constant

$MetricTopology : ('a x 'a - R) — 'a SET SET

VDe D MetricTopology = {A | Vzer € A = Jee 0. < ¢ N (VyoD(z, y) < e =y € A)}

We prove some basic facts about the metric topology and about the sum metric on a product of
metric spaces.

metric_topology_thm metric_topology_hausdorff _thm
space_t_metric_topology_thm product_metric_thm
open_ball_open_thm product_metric_topology_thm

open_ball_neighbourhood_thm

We prove the existence of Lebesgue numbers and that if X is a compact subset of an open space A
in a metric space, then for small € > 0, A contains the ball B(z,¢€) for every z € X.
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lebesgue_number_thm collar_thm

We also define an induced metric on the set of lists of elements of a metric space. We use this, for
example, to define n-dimensional euclidean space. Getting a good definition is a little delicate: given
a (non-empty) metric space A with metric d, fix an arbitrary element a € A and let A* be the set
of countably infinite sequences in A that take the constant value a for all but finitely many indices.
A* becomes a metric space under the metric d* defined by d*(s,t) = >, d(s;,t;). If we map lists
to infinite sequences by padding with @, this induces a pseudo-metric on the space A of lists of
elements of A. To get a metric, we take d”(v,w) = |#v — #w| + d*(vaaa . .. ,waaa...), where #uv is
the length of the list v.

HOL Constant

ListMetric : (a x 'a - R) = ("a LIST x 'a LIST) — R
VD z vy we

ListMetric D ([], []) =
A ListMetric D (Cons = v, []) = 1. + D(z, Arbitrary) + ListMetric D (v, [])
A ListMetric D ([], Cons y w) = 1. + D(Arbitrary, y) + ListMetric D (], w)
A ListMetric D (Cons = v, Cons y w) = D(z, y) + ListMetric D (v, w)

list_pseudo_metric_lemmal list_metric_sym_thm
list_pseudo_metric_lemma2 list_metric_metric_thm
list_metric_nonneg_thm

3 THE REAL LINE AND THE PLANE — DEFINITIONS

SML

‘force-delete-theory "topology_-R" handle Fail - => ();
‘ open_theory "“metric_spaces";

‘ new_theory "topology_R";

‘set-merge-pcs["basic-hol] "o Wsets_alg", “'Z", "'R"];

We will make much use of the standard topology on the real line and so we define a short alias for
it:
SML

declare_alias("Og", " Openg™);

We define the standard metric on the real line:

HOL Constant

17



In the plane, as we are primarily interested in topological properties it is simple and convenient to

use the Li-norm.

HOL Constant

Dpgrs: (R xR) x (R x R) —

d_R_2_def1
open_R_topology_thm
space_t_R_thm
closed_closed _R_thm
compact_compact_R_thm
continuous_cts_at_R_thm

Vol yl 22 y2e Dps (21, yl), (22, y2)) = Abs(z2 — 1) + Abs(y2 — yl)

plus_continuous _R_xX_R_thm
times_continuous_R_x_R_thm
cond_continuous_R_thm
d_R_metric_thm
d_R_open_R_thm
d_R_2_metric_thm

universe_R_connected _thm d_R_2_open_R_x_open_R_thm

closed _interval _ connected _thm open_R_hausdorff _thm
subspace_R_thm open_R_x_open_R_hausdorff _thm
connected _R_thm R_lebesque_number_thm
R_x_R_topology_thm closed _interval _lebesgue_number_thm
continuous_R_x _R_R_thm product_interval _ cover_thm
continuous _R_x _R_R_thm1 dissect _unit_interval _thm
continuous_R_x_R_R_thm3 product_interval _ cover_thm
continuous_R_x_R_R_thmj

honour euclidean n-space with the name Space with no further decoration. For us, this is a family of
topologies indexed by the natural numbers. The underlying spaces of the topologies comprise lists
of real numbers.

SML

declare_postfiz(400, "Space");

HOL Constant

$Space : N — R LIST SET SET

Vne n Space = {v | #v = n} <p ListMetric Dgr Metric Topology

The n-cube is the subpace of n-space comprising vectors with coordinates in the closed interval [0, 1].

SML

declare_postfiz(400, " Cube");

HOL Constant

$Cube : N - R LIST SET SET

Vne n Cube = {v | Elems v C ClosedInterval 0. 1.} <7 n Space

18



The open n-cube is the subpace of n-space comprising vectors with coordinates in the open interval
(0,1).

SML

declare_postfiz(400, " OpenCube");

HOL Constant

$0OpenCube : N — R LIST SET SET

Vne n OpenCube = {v | Elems v C Openlnterval 0. 1.} <t n Space

The (topological) n-sphere is the subpace of the n-cube comprising vectors with at least one coordi-
nate in the set {0, 1}.

SML

declare_postfix(400, " Sphere");

HOL Constant

$Sphere : N — R LIST SET SET

Vne n Sphere = {v | =Elems v N {0.; 1.} = {}} <1 n Cube

4 PATHS AND HOMOTOPY— DEFINITIONS

SML

force_delete_theory "homotopy" handle Fail - => ();
open_theory "topology_R";

new_theory "“homotopy";

new_parent " groups";

set_merge_pcs["basic_holl", "'sets_alg", "'Z", ""R"];

For convenience, we represent paths in a space as continuous functions on the whole real line. For
the time being we do not define a topology on the path space (this was historically a slightly thorny
topic in the literature and the “modern” solution via k-ification seems out of place at this stage).

SML

HOL Constant

Paths : 'a SET SET — (R — 'a) SET

Vre  Paths 7 =
{ f
\ f € (Og, 1) Continuous
A (Vzex < 0.=fz=f0.)
A (Voo 1. <z =fa=f1.)}
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We now consider path connectedness. Here is the definition of a path connected set.
SML

‘ declare_postfiz (400, " PathConnected");

HOL Constant

$PathConnected : 'a SET SET — 'a SET SET

Vre 7 PathConnected =

{ A

| A C Spacer T

A Ve yex € ANy €A

= Jfe f € Paths T
A (Vte ft e A
A f0 =z
A f1.=y}

SML

HOL Constant

LocallyPathConnected : 'a SET SET SET

|
‘ Te 1 € LocallyPathConnected

‘ Ve Aex € ANAcT=dBeB et ANz € BANBCAANB €1 PathConnected
Continuing along the way towards the elements of algebraic topology, we now consider the notion of
a homotopy. Here and elsewhere it is convenient to model functions continuous on the unit interval
by functions continuous on the whole line. This is not problematic since any function continuous on
the unit interval can be extended to be continuous everywhere.

Our homotopies are relative to a set X.
SML

‘ declare_postfix(400, "Homotopy");

HOL Constant

$Homotopy : 'a SET SET x 'a SET x'b SET SET — (la x R — 'b) SET

Vo X 7e (0, X, 7) Homotopy =
{H | H € ((oc xr Og), 7) Continuous N\ Vz s tex € X = H(z, s) = H(z, t)}

SML

‘ declare_postfiz (400, " Homotopic");

HOL Constant

$Homotopic : 'a SET SET x 'a SET x 'b SET SET — ('la —'b) — ('la — 'b) — BOOL

Vo X 7 f ge
((o, X, 7) Homotopic) f g <
JdHe H € (0, X, 7) Homotopy
A (Vze H(z, 0.) = f z) N (Vze H(z, 1.) = g x)
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4.1 The Path Groupoid

Now we define addition of paths:

SML

‘ declare_infiz (300, "+p");

HOL Constant

$+p: R —"a) > (R —-'a) > (R — a)

Vf ge f +p g = (Ateif t < 1/2 then f (2. xt) else g (2. (¢t — 1/2)))

The identity elements of the path space may be taken to be the constant paths of zero length:

HOL Constant

(R — "a)

\
|
‘ Vze Op x = (\te x)

Now we define the inverse of a path:
SML

HOL Constant

$~p: (R —"'a) > (R — 'a)

It is convenient in later definitions and theorems to have a name for the homotopy relation for paths
(namely homotopy with respect to the standard topology on the real line relative to the endpoints
of the unit interval).

HOL Constant

PathHomotopic : 'a SET SET — (R - 'a) - (R — "a) - BOOL

Vre PathHomotopic T = (Og, {0.; 1.}, 7) Homotopic

We prove some basic facts about homotopies and paths.

path_connected_ connected_thm path_0_path_thm
product_path_connected_thm path_plus_path_path_thm
homotopic_refl_thm minus_path_path_thm
homotopic_sym_thm path_plus_assoc_thm
homotopic_trans_thm path_plus_0_thm
homotopic_equiv_thm path_0_plus_thm
homotopy_C_thm path_plus_minus_thm
homotopic_C_thm path_minus_minus_thm
homotopic_continuous_thm path_minus_plus_thm
homotopic_comp_left_thm paths_space_t_thm
homotopic_comp_right_thm path_comp_ continuous_path_thm
homotopic_R_thm path_from_arc_thm
paths_continuous_thm loop_from_arc_thm
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We prove some facts about path connectedness and local path connectedness.

open_connected _path_connected _thm R_locally_path_connected _thm
open_interval _path_connected_thm product _locally _path_connected_thm

We define a standard retraction of the real line onto the unit interval. This is useful for constructing
paths (following our conventions) from arbitrary continuous functions on the real line.

HOL Constant

Iotal : R — R

\
|
‘ Iotal = (Aze if x < 0. then 0. else if © < 1. then z else 1.)
We define the path lifting property for a continuous function p from a space o to a space 7:
HOL Constant
PathLifting Property :
(la —'b) x'a SET SET x 'b SET SET) SET

VorT pe
(p, o, T) € PathLiftingProperty
& Vf ye
f € Paths T
A y € Spacer o
A py=7f20.
= (Jge
g € Paths o
A g0. =y

A (Vse p(g s) = [ )

We define the notion of homotopy lifting property for a pair comprising a topological space p and a
continuous mapping p from a topological o to a topological space 7 as follows:

HOL Constant
HomotopyLifting Property :
('a SET SET x (b = 'c ) x'b SET SET x '¢c SET SET) SET

Vp o T pe
(p, (p, o, 7)) € HomotopyLiftingProperty
& Vf He
f € (p, o) Continuous
A H € (p xp Og, 7) Continuous
A (V ze x € Spacer p = H(z, 0.) = p(f z))
= (ILe
L e (p xp Og, o) Continuous
A (V ze x € Spacer p = L(z, 0.) = f z)
A (V z se

22



‘ x € Spacer p
‘ A s € ClosedInterval 0. 1.
| = p(La. 8) = H(z, )

We prove that a covering project has the homotopy lifting property with respect to any space(i.e.,
it is a fibration) and hence also has the path lifting property.

covering_projection_fibration_thm covering_projection_path_lifting_thm

4.2 The Fundamental Group

We define a loop in a space 7 with basepoint x to be a path that takes the value x everywhere outside
the open interval (0,1).

HOL Constant

Loops : 'a SET SET x 'a — (R — 'a) SET

V7 ze Loops (1, z) = Paths TN {f | Ve t < 0.V 1. <t = ft =z}

The following function maps a representative of an element of the fundamental group to the element
it represents:

HOL Constant

FunGrpClass : 'a SET SET x'a - (R — 'a) - (R — 'a) SET

FunGrpClass(t, x) f = EquivClass (Loops(t, =), PathHomotopic T) f

The group multiplication in the fundamental group is defined by taking the path sum of representa-
tives.

HOL Constant

FunGrpTimes : 'a SET SET x 'a - (R = 'a) SET — (R = 'a) SET — (R — "a) SET

Vrxpqfge
7 € Topology N\ x € Spacer T A
p € Loops (1, x) / PathHomotopic T N q € Loops (1, ) / PathHomotopic T A
feprngeq=
FunGrpTimes(t, z) p ¢ = FunGrpClass(t, ) (f +p g)

The unit element in the fundamental group is the constant loop at the basepoint.

HOL Constant

FunGrpUnit : 'a SET SET x 'a - (R — 'a) SET

FunGrpUnit(t, ©) = FunGrpClass(t, z) (0p z)
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Then group inverse operation in the fundamental group is defined by taking the path negative of a
representative.

HOL Constant

FunGrpInverse : 'a SET SET x 'a - (R = 'a) SET — (R — 'a) SET

V7T xpfe
7 € Topology N x € Spacer T N p € Loops (1, x) /| PathHomotopic T N\ f € p =
FunGrpInverse(t, ) p = FunGrpClass(t, z) (~p f)

Putting the four components together gives us the fundamental group.

HOL Constant

FunGrp :'a SET SET x 'a - (R — "a) SET GROUP

VT ze
FunGrp(r, z) =
MEGROUP
Loops (1, z) / PathHomotopic T)

FunGrpUnit(r, ))
FunGrpInverse(r, ))

(
(FunGrpTimes(t, x))
(
(
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A THE THEORY topology

A.1 Parents

fincomb bin_rel

A.2 Children

metric_spaces

A.3 Constants

Topology 'a PPP

Spacer "a PP —'aP

$Closed "a PP —'aPP

$<r "aP—"aPP—'aPP

$xr "aPP—'bPP— (la+'b)P

17 ONE P P

I N—=s'aPP—'a LISTPP

$Continuous "a PP x b PP — (la = 'b) P

Hausdorff "a PP P

$Compact "a PP —"aPP

$Connected 'aPP —'aPP

$Homeomorphism
"aPPx'bPP — (a—'b)P

$Closure aPP—'alP—"'alP

$Interior aPP—'aP—'aP
Dziscreter aPPP
$CoveringProjection

"aPPx'bPP— (la—"'b)P
UniqueLifting Property

"a PP+ ((b—="c) x'bPP x'cPP)
Spacegk "aP+ N—='gP
$Skeleton N—-'aP+ N—'aP
Protocomplex 'a PP — ('la P+ N) P

!/

$Boundary "a PP —"aP—'aP
!/
/

A.4 Fixity

Right Infix 280:

<r
Right Infix 290:
XT
Right Infix 400:
Boundary Closure Interior Skeleton
Postfiz 400: Closed Connected CoveringProjection
Compact Continuous Homeomorphism
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A.5 Definitions

Topology F Topology
:{T
(VVeVCr=UVenr)
AN(VABeAceT ANBerT=ANDBEeT)}

Spacer FV rTe Spacer = 7
Closed VY 7e 7 Closed = {A|3 Be B € 7 AN A= Spacer 7\ B}
At FVX7te X <p7={AI3BeBerNA=BnJX}
X FYor
e 0 X7 T
= {C
IV 2y
e (z,y) e C
= (3 AB
e Aco
ANBerT
Nz e A
ANy €B
AN (A x B)C C)}
1r F 17 = {{}; {One}}
I FYTn

o Ir 07 ={{}{[}}

ANy w
eyc ANwe B = Consywe (C)))}
Continuous +FVYor
e (0, 7) Continuous
={s
|(V ze z € Spacer o0 = f x € Spacer T)
A (VA
e Aer1= {z|x € Spacer o N f x € A} € 0)}
Hausdorf f = Hausdorff
= {r
V 2y
o1 € Spacer T Ny € Spacer T AN x =1y
= (3AB
e Aer
ANBerT
Nz e A
ANy €B
AANB = {)}
Compact FVY T
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e 7 Compact
— {4
|A C Spacep T
NNV

e VCTANACU YV
= (3 We WC VAW E Finite N AC W))}

Connected FV T
o 7 Connected

:{A
|A C Spacer T
AN(YBC
e BeTNCeETNACBUCANANBNC={}

= ACBVACUC)}

Homeomorphism
FYorT
e (0, T) Homeomorphism
={f
If € (o, 1) Continuous
NEN,
e g € (1, o) Continuous
A (V ze x € Spacer 0 = g (f z) = 1)
AN (Y yoy e Spacer 7= f (g y) =vy))}
Interior
Boundary
Closure FVr1A

o 7 Interior A ={z|3 Be BeTANx € BANBCA}

A T Boundary A
~ {2
|z € Spacep T
N (V B
eBeTANzx€eB
S BNA={} A=B\A={})
A 7 Closure A
=N {B|B € 7 Closed N AN Spacer T C B}

Discreter b Discreter = {7|V Ae A C Spacer 7 = A € 7}

CoveringProjection
FYor
e (o, ) CoveringProjection
= {r
lp € (o, ) Continuous
ANV y
e y € Spacer T
= 3cC
eycC
NCerT
ANE3U
e U Co
A (Y
ez € Spacer o ANpx e C
= (FAezc ANA€U))

AV AB
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e Ac UNBeUAN-ANB={}
= A = B)
A(VA
e Ac U
=p
S (A 7 o,
C
<7 1) Homeomorphism))))}
UniqueLifting Property
FYporTp
e (p, p, o, T) € UniqueLiftingProperty
s Mfga
e f € (p, o) Continuous
A g € (p, o) Continuous
N (Y ze z € Spacer p = p (f z) = p (g z))
A a € Spacer p

ANga=Ffa
= (V ze x € Spacer p= gz = f x))
Spacek FV Ce Spacex C = J {c|3 me (¢, m) € C}
Skeleton FV n Cen Skeleton C = {c|3 me m < n A (¢, m) e C}

Protocomplex -V C 7
e (' € Protocomplex T
< (Y cme (¢, m) € C = ¢ €7 Closed)
A
ez € Spaceg C
= (31 (¢, m)
° (C, m) eC
A z € (m Skeleton C <p 7) Interior c))
ANV A
o A C Spaceg C
ANV cme(c, m)e C = AnNcert Closed)
= A € 7 Closed)
AN (Y em
e (¢c,m)e C
= {(d, )
(d,n) e CAn<mA-cnd={}}
€ Finite)

A.6 Theorems

enum_set_C_thm

FYABCeInsert ABC (C& Ae CANBCC
U-enum_set_clauses

FU{} ={} AN A BelJ (Insert A B)=AUU B)
N-enum_set_clauses

F N {} = Universe A (Vv A Be () (Insert A B) = AN B)
finite_itmage_thm

YV f Ae A € Finite = {y|3 ze z € ANy = f z} € Finite
C_size_thm FYabeacFinite NbCa=#b<H#a
C_size.thml +tVabeacFinite NbCaA—-b=a=#Db<H#a
finite_C_well_founded_thm
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FVYopa
e a € Finite N p a
= (JbeblaApbA(NVNcoecCbApc=c=0b))
empty_open_thm
FV 7e 7 € Topology = {} € 7
space_t_open_thm
FV re 7 € Topology = Spacer 7 € T
empty_closed_thm
FV re 7 € Topology = {} € 7 Closed
space_t_closed_thm
FV re 7 € Topology = Spacer 7 € 7 Closed
open_open_neighbourhood_thm
FVTA
e 7 € Topology
= (Aer
& Vzere A= (FBeBerAze BABCA)))
closed_open_neighbourhood_thm
FVrTA
o 7 € Topology
= (A € 7 Closed
< A C Spacer T
A (Y z
ez € Spacer T AN x € A
= (3BeBerTANze€BANBNA={}))
€_space_t_thm
FVY7TaxAex e ANA€EeT =1z € Spacer 7
€_closed_€_space_t_thm
FVY7TaxAex € AN A€ 7 Closed = x € Spacep T
closed_open_complement_thm
FV7T A
e 7 € Topology
= (A € 7 Closed
< A C Spacer T A Spacer T\ A € T)
U_open_.thm Y717 A BerT € Topology NAeTNBerT=AUBET
U-open_thm VY 1 Vet € Topology NV Crt=JVer
N_open_thm +FY 7 A Bert € Topology NAceTANBer=ANBer
N-open_thm +FVY 1V
o 7 € Topology N =V ={} ANV € Finite N\ V C 1
=NVer
N_closed_-thm +Y T A B
e 7 € Topology N A € T Closed N B € T Closed
= AN B €71 Closed
N-closed_thm +VY 1V
e 7 € Topology N =V ={} ANV C 1 Closed
=V € 7 Closed
U_closed_.thm +YVY T A B
o 7 € Topology N A € 7 Closed N B € 7 Closed
= AU B € 7 Closed
U-closed_-thm VY 1V
o 7 € Topology N =V ={} ANV € Finite N\ V C 7 Closed
= UJ V € 7 Closed
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finite_(_open_thm
FVYTV
o 7 € Topology NV C 7 A=V ={} ANV € Finite
=NVer
subspace_topology_thm
FVY 71 Xe 1 € Topology = X <7 7 € Topology
subspace_topology_space_t_thm
FVTA
o 7 € Topology = Spacer (A < 7) = AN Spacer T
subspace_topology_space_t_thml
FVTA
o 7 € Topology N A C Spacep T
= Spacer (A <r 1) = A
universe_subspace_topology_thm
FV re Universe <lp 7 = T
open_C_space_t_thm
FV 1 Ae 7 € Topology N A € 1 = A C Spacer T
subspace_topology_space_t_thm2
VY 7 Ae 7 € Topology N A € T = Spacer (A <p 7) = A
subspace_topology_space_t_thm3
FVTA
o 7 € Topology N A € 7 Closed = Spacer (A <r 7) = A
subspace_topology_closed_thm
FY X1
e 7 € Topology
= (X <r 7) Closed
= {A|3 Be B € 1 Closed N A= BnN X}
trivial_subspace_topology_thm
FV re 7 € Topology = Spacer 7 <lp T =T
C_subspace_topology_thm
FYTABe ACB= A<y BdpT=A<7pT
product_topology_thm
FYorT
e o € Topology N T € Topology = o X7 T € Topology
product_topology_space_t_thm
FYorT
e o € Topology N T € Topology
= Spacer (o X7 7) = (Spacer o x Spacer T)
subspace_product_subspace_thm
FYorT XY
e 0 € Topology N T € Topology
= (Xdro)xp (YQr7)=X xY)droxp T
unit_topology_thm
F 17 € Topology
space_t_unit_topology_thm
F Spacer 17 = Universe
power_topology_length_thm
FVY7nveve Spacer (LI nt)=H#v=mn
power_topology_thm
FVY 7 ner & Topology = Il n 7 € Topology
continuous_€_space_t_thm
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FVYorfz
o f € (0, 7) Continuous N\ © € Spacer o
= f x € Spacer T
continuous_open_thm
FYorTfA
o f € (0, 7) Continuous N A € T
= {z|z € Spacer o N f x € A} €0
continuous_closed_thm
FYorT
e (o, 7) Continuous
= {f
|(V ze © € Spacer 0 = f x € Spacer T)
A (YA
o A € 7 Closed
= {z|z € Spacer o N f x € A}
€ o Closed)}
subspace_continuous_thm
FYorT ABYf
e o € Topology
A 7 € Topology
A f € (o, T) Continuous
AN(NVzereA=fuxeB)
= f € (A <r o, B <p 1) Continuous
subspace_domain_continuous_thm
FYorT ABYf
e o € Topology N T € Topology N f € (o, ) Continuous
= f € (A Q7 o, 1) Continuous
empty_continuous_thm
FYorTf
e 0 € Topology N T € Topology
= f e ({} <r o, ) Continuous
subspace_range_continuous_thm
FYorf B
e o € Topology
A 7 € Topology
A f € (o, B <r 1) Continuous
= f € (o, 7) Continuous
subspace_range_continuous_<_thm
FYorTfB
e g € Topology N T € Topology N B C Spacer T
= (f € (o0, B <1 7) Continuous
& f € (o, 7) Continuous
A (Y ze x € Spacer 0 = f x© € B))
subspace_range_continuous_bc_thm
FYorf B
e o € Topology
A T € Topology
AN B C Spacer T
A (Y ze x € Spacer 0 = f = € B)
A f € (o, T) Continuous
= f € (o, B <7 1) Continuous
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const_continuous_thm
FYorTec
e 0 € Topology N T € Topology N ¢ € Spacer T
= (A ze ¢) € (0, 7) Continuous
td_continuous_thm
FV 7e 7 € Topology = (A ze z) € (1, ) Continuous
comp_continuous_thm
FYfgporT
o f € (p, o) Continuous
A g € (o, ) Continuous
A p € Topology
A o € Topology
A 7 € Topology
= (A ze g (f ) € (p, 7) Continuous
_continuous_thm
FYfgporT
e f € (p, o) Continuous
A g € (o, ) Continuous
A p € Topology
A o € Topology
A 1 € Topology
= g o f € (p, ) Continuous
left_proj_continuous_thm
FYor
e 0 € Topology N T € Topology
= (A (z, y)o z) € (o xp T, 0) Continuous
fst_continuous_thm
FYor
e g € Topology N T € Topology
= Fst € (o xr 7, 0) Continuous
right_proj_continuous_thm
FYor
e g € Topology N T € Topology
= (A (z, y)o y) € (0 xr 7, 7) Continuous
snd_continuous_thm
FYorT
e o € Topology N T € Topology
= Snd € (o x¢ 7, 7) Continuous
product_continuous_thm
FYfgporT
o f € (p, o) Continuous
A g € (p, 7) Continuous
A p € Topology
A o € Topology
A T € Topology
= (A ze (f 2,9 2)) € (p, 0 xp 7) Continuous
product_continuous_<_thm
FYfgporT
e p € Topology N\ o € Topology N T € Topology
= (A ze (f 2, g 2)) € (p, 0 xp 7) Continuous
< f € (p, o) Continuous
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A g € (p, 7) Continuous)
left_product_inj_continuous_thm
FYorTy
e 0 € Topology N T € Topology N y € Spacer T
= (A ze (z, y)) € (0, 0 xp 7) Continuous
right_product_inj_continuous_thm
FYorTz
e 0 € Topology N T € Topology N\ x € Spacer o
= (A ye (z, y)) € (1, 0 X7 7) Continuous
range_untt_topology_continuous_thm
FV 1 fer € Topology = f € (1, 1) Continuous
domain_unit_topology_continuous_thm
FVTf
e 7 € Topology N f One € Spacer T
= f e (17, 7) Continuous
diag_inj_continuous_thm
FVY T
e 7 € Topology
= (A ze (z, x)) € (1, 7 xp 7) Continuous
cond_continuous_thm
FYfgXor
o f € (0, 7) Continuous
A g € (o, ) Continuous
A
ez € Spacer o
A (VA
ez c ANA€Eo
= Jy=z
eycANzeANye X N=ze X))
= fz=gx)
A o € Topology
A 1 € Topology
= (A ze if z € X then f x else g x)
€ (o, 7) Continuous
closed_U_closed_continuous_thm
FYoTABfyg
e o € Topology
A 7 € Topology
AN A € o Closed
A B € o Closed
N f e (A <r o, ) Continuous
A g € (B <r o, 1) Continuous
ANNVzere ANB=fx=guzx)
= (A ze if © € A then f z else g )
€ (AU B) <r o, 1) Continuous
open_U_open_continuous_thm
FYoTABfyg
e o € Topology
A 7 € Topology
NAe€o
ANBeo
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A f € (A <r o, 1) Continuous
A g € (B <r o, 1) Continuous
ANNVzere ANB=fx=guzx)
= (A ze if x € A then [ z else g x)
€ (AU B) <7 o, 1) Continuous
compatible_ family_continuous_thm
FYor X UG
e o € Topology
A 7 € Topology
ANNVzezreX=UrzCX)
ANNVzereX=uzeUlUazx)
ANNVzereX=UzeXrp o)
ANz
ez c X = Guzec (Uzxz<<ro, 1) Continuous)
ANNVzyoze X NyelUz=Gyy=Gzy)
= (Aze Gz z) € (X <r o, 7) Continuous
compatible_ family_continuous_thml
FYor X UG
e o € Topology
A 7 € Topology
ANNuvre (v,r)e X = U (v, 1) C X)
ANNVMovre (v,r)e X = (v, 7)€ U (v, 1))

ANNMuvre (v,r)e X = U (v, r) € X < 0)
ANNMuor
o (v, 7)€ X
= G (v, r)
€ (U (v, r) <p o, 7) Continuous)
VMovrws
o (v, 7)€ X A (w,s) € U (v, 1)
= G (w, s) (w, s) = G (v, r) (w, s))
= (A (v, r)e G (v, r) (v, 1))

same_on_space_continuous_thm
FYoTfyg
e o € Topology
A T € Topology
A g € (o, 7) Continuous
A (VY ze z € Spacer 0 = f x = g x)
= f € (o, ) Continuous
same_on_space_continuous_thml
FYorfyg
e o € Topology
A 1 € Topology
A (VY ze z € Spacer 0 = f x = g x)
= (f € (o, 7) Continuous < g € (o, 7) Continuous)
subspace_product_continuous_thm
FYporTfAB
e p € Topology
A o € Topology
A 1 € Topology
A= (A x B) = {}
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Spacer p
Spacer o
(f € (A x B) <p p x1 o, 1) Continuous
<& (Vabeaec ANDbe B = f (a, b) € Spacer T)
ANNVabFE
eac ANbEBANf(a, b)) e ENE€ET
= 3CD
eaqcC
NCep
ANbeD
ANDeo
ANNzy
ezc ANCAyeBND
= [ (z, y) € E))))
subspace_topology_hausdor ff_thm
FV1TX
e 7 € Topology N T € Hausdorff = X <r 7 € Hausdorff
product_topology_hausdor ff_thm
FYor
e o € Topology
A 1 € Topology
A o € Hausdorff
A T € Hausdorff
= o0 Xp 7 € Hausdorff
punctured_hausdor f f _thm
FVY71T Xz
e 7 € Topology
A T € Hausdorff
AN X C Spacer T
ANz € Spacer T
= X \{zteXarr
compact_topological _thm
FVY71TX
e 7 € Topology
= (X € 7 Compact & X € (X <r 1) Compact)
image_compact_thm
FVYfCor
o f € (0, 7) Continuous
AN C € o Compact
A o € Topology
A 1 € Topology
= {y|Jzexzec CNy=faz} et Compact

N A
AN B
= (f

U_compact_thm
FYCDo
o ' € g Compact N D € o Compact \ o € Topology
= CUD € o Compact
compact_closed_thm
FVY71C
e 7 € Topology N 7 € Hausdorff A C € T Compact
= C € 7 Closed
closed_C_compact_thm
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FVYTBC
e 7 € Topology
A T € Hausdorff
AN C € 1 Compact
AN B € 1 Closed
ANBCC
= B € 7 Compact
compact_basis_thm
FYUTX
o 7 € Topology
ANUCT
ANV Az
erc ANAceT=(3Beze BANBCANABEeU))
AN X C Spacep T
ANV
e VCUANXCUYV
= (3 We W C VAW e Finite N\ X CJ W))
= X € 7 Compact
compact_basis_product_topology_thm
FYorT X
e o € Topology
A 7 € Topology
AN X C Spacep (0 X1 T)
ANV
e VCoxXxprT
A (Y D
eDcV
= (3B C
eBecoNCerTND=(Bx ()
ANXCUYV
= (I We W C VAW € Finite N X CU W))
= X € (o x7 1) Compact
product_compact_thm
FVYX Yor
e X € o Compact
ANY € 7 Compact
A o € Topology
A 7 € Topology
= (X x Y) € (o xp 1) Compact
compact_sequentially_compact_thm
FV7TXs
o 7 € Topology N X € 7 Compact N (VY me s m € X)
= 3z
ez c X
A (VA
e AdAecT Nz e A
= (VmeJdnem < nAsnecA)))
connected_topological _thm
FV1TX
o 7 € Topology
= (X € 7 Connected < X € (X <7 1) Connected)
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connected_closed_thm
FVvrX
o 7 Connected
= {4
|A C Spacer T
AN BC
e B € 1 Closed
A C € 1 Closed
ANACBUC
AANBNC={}
= ACBVACUC)}
connected_pointwise_thm
FVrX
e 7 € Topology
= (X € 7 Connected
s Vay
exc X ANyeX
= 3Y
e Y C X
ANz el
ANyeY
N'Y € 1 Connected)))
connected_pointwise_bc_thm
FVrX
o 7 € Topology
ANNMzy
ez c X NyelX
= 3Y
e YC X ANzeYANyeY ANY er Connected))
= X € 7 Connected
empty_connected_thm
FV re 7 € Topology = {} € 7 Connected
singleton_connected_thm
FVYrT12x
e 7 € Topology N\ x € Spacer T = {z} € T Connected
image_connected_thm
FYfXorT
o f € (0, 7) Continuous
AN X € o Connected
A o € Topology
A 1 € Topology
= {ylFzez e X Ny =fuaz} e Connected
U_connected_thm
FYCDo
e o € Topology
A C € o Connected
AN D € o Connected
A= CnNnD={}
= C U D € o Connected
product_connected_thm
FYX Yor
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e X € o Connected
AN'Y € 7 Connected
A o € Topology
A 1 € Topology
= (X x Y) € (6 xp 7) Connected
U_open_connected_thm

FYABo

e Aco
AN—-A={}
ANBé€Eco
A - B={}

AN AU B € o Connected
=-ANB={}
U_closed_connected_thm
FYABo
e A € o Closed
Ao A= {}
A B € o Closed
A= B = {)
AN AU B € o Connected
=-ANB={}
U_U_connected_thm
FYCDEGC&o
e o € Topology
AN C € o Connected
AN D € o Connected
AN E € o Connected
A= CnD={}
AN=-DnNE={}
= CUDUE € o Connected
cover_connected_thm
FYCUo
e o € Topology
AN C € o Connected
A U C o Connected
ANCCUU
=U{DIDe UAN—-CnND={}} € o Connected
separation_thm
VYT CD
e 7 € Topology
AN C € 7 Connected
A D € 7 Connected
A= CUD e 1 Connected
= (3 AB
e AcT
ANBer
A(CUD NANB={}
ANCCA
AN D C B)
finite_separation_thm
FVYrUA

-
C
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e 7 € Topology
A U € Finite
AN-{}eU
A U C 7 Connected
NAeU
A (V B
e Bec UN—-A=DB= - AU B e 7 Connected)
= (3CD
e (e
ANDer
NACC
AU (U {4)) C
AUUNCAND
connected_extension_thm
FVYTUB
o 7 € Topology
AN U € Finite
N-{}eU
A U C 7 Connected
A B € 17 Connected
AU U U B e 1 Connected
A-UUCB
= (J Ae A€ UNAUB €71 Connected N =~ A C B)
connected_chain_thm
FYrTUA
o 7 € Topology
A U € Finite
AN-{}eU
A U C 7 Connected
AU U € 1 Connected
NAeU
= 3 Ln
o L 0= [A]
A (VY me | (Elems (L m)) € 7 Connected)
A (VY me Elems (L m) C U)
A (Y m
em < n
= (3B
e BecU
A= B CU (Elems (L m))
AL (m+ 1)= Cons B (L m)))
AU U =U (Elems (L n))
A (Y me L m € Distinct))

D
=)

connected_triad_thm
FYTABC
e 7 € Topology
AN A € 7 Connected
A B € 17 Connected
A C € 7 Connected
ANAUBUC €71 Connected
= AU C € 7 Connected V B U C € 7 Connected
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connected_step_thm
FYrUA
e 7 € Topology
AN U € Finite
A U C 7 Connected
AU U € 7 Connected
NAeU
=A=UU
V3BV
e BecU
AN-B=A
ANV CU
AU V er Connected
AN-BCUYV
ANUU=BuUUYV)
td_homomorphism_thm
FV re 7 € Topology = (X ze z) € (1, T) Homeomorphism
comp_homeomorphism_thm
FYfgporT
o f € (p, o) Homeomorphism
A g € (o, 7) Homeomorphism
A p € Topology
A o € Topology
A 7 € Topology
= (A ze g (f x)) € (p, T) Homeomorphism
product_homeomorphism_thm
FYfgpoTw
e [ € (p, o) Homeomorphism
A g € (7, v) Homeomorphism
A p € Topology
A o € Topology
A 1 € Topology
A v € Topology
= (A (z, y)o (f z, 9 y))
€ (p xp 7, 0 xp v) Homeomorphism
product_unit_homeomorphism_thm
FY T
o 7 € Topology
= (A ze (z, One)) € (1, 7 xp 17) Homeomorphism
swap_homeomorphism_thm
FYor
e g € Topology N T € Topology
= (A (z, y)o (y, 2))
€ (o xp 7, 7 X1 o) Homeomorphism
homeomorphism_open_mapping_thm
FYfoTA
e f € (0, T) Homeomorphism
NAeao
A o € Topology
A 1 € Topology
={yJrezec ANy=fza}ter
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homeomorphism_closed_mapping_thm
FYfoTA
e f € (o, T) Homeomorphism
N A € o Closed
A o € Topology
A 1 € Topology
= {yFzez e ANy =Ffa} e Closed
homeomorphism_one_one_thm
FYfoTtzy
e f € (0, 7) Homeomorphism
A o € Topology
A 1T € Topology
ANz € Spacer o
ANy € Spacer o
Nfz=F[y
=>z=y
homeomorphism_onto_thm
FYfoTy
o f € (0, T) Homeomorphism
A o € Topology
A 1 € Topology
ANy € Spacer T
= (3 ze x € Spacep o Ny = f x)
homeomorphism_one_one_open_mapping_thm
FYforT
e o € Topology N\ T € Topology
= (f € (o, 7) Homeomorphism

s Mzuy

ez € Spacer o Ny € Spacer o N fxz =fuy
=z =1y)

Ay

e y € Spacer T
= (Jzex € Spacer o Ny = f x))
A f € (o, T) Continuous
A (YA
eAdco={yldrexzc ANy=fuz}eT))
homeomorphism_one_one_closed_mapping_thm
FYfor
e o € Topology N T € Topology
= (f € (o, 7) Homeomorphism

s Vaxy

ez € Spacer o Ny € Spacer o Nfx=Ffy
=z =y)

A(Vy

e y € Spacer T
= (Jzex € Spacer o Ny = f x))
A f € (o, T) Continuous
A (YA
e A € o Closed
= {y|Fzez e ANy =7fz}er Closed))
C_compact_homeomorphism_thm
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FYforBC
e o € Topology
A o € Hausdorff
A 1 € Topology
A 7 € Hausdorff
A C € o Compact
ANBCC
A f € (o, T) Continuous
ANNVzyoez e BANye CANfz=fy=2x=y)
= f
S (B 7 O,
{yFzez € BNy =fz}
<1 7) Homeomorphism
interior_boundary_C_space_t_thm
FV7T A
e 7 Interior A C Spacep T A T Boundary A C Spacer T
intertor_C_thm
FV 71 Ae 7 Intertor A C A
boundary_interior_thm
FVTA
o 7 € Topology
= 7 Boundary A
= Spacep T
\ (7 Interior A U 7 Interior (Spacer 7 \ A))
tnterior_X_thm
FYoTAB
e (0 xp 1) Interior (A x B)
= (o Interior A x T Interior B)
open_<>_disjoint_boundary_thm
FV7T A
e 7 € Topology
= (AeTt AC Spacer 7 AN AN T Boundary A = {})
closed_<_boundary_-C_thm
FV7T A
e 7 € Topology
= (A € 7 Closed
< A C Spacer 7 A T Boundary A C A)
interior_|J_-thm
FV7T A
e 7 € Topology = 7 Interior A =J {B|B € 7 A B C A}
closure_interior_complement_thm
FVTA
o 7 € Topology
= 7 Closure A
= Spacep 7 \ T Interior (Spacer T \ A)
open_singletons_discrete_thm
FVY T
e 7 € Topology
= (7 € Discreter
< (V ze z € Spacer 7 = {z} € 1))
discrete_t_continuous_thm

42



FYorTf
e g € Topology N T € Topology N\ o € Discreter
= (f € (o, 7) Continuous
& (V ze z € Spacer 0 = f x € Spacer T))
connected_discrete_continuous_thm
FYorTf
e o € Topology
A 1 € Topology
A Spacer o € o Connected
N T € Discreter
A f € (o, 7) Continuous
= (J ae V ze z € Spacer 0 = f = = a)
covering_projection_continuous_thm
FYorTop
e o € Topology
A 7 € Topology
A p € (o, ) CoveringProjection
= p € (o, 7) Continuous
unique_li fting_thm
FVYporTop
e p € Topology
A o € Topology
A 1T € Topology
A Spacer p € p Connected
A p € (o, 1) CoveringProjection
= (p, p, 0, 7) € UniqueLiftingProperty
unique_li fting_bc_thm
FVYpoTrpfga
e p € Topology
A o € Topology
A 7 € Topology
A Spacer p € p Connected
A p € (o, 1) CoveringProjection
A f € (p, o) Continuous
A g € (p, o) Continuous
A (Y ze x € Spacer p=p (f ) = p (g x))
A a € Spacer p
ANga=Ffa
= (Vze z € Spacer p= gz = f x)
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B THE THEORY metric_spaces
B.1 Parents

trees  analysis topology

B.2 Children

topology R

B.3 Constants

Metric (la x'a - R)P
$MetricTopology
(la x'a -R)—=>"aPP
ListMetric ('la x'a - R) = 'a LIST x 'a LIST — R
B.4 Fixity
Postfix 400: MetricT opology

B.5 Definitions

Metric = Metric
={D
I(Vx ye 0. < D (z, y))
A(YoyeD (s, y) =0 &=y
ANV azyeD(z,y) =D (y, z))
AN(VzyzeD(z,2z)<D(z,y)+ Dy, 2)}
M etricT opology
FV D
o D MetricTopology
= {4
vV z
ez c A

= (Je
e (. <eN(NVyeD(z,y) <e=yecA)}
ListMetric FYDzvyw
e ListMetric D ([], []) = 0.
A ListMetric D (Cons z v, [])
= 1.+ D (z, Arbitrary) + ListMetric D (v, [])
A ListMetric D ([], Cons y w)
= 1. + D (Arbitrary, y) + ListMetric D ([], w)
A ListMetric D (Cons z v, Cons y w)
= D (z, y) + ListMetric D (v, w)
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B.6 Theorems

metric_topology_thm
FV De D € Metric = D MetricTopology € Topology
space_t_metric_topology_thm
FV D
e D € Metric = Spacep (D MetricTopology) = Universe
open_ball_open_thm
FVYDex
e (). < e ND e Metric
= {y|D (=, y) < e} € D MetricTopology
open_ball_neighbourhood_thm
FVYDeze 0. <eANDe Metric= x € {y|D (z, y) < e}
metric_topology_hausdor ff_thm

YV De D € Metric = D MetricTopology € Hausdorff
product_metric_thm

VY DI D2
e D1 € Metric AN D2 € Metric
= (A ((z1, 22), y1, y2)
e DI (z1, y1) + D2 (22, y2))
€ Metric
product_metric_topology_thm
FY D1 D2
e D1 € Metric N D2 € Metric
= (A ((x1, 22), y1, y2)
o DI (x1, y1) + D2 (22, y2)) MetricTopology

= D1 MetricTopology xp D2 MetricTopology
lebesgue_number_thm

FYD XU
e D € Metric
AN X € D MetricTopology Compact
A U C D MetricTopology
ANXCUU
= (Je
o (. <e
A (Y z
ez c X
= (3 A
ez c A
NAelU
A(Vye D (z,y) <e=ycE A)))
collar_thm FVYDXU
e D € Metric
AN X € D MetricTopology Compact
N A € D MetricTopology
ANXCA
= (e
e (. <e
ANNYzy
ez € X Ny€ Spacer T AN D (z,y) < e
=y € 4))
list_metric_.nonneg_thm
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FV D ze D € Metric = 0. < ListMetric D (z, y)
list_metric_.sym_thm
FYDzy
e D € Metric
= ListMetric D (z, y) = ListMetric D (y, x)
list_metric_metric_.thm
Y De D € Metric = ListMetric D € Metric
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C THE THEORY topology_R

C.1 Parents

C.2 Children

metric_spaces

homotopy

C.3 Constants

Dpgr

Dpgo

$Space
$Cube
$O0penCube
$Sphere

C.4 Aliases
Or
C.5 Fixity

Postfiz 400:

RxR-—-R
RxR)xRxR—=>R
N—->RLISTPP
N—->RLISTPP
N—->RLISTPP
N—->RLISTPP

Openp : RPP

Cube OpenCube Space Sphere

C.6 Definitions

Dgr
Dgrs

Space

Cube

OpenCube

Sphere

FVYaxye Di (z,y) = Abs (y — )
FVY 2l yl z2 y2
i DR,Q ((LL’Z, yj)v 502, y?)
= Abs (22 — z1) + Abs (y2 — yl)

FVn
e n Space
= {v|# v = n} < ListMetric Dr MetricTopology
FVn
o n Cube
= {v|Elems v C ClosedInterval 0. 1.} <7 n Space
FVan

e n OpenCube
= {v|Elems v C OpenlInterval 0. 1.} <p n Space
FVn

e n Sphere = {v|= Elems v N {0.; 1.} = {}} <r n Cube
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C.7 Theorems

d_R_2_def1 Y oayl xy2
e Dpo (zyl, zy2)
= Abs (Fst zy2 — Fst xyl)
+ Abs (Snd zy2 — Snd zyl)
open_R_topology_thm
F Ogr € Topology
space_t_R_thm
F Spacer Ogr = Universe
closed_closed_R_thm
F Ogr Closed = Closed g
compact_compact_R_thm
F Or Compact = Compactp
open_R_const_continuous_thm
FVY o ce o€ Topology = (A xe ¢) € (o, Or) Continuous
open_R_id_continuous_thm
F (A ze z) € (Og, Og) Continuous
subspace_open_thm
FVrTA
o 7 € Topology N A € T
= (VBeBe Adr Tt BetABCA)
subspace_R_open_thm
FVYAe Ac Op = (VWBe Be A<y Or < Be€ Og AN B C A)
open_R_sym_open_interval_th
FV A
e Ac Op
< (Va
er € A
= (3d
e 0. < d A OpenInterval (z — d) (x + d) C A))
€_sym_open_interval_thm
FYzyd
e x € Openlnterval (y — d) (y + d) & Abs (z — y) < d
subspace_R_space_t_thm
FV Xe Spacer (X <7 Ogp) = X
subspace_R_topology_thm
FV Xe X <7 Opr € Topology
R_continuous_cts_thm
FVYAf
e A € Op
= (f € (A <r Opg, Or) Continuous
<& Vzex e A= f Cls x))
continuous_cts_at_R_thm
FV fef e (Or, Or) Continuous < (¥ ze f Cts x)
cts_at_R_continuous_thm
FV fe (Vzef Cts z) < f € (O, Or) Continuous
universe_R_connected_thm
F Universe € Ogr Connected
closed_interval_connected_thm
FVazyex <y = ClosedInterval x y € Or Connected
connected_R_thm
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FV X
e X € O Connected
s Vzyz
ezceXNyeXNz<zANz<y=2z¢€lX)
R_x_R_topology_thm
F Or € Topology = Or x1 Or € Topology
continuous_R_X_R_R_thm
FVY X f
e X € Op x7 Op
= (f € (X <97 Or x7 Og, Or) Continuous
s VMzyuo
o f (u, v) € OpenInterval z y A (u, v) € X
= (Jabcd
e u € Openlnterval a b
A v € Openlnterval ¢ d
AN (VY st
e s € Openlinterval a b
A t € Openlnterval ¢ d
A(s,t)e X
= f (s, t) € Openlnterval z y))))
continuous_ R_X_R_R_thml
FVf
e f € (Or xp Opg, Or) Continuous
s NVMzyuov
e f (u, v) € OpenInterval = y
= Jabcd
o u € Openlnterval a b
A v € OpenInterval ¢ d
AN(Vst
e s € Openlnterval a b
A t € Openlnterval ¢ d
= f (s, t) € Openlnterval = y)))

continuous_R_X_R_R_thm3
FVY X f
e X € Op X7 Op
= (f € (X <p Op x7 Og, Og) Continuous
s MVMeuw
e (. <eA (u,v)eX
= (3 dI d2
o (. < dI
AN 0. < d2
A (Y st
o Abs (s + ~ u) < dI
N Abs (t + ~ v) < d2
A (s, t)e X
= Abs (f (5, 1) + ~ (F (u, v)))
< e))))
continuous_R_X_R_R_thm4
FVf
e f € (Or x7 Og, Ogr) Continuous
s Meuw
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e (). <e

= (3 d1 d2

e (. < di
A0 < d2
AN(V st

o Abs (s + ~u) < dl AN Abs (t + ~ v) < d2
= Abs (f (s, 8) + ~ (f (u, v))
< e)))
plus_continuous_R_x_R_thm
F Uncurry $+ € (Or x7 Ogr, Og) Continuous
times_continuous_R_X_R_thm
F Uncurry $x € (O xp Og, Og) Continuous
sqrt_continuous_thm
F Sqrt € ({z]|0. < z} <1 Opr, Op) Continuous
cond_continuous_R_thm
FYbcfgorT
e o € Topology
A 7 € Topology
A ¢ € (o, Ogr) Continuous
A f € (o, T) Continuous
A g € (o, ) Continuous
AN (W zex € Spacer o Ncx=b=fzx=gux)
= (Azeif cx < b then f x else g x)
€ (o, 1) Continuous
d_R_metric_thm
F Dgr € Metric
d_R_open_R_thm
F Dgr MetricTopology = Opg
d_R_2_metric.thm
F Dgre € Metric
d_R_2_open_R_X_open_R_thm
F Dgro MetricTopology = Or x7 Opg
open_R_hausdor ff_thm
F Or € Hausdorff
open_R_X_open_R_hausdorff_thm
F Or X7 Og € Hausdorff
R_lebesgue_number_thm
FYXU
e X € Compactr N U C O ANX CUU
= (Je
e (). <e
A (Y z
ez c X
= (3 4
ez c A
NAelU
AN (VY ye Abs (y — z) < e =y € A))))
closed_interval_lebesgue_number_thm
FYyzU
e U C Opr A ClosedInterval y z C |y U
= (Je
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e (). <e
A (Y
o 1 € ClosedInterval y z
= (34
ez c A
NAelU
ANV ye Abs (y —z) < e=y € A))))

dissect_unit_interval_thm

FVaz
o (). <x
= (dnt
e () <n
ANt 0 =20.
ANtn=1

ANNVijoei<j=1i<ty)
ANNViet (i+1)—ti<uz))
product_interval_cover_thml
FYT Uz
o 7 € Topology
ANUCT X OR
ANz € Spacer T
A (Y s
e s € ClosedInterval 0. 1.
= (3 Be (z,s) €« BABeUl))
= 3ntA
e {0 =0.
ANtn=1.
ANNVieti<t(i+ 1))
Nz e A
NAerT
A (Vi
o < n
= (3B
e BecU
A (A
x ClosedInterval

tnc_seq-.thm +FVY tij
e (Vieti<t(i+ 1) Vijei<j=ti<ty)
product_interval_cover_thm
FVY71TUzx
e 7 € Topology
ANUCT xp Op
ANz € Spacep T
A (Y s
e s € ClosedInterval 0. 1.
= (3 Be (z,s) € BABeU))
= 3ntA
ot 0 =0.
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ANtn=1.
ANNVijoei<j=1i<ty)
ANz e A
ANAerT
A (Vi
e < n
= (3B
e BeU
A (A
x ClosedInterval
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D THE THEORY homotopy

D.1 Parents

groups topology_R

D.2 Constants

Paths "aPP— (R—"a)P
$PathConnected
"aPP—'aPP
LocallyPathConnected
"a PP P
$Homotopy 'aPPx'aPx'bPP— (la xR —="b)P
$Homotopic 'aPPx'aP x'bPP — (la —'b) - (la = 'b) = BOOL

$+p R—-'a) > R—="a) 2R —="a
Op 'a 5 R = 'a
~p (R—"a) >R —="a
Path Homotopic
'"a PP — (R—"'a) » (R = 'a) - BOOL
Iotal R—-R
PathL: fting Property

(la—='0) < ((aPP x'bPP)
HomotopyLifting Property

"aPP+ ((b—="¢c) x'bPP x'cPP)

X

Loops '"aPPx'a— (R—"a)P
FunGrpClass '"a PP x'a - (R —="a) > (R —"a) P
FunGrpTimes a PP x’'a > R—=>"a) P> (R—="a) P> R—"a)P
FunGrpUnit 'a PP x'a — (R —"'a)P
FunGrplInverse

"aPPx'a— R—="a) P> (R—"a)P
FunGrp "a PP x'a - (R —"a) P GROUP
D.3 Fixity
Right Infix 300:

+p
Postfiz 400: Homotopic Homotopy PathConnected
D.4 Definitions
Paths VT

e Paths T

={f
If € (Og, 1) Continuous
ANNVzer <0 =fz=f0.)
ANNVzel. <z=fzx=f1
PathConnected
FV T
o 7 PathConnected
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={A
|A C Spacer T

ANNYzy
ez cANye A
= 3f
e [ € Paths T
ANV tefteA
ANfO =z
ANf1.o=y)}
LocallyPathConnected
YT
e 7 € LocallyPathConnected
s Vo A
e c ANAET
= (3B
e BerT
ANz € B
ANBCA

A B € 7 PathConnected))
Homotopy FYo Xt
e (0, X, 7) Homotopy
— (H
|H € (o0 xp Og, 7) Continuous
ANNVzstexe X =H(z,s)=H (2, 1))}
Homotopic FYoXT1fyg
e ((o, X, 7) Homotopic) f g
< (3 H
e H € (0, X, 7) Homotopy
NN ze H (z,0.)=fz)
ANV ze H (z,1.)=g x))

+p EYfyg
ef+pry

=(\t

eif t <1 /2

then f (2. * t)

else g (2. % (t — 1/ 2)))
Op FYze O0p z = () tex)
~p FVYfer~p f=(Ntef (1.—1))
PathHomotopic

F V Te PathHomotopic T = (Og, {0.; 1.}, T) Homotopic
Iotal F Iotal
=z
o if © < 0. then 0. else if x < 1. then z else 1.)
PathLifting Property
FYorTop
e (p, o, T) € PathLiftingProperty
& Vfy
o f € Paths T Ny € Spacer o AN py=7f 0.
=3y
e g € Paths o
ANgO0. =y
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A(Vsep(gs)=F[s))
HomotopyLi fting Property
FVYporTop
e (p, p, o, T) € HomotopyLiftingProperty
< (VfH
e [ € (p, o) Continuous
AN H € (p xp Og, ) Continuous
A
oz € Spacer p = H (z, 0.) = p (f z))
= (3L
o L € (p xp Og, o) Continuous
A (V ze z € Spacer p = L (z, 0.) = f )
ANNMxs
ez € Spacer p
A s € ClosedInterval 0. 1.
= (L (3 9) = H (1, 9)))
Loops FVYTx
e Loops (T, x)
= Paths TN {fVtet < 0.V 1.<t=ft=uz}
FunGrpClass -V 1 x f
o FunGrpClass (1, x) f
= FEquivClass (Loops (7, x), PathHomotopic T) f
FunGrpTimes = ConstSpec
(A FunGrpTimes’
eVTzIpqfy
o 7 € Topology
ANz € Spacer T
A p € Loops (1, x) / PathHomotopic T
A q € Loops (1, z) / PathHomotopic T
ANfep
NgeEeq
= FunGrpTimes' (1, z) p q
= FunGrpClass (1, z) (f +p 9))
FunGrpTimes
FunGrpUnit FV 7 xze FunGrpUnit (1, z) = FunGrpClass (1, z) (0Op z)
FunGrplInverse
F ConstSpec
(A FunGrpInverse'
eVrTuxpf
o 7 € Topology
ANz € Spacer T
A p € Loops (7, ) / PathHomotopic T
ANfep
= FunGrplnverse’ (1, z) p
= FunGrpClass (7, z) (~p f))
FunGrplnverse
FunGrp FVYTz
e FunGrp (1, z)
= MkEGROUP
(Loops (1, x) / PathHomotopic T)
(PunGrpTimes (7, ))
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(FunGrpUnit (1, x))
(FunGrplnverse (T, x))

D.5 Theorems

path_connected_connected_thm
FV7rX
e 7 € Topology N X € 7 PathConnected
= X € 7 Connected
product_path_connected_thm
FYorT XY
e o € Topology
A 1 € Topology
A X € o PathConnected
A'Y € 1 PathConnected
= (X x Y) € (¢ xp 1) PathConnected
homotopic_refl_thm
FVYoXTf
e 0 € Topology N T € Topology
= Refl ((o, 7) Continuous, (o, X, 7) Homotopic)
homotopic_sym_thm
FYoXT1fyg
e g € Topology N T € Topology
= Sym ((o, 7) Continuous, (o, X, 7) Homotopic)
homotopic_trans_thm
FYoXTfgh
e g € Topology N\ T € Topology
= Trans ((o, 7) Continuous, (o, X, 7) Homotopic)
homotopic_equiv_thm
FYoXTfgh
e o € Topology N T € Topology
= Fquiv ((o, 7) Continuous, (o, X, 7) Homotopic)
homotopy_C_thm
FYoX YTH
e o € Topology
A 7 € Topology
N H € (o, X, 7) Homotopy
ANY CX
= H € (0, Y, 7) Homotopy
homotopic_C_thm
FYo X YT1fy
e o € Topology
A 7 € Topology
A ((o, X, T) Homotopic) [ g
ANY CX
= ((o, Y, 7) Homotopic) f g
homotopic_continuous_thm
FYorT X fyg
e o € Topology
A T € Topology
A ((o, X, 7) Homotopic) f g
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= f € (o, 7) Continuous A g € (o, 7) Continuous
homotopic_.comp_left_thm
FVYporTXfgh
e p € Topology
A o € Topology
A 1 € Topology
A ((p, X, o) Homotopic) f g
A h € (o, ) Continuous
= ((p, X, 7) Homotopic)
(A ze h (f z))
(A ze h (g o))
homotopic_comp_right_thm
FVYporT X fgh
e p € Topology
A o € Topology
A 7 € Topology
A ((o, X, T) Homotopic) [ g
A h € (p, o) Continuous
= ((p, {x!h z € X}, 7) Homotopic)
(X ze f (h 2))
(A ze g (h z))
homotopic_R_thm
FVYTfyg
e 7 € Topology
A f € (1, Or) Continuous
A g € (1, Ogr) Continuous
= ((7, {z|g x = f z}, Or) Homotopic) f g
half_open_interval_retract_thm
FVYob
o (A seif s < b then s else b)
€ (Og, {s|s < b} < Opr) Continuous
closed_interval_retract_-thm
FYab
ea<bh
= (As
o if s < athen a else if s < b then s else b)
€ (Og, ClosedInterval a b <p Opr) Continuous
X _closed_interval_retract_-thm
FY7TXab
o 7 € Topology N X C Spacer 7 AN a < b
= (A (z, 9)
[ ) (I’
(if s <a
then a
else if s < b
then s
else b)))
€ (X x Universe) <t T xp ORg,
(X x ClosedInterval a b)
dr 7 xp Og) Continuous
closed_interval_extension_thm
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FVpofXab
e p € Topology
A o € Topology
AN X C Spacer p
ANa<b
Af
€ ((X x ClosedInterval a b) <7 p X7 ORg,
o) Continuous
=3y
® g
€ ((X x Universe) <t p x1 Og,
o) Continuous
NNz s
ez € X As € ClosedInterval a b

=9 (.’E, s) = [ (z, 8)))
X _tnterval_glueing_thm
FVYpofgXabd
e p € Topology
A o € Topology
AN X C Spacer p
ANa<b
ANb<c¢
NS
€ ((X x ClosedInterval a b) <7 p X7 Opg,
o) Continuous
Ng
€ ((X x ClosedInterval b ¢) <p p xp Og,
o) Continuous
ANNVzereX=f(zx,b)=g(z0))
= (3 h
o h
€ ((X x ClosedInterval a c) <7 p X7 ORg,
o) Continuous
ANz s
ez € X As € ClosedInterval a b
= h (SC, 5) =f (:Ev ‘9))
NNz s
oz € X A s € ClosedInterval b ¢
= h (:C, 5) =9 (I, S)))
paths_continuous_thm
FVYTf
o 7 € Topology N f € Paths T
= f € (Og, 1) Continuous
paths_representative_thm
FYTf
e 7 € Topology N f € (O, T7) Continuous
= (31 q
e g € Paths 7
A (Vs
e s € ClosedInterval 0. 1. = g s = [ s))
path_0_path_thm
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FVY 1 xze 7 € Topology N © € Spacer 7 = Op x € Paths T
path_plus_path_path_thm
FYTfyg
o 7 € Topology
A f € Paths T
A g € Paths T
ANg0.=f1.
= f +p g € Paths 7
minus_path_path_thm
FV 71 fe 1 € Topology N\ f € Paths T = ~p f € Paths T
path_plus_assoc_thm
EFYTfgh
e 7 € Topology
A f € Paths T
A g € Paths T
A h € Paths T
ANg0. =f1.
AhO =gqgl.
= PathHomotopic
T
((f +p g) +p h)
(f tp g +tp h)
path_plus_0_thm
FVYTfz
o 7 € Topology N\ f € Paths T AN f 1. ==z
= PathHomotopic 7 (f +p Op ) f
path_0_plus_thm
FYTfeo
o 7 € Topology N f € Paths T AN f 0. =«
= PathHomotopic 7 (0p = +p f) f
path_plus_minus_thm
FYTfuo
e 7 € Topology N f € Paths T AN f 0. =z
= PathHomotopic 7 (f +p ~p f) (0p )
path_minus_minus_thm
EV fer~p (~pf)=f
path_minus_plus_thm
FYTfz
o 7 € Topology N f € Paths T AN f 1. =«
= PathHomotopic T (~p f +p f) (0p x)
paths_space_t_thm
FY 71 faxef e Paths T = f x € Spacer T
path_comp_continuous_path_thm
FYorTfg
e 0 € Topology
A 1 € Topology
A f € Paths o
A g € (o, T) Continuous
= (A ze g (f x)) € Paths T
path_from_arc_thm
FVTf
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o 7 € Topology N f € (Og, ) Continuous
= (At
o if t < 0.
then f 0.
else if t < 1.
then f t
else f 1.)
€ Paths T
loop_from_arc_thm
FVYTf
e 7 € Topology
A f € (Og, ) Continuous
ANfI1.=Ff0.
= ANteif t < 0.V 1.<t then f 0. else f t)
€ Loops (1, f 0.)
open_connected_path_connected_thm
FV7T A
e 7 € Topology
A 7 € LocallyPathConnected
NAerT
AN A € 1 Connected
= A € 7 PathConnected
open_interval_path_connected_thm
FV z ye Openinterval z y € Og PathConnected
R_locally_path_connected_thm
F Ogr € LocallyPathConnected
product_locally_path_connected_thm
FYoTfabec
e o € Topology
A 1 € Topology
A o € LocallyPathConnected
A 7 € LocallyPathConnected
= o X7 7 € LocallyPathConnected
€_loops.thm +FVY71fzx
o f € Loops (1, z) < x=f0.Nf¢€ Loops (7, f 0.)
loop_path_thm
FY foaxzef e Loops (0, x) = f € Paths o
path_0_loop_thm
FVTz
e 7 € Topology N x € Spacep T = 0p x € Loops (T, x)
loop_plus_loop_loop_thm
FVYTtzfyg
e 7 € Topology N f € Loops (t, ) AN g € Loops (7, x)
= f +p g € Loops (7, )
minus_loop_loop_thm
FYTaxfg
e 7 € Topology N f € Loops (T, x)
= ~p f € Loops (7, x)
loop_plus_assoc_thm
FYTazfgh
e 7 € Topology
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A f € Loops (1, )
N g € Loops (1, z)
A h € Loops (T, )
= PathHomotopic
T
(f +p 9) 5 1)
(f +p g +ph)
loop_plus_0_thm
FVYrTzf
e 7 € Topology N f € Loops (T, x)
= PathHomotopic 7 (f +p Op ) f
loop_0_plus_thm
FVYTfz
e 7 € Topology N f € Loops (T, x)
= PathHomotopic 7 (0p = +p f) f
loop_-minus_minus_thm
EVY fer~p(~pf)=1Ff
loop_plus_minus_thm
FYTfuo
e 7 € Topology N f € Loops (T, x)
= PathHomotopic 7 (f +p ~p f) (0p x)
loop_minus_plus_thm
FYTfz
e 7 € Topology N f € Loops (T, x)
= PathHomotopic T (~p f +p f) (0p x)
loops_homotopic_equiv_thm
FVYTz
e 7 € Topology N\ © € Spacer T
= Fquiv (Loops (1, z), PathHomotopic T)
loops_homotopic_refl_thm
FYTzpyq
e 7 € Topology N x € Spacep T N f € Loops (7, x)
= PathHomotopic 7 f f
loops_homotopic_sym_thm
FYTa2pyq
o 7 € Topology
ANz € Spacer T
A f € Loops (T, x)
A g € Loops (T, x)
A PathHomotopic T f ¢
= PathHomotopic T g f
loops_homotopic_trans_thm
FYT1T2pqg
e 7 € Topology
ANz € Spacer T
N f € Loops (7, x)
A g € Loops (T, x)
N h € Loops (7, )
A PathHomotopic T f ¢
A PathHomotopic 7 g h
= PathHomotopic 7 f h
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loop_plus_respects_lemmal
EVYTazfgh
o 7 € Topology
ANz € Spacer T
A f € Loops (T, x)
A g € Loops (T, x)
A h € Loops (T, )
A PathHomotopic T f ¢
= PathHomotopic 7 (f +p h) (g9 +p h)
loop_plus_respects_lemma?2
FYTa2xfgh
e 7 € Topology
ANz € Spacep T
A f € Loops (T, )
N g € Loops (1, z)
A h € Loops (T, )
A PathHomotopic 7 g h
= PathHomotopic 7 (f +p g) (f +p h)
loop_minus_respects_thml
FYT2x
e 7 € Topology N\ © € Spacer T
= Vg
e g € Loops (1, 1)
= ((A fo FunGrpClass (1, z) (f +p g))
Respects PathHomotopic T)
(Loops (7, z)))
loop-minus_respects_thm?2
FYT12x
e 7 € Topology N\ © € Spacer T
= (Vf
o f € Loops (1, )
= ((\ go FunGrpClass (1, z) (f +p g))
Respects PathHomotopic T)
(Loops (7, z)))
FunGrpTimes_consistent
F Consistent
(A FunGrpTimes’
eVTrpgqfy
o 7 € Topology
ANz € Spacer T
A p € Loops (7, x) / PathHomotopic T
A q € Loops (1, z) / PathHomotopic T
ANfep
NgeEq
= FunGrpTimes' (1, z) p q
= FunGrpClass (t, z) (f +p g))
loop_minus_respects_lemma
FYrTafyg
e 7 € Topology
Nz € Spacer T
A f € Loops (T, x)
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A g € Loops (1, x)
A PathHomotopic T [ ¢
= PathHomotopic 7 (~p f) (~p g)
loop_minus_respects_thm
FVYTz
e 7 € Topology N = € Spacer T
= ((A fo FunGrpClass (1, ) (~p f))
Respects PathHomotopic T)
(Loops (7, x))
FunGrpInverse_consistent
F Consistent
(A FunGrplnverse’
eVTuxpf
o 7 € Topology
ANz € Spacer T
A p € Loops (t, z) /| PathHomotopic T
ANfep
= FunGrplnverse’ (1, z) p
= FunGrpClass (1, z) (~p f))
fun_grp_rep_3_thm
FVYT12x
e 7 € Topology
Az € Spacer T
A p € Loops (7, x) / PathHomotopic T
= (3 fe f € Loops (1, ) N f € p)
fun_grp_class_eq_thm
FVYTz
o 7 € Topology
Az € Spacer T
A f € Loops (T, x)
A g € Loops (1, z)
= (FunGrpClass (t, x) f = FunGrpClass (1, ) g
< PathHomotopic T f g)
fun_grp_times_€_car_thm
FYTaxpyq
e 7 € Topology
Nz € Spacer T
A p € Loops (t, z) / PathHomotopic T
A q € Loops (1, z) / PathHomotopic T
= FunGrpTimes (1, x) p ¢
€ Loops (1, x) / PathHomotopic T
fun_grp_unit_€_car_thm
FVYrT12x
e 7 € Topology N\ © € Spacep T
= FunGrpUnit (7, z)
€ Loops (1, z) / PathHomotopic T
fun_grp_inverse_€_car_thm
FYTap
o 7 € Topology
Nz € Spacer T
A p € Loops (t, x) / PathHomotopic T
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= FunGrpInverse (T, z) p
€ Loops (1, z) / PathHomotopic T
fun_grp_eq_rep_thm
FYTapf
o 7 € Topology
ANz € Spacer T
A p € Loops (7, ) / PathHomotopic T
ANfep
= p = FunGrpClass (1, x) f
fun_grp_group_thm
FYT12x
o 7 € Topology N © € Spacer T
= FunGrp (1, ) € Group
loop_comp_continuous_loop_thm
FYoTazfyg
e o € Topology
A 1 € Topology
A f € Loops (o, x)
A g € (o, ) Continuous
= (A ze g (f x)) € Loops (1, g )
tota_i_continuous_thm
F Iotal € (Og, Or) Continuous
comp_iota_i_path_thm
FVYof
e 0 € Topology N f € (Og, o) Continuous
= (A ze f (Iotal x)) € Paths o
covering_projection_fibration_thm
FYporTp
e p € Topology
A o € Topology
A 7 € Topology
A p € (o, ) CoveringProjection
= (p, p, o, T) € HomotopyLiftingProperty
covering_projection_path_lifting_thm
FYorpuylf
e 0 € Topology
A 1 € Topology
A p € (o, 1) CoveringProjection
= (p, o, 7) € PathLiftingProperty
covering_projection_path_li fting_bc_thm
FYorpyf
e o € Topology
A 1 € Topology
A p € (o, 1) CoveringProjection
A f € Paths T
Ay € Spacer o
Npy=Ff0.
=3y
e g€ Paths o Ng0.=y AN (Vsep(gs)=7Ffs))
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o < S 53
P 54
0B e e 21
0P oo 53
0P oo 54
1 25
L e e 2%
boundary_interior_thm . ...................... 42
Boundary ....... ... . 25
Boundary ........ .. .. 27
closed_closed_R_thm ......................... 48
closed_interval_connected_thm ................ 48
closed_interval_extension_thm ................ 57
closed_interval_lebesgue_number_thm ......... 50
closed_interval_retract_thm .................. 57
closed_open_complement_thm ............... .. 29
closed_open_netghbourhood_thm............... 29
closed_ U _closed_continuous_thm ............. 33
closed_ < _boundary_ C _thm ................. 42
closed_ C _compact_thm ...................... 35
Closed . ... e 25
Closed . ..... .. 26
closure_interior_complement_thm ............. 42
CloSUTE oo e e 25
ClosSUTE .o e e 27
collar_thm ....... .. .. . . . i 45
compact_basis_product_topology_thm .......... 36
compact_basis_.thm ............. ... .. ..... 36
compact_closed_thm ......................... 35
compact_compact_R_thm ..................... 48
compact_sequentially_compact_thm ............ 36
compact_topological .thm ..................... 35
Compact. ... 25
Compact. . ... 26
compatible_ family_continuous_thml .......... 34
compatible_ family_continuous_thm ........... 34
comp_continuous_thm........................ 32
comp_homeomorphism_thm .................. 40
comp_iota_i_path_thm........................ 64
cond_continuousS_thm ............ ... ... ..... 33
cond_continuous R_thm ...................... 50
connected_chain_thm ........................ 39
connected_closed_thm ........................ 37
connected_discrete_continuous_thm ........... 43
connected_extenston_thm..................... 39
connected_pointwise_bc_thm .................. 37
connected_pointwise_thm . .................... 37
connected_step_thm ............. ... .. ..... 40
connected_topological _.thm .................. .. 36
connected_triad_thm ......... ... ... ... .... 39
connected_R_thm ....................c....... 48
Connected .........co i 25
Connected .........co i 27
const_continuous_thm ....................... 32
continuous_closed_thm ....................... 31

continuous_cts_at R_thm..................... 48
continuous_open_thm ................. ... ... 31
continuous_ € _space_t_thm .................. 30
continuous_.R_ x _R_.R_thml.................. 49
continuous-R_ x _-R_.R_thm3.................. 49
continuous-R_ x _-R_.R_thmd.................. 49
continuous-R_ x _R_R_thm................... 49
Continuous .. ....couu i 25
Continuous .. ....coouii .. 26
CoveringProjection ............. .. ... ..... 25
CoveringProjection ........... ... ... ....... 27
covering_projection_continuous_thm .......... 43
covering_projection_fibration_thm ............ 64
covering_projection_path_lifting_bc_thm....... 64
covering_projection_path_lifting_thm ......... 64
cover_connected_thm................... .. ... 38
cts_at_-R_continuous_thm................. ... 48
Cube ..o 47
diag_inj_continuous_thm ..................... 33
discrete_t_continuous_thm ............. ... ... 42
Discreter ... . 25
Discreter ... 27
dissect_unit_interval_thm .................... 51
domain_unit_topology_continuous_thm......... 33
AR 2.defl ..o 48
d_-R_2_metric_thm ......... ... .. ... ... ... 50
d-R_2_open_R_ x _open_.R_thm ............... 50
d-R_metric.thm ... .. ... .. . .. ... .. ... 50
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RO ettt 18
DR ettt 47
DR e 17
DR 47
empty_closed_thm ......... ... ... . ... ... 29
empty_connected_thm ........................ 37
empty_continuous_thm ....................... 31
empty_open_thm ...... .. ... ... .. .. ... .. 29
enum_set- C _thm .......... ... ... ... 28
finite_image_thm ............ .. ... ... ....... 28
finite_separation_thm ....................... 38
finite_(_open_thm ......................... 30
finite_ C _well_founded_thm ................. 28
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FunGrpClass . ... .. 23
FunGrpClass ... 53
FunGrpClass ... 55
FunGrplnverse_consistent ................... 63
FunGrplnverse ......... .. .. i 24
FunGrpInverse ..., 53
FunGrplnverse ....... ... .. ... 55
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FunGrpTimes . ... . 23
FunGrpTimes . ... 53
FunGrpTimes ... . 55
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FunGrpUnit . ...
FunGrpUnit . ... i
FunGrp ...
FunGrp ...
FunGrp ...
fun_grp_class_eq_thm .......................
fun_grp_eq_rep_thm .......... ... .. ... .....
fun_grp_group_thm .........................
fun_grp_inverse_ € _car_thm .................
fun_grp_rep I_thm... .. ... ... .. .. ... ...
fun_grp_times_ € _car_thm ..................
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hal f _open_interval_retract_thm...............
Hausdorff ...
Hausdorff ...
Hausdorff ...
homeomorphism_closed_mapping_thm .........

homeomorphism_one_one_closed_mapping_thm .
homeomorphism_one_one_open_mapping_-thm ..
homeomorphism_one_one_thm ................
homeomorphism_onto_thm ...................
homeomorphism_open_mapping_thm ..........
Homeomorphism ....... ...,
Homeomorphism ....... ...,
homotopic_comp_left_thm ....................
homotopic_.comp_right_thm ...................
homotopic_continuous_thm ...................
homotopic_equiv_thm ........................
homotopic_refl_thm ......... ... ... ........
homotopic_sym_thm ......... .. ... ... oo,
homotopic_trans_thm ........................
homotopic.R_thm ........... ... ...,
homotopic. C _thm ......... ...,
Homotopic . ...
Homotopic. ...
HomotopyLiftingProperty ...................
HomotopyLiftingProperty ...................
HomotopyLiftingProperty ...................
homotopy_ C _thm ....... ... ... ... .. .. ..
Homotopy ...
Homotopy ... ..o
id_continuous_thm ........ ... ... .. ... .. ...
id_homomorphism_thm ......................
image_compact_thm ......... ... .. ... ... ...
image_connected_thm ........................
inc_seq_thm ... ... . . . .
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