Mathematical Case Studies:

Some Group Theory*

R.D. Arthan
Lemma 1 Ltd.
rda@lemma-one.com

27 September 2017

Abstract

This ProofPower-HOL script contains definitions and proofs concerning the elements of group
theory. What is currently covered is what is covered in the first chapter of any good text on the
subject: in preparation for the introduction of quotient groups, we begin with a purely set-
theoretical study of equivalence relations and the quotient of a set with respect to an equivalence
relation. This is followed by the definitions of the concepts of group, homomorphism between
groups, subgroup, normal subgroup, kernel of a homomorphism, congruence modulo a subgroup,
coset of a subgroup, and quotient group. Theorems proved included the three isomorphism
theorems, the Cayley representation theorem and Lagrange’s theorem. Several examples of groups
are exhibited and used to show that the various abstract notions lead to the expected theorems:
e.g., that the exponential function is an isomorphism between the additive group of real numbers
and the multiplicative group of positive real numbers.

Copyright © : Lemma 1 Ltd 2004—2017
Reference: LEMMA1/HOL/WRKO068; Current git revision: 5991a98

*First posted 2 May 2004; for full changes history see: https://github.com/RobArthan/pp-contrib.

Contents

1 INTRODUCTION

2 EQUIVALENCE RELATIONS

2.1 Technical Prelude e
2.2 The Definitions e e

GROUPS

3.1 Technical Prelude e
3.2 The Signature of a Group
3.3 The Group Laws and Equational Reasoning in a Group
3.4 Homomorphisms e
3.5 SUDbGroups e e
3.6 Normal Subgroups and Kernels of Homomorphisms
3.7 Congruence modulo a Subgroup e
3.8 Operations on Sets e
3.9 Cosets e
3.10 The Quotient Group Construction
3.11 Images of Homomorphisms
3.12 Isomorphisms e
3.13 The Symmetric Group e e
3.14 Finite Groups o v i i e e e
3.15 Cartesian Product L

Examples of Groups
4.1 Technical Prelude e
4.2 The Examples. e e

THE THEORY equiv_rel

Al Parents e
A2 Children L
A3 Constants e
Ad Aliases e
AB Fixity . . . o
A6 Definitions
A7 Theorems e e

10
11
12
13
14
15
15
16
16
17
17
18
19
19

21
21
21

B THE THEORY groups

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8

Parents .
Children
Constants

Aliases .

Theorems

C THE THEORY group_egs

C.1
C.2
C.3
C4

INDEX

Parents .
Constants
Definitions

Theorems

27
27
27
27
28
28
28
28
31

40
40
40
40
40

42

To Do

This version now uses labelled product types rather than type abbreviations for the signature of a
group.

Implement the proposed extension to the ProofPower-HOL concrete syntax to allow infix op-
erators with a parameter and see how it works out.

Prove a lot more results!

Extend the examples.

e Compare with other approaches (e.g., Elsa Gunter’s).

References

1]
2]

3]

P.M. Cohn. Algebra, volume 1. John Wiley & Sons, Inc., 1974.

John Harrison. Theorem Proving with the Real Numbers. Technical report, University of
Cambridge Computer Laboratory, 1996.

Peter V. Homeier. Quotient types. In TPHOLs 2001: Supplemental Proceedings. Informatics
Report EDI-INF-RR-0046, See http://www.informatics.ed.ac.uk/publications/report/.
Division of Informatics, University of Edinburgh, 2001.

L. Paulson. Defining Functions on Equivalence Classes. Preprint: available at
http://www.cl.cam.ac.uk/users/lcp/papers/Reports/equivclasses.pdf, 2004.

W.V. Quine. Quiddities. Harvard University Press, 1987.

LEMMA1/HOL/DTD115. Detailed Design: Theory of Orderings. R.D. Arthan, Lemma 1 Ltd.,

rda@lemma-one.com.

LEMMA1/HOL/WRKO066. Mathematical Case Studies: Basic Analysis. R.D. Arthan, Lemma
1 Ltd., rda@lemma-one. com.

LEMMA1/HOL/WRKO067. Mathematical Case Studies: Some Topology. R.D. Arthan, Lemma
1 Ltd., rda@lemma-one. com.

1 INTRODUCTION

This document gives specifications and proofs relating to group theory. It includes a theory of
equivalence relations to support the construction of quotient groups. This is part of a series of case
studies in formalising some basic pure mathematics in ProofPower-HOL. Other parts of the case
study deal with real analysis [7] and with topology [8].

While the mathematical content of this document is very elementary, it does raise some interesting
points about how to formalise abstract algebraic theory in polymorphic simple type theory. We want
the abstract theory to be readable, general and easy to develop, we also want it to be easy to apply
to specific examples.

Substructures and quotient structures in algebra are very important, so it is vital to deal smoothly
with subgroups and quotient groups. Taken verbatim, the traditional explication of these concepts
in set theory leads to significant notational and semantic difficulties. The problem is this: in doing
the general theory, an expression like x.y denoting the product of two elements of a group G actually
contains three variables: the group elements ‘z’, ‘y’, and the multiplication operator ‘.’. Syntactic
tricks allow one to preserve something like the traditional infix notation for such expressions. But
there is a semantic problem when we need to deal with subgroups: according to the traditional
account, the ‘.’, in x.y will denote a different set-theoretic function in H from what it does in G.
Coercing operations from subgroup to containing group or from one subgroup to another becomes

an excessive burden.

Our solution to this problem is to formulate all definitions relative to some carrier set of interest
in such a way that the behaviour of operators or properties outside the carrier set is irrelevant.
We advocate this approach in general for dealing with algebraic structures. The apparent extra
complication actually achieves an economy, because when you are working with substructures, the
operators and properties can all be those of the containing structure: you have no need to restrict
them to the substructures or to worry about coercing the operations of one substructure into the
operations of another. Pace Quine [5, article on “Mathematosis”], it is actually counter-productive
to define the concept of a group so that the carrier set can be recovered from the set that represents
the multiplication.

As an example, we define the operations on a group G to be total functions on the universe of the
type of its elements whose behaviour outside the carrier set of GG is immaterial. We require the
operations on a subgroup H of G to be represented by the same total functions. This involves no
loss of generality and removes a great deal of complexity in both specifications and proofs. It may be
objected that this approach results in the wrong notion of equality between groups (since the same
group can be represented using two different ways of totalising the operations). However, in normal
algebraic practice, one almost never needs to assert equality between two groups that are not known
to be subgroups of some other group, and in that case equality has the usual meaning.

This document is a ProofPower literate script. It contains all the metalanguage (ML) commands
required to create three theories, populate them with the formal definitions and prove and record all
the theorems. The three theories, “equiv_rel”, “groups” and “group_egs” are described in sections 2,
3 and 4 respectively. The descriptions include all the formal definitions in the Z-like concrete syntax
for specification in ProofPower-HOL. and a discussion of the theorems that have been proved about
the objects specified. To keep our use of the ProofPower document preparation system simple,
in this discussion we identify the theorems by name and refer the reader to the theory listings in
sections A, B and C for the formal statements of the theorems. There is an index to the formal
definitions and the theory listings in section 4.2.

2 EQUIVALENCE RELATIONS

The construction of quotient groups is very important in group theory and so introductory texts
on the subject often begin with a review of the set-theoretic notions that support this construction,
viz. the notion of the quotient of a set by an equivalence relation. This section contains our formal
development of this material.

John Harrison [2] and Peter Homeier [3] have both produced powerful metalanguage tools for au-
tomating such constructions when a new HOL type is introduced as a quotient set. However, these
tools do not fit the case in question: we will only wish to construct new types for specific quotient
constructions: when we are doing general theory everything in view is a variable including the set of
sets representing a quotient group.

Larry Paulson [4] has pointed out that there are advantages in providing a lemma library to support
quotient constructions rather than metalanguage tools. In particular, Paulson notes that if we use a
lemma library, “we are not restricted to top-level properties, but can reason about equivalence classes
in a larger proof”. This is precisely what happens in our development of elementary group theory.
This section presents the definitions and results that make up the lemma library. The mathematics
is entirely trivial: the point in formulating the theorems is not for their intrinsic interest, but to
provide templates for carrying out quotient constructions in larger proofs.

2.1 Technical Prelude

First of all, we must give the the ML commands to introduce the new theory “equiv_rel” as a child

of the theory “orders” of ordered sets (whence comes our definition of transitivity, see [6]).
SML

‘force_delete_theory“equiv_rel" handle Fail - => ();
‘ open_theory" orders";

‘ set_merge_pcs["basic_holl", "' sets_alg"];

‘ new_theory" equiv_rel";

2.2 The Definitions

We need to define the notion of an equivalence relation, i.e., a binary relation that is transitive,
reflexive and symmetric. Transitivity is defined elsewhere, but we now need the notions of reflexivity
and symmetry. We follow the theory of orders in making these notions properties of set-relation
pairs. We will often use the infix symbol = as a variable ranging over binary relations, sometimes
with a subscript if there are several relations involved. This symbol appears preceded by a ‘$’ where
infix notation is not being used. (If we are not going to use infix notation, we use R and S as
variables ranging over relations).

SML

declare_infix (210, "=");

declare_infix (210, "=,");

declare_infix (210, "=p");

HOL Constant

Refl : ('a SET x ("a —'a — BOOL)) — BOOL

V X $=e Refl(X, $=) & Veez € X =z = =z

HOL Constant

Sym : ("a SET x (a - 'a — BOOL)) — BOOL

\
|
‘VX$£OSym(X,$§)<:>VmyoxGX/\yEX/\IE y=>y=u=x

An equivalence relation on a set X is then one which is reflexive, symmetric and transitive on X.
In the traditional explication of mathematics as set theory, one requires an equivalence relation on
a set X to be restricted to X. Instead, we prefer to ignore the behaviour of the relation outside X.

This means that an equivalence relation on a set X is, as it stands, an equivalence relation on any
subset of X. This works well in the formal treatment and works well informally too. For example,
the relation that holds between two numbers x and y when z — y is an integer, is an equivalence
relation on any subset of the real numbers. There seems to be no conceptual or practical gain in
treating such a relation as having a different set-theoretic representation for different subsets.

HOL Constant

Equiv : ("a SET x ("a = 'a — BOOL)) — BOOL

|
‘ V X $=e Equiv(X, $=) < Refl(X, $=) A Sym(X, $=) A Trans(X, $=)

Now we can define the notions of equivalence class and the quotient set (which is the set of all
equivalence classes). There is no need to stipulate that the relations be equivalence relations in these
definitions — that is done in the statements of the theorems about them. We arrange things so that
if = is an equivalence relation on X, the function EquivClass(X, $=) is the projection of X onto
the quotient set.

HOL Constant

EquivClass : ("a SET x (a —'a — BOOL)) = 'a — 'a SET

V X $= ze EquivClass(X, $=) 2 ={y |y e X ANz = y}

HOL Constant

QuotientSet : 'a SET — ("a —'a — BOOL) — 'a SET SET

V X $=e QuotientSet X ($=) = {A | Jze 2 € X N A = EquivClass(X, $=) =}

We introduce an alias to let us write X / = for the quotient set. This overloads arithmetic division
(and will be further overloaded later for the quotient group construction).

SML
‘ declare_infix (300, " /");
‘ declare_alias(" /", " QuotientSet™);

We say a function f respects an equivalence relation = on X, iff. the function does not distinguish
between related values:

SML

declare_infix (200, " Respects");

HOL Constant

$Respects : ('a — 'b) — ('la - 'a - BOOL) — 'a SET — BOOL

Vf$= Xe (f Respects $=) X @ Vex yox e X Nye X Ne=y=fz=Ffy

We say that a relation, R, refines another, S iff. R-equivalence implies S-equivalence. In other words,
iff. each R-equivalence class is contained in an S-equivalence class.

SML

‘declare-inﬁx(?OO, "Refines");

HOL Constant

$Refines : ('a - 'a — BOOL) = ('la —'a — BOOL) — 'a SET — BOOL

|
‘VX$£1 $=5 e ($=; Refines $=3) X & Vzyez e X Nye X ANz =; y=12=5y

Following Paulson, we define a function Contents whose value on a singleton set {z} is = (and
whose value on any other kind of set is unspecified). The consistency of this definition is not proved
automatically, and the development of the theorems begins with the easy proof that it is consistent.

HOL Constant

Contents : 'a SET — 'a

|
‘ V ze Contents {z} =z

Given any function f: X — Y, the relation, Ry, say, defined so that = Ry y holds iff. f(x) = f(y) is
an equivalence relation. f respects an equivalence relation R iff. R refines Ry. Given such an R, f
induces a function, f, from the quotient of X/R to Y. The following function comprises the union
over all R of the corresponding f extended to a total function in an unspecified way. We write it
using the postfix notation f ~.

SML

‘ declare_postfiz(330, "~");

HOL Constant

$~ :(a —-'b) »'a SET —'b

V f Ae (f) A = Contents{y | Jze z € ANy =Ffz}

Our lemma library begins with the consistency of the contents function and then a handful of simple
facts about equivalence relations, equivalence classes and the contents function. This comprises the
following theorems.

Contents_consistent respects_img_contents_thm
contents_def quotient_map_onto_thm
equiv_class_eq_thm quotient_€_thm
equiv_class_€_thm quotient_rep_3_thm
constant_img_thm equiv_mono_thm

respects_img_thm

The following theorem says that if f respects S and R refines S, then f respects R. This theorem is
quite trivial, but provides a useful pattern for proving that a function f respects a relation R: find
some coarser relation S that f is known to respect and apply this theorem.

respects_refines_thm

The next block of theorems begins with two theorems which show, in effect, that given any function,
f: X — Y, and any relation = that f respects on X, f factors through the projection of X onto
X / =, the induced function from X / = to Y being given by f ~. The first version states this in
terms of equivalence classes and the second in terms of members of a quotient set. The third theorem
in this block is our alternative to the treatment of dyadic functions suggested by Paulson. It shows
that the operation A\f e f ~ can be iterated to produced a curried version of the induced function
theorem for functions of two arguments.

induced _fun_equiv_class_thm induced_fun_thm induced _fun_induced _fun_thm

Finally we list the theorems that act as the main “external interface” to the lemma library. These
give the characterising properties of the quotient set construction as pure existence theorems for the
one-argument and two-argument cases.

The characterising properties are that the induced functions exist under the appropriate hypotheses
and are unique. The uniqueness is trivial and is only stated formally for completeness. In applications
of the lemma library, one will typically just prove instances of the hypotheses for a particular function
and a particular equivalence relation (or relations) and forward chain with the existence theorems
to give the induced function. In this sense, these theorems act as templates for constructing induced
functions.

induced_fun_3_thm dyadic_induced _fun_3_thm
induced _fun_3_unique_thm dyadic_induced_ fun_3_unique_thm

In fact, while the two-argument version was used in an earlier treatment of quotient groups, it has
since turned out to be better to use the group-theoretic product of two sets for this construction. In
general in developing a typical algebraic theory (e.g., rings, modules over a ring, vector spaces over a
field), the induced function existence theorem will typically be used to prove the version of the first
isomorphism theorem that is appropriate to that theory. Thereafter, the first isomorphism theorem
will generally replace uses of the induced function existence theorem, because it gives functions that
are morphisms of the theory, not just set-theoretic functions.

3 GROUPS

3.1 Technical Prelude

First of all, we must give the the ML commands to introduce the new theory “groups” as a child of
the theory “equiv_rel” of equivalence relations.

SML

force_delete_theory" groups" handle Fail - => ();
open_theory" equiv_rel";

new_theory" groups";

set_merge_pcs["basic_holl", "' sets_alg"];

new_parent "fincomb";

3.2 The Signature of a Group

We will represent a group as a quadruple comprising a carrier set, a two-argument multiplication
function, a unit element and a one-argument inverse function. This signature is captured in the
following labelled product type definition, parametrised by the type variable ‘a giving the type of
the elements of the group.

HOL Labelled Product

__GROUP
Carg :'a SET;
Timesg a —'a = a;
Unitg M a;
Inverseg g —'a

If G is a structure with the above signature (i.e., a member of an instance of the above type), we
write Car G for the carrier set, (z.y)G for the product of two elements, x and y, Unit G for the
unit element and (z)G for the inverse of an element, x. This is achieved by the following fixity
declarations and definition of access functions for the signature.

SML
declare_infix (310, ".");
declare_postfiz (330, "~");

HOL Constant

Car : 'a GROUP — 'a SET;
$.: '"a - 'a - 'a GROUP — 'a;
$~: 'a - 'a GROUP — 'a;
Unit : 'a GROUP — 'a

Y set times one inversee
Car (MKGROUP set times one inverse) = set
AN (Vz ye (z . y) (MEGROUP set times one inverse) = times z)
A Unit (MKkGROUP set times one inverse) = one
A (Vze (z) (MKGROUP set times one inverse) = inverse)

[Aside: For the future: one may want the above with Car and Unit as aliases, but with the defining
property as above proved as a theorem to give the general purpose rewrite rule to use in reasoning
about these aliases and the defined constants for multiplication and inverse.]

10

We prove one theorem about these which is just a convenience for proving that two structures for
this signature are equal.

group - eq_group_thm

3.3 The Group Laws and Equational Reasoning in a Group

We can now specify the group laws. The polymorphic set Group comprises all structures with the
signature of a group that satisfy the group laws. The statement is entirely standard following our
convention of relativising everything to the carrier set of the group. The first two conditions on G
say that the carrier set is closed under multiplication and that multiplication is associative, the next
two conditions say that the unit is a member of G and is indeed a two-sided unit for multiplication.
The remaining conditions say that G is closed under inverse and that the inverse does indeed give a
two-sided inverse for the multiplication.

HOL Constant

Group : 'a GROUP SET

vV Ge
G € Group
& (Vrzxyezxz e Car GANy € Car G = (z.y) Ge Car G)
AN (Vzyzexe Car GANy € Car GNze Car G= ((z.y)G.2)G=(z.(y.2)GG)
AN Unit G € Car G
AN (Vzexz € Car G = (z. Unit G) G=z A (Unit G.x2)G = x)
AN (Vzez e Car G= (z7) G e Car Q)
AN (Vzex € Car G = (z.(x ~)G)G = Unit G A ((z ~)G .)G = Unit G)

The above definition shows that our approach to the syntax of the group operations is not unworkable.
The syntax is certainly readable if one pretends not to notice all the “G”s. When working with a
specific group, the definitions can easily be expanded to give the familiar notations for the group
(see examples in section 4).

However, the syntax is not particular convenient to write for complex expressions, mainly because it
forces the writer to write all the brackets in an expression explicitly. An extension to the concrete
syntax of ProofPower-HOL is being considered which would remedy this. The extension would allow
a form of ternary infix operator. What we are currently writing as (z.y)G would become z .G'y. One
would be allowed to write .G y.G z with no brackets. Brackets would only be required when they
are significant.

On the basis of this definition, we can prove the usual elementary consequences of these laws. These
are presented as a set of four portmanteau theorems (group-clauses! ... group-clauses]) together
with some particular results such as a cancellation law that are needed to bootstrap the theory and
prove the portmanteau theorems.

group_ clauses1 group_clauses3
group - clauses2 times_inverse_thm
group_eq_thm inverse_unique_thm
group_eq_thml group_ clauses),
left_cancel _thm unit_unique_thm

mverse_inverse_thm

11

Taken together, the portmanteau theorems provide the closure statements one needs to show that
arbitrary combinations of the group operations applied to members of the group give members of the
group and give the “free group normal form” for expressions over the signature of the group. This
normal form is obtained by repeatedly rewriting with the following rules:

(1) (zy)™ = yra!
(2) (@)™ ==z
(3) el =1
(4) e lr =1
(5) r(z7tz) = 2
(6) 7l (z2) = 2
(7) (z.y)z = z.(y.2)
(8) rl = =z
9) lx = =
(10) 1 =1

Now for us, these are conditional rewrite rules: they only hold if the operands of the expressions
on the left are members of the carrier set of the group. At this point in the proof script, we use
the portmanteau theorems to implement automated proof procedures for normalising expressions
in the operations of a group and for membership of the carrier set of a group. The proof proce-
dures for normalisation apply the above rewrite rules setting the necessary membership conditions
as lemmas. The proof procedures for membership apply the closure conditions for the operations to
simplify membership conditions on complex expressions into conditions on atomic subexpressions.
These procedures deal automatically with all of the equational reasoning that will be needed later
except for providing existential witnesses and identifying points at which the argument for a mem-
bership condition is non-trivial (i.e., does not follow just from membership conditions on atomic
subexpressions).

3.4 Homomorphisms

The definition of homomorphism between two groups, G and H, is completely standard For us, a
homomorphism is given by a total function whose behaviour outside the carrier set of G is irrelevant.

HOL Constant

Homomorphism : 'a GROUP x 'b GROUP — (a — 'b) SET

V G H fe
f € Homomorphism(G, H)
& (Vrexe Car G=fx e Car H)
N (NVzxyeze Car GANy€e Car G= f((z.y) G)=(fz.fyH)

One only needs to specify that a homomorphism preserves the multiplication, since a homomorphism
in that sense will automatically preserve the unit element and inverses as shown by the first two
theorems in the following block. The third and fourth present these facts and the properties in the
definition in a convenient form.

12

homomorphism_unit_thm homomorphism_clauses
homomorphism_inverse_thm homomorphism_&_car_thm

3.5 Subgroups

Our definition of a subgroup is standard except that we require the multiplication and the inverse
function of the subgroup to be identical with those in the containing group. This is invaluable in
simplifying later definitions and in stating and proving theorems. It guarantees that one can just
use the operations of the containing group wherever appropriate. The reader who does not like this
is cordially invited to replace the last two equations in the following by equations conditional on
membership of the carrier set of H and then to prove the theorems that follow.

HOL Constant

Subgroup : 'a GROUP — 'a GROUP SET

V G He

H € Subgroup G

Car H C Car G

H € Group

(Vz yo (z.y)H = (z.y)G)
(Vze (z V)H = (z ~)G)

> > > 9

The following theorem extends the equations in the above definition to add the statement that the
unit element of a subgroup is the same as that of the containing group.

subgroup_ clauses

The unit subgroup of a group is the subgroup whose carrier set comprises only the unit element.

HOL Constant

UnitSubgroup : 'a GROUP — 'a GROUP

|
|
‘ YV Ge

‘ UnitSubgroup G = MkGROUP {Unit G} (Ax ye(z.y)G) (Unit G) (Aze(z ~)G)

If G is a group then G itself and its unit subgroup are both subgroups of G. The relation of being a
subgroup is transitive. If K and H are subgroups of G and the carrier set of K is contained in that
of H, then K is subgroup of H. Two subgroups are equal iff. their carrier sets are equal.

trivial - subgroups_thm subgroup_C_subgroup_thm
subgroup_trans_thm subgroup_eq_thm

The inclusion of a subgroup, H, of G, is a homomorphism from H to G In particular, the identity
function on G is a homomorphism from G to G. The function which map every element of some
group to the unit of some other group is a homomorphism. The composite of two homomorphisms
is a homomorphism.

13

subgroup_homomorphism_thm unit_homomorphism_thm
id_homomorphism_thm comp_homomorphism_thm

If A is a subset of the carrier set of a group G, we write A N G for the structure with the same
operations as G and with carrier set the intersection of A and the carrier set of G. In the narrative
and in the names of theorems we refer to this as the restriction of G to A.

HOL Constant

Restriction : 'a SET — 'a GROUP — 'a GROUP

|
|
‘ V' A Ge Restriction A G = MEGROUP (A N Car G) (Az ye (z.y)G) (Unit G) (Aze(z ~)G)

SML

‘declare_alms("ﬂ", " Restriction™);

ANG is a group iff. A contains the unit element and is closed under multiplication and inverse.

restriction_subgroup_thm

3.6 Normal Subgroups and Kernels of Homomorphisms

1

A normal subgroup is one that is closed under conjugation. (The conjugate of z by y is y~".x.y).

HOL Constant

NormalSubgroup : 'a GROUP — 'a GROUP SET

YV G He
H € NormalSubgroup G
< H € Subgroup G
AN (Vzxyexz € Car HANy € Car G = ((y ~)G.(z.y)G)G € Car H)

The kernel of a homomorphism from G to H has as its carrier set the pre-image of the unit element
of H and inherits the group operations from G:

HOL Constant

Ker : ('a — 'b) = 'a GROUP x 'b GROUP— 'a GROUP

VfGHe
Ker f (G, H)
= MkGROUP {z |z € Car G N\ f © = Unit H} (Az ye (z . y)G) (Unit G) (Aze(z ~) G)

Kernels of homomorphisms are normal subgroups as stated in the following theorem. If a normal
subgroup, K, of G is a subgroup of a subgroup H, then it is normal in H.

ker_normal_subgroup_thm subgroup_normal_subgroup_thm

14

3.7 Congruence modulo a Subgroup

Elements = and y are (right) congruent modulo a subgroup H iff. 27!y is a member of H. Right
congruence is equivalence modulo right translation by elements of H.

HOL Constant

RightCongruent 'a GROUP — 'a GROUP — 'a — 'a — BOOL

VY G H z ye RightCongruent H G z y < ((z ~) G . y) G € Car H

The following theorems states that right congruence is an equivalence relation:

right _congruent _equiv_thm

3.8 Operations on Sets

If A and B are any subsets of the (universe of the) carrier set of a group, we will write (A.B)G for
the set of all (a.b)G as a ranges over A and b ranges over B. We will also write (x.B)G and (A4.y)G
for ({x}.B)G and (A.{y})G respectively. Similarly we will write (A ~)G for the set of all inverse of
elements of A. This overloads ‘., and ‘>, so we define these operations using other names and then

introduce aliases:
HOL Constant

SetTimesSet 'a SET — 'a SET — 'a GROUP— "a SET,
ElemTimesSet 'a — "'a SET — 'a GROUP— 'a SET,
SetTimesElem 'a SET — 'a — 'a GROUP— "a SET;
SetInverse 'a SET — 'a GROUP— 'a SET

(VG A Be SetTimesSet A B G = {z| Ja bea € ANbEBAz=
A (VG z Be ElemTimesSet x B G = {z | Jbeb € B A z = (2.b)G})
(G})
(

A (VG A ye SetTimesElem Ay G = {z | Jaea € A N z = (a.y)
A (VG Ae Setlnverse A G = {z | Jasa € AN z = (a ~)G})
SML
‘declare-alias n T SetTimesSet™);

("

‘declare_alias(".", T ElemTimesSet™);

‘declare_alms(".", CSetTimesElem™);
(

‘declare_alias nn T SetInverse™);

If H and K are groups with elements of the same type, we will write H.K for the structure with
the set product of the carrier sets as its carrier set under the operations of H (which will agree with
those of K under our conventions if they are both subgroups of some other group).

HOL Constant

GroupTimesGroup 'a GROUP — "a GROUP — "a GROUP

VH Ke
GroupTimesGroup H K =
MEGROUP ((Car H.Car K)H) (Az yo(z.y)H) (Unit H) (Aze(z ~)H)

15

SML

declare_alias(".", " Group TimesGroup™);

The product of two subgroups can be expressed as a restriction. The product is itself a subgroup if
either of the two subgroups is normal. We just prove this for the case when the second subgroup is
normal.

group_product _restriction_thm group_product _subgroup_thm

3.9 Cosets

If H is a subgroup of G and x is an element of GG, the right coset generated by x is the set x.H
and the left coset generated by x is H.x. l.e., perhaps confusingly, a right coset is a left translate of
H. Some texts call these left cosets (and then, perhaps confusingly, left congruence is equivalence
modulo right translation by elements of H). Our terminology follows [1].

The following theorems state that the right cosets of a subgroup are the equivalence classes of its
right congruence relation and that the right cosets generated by elements x and y are equal iff. x
and y are right congruent.

right _coset _equiv_class_thm
right_coset_eq_thm

3.10 The Quotient Group Construction

If G is a group and H is a normal subgroup, then the multiplication and inverse operations on G
induce a multiplication and inverse operation on the set of right cosets of H which make it into a
group in such a way that the projection onto the set of right cosets is a homomorphism. Following our
approach of embedding the operations of an algebraic structure in the most useful general extension
to a total function, we make the following definition, which embeds the quotient group in the monoid
of all subsets of G under the multiplication of sets induced by the multiplication of G. This monoid
contains all quotient groups of G as submonoids (or, more precisely, it embeds it in the structure
whose carrier set comprises all subsets of the universe of G under the induced multiplication; this
structure is not in general a monoid, but becomes one if its carrier set is restricted to subsets of G).

HOL Constant

QuotientGroup 'a GROUP — 'a GROUP— 'a SET GROUP

V G He QuotientGroup G H = MkGROUP
{A | Jzex € Car G N A = (z.Car H)G}
(AMA Be(A.B)QG)
((Unit G.Car H)G)
(A\e (A ™)G)

We write G/H for the quotient of G by H by dint of the following alias declaration (overloading the
alias for the quotient set operator).

16

SML

declare_alias(" /", " QuotientGroup™);

We show that if H is a normal subgroup of GG, then the product and inverse operations of the quotient
group are represented by the product and inverse operations of the group, i.e., that (z.H).(y.H) =
(ry.H) and (x.H)~! = (z71.H). From this it follows easily that the projection to the quotient of G
by a normal subgroup H is surjective, that the quotient group is indeed a group under the induced
operations and that the projection is a homomorphism with kernel H.

quotient_group_times_thm quotient_group_group_thm
quotient_group_inverse_thm quotient_group_homomorphism_thm
quotient_group_rep_d_thm ker_right_coset_thm

3.11 Images of Homomorphisms

The following image group construction is needed in the statement of the first isomorphism theorem.

HOL Constant

Img: (a —'b) - 'a SET —'b GROUP — 'b GROUP

VX Ge
Img f X G =
MEkGROUP {y | Jzez € X Ny = f z} (Az yo (z.y)G) (Unit G) (Aze (z ~)G)

The next theorem states that the image of a group homomorphism is a subgroup of the range of the
homomorphism:

img_subgroup_thm

3.12 Isomorphisms

An isomorphism is a one-to-one onto homomorphism

HOL Constant

Isomorphism :'a GROUP x 'b GROUP — ('a — 'b) SET

VG Hfe
f € Isomorphism(G, H)
& f € Homomorphism(G, H)
(Ve yox € Car GANy € Car GANfax=fy=2z=y)
(Vze z € Car H = Jzex € Car G N f x = 2)

A
A

The following theorems lead up to the proof of the first isomorphism theorem (which says that if
f: G — H is a homomorphism with kernel K, then f factors through a homomorphism H/K — G
which gives an isomorphism between H/K and the image of f). The proofs of earlier results have

17

made some use of the equivalence class lemma library, but this is where the result on induced
functions is first used in anger.

mage_ subgroup_thm subgroup_refines_thm
equiv_right_congruent_ker_thm subgroup _ker_induced _thm
homomorphism_respects_ker_thm isomorphism_ker_img_thm
car_quotient_group_thm first_isomorphism_thm

The second isomorphism theorem says that if H is a subgroup of G and K is a normal subgroup of
G, then H N K is a normal subgroup of H and the quotient H/H N K is isomorphic to the quotient
H.K/K. We prove this in a series of lemmas.

second_isomorphism_lemmal second_isomorphism_lemma/
second_isomorphism_lemmaZ2 second_isomorphism_thm
second_isomorphism_lemma3

We also prove the third isomorphism theorem, which says that if H and K are normal subgroups of a
group G, and K is a subgroup of H, then there is an isomorphism between G/H and (G/K)/(H/K).
As with the second isomorphism theorem, we sneak up on this in a series of lemmas.

third_isomorphism_lemmal third_isomorphism_lemma4
third _isomorphism_lemma?2 third _isomorphism_lemmad
third_isomorphism_lemmaS3 third_isomorphism_thm

3.13 The Symmetric Group

The symmetric group on a set X is the group of all one-to-one onto functions from X to X. In a
typed context, it is convenient to turn this round and say that it is the group of all functions from
the universe of the type of the elements of X to itself that are one-to-one and onto and that fix
anything not in X. This has several technical advantages and involves no loss of generality. Before
giving the definition, we need to define the notion of an inverse function. (This definition probably
belongs elsewhere in the theory hierarchy.)

HOL Constant

Inverse : ('a —'b) — ('b = 'a)

V fe OneOne f A Onto f = (Vzelnverse f (f) =) N (Vyeof(Inverse f y) = y)

HOL Constant

SymGroup : 'a SET — ("a — 'a) GROUP

V Xe SymGroup X = MEGROUP
{f | OneOne f N Onto f A Vye -y € X = f y = y}

(Af geAzef(g x))
(Aze)

18

Inverse

The symmetric group on any set is indeed a group. Moreover, if GG is any group, G is isomorphic to
a subgroup of the symmetric group on its carrier set, which is the Cayley representation theorem.

sym_group _group_thm cayley_thm

3.14 Finite Groups

If G is a group (or any structure with the same signature as a group), we will write # (G) for the
number of elements of the carrier set of G. To allow this, we make # an alias of the following
function:

HOL Constant

Sizeg : 'a GROUP — N

vV Ge Sizeq G = #(Car G)

SML

‘ declare_alias("#", " Sizeg™);

We prove the theorem of Lagrange that if G is a finite group, and H is a subgroup of G, then H and
the set of cosets G/H are both finite and # (G) = # (H) x # (G/H).

finite_subgroup_thm finite_cosets_thm lagrange_cosets_thm

3.15 Cartesian Product

The Cartesian product of two groups is the standard pointwise construction:

SML

‘ declare_infix (290, "x g");

HOL Constant

$x¢ :'a GROUP — 'b GROUP — ('a x 'b) GROUP

VG He (G Xa H) =
MkGROUP
(Car G x Car H)

(A, b)(c, d)e ((a.c)G, (b.d)H))
(Unit G, Unit H)
(

Aa, b)e((a)G, (b ~)H))

The Cartesian product of two groups is again a group; the projections onto the factors of the products
are homomorphisms as is the lift of a pair of homomorphism into the product.

19

product_group_thm fst_homomorphism_thm snd_homomorphism_thm
product_homomorphism_thm

20

4 Examples of Groups

In this section we give one or two examples of specific groups. We specialise some of the theorems
from section 3 to show how they look.

4.1 Technical Prelude

First of all, we must give the the ML commands to introduce the new theory “group_egs” as a child
of the theory ‘groups” of groups and the theory ”analysis” of real analysis.

SML

force_delete_theory" group_egs" handle Fail - => ();
open_theory" groups";

new_theory" group_egs";

new_parent" analysis";

set_merge_pcs["basic_holl", "'sets_alg", "'Z", ""R"];

4.2 The Examples

We define the group of integers under addition and the group of unit integers under multiplication:
HOL Constant

Z_plus : 7 GROUP;

Z_units : 7Z GROUP

Z_-plus = MEGROUP Universe $+ (NZ 0) ~
A Z_units = MKkGROUP {~(NZ 1); NZ 1} $* (NZ 1) (Azex)

We prove that both of these are indeed groups. The notational devices of our treatment of abstract
group theory convert easily into the familiar notation for specific groups. As an example of this,

we show how the definition of a homomorphism specialises to the notion of a homomorphism from
Z_plus to Z_units.

Z_plus_group_thm Z_plus_Z._units_homomorphism_def
Z_units_group_thm Zi_plus_7Z,_units_homomorphism_unit_thm
Z_plus_ops_thm Z_plus_Z._units_homomorphism_inverse_thm

Z._units_ops_thm

We now define the group of reals under addition and the group of positive reals under multiplication:

HOL Constant
Ry : R GROUP;
R_pos : R GROUP

Ry = MEGROUP Universe $+ (NR 0) ~
A R_pos = MKGROUP {z | NR 0 < z} $* (NR 1) $~*

21

As with the groups of integers, we show that these are groups and instantiate various definitions to
them. We can then show that the function exp provides an isomorphism between the two groups.
We also show that a linear mapping is an additive homomorphism from R to itself and that addition
is an additive homomorphism from R x R to R.

R_additive_group_thm R_additive_R_pos_homomorphism_unit_thm
R_pos_group_thm R_additive_R_pos_homomorphism_inverse_thm
R_additive_ops_thm R_additive_R_pos_isomorphism_def
R_pos_ops_thm exp_isomorphism_thm
R_additive_R_pos_homomorphism_def linear _homomorphism_thm

plus_R_additive_homomorphism_thm

22

A THE THEORY equiv_rel

A.1 Parents

orders

A.2 Children

groups

A.3 Constants

Refl 'a P x (a = 'a - BOOL) — BOOL
Sym 'a P x (a —»'a - BOOL) — BOOL
Equiv 'a P x (a - 'a - BOOL) — BOOL
EquivClass 'aP x (la -'a - BOOL) —»'a —'a P
QuotientSet

'a P - (la »'a - BOOL) —» "a PP
$Respects (la—"b) - ("a - "'a — BOOL) - 'a P - BOOL
$Refines (la = 'a — BOOL) = ('la - 'a — BOOL) = 'a P — BOOL
Contents "a P —'a
$~ ('a —="b) = "aP —"b
A.4 Aliases
/ QuotientSet : 'a P — ('la - 'a — BOOL) - 'a P P
A.5 Fixity

Right Infix 200:
Refines Respects
Right Infix 210:
= =, =,
Right Infix 300:
/
Postfix 330: -

23

A.6 Definitions

Refl
Sym

Equiv

EquivClass
QuotientSet

Respects

Refines

Contents

FVX$=eRefl (X,%=) = Vezeze X =z=u1)
FV X $=
e Sym (X, $=)

S NVrzyoz e X Nye X Nx =y =y =x)
FV X $=
e Fquiv (X, $=)

& Refl (X, $=) A Sym (X, $=) A Trans (X, $=
FV X $= ze FquivClass (X, $=) z = {yly € X Az = y}

FV X $=
e X /$=={AF3 ze z € X AN A = EquivClass (X, $=) =}
V2 X
o (f Respects $=) X
s NVMzyoze X NyeXANaez=y=faz=Ffy)
FVX$=; $=p
e (3=, Refines $=5) X
sSNVzyoz e X Nye X ANx = y=1x=37)
F ConstSpec
(A Contents's ¥ zeo Contents’ {z} = z)
Contents
FVf Ae (f) A = Contents {y|3 ze x € ANy =fuz}

A.7 Theorems

Contents_consistent

F Consistent (A Contents’e ¥ ze Contents’ {z} = x)

contents_def + V ze Contents {z} = z
equiv_class_eq_thm

FYX$=zy
e Bquiv (X, $=) Nz e X Nye X
= (EquivClass (X, $=) x = EquivClass (X, $=) y
S =)

equiv_class_€_thm

FVX$=zy
e Fquiv (X, $=) Az € X = = € EquivClass (X, $=) z

constant_tmg_thm

FYAac
ceac ANNMzez e A= fz=c)
= {ylFrzexzec ANy=fza}={c}

respects_itmg_thm

FYX$=fu
o FEquiv (X, $=) A (f Respects $=) X Nz € X
= {y|3 ze z € EquivClass (X, $=) z Ny = f 2z}
= {f =}

respects_img_contents_thm

FY X $=fa
e Equiv (X, $=) A (f Respects $=) X Nz € X
= Contents
{y|3 ze z € EquivClass (X, $=) z ANy = f 2}

24

= f x
quotient_map_onto_thm
FV X $=
e Fquiv (X, $=)
= (V A
e Ac X /%=
= (Jzez € X N A = FquivClass (X, $=) x))
quotient_c_thm
FYAX$=zeAdecX /$=Nzed=zeX
quotient_rep_d_thm
FV X $=
o Fquiv (X, $3=)NA e X /$== (Frexzec X Nz € A)
respects_refines_thm
FYXfRS
e (f Respects S) X A (R Refines S) X
= (f Respects R) X
equiv_mono_thm
FV X $= Ye Equiv (X, $=) A Y C X = Equiv (Y, $=)
induced_ fun_equiv_class_thm

FY X $2f g
o Fquiv (X, $=) A (f Respects $=) X re X
= (f 7) (EquivClass (X, $=) z) = f x
tnduced_fun_thm
FV X $= f
e Equiv (X, $=) A (f Respects $=) X
= VAze Ac X /$=NzeA=(f)A=fux)

induced_fun_induced_fun_thm
FYXRYSS
o Fquiv (X, R)
A Equiv (Y, S)
ANNMyoyeY = ((Azefxy) Respects R) X)
AN(NVzezxeX = ((Ayeofxy) Respects S) Y)
= (VAz By
eAc X/ RANzxe ANBeY /SANyeRB
S (Ve (fz)B)) A=fuy)
induced_fun_3d_thm
VY X $= f
e Equiv (X, $=) A (f Respects $=) X
= (JgeVAzre Ac X /$=NzecA=gA=Ffuzx)
induced_ fun_3_unique_thm
FY X $=fgh
e Fquiv (X, $=)
A (f Respects $=)
NNV Aze Ae X
ANV Aze de X
= (VAe Aec X /$
dyadic_induced_ fun_3_thm
FYXRY S
e Fquiv (X, R)
A Equiv (Y, S)
ANNMyoyeY = ((Azefxy) Respects R) X)

X
/$=NzeAd=gA=fuz)
/$=ANz

==hA=g A

25

AN(NVzezxeX = ((Ayofxy) Respects S) Y)
=3y

eVAx By
eAcX/RANzeANBeY /SANyeB

= gAB=fuzy)
dyadic_induced_ fun_3_unique_thm

FYXRY Sfgh
e Fquiv (X, R)
A Equiv (Y, S)
ANV yoyeY = ((\zef zy) Respects R) X)

AN(NVzezreX = (Ayeofxy) Respects S) Y)
NNV Az By

eAcX/RANzeANBeY /SANyeB
=gAB=Ffuzy)
NNVYAzxz By

e Ac X/ RNze€eANBeY /SANyeRB
=hAB=Ffuzy)
= (VABuy

eAcX/RANBeY /S=hAB=gAB)

26

B THE THEORY groups

B.1 Parents

cache' maths_egs fincomb equiv_rel
B.2 Children
group_ egs

B.3 Constants

GROUP — 'a = 'a

Inverseg "a

Unitg "a GROUP — 'a

Timesg 'a GROUP —'a —'a = 'a

Carc 'a GROUP = 'a P

MKEGROUP 'aP — (a—'a—"a)—"'a— (la—"'a) -'a GROUP
Unit "a GROUP — 'a

$~ "a =+ 'a GROUP —'a

$. 'a - 'a —'a GROUP —'a

Car "a GROUP — "a P

Group "a GROUP P

Homomorphism "a GROUP x'b GROUP — ("a —'b) P
Subgroup "a GROUP — 'a GROUP P

UnitSubgroup 'a GROUP — 'a GROUP
Restriction "a P —'a GROUP — 'a GROUP
NormalSubgroup

"a GROUP — 'a GROUP P
Ker (la = 'b) = 'a GROUP x'b GROUP — 'a GROUP
RightCongruent

"a GROUP — 'a GROUP — 'a — 'a — BOOL
SetInverse 'a P —'a GROUP — "a P
SetTimesElem'a P — 'a —'a GROUP — 'a P
ElemTimesSet'a — 'a P —'a GROUP — 'a P
SetTimesSet 'a P —'a P —'a GROUP — 'a P
GroupTimesGroup

"a GROUP — 'a GROUP — "a GROUP
QuotientGroup

"a GROUP % "a GROUP — "a P GROUP
I'mg ('a —'b) = 'aP —'b GROUP — 'b GROUP
Isomorphism 'a GROUP x b GROUP - ('a —="b)P
Inverse (la —="b) = "b—"a
!/
!/
!/

SymGroup aP— ("a —"a) GROUP
Sizeg a GROUP — N
$x g @ GROUP — 'b GROUP — ('a x 'b) GROUP

27

B.4 Aliases

N

/

#

B.5 Types
't GROUP

B.6 Fixity

Right Infix 290:
Right Infix 310:

Postfiz 330:

Restriction : 'a P — 'a GROUP — 'a GROUP

SetTimesSet : 'a P —'a P —'a GROUP — "a P
ElemTimesSet : 'a — 'a P — 'a GROUP — 'a P
SetTimesElem : 'a P = 'a — 'a GROUP — 'a P

Setlnverse : 'a P — 'a GROUP — 'a P

GroupTimesGroup : 'a GROUP — 'a GROUP — 'a GROUP
QuotientGroup : 'a GROUP — 'a GROUP — 'a P GROUP
Sizeq : 'a GROUP — N

XaG

~

B.7 Definitions

GROUP
MEGROUP
Carg
Timesg
Unitg
Inverseg

Car

Unat

F 3 fe TypeDefn (A zo T) f

FVitaxl 22 28 2
o Carg (MKkGROUP x1 z2 x3 z4) = xl1
A Timesqg (MKGROUP z1 z2 3 ©4) = 2
A Unitg (MKkGROUP 1 x2 z3 x4) = z8
A Inverseq (MKGROUP x1 x2 x8 x4) = x4
N MEGROUP
(Carg t)
(Timesg t)
(Unitg t)
(Inverseg t)
=1

F ConstSpec
(A (Car', $7.77, 87~ Unit')
o YV set times one inverse
o Car’ (MkGROUP set times one inverse) = set
ANNzy
3. z y (MKkGROUP set times one inverse)

28

= times T y)
A Unit" (MKkGROUP set times one inverse)
= one
ANV
e $7~" x (MkGROUP set times one inverse)
= inverse z))
(Car, $., $~, Unit)
Group FY G
e G € Group
s Vay
ez c Car GNy € Car G= (z.y) Ge Car G)
ANNVzyz
ez c Car GANye Car GANze€ Car G
= (z.y) G.2)G@=(z.(y.z2 G)G)
A Unit G € Car G
A (Y z
ez c Car G
= (z. Unit G) G=z AN (Unit G.z)G=x)
AN zexe Car G= (z7~) G e Car Q)
A (Y z
ez c Car G
= (z.(zx") G) G= Unit G
A({(z™) G.x)G= Unit G)
Homomorphism FYGHf
e f € Homomorphism (G, H)
& (Vzex € Car G = fux € Car H)
ANNVzy
ez c Car GNye€e Car G
=f(z.y) G =z .fy) H)
Subgroup FY GH
e H € Subgroup G
& Car H C Car G
AN H € Group
ANNVzye(z.y H=(z.y) Q)
AN ze(z™)H=(z")G)
UnitSubgroup -V G
e UnitSubgroup G
= MkEGROUP
{Unit G}
Az ye (z.y) G)
(Unit G)
(A ze (™) G)
Restriction FVYAG
e AN G
= MkGROUP
AN Car Q)
Az ye (z.y) G)

NormalSubgroup
FY GH

29

e H € NormalSubgroup G
< H € Subgroup G
ANNVzy
ex € Car HANye€ Car G
= ((y~)G.(x.y) G) Ge Car H)
Ker FYfGH
o Ker f (G, H)
= MkGROUP
{zlx € Car G N f x = Unit H}
Az ye (z.y) G)

(Unit G)
(N ze (z ™) G)
RightCongruent
FYGHZzy
e RightCongruent H G z y < ((z ~) G .y) G € Car H
SetTimesSet
ElemTimesSet
SetTimesElem
SetInverse F(VGAB
e (A.B)G
={z2[3abeac ANbe BANz=(a.b) G}

.y) G=A{z]F3 a0 a € AN z=(a.y) G})
(VG Ao (A™) G={z]13 aeac ANz=(a") G})
GroupTimesGroup
FYHK
e H K
= MkGROUP
(Car H . Car K) H)
Az ye (x.y) H)

QuotientGroup
FY GH
e G/ H
= MkGROUP
{A|IF3 zez € Car G NA=(z.Car H) G}
(A A Be (A.B) G)
((Unit G . Car H) G)
(X Ao (A ™) G)
Img FYfXG
eImg f X G
= MkGROUP
{yFzez e X Ny =fua}
Az ye (z.y) G)
(Unit G)
(A ze (z ™) G)
Isomorphism +VY G H f
o f € Isomorphism (G, H)

30

& f € Homomorphism (G, H)
NNVzy
excCar GANye Car GANfarz=fy=2z=y)
ANV zez€ Car H= (Jzez € Car GAfzx=2)
Inverse = ConstSpec
(X Inverse’
oV f
e OneOne f N Onto f
= (V ze Inverse’ f (f z) = x)
A (VY yo f (Inverse’ f y) = y))
Inverse
SymGroup FV X
o SymGroup X
= MkGROUP
{f
|OneOne f
A Onto f
ANVysnyeX=fy=uy))}
(Af gaef(gm))
(A zeo)
Inverse
Sizeg FV Ge # G = # (Car G)
Xa FY GH
e XaG H
= MkGROUP
Car G x Car H)

(

(A (a, b) (¢, d)e ((a . ¢) G, (b . d) H))
(Unit G, Unit H)
(A

(a, b)e ((a ™) G, (b ™) H))
B.8 Theorems

Car_consistent
._consistent

~_consistent

Unit_consistent

F Consistent
(A (Car’, $7.77, 8§~ Unit’)
o YV set times one inverse
o Car’ (MEKGROUP set times one inverse) = set

ANNzy
e $”.” z y (MKkGROUP set times one inverse)
= times T y)
A Unit' (MKkGROUP set times one inverse)
= one
ANV

e $7~"” x (MkGROUP set times one inverse)
= inverse 1))
group_ops_def
F V set times one inverse
o Car (MKkGROUP set times one inverse) = set

31

ANNzy
o (z .y) (MKkGROUP set times one inverse)
= times T y)
A Unit (MkGROUP set times one inverse) = one
A (Y z
e (z ™) (MEGROUP set times one inverse)
= inverse z)
Inverse_consistent
F Consistent
(X Inverse’
oV f
e OneOne f N Onto f
= (V ze Inverse’ f (f z) = x)
A (Y yo | (Inverse’ f y) = y))
tnverse_def GV f
e OneOne f N Onto f
= (V ze Inverse f (f z) = x)
A (V yo f (Inverse f y) = y)
group_eq_group_thm
FY GH
e G=H
& Car G = Car H
ANNVzye(r.y G=(z.y) H)
A Unit G = Unit H
ANV ze(z™)G=(x") H)
group_clausesl
FVY Gz
e G € Group N z € Car G
= (~) G € Car G
. Unit @)
Umt G .x)

A (z
A
Az ™) G o)
A

. (™) G)
group_clauses2
FYGzuyz
e G e Group Nz € Car G ANy € Car G
= (z.y) Ge Car G
A (Y z
ez ¢ Car G
= (z.y) G.z2)G=(z.(y.z2) G)G)
group_eq_.thm VY Gz y
e G Group Nz € Car G Ny € Car G
> @x=y<(z.(y"~) G G=Unit G)
group_eq_thml
FY Gzuy
e G € Group Nz € Car G Ny € Car G
==y (™) G.y) G=Unit G)
left_cancel_thm
FYGxyz
e G e Group Nx € Car G ANy € Car G N z € Car G
= (z.y) G=(z.2) G&y=2)

32

tnverse_inverse_thm
FVY Gaze Ge Group Nz € Car G = ((z~) G~) G=1z
group_clauses3d
FYGzxuy
e G € Group Nz € Car G Ny € Car G
=(@.((z7)G.y G)G=y
AM(z™) G (. y) G)G=y
times_inverse_thm
FY Gzy
e G e Group N x € Car G ANy € Car G
= (z.9 G7)E=((y™) G . (z7)G) G
tnverse_unique_thm
FYGzy
e G Group Nz € Car G ANy € Car G
= ((z.y) G=Unit G & y=(z7) G)
group_clauses4
FV G
o G € Group = Unit G € Car G A (Unit G ~) G = Unit G
unit_unique_thm
FY Gzy
e G e Group N x € Car G ANy € Car G
= ((z.y) G=2<y= Unit G)
homomorphism_unit_thm
FYGHf
e G € Group N H € Group N\ f € Homomorphism (G, H)
= f (Unit G) = Unit H
homomorphism_inverse_thm
FYGH(fzx
e G € Group
AN H € Group
A f € Homomorphism (G, H)
ANz e Car G
S f (@) @) = () H
homomorphism_clauses
FYGHf
e G € Group N H € Group N\ f € Homomorphism (G, H)
= f (Unit G) = Unit H
ANNVzoezxe Car G=Ff ((z~) G =(fz")H)
ANNVzy
ez € Car GNy€ Car G
S (. y) G =(fz. [y H)
homomorphism_€_car_thm
FYGH(fzx
e G € Group
AN H € Group
A f € Homomorphism (G, H)
ANz e Car G
= fxze Car H
subgroup_clauses
FYGHzuy
e G € Group N H € Subgroup G

33

= (z.y) H=(z.y) G
A Unit H = Unit G
A(z~)H=(z")G

trivial _subgroups_thm
FVY G
o G € Group

= G € Subgroup G N UnitSubgroup G € Subgroup G
subgroup_trans_thm

FYGHK

e G € Group N K € Subgroup H N H € Subgroup G
= K € Subgroup G
subgroup_C_subgroup_thm

FYGHK
o G € Group
A H € Subgroup G
AN K € Subgroup G
A Car K C Car H

= K € Subgroup H
subgroup_eq_thm

FYGHK

o G € Group N H € Subgroup G N K € Subgroup G

= (K = H < Car K = Car H)
subgroup_homomorphism_thm

FY GH

e G € Group N H € Subgroup G
= (A ze z) € Homomorphism (H, G)
td_homomorphism_thm
FV Ge G € Group = (\ ze z) € Homomorphism (G, G)
unit_homomorphism_thm
FY GH
e G € Group N H € Group

= (A ze Unit H) € Homomorphism (G, H)
comp_homomorphism_thm

FYGHKG(fyg
o G € Group
AN H € Group
N K € Group
A f € Homomorphism (G, H)
A g € Homomorphism (H, K)

= (A ze g (f x)) € Homomorphism (G, K)
restriction_subgroup_thm

FYAG
e G € Group
= (AN G € Subgroup G
s Vaoy
ez e ANz e Car GANye ANy € Car G
= (z.y) G € A

ANNVzezxe ANz e Car G= (z7) Ge A
A Unit G € A)
ker_normal_subgroup_thm

FY G Hf

34

e G € Group N H € Group N\ f € Homomorphism (G, H)
= Ker f (G, H) € NormalSubgroup G
subgroup_normal_subgroup_thm
FYGHK
e G € Group
AN H € Subgroup G
A K € NormalSubgroup G
AN K € Subgroup H
= K € NormalSubgroup H
right_congruent_equiv_thm
FY GH
e G € Group N H € Subgroup G
= Equiv (Car G, RightCongruent H G)
group_product_restriction_thm
FYGHK
e G € Group N H € Subgroup G N K € Subgroup G
= H.K=(Car H. Car K) GN G
group_product_subgroup_thm
FYGHK
e G € Group N H € Subgroup G N K € NormalSubgroup G
= H . K € Subgroup G
right_coset_equiv_class_thm
FY GH«x
e G € Group N H € Subgroup G AN z € Car G
= (xz . Car H) G
= FquivClass (Car G, RightCongruent H G) x
right_coset_eq_thm
FY GH=x
e G € Group N H € Subgroup G N x € Car G ANy € Car G
= ((z.Car H) G=(y . Car H) G
< RightCongruent H G z y)
quotient_group_times_thm
FYGH=zuy
o G € Group
A H € NormalSubgroup G
ANz e Car G
ANy € Car G
= ((z . Car H) G . (y . Car H) G) G
=({(z.y) G.Car H) G
quotient_group_inverse_thm
FYGHzxzuy
e G € Group
AN H € NormalSubgroup G
ANz e Car G
ANy € Car G
= ((z.Car H) G~) G=((z~) G . Car H) G
quotient_group_rep_3_thm
FYGHZC
e G e Group N C € Car (G / H)
= (Jzez € Car GANC = (z.Car H) G)
quotient_group_group_thm

35

FY GH

e G € Group N H € NormalSubgroup G = G | H € Group
quotient_group_homomorphism_thm

FY G H
e G € Group N H € NormalSubgroup G

= (A ze (z . Car H) G) € Homomorphism (G, G / H)
ker_right_coset_thm

FY GH

e G € Group N H € NormalSubgroup G

= Ker (A\ze (z . Car H) G) (G, G/ H) = H
tmg_subgroup_thm

FY G Hf

e G € Group N H € Group N f € Homomorphism (G, H)

= Img f (Car G) H € Subgroup H
equiv_right_congruent_ker_thm

FYGHf

e G € Group N H € Group A\ f € Homomorphism (G, H)

= Fquiv (Car G, RightCongruent (Ker f (G, H)) G)
homomorphism_respects_ker_thm

FY GHf

e G € Group N H € Group N\ f € Homomorphism (G, H)

= (f Respects RightCongruent (Ker f (G, H)) G)
(Car G)

car_quotient_group_thm
FY GH

e G € Group N H € NormalSubgroup G

= Car (G / H) = Car G / RightCongruent H G
subgroup_refines_thm

FYGHK

e G € Group N H € Subgroup G N K € Subgroup H

= (RightCongruent K G Refines RightCongruent H G)
(Car Q)

subgroup_ker_induced_thm
FYGKHYf
e G € Group
AN H € Group
A f € Homomorphism (G, H)
A K € NormalSubgroup G
A K € Subgroup (Ker f (G, H))
= (g
e (Vzez € Car G= g ((z.Car K) G) =f x)

A g € Homomorphism (G |/ K, Img f (Car G) H))
tsomorphism_ker_img_thm

FY GHf
e G € Group N H € Group
= (f € Isomorphism (G, H)
< f € Homomorphism (G, H)
N Ker f (G, H) = UnitSubgroup G

A Img f (Car G) H = H)
first_isomorphism_thm

FY GHf

36

e G € Group N H € Group N\ f € Homomorphism (G, H)
= 3y
e (Vz
ez c Car G
= g ((z . Car (Ker f (G, H))) G) = f x)
Nyg
€ Isomorphism
(G / Ker f (G, H), Img f (Car G) H))
second_isomorphism_lemmal
FYGHK
e G € Group N H € Subgroup G N K € NormalSubgroup G
= K € NormalSubgroup (H . K)
second_isomorphism_lemma?2
FYGHK
e G € Group N H € Subgroup G N K € NormalSubgroup G
= H € Subgroup (H . K)
second_isomorphism_lemma3
FYGHK
e G € Group N H € Subgroup G N K € NormalSubgroup G
= Ker (Aze (z . Car K) G) (H, (H . K) /| K)
= Car KN H
second_isomorphism_lemma4
FYGHK
e G € Group N H € Subgroup G N K € NormalSubgroup G
= (A ze (z . Car K) Q)
€ Homomorphism (H, (H . K) | K)
second_isomorphism_thm
FYGHK
e G € Group N H € Subgroup G N K € NormalSubgroup G
=3y
o (Vu
ez c Car H
=g ((z . (Car K N Car H)) G)
= (z . Car K) G)
Nyg
€ Isomorphism
(H/ (Car KNH), (H.K)/K))
third_isomorphism_lemmal
FYGHK
e G € Group
AN H € NormalSubgroup G
A K € NormalSubgroup G
A K € Subgroup H
= (g
o (Vuz
ez € Car G
=g ((z. Car K) G) = (. Car H) G)
A g € Homomorphism (G | K, G | H))
third_isomorphism_lemma?2
FYGHK
e G € Group

37

AN H € NormalSubgroup G
A K € NormalSubgroup G
AN K € Subgroup H
=3y
o (Vu
ez c Car G
= g ((z . Car K) Q)
A g € Homomorphism (G
A Car (Ker g (G | K, G
third_isomorphism_lemma3
FYGHK
e G € Group
A H € NormalSubgroup G
A K € NormalSubgroup G
A K € Subgroup H
= K € NormalSubgroup H
third_isomorphism_lemma4
FYGHK
o G € Group
A H € NormalSubgroup G
AN K € NormalSubgroup G
AN K € Subgroup H
= H | K € Subgroup (G | K)
third_isomorphism_lemmab
FYGHK
e G € Group
AN H € NormalSubgroup G
AN K € NormalSubgroup G
AN K € Subgroup H
=3y
o (Vu
ez c Car G
=g ((z.Car K) G
A g € Homomorphism
AN Kerg(G/ K, G/
A Img g (Car (G| K
third_isomorphism_thm
FYGHK
o G € Group
A H € NormalSubgroup G
AN K € NormalSubgroup G
AN K € Subgroup H
=3y
o (Vuz
ez c Car G
=9
(((z . Car K) G . Car (H | K))
(G / K))
= (xz . Car H) G)
A g € Isomorphism (G /| K /| (H /| K), G / H))
sym_group_group_thm

38

FV Xe SymGroup X € Group
cayley_thm FV G

o G € Group
= (3f
e (Vay
efury
= (if y € Car G then (z . y) G else y))
A f

€ Isomorphism

(G, Img f (Car G) (SymGroup (Car @))))
finite_subgroup_thm

FY GH
e G € Group N Car G € Finite N H € Subgroup G

= Car H € Finite
finite_cosets_thm

FY GH
o G € Group N Car G € Finite N H € Subgroup G

= Car (G / H) € Finite
lagrange_cosets_thm
FY GH
e G € Group N Car G € Finite N H € Subgroup G
= Car H € Finite
A Car (G /| H) € Finite
AN# G=#Hx# (G / H)
product_group_thm
FY G He G € Group N H € Group = G xg H € Group
fst_honomorphism_thm
FY GH
e G € Group N H € Group

= Fst € Homomorphism (G xg H, G)
snd_honomorphism_thm

FY GH
e G € Group N H € Group

= Snd € Homomorphism (G xg H, H)
product_honomorphism_thm

FYGHK
e G € Group
AN H € Group
N K € Group
A f € Homomorphism (G, H)
A g € Homomorphism (G, K)
= (A ze (f z, g)) € Homomorphism (G, H xg K)

39

C THE THEORY group_egs

C.1 Parents

analysis groups

C.2 Constants

Z_units 7Z GROUP
Z_plus 7Z GROUP
R_pos R GROUP
Ry R GROUP

C.3 Definitions

Z._plus
Z_units F Z_plus = MkGROUP Universe $+ (NZ 0) ~
A Z_units
= MKGROUP {~ (NZ 1); NZ 1} $x (NZ 1) (\ ze z)
Ry
R_pos F Ry = MKkGROUP Universe $+ 0. ~

A R_pos = MKGROUP {z|0. < x} $* 1. $1

C.4 Theorems

Z_plus_group_thm
F Z_plus € Group
Z_units_group_thm
F Z_units € Group
Z._plus_ops_thm
t Car Z_plus = Universe
ANV ije(i.jg)Zoplus=1i+7)
A Unit Z_plus = NZ 0
A (Y ie (i ™) Z_plus = ~ i)
Z_units_ops_thm
F Car Z_units = {~ (NZ 1); NZ 1}
A (Y ije (i.j) Z_units =1 * j)
A Unit Z_units = NZ 1
A (Y ie (1 ™) Z_units = i)
Z_plus_Z_units_homomorphism_def
FVf
e f € Homomorphism (Z_-plus, Z_units)
& (Ve foze{~(NZ1);NZ1})
ANVzysf(z+y =fazxfy)
Z_plus_7Z_units_homomorphism_unit_thm
FVf
e f € Homomorphism (Z_plus, Z_units)
= f (NZ 0) = NZ 1
Z._plus_7Z_units_homomorphism_inverse_thm
FVYfx

40

e f € Homomorphism (Z_plus, Z_units) = f (~z) = f x
R_additive_group_thm
F Ry € Group
R_pos_group_thm
F R_pos € Group
R_additive_ops_thm
F Car Ry = Universe
ANNVzye(z.y) Ry =az+y)
A Unit Ry = 0.
AN (Y ze (z)Ry =~ 1)
R_pos_ops_thm
F Car R_pos = {z]0. < x}
ANV zye (z.y) Ropos =z % y)
A Unit R_pos = 1.
A (VY ze (z ™) Ropos =z 1)
R_additive_R_pos_homomorphism_def
FVYf
e f € Homomorphism (R4, R_pos)
& (Vze 0. < f x)
NV oyef(zty) =Fzfy)
R_additive_R_pos_homomorphism_unit_thm
FV fe f € Homomorphism (Ry, R_pos) = f 0. = 1.
R_additive_R_pos_homomorphism_inverse_thm
FVYfx
e f € Homomorphism (Ry, R_pos) = f (~z) = f x ~!
R_additive_R_pos_isomorphism_def
FVYf
e [€ Isomorphism (R4, R_pos)
& f € Homomorphism (Ry, R_pos)
ANVzysfoz=fy=az=y)
ANV ze 0. <z= (Fzefux=2)
exp_tsomorphism_thm
F Exp € Isomorphism (Ry, R_pos)
linear_homomorphism_thm
FV ce (A ze ¢ xx) e Homomorphism (Ry, Ry)
plus_R_additive_homomorphism_thm
F Uncurry $4+ € Homomorphism (Ry X Ry, Ry)

41

INDEX

SCONSTSTENT oo 31
e 27

... 28
| 23
PP 28
Car_consistent, 31
car_quotient_group_thm 36
CarG . oo 10
Car G . oo 27
CarG . oo 28
Car ..o 10
Car ..o 27
Car .o 28
cayley_thm i 39
comp_homomorphism_thm 34
constant_img_thm 24
Contents_consistent 24
contents_def i 24
Contentsuoun 8
Contentsouiiii . 23
Contents ..., 24
dyadic_induced_fun_I_thm 25
dyadic_induced_ fun_3_unique_thm 26
ElemTimesSet 15
ElemTimesSet 27
ElemTimesSet 30
EquivClassooui i 7
EquivClass, 23
EquivClass 24
equiv_class_eq_thm 24
equiv_class_ € thm 24
equUIv-MOnOo_thm i, 25
equiv_right_congruent_ker_thm 36
Equiv 7
Equivo 23
Equiv ... 24
exp-isomorphism_thm 41
finite_cosets_thm 39
finite_subgroup_thm......................... 39
first_isomorphism_thm 36
fst_honomorphism_thm...................... 39
GroupTimesGroup 15
GroupTimesGroup, 27
GroupTimesGroup c.cccouiiiion.. 30
group-clausesl 32
group_clauses2 32
group_clausesd i 33
group_clausesd i 33
group_eq_group_thm 32
group_eq-thml 32
group_eq_thm 32
group_ops_def 31
group_product_restriction_thm 35
group_product_subgroup_-thm 35
GROUP ... i 10

Group ..o 11
Groupove i 27
GROUP ... 28
Group oo 29
homomorphism_clauses 33
homomorphism_inverse_thm 33
homomorphism_respects_ker_thm 36
homomorphism_unit_thm 33
homomorphism_ € _car_thm 33
Homomorphism 12
Homomorphism 27
Homomorphism 29
id_homomorphism_thm 34
img_subgroup_thm......... 36
Img. ... 17
Img ..o 27
Img ... 30
nduced_ fun_equiv_class_thm................. 25
induced_ fun_induced_fun_thm 25
nduced_fun_thm..... 25
nduced-fun_F_thm........ 25
induced_ fun_I_unique_thm................... 25
Inverse_consistent 32
tnverse_defo 32
tnverse_inverse_thm 33
nverse_unique_thm 33
INnverseg ..o 10
Inverseg ..o 27
Inverseg ..o 28
Inverse ... 18
Inverse 27
Inverse 31
isomorphism_ker_img_thm 36
Isomorphism 17
Isomorphism 27
Isomorphism 30
ker_normal_subgroup_thm 34
ker_right_coset_thm 36
Ker . oo 14
Ker . oo 27
Ker . oo 30
lagrange_cosets_thm 39
left_cancel_thm 32
linear_homomorphism_thm 41
MEGROUP ..o 27
MEGROUP ... i 28
NormalSubgroup 14
NormalSubgroup i, 27
NormalSubgroup 29
plus_R_additive_homomorphism_thm 41
product_group_thm 39
product_honomorphism_thm 39
QuottentGroup 16
QUOtientGroupcovvi i 27
QuotientGroup 30

42

QuotientSet...... ... 7

QuotientSet...... ... i 23
QuotientSet...... 24
quotient_group_group_thm.................... 35
quotient_group_homomorphism_thm........... 36
quotient_group_inverse_thm 35
quotient_group_rep_ I thm 35
quotient_group_times_thm.................... 35
quotient_map_onto_thm 25
quotient_rep_ 3 thm 25
quotient_ € _thm 25
Refines ... 23
Refines ... 24
Refl oo 6
Refl .o 23
Refl .o 24
respects_img_contents_thm 24
respects_img_thm oo, 24
respects_refines_thm 25
Respects. ..o 23
Respects. ... 24
restriction_subgroup_thm 34
Restriction ... 14
Restriction i 27
Restriction i 29
RightCongruent 15
RightCongruent oo, 27
RightCongruent......... i .. 30
right_congruent_equiv_thm 35
right_coset_equiv_class_thm 35
right_coset_eq_thm 35
second_isomorphism_lemmal 37
second_isomorphism_lemma2 37
second_isomorphism_lemma3d 37
second_isomorphism_lemmad 37
second_isomorphism_thm 37
SetINUerseot 15
SetInverseoi 27
SetInverse 30
SetTimesElem 15
SetTimesElem 27
SetTimesElem, 30
SetTimesSet 15
SetTimesSet 27
SetTimesSet ... 30
S ZCG oo 19
SU2CG e e 27
SO vt et 31
snd_honomorphism_thm 39
subgroup_clauses 33
subgroup_eq_thm 34
subgroup_homomorphism_thm 34
subgroup_ker_induced_thm 36
subgroup_normal_subgroup_thm 35
subgroup_refines_thm 36
subgroup_trans_thm 34
subgroup- C _subgroup_thm 34
Subgroup 13

Subgroup 27
Subgroup 29
SYMGroupo 18
SYMGTOUD . oo o v et 27
SYmGroupoovviii i 31
sym_group_group_thm 38
SUM 7
SYIM o 23
SYM oo 24
third_isomorphism_lemmal 37
third_isomorphism_lemma2 37
third_isomorphism_lemma3 38
third_tsomorphism_lemmad 38
third_tsomorphism_lemmad 38
third_isomorphism_thm 38
times_inverse_thm 33
TUMESG o o e e e e 10
TUMESG w o e e e e 27
TUMESG v e e e 28
trivial_subgroups_thm 34
UnitSubgroup 13
UnitSubgroup 27
UnitSubgroup i 29
Unit_consistent i, 31
unitt_homomorphism_thm 34
unit_unique_thm, 33
UNGEG + + e e e e e e e e 10
Unita « oo 27
Unita « oo 28
Unit ..o 10
Unit ... 27
Unit ... 28
o 28
B 10
SRefines ... 8
BRESDECES « « v v e e 8
B X G 19
T 8
B 10
0 28
e 23
S 23
A 23
R_additive_group_thm 41
R_additive_ops_thm.......................... 41
R_additive_R_pos_homomorphism_def 41

R_additive_R_pos_homomorphism_inverse_thm. 41
R_additive_R_pos_homomorphism_unit_thm. ... 41

R_additive_R_pos_isomorphism_def 41
R_pos_group_thm 41
R_pos_ops_thm, 41
RopoS oot 21
R_pos oo 40
R 21
R 40
Z_plus_group_thm 40
Z_plus_ops_thm 40
Z_plus_Z_units_homomorphism_def 40

43

Z_plus_Z_units_homomorphism_inverse_thm. .. 40

Z_plus_Z_units_-homomorphism_unit_thm 40
ZoPlUuS. . oot 21
ZoplusS. ..o 40
Z_units_group_thm 40
Z_units_ops_thm 40
7 21
Zoounits . oot 40
D S 27
DS A 28
DS A 31
T_oconsistent ... 31
O 27
P 28
e 23
IS 24

44

