
On Refinement Calculus and Partial Correctness
(DRAFT)∗

R.D. Arthan

2 October 2011

1 Introduction

1.1 Background and Motivation

This note is intended as the first of a series concerned with a style of system specification
in which the claims that can be verified have the form “system p satisfies specification s
under normal circumstances”. This notion of correctness is traditionally referred to as partial
correctness, although a more impartial term such as “algorithmic correctness” is preferred by
some. A total correctness claim has the form “system p always satisfies specification s”.

I should explain what is meant by “normal circumstances”: we have in a mind some notion of
mathematically rigorous system specification. Such a notion will always be relative to some
conventions and assumptions about the relationship between the mathematical model and the
physical systems under consideration. For example, in program specification, the modelling
conventions might be the abstractions involved in a formal semantics for the programming
language and the modelling assumptions might include an assumption that no exceptions are
raised causing control to pass from the programming language execution environment to the
operating system under which it runs. We take normal circumstances to be those in which the
modelling assumptions hold — abnormal circumstances are those in which the model breaks
down and something external to the model is required to deal with the situation.

For many practical purposes, partial correctness is a much more useful notion than total
correctness. For example, in program analysis, tools other than formal specification and
proof may be better suited to automatic analysis of normal termination. Furthermore, partial
correctness claims have the clear advantage of sometimes being true in physical reality, whereas
total correctness claims never are (e.g., consider what happens when a power supply fails).
We believe the partial correctness approach is much closer in spirit to normal engineering
practice: no engineered artefact is perfect. Much of the work in any engineering task is in
combining potentially faulty subsystems so as to produce a system that is adequately resilient
for its intended purpose.

Some technologies, such as programming languages, apparently offer the possibility of formal
proof of total correctness. However, such a proof is always relative to some mathematical

∗Copyright c© Lemma 1 Ltd. 2011; filed in the ProofPower source code repository as wrk069.doc; 1.27.

1

model which is invariably an idealisation of the physical reality of the delivered artefact. While
this possibility is of considerable theoretical importance, we believe that there is considerable
practical value in having a mathematically rigorous theory that reflects the potential for failure
in any engineered component.

The original motivation for this work lay in program specification. However, it became clear
that with just a little additional abstraction, much of the theory has a much wider domain
of application. In this first note, we look at a very general class of systems and system
specifications.

The most general notion of the act of specifying a system is first to identify some set P of
possible systems and then to identify a subset A ⊆ P of acceptable systems. We may call this
the property-based approach. It is advocated in Jones [2] as a general method for specifying
and verifying critical system properties. The advantages and disadvantages of this view both
lie in its generality: on the one hand, it is clearly adequate to deal with any system property
that is amenable to any form of mathematical specification, on the other hand it gives no
guidance whatsoever as to how to proceed: the modelling conventions and assumptions in
any given situation need to be carefully designed and inspected to ensure they are fit for their
intended purpose.

An approach that has a very long tradition, particularly in program verification, is to observe
that almost any system can be viewed as some kind of binary relation, say between inputs and
outputs, or between successive states of a state transition machine. This relational approach
leads to a notion of refinement whereby implementations are viewed as binary relations of
the same kind as are used for specifications and refinement rules are given defining what a
valid implementation of a specification is. (The corresponding notion for the property-based
approach is just set-theoretic inclusion or membership. The refinement rules give more useful
insights in the relational approach.)

In a relatively recent work, Hoare & He [1], this approach is advocated as providing a unifying
framework for dealing with a wide class of programming languages and programs. However,
the approach as described in Hoare & He [1] is heavily biased towards the total correctness
viewpoint. This actually leads to considerable technical complications and the solutions taken
in Hoare & He [1] lead to counter-intuitive results: for example, they preclude the design of a
system which can create order from chaos — a very common engineering requirement.

It is certainly possible to adapt the relational approach to give a notion of partial correctness.
Indeed, the approach we will take in this note embraces this as a special case. However,
viewing specifications as binary relations leads to a significant loss of expressiveness in the
partial correctness version. The problem is that when dealing with the possibility of failure,
the specifier may need to demand failure under certain circumstances. Unfortunately, the
relational approach gives no way of distinguishing between cases where failure is required and
cases where the behaviour is unspecified. Our approach is to augment the binary relation
with a set indicating the domain in which the specifier has a definite interest in behaviour.
This is, essentially just the pre- and post-condition style of specification that is familiar from
Floyd-Hoare logic and notations like VDM. However, the partial correctness interpretation of
the pre-condition makes it play a much more important role than it does in a total correctness
approach (which is why Hoare & He [1] are able to do without it, except as a syntactic
convention).

Please note this is work-in-progress and the current version of this note lacks any serious

2

attempt to cite the literature or compare the results with other work.

1.2 Notation

We will develop our theory using the Z notation. We will give definitions in Z and state our
theorems as Z conjectures. The Z definitions have all been type-checked and the conjectures
have all been proved using the ProofPower system. The master of this document is in fact a
ProofPower literate script which can be processed automatically to check the definitions and
replay the proofs. For brevity, the proof commands are suppressed from the printed form of
the document.

We use infix notation for the following relation and function symbols:

relation ⊑ , |= , ≡

function 30 ⊔

function 40 ⊓

function 40 ⊕R

We use postfix notation for the following function and generic symbols:

function 7 $

generic 7 ⊥

As mentioned above, all of the conjectures stated in this document have been proved with
ProofPower and the resulting theory listing is included as an appendix. An index to the Z
specification is given at the end of the document.

2 Inputs, Outputs , Pre-conditions, Post-conditions

We wish to construct a semantic model of specification of operations via pre- and post-
conditions. Our operations have inputs and outputs that could be memory states, or data
streams or anything else appropriate to the modelling task at hand. The internal structure of
inputs and outputs is not relevant to our purposes for the time being — our definitions will
be generic with respect to the set, X, of inputs and the set, Y , of outputs.

For modelling the semantics of a conventional imperative programming language, the inputs
and outputs would both be assignments of values to program variables. We take this as our
motivating example in this section.

In our formulation, a predicate on a set, X, is just a subset of X, i.e., the denotation of the
usual syntactic notion of a predicate.

3

PRED[X] =̂ PX

For the programming language example, a pre-condition would be given syntactically as a
predicate whose free variables are program variables and a post-condition would be given as
a predicate whose free variables are program variables with optional decoration to distinguish
values in the before-state from values in the after-state. A pre-condition denotes the set of
assignments, α, in which the program variables satisfy the pre-condition and a post-condition
denotes the relation, ρ, which holds between a before-state s and an after-state s′ when s× s′

satisfies the post-condition after making the appropriate binding of before- and after-values
to the variables in the post-condition.

Taken together, we can often think of the pre- and post-condition together as denoting the
relation α ⊳ ρ. However, as we will be making formal presently, our reading of a specification
will require the program not to terminate in before-states that satisfy the pre-condition but
to which the post-condition cannot respond. Consequently we lose some expressiveness if
we throw away the pre-condition, for example, if the post-condition is unsatisfiable, the pre-
condition defines a set of states in which the program must not terminate. We therefore keep a
separate record of the pre-condition. So a specification is a pair comprising a predicate giving
the pre-condition and a binary relation between inputs and outputs giving the post-condition.

PRE COND[X] =̂ PRED [X]

POST COND[X , Y] =̂ X ↔ Y

SPEC[X , Y] =̂ PRE COND [X] × POST COND [X , Y]

To give examples in the sequel, we will borrow some syntax from the Compliance Notation,
in which states comprise assignments of values to program variables representing the execu-
tion state of an Ada program. In the Compliance Notation, specifications are written using
specification statements which have the following general form:

∆ W [P , Q]

where W is a list of program variables called the frame and P and Q are syntactic predicates
giving the pre-condition and post-condition respectively. In the post-condition a subscript 0
may be used to distinguish variables that refer to the before-state from variables that refer
to the after-state. The frame lists the program variables that may be changed by the code
being specified. For example, here are specification statements for (a) a fragment of code that
exchanges the value of two program variables, X and Y , possibly with a side-effect on a third
variable, T ; and, (b) a fragment of code that divides one variable, Y , by another, X, subject
to the pre-condition that X be positive.

∆ X , Y , T [true, X = Y 0 ∧ Y = X 0] (a)
∆ Y [X > 0 , Y = Y 0 / X] (b)

In our semantic view, a syntactic specification statement of this sort denotes a specification
in the above semantic sense whose pre-condition is the denotation of the given syntactic
pre-condition and whose post-condition is the relation denoted by the given post-condition
conjoined with the requirement that any variable not listed in the frame must be unchanged.

4

3 Refinement

Refinement is a notion that is fundamental to this work. Refinement is the relation that obtains
between a specification and a satisfactory implementation of that specification, where, in the
present context an “implementation” is simply a specification, typically more definite than
the specification it refines. Since we are only concerned with partial correctness, we consider
an implementation to be satisfactory even if it fails to respond in some situations where the
specification appears to require a response. More formally, we will say that one specification,
s2 = (prec2 , postc2) refines another s1 = (prec1 , postc1) iff:

• prec2 includes prec1 ; and:

• the restriction of postc2 to prec1 is contained in postc1 .

The first of these conditions is a vestigial analogue of liveness in our partial correctness view
of refinement. The traditional notion of liveness allows the pre-condition to be weakened but
requires postc2 to be at least as responsive as postc1 in states where prec1 holds. Here, we do
not impose the latter requirement. We just say is that s2 may not strengthen the pre-condition
of s1: this amounts to saying that s2 must not be less specific than s1 in its requirements for
non-termination.

The second condition is the traditional notion of safety — it says that any response made by
s2 in a state satisfying the pre-condition of s1 is a response that could also be made by s1.
This includes the possibility that s2 may be unable to respond where s1 can.

[X, Y]

⊑ : SPEC [X , Y] ↔ SPEC [X , Y]

∀prec1 , prec2 : PRE COND [X]; postc1 , postc2 : POST COND [X , Y]•

(prec1 , postc1) ⊑ (prec2 , postc2)

⇔ prec1 ⊆ prec2
∧ prec1 ⊳ postc2 ⊆ postc1

We now explore the properties of the refinement relation. First of all, we note that refinement
is a pre-order (i.e., it is reflexive and transitive):

refinement pre order cnj ?⊢

∀ s1 , s2 , s3 : SPEC•

s1 ⊑ s1
∧ (s1 ⊑ s2 ∧ s2 ⊑ s3 ⇒ s1 ⊑ s3)

However, refinement is not antisymmetric, i.e., it is possible to have s1 ⊑ s2 and s2 ⊑ s1
without having s1 = s2. This happens because two specifications with the same pre-condition
may differ only with respect to responses to before-states that do not satisfy the pre-condition

5

and are therefore irrelevant in our definition of refinement1. To remedy this, where necessary,
let us say that two specifications are equivalent if they refine one another:

[X, Y]

≡ : SPEC [X , Y] ↔ SPEC [X , Y]

∀s1 , s2 : SPEC [X , Y]•

s1 ≡ s2 ⇔ s1 ⊑ s2 ∧ s2 ⊑ s1

That ≡ is an equivalence relation follows from the fact that ⊑ is a pre-order. The pre-order
induces a pre-order on the equivalence classes which will necessarily also be a partial order,
i.e., it will also be antisymmetric. Rather than work with equivalence classes in the sequel,
we will work with canonical representatives when necessary. These canonical representatives
are defined by the following which reduces a specification to a normal form in which the
post-condition is empty outside the pre-condition.

[X, Y]
$: SPEC [X , Y] → SPEC [X , Y]

∀prec : PRE COND [X]; postc : POST COND [X , Y]•

(prec, postc)$ = (prec, prec ⊳ postc)

The reduction operator (which is useful enough to be worth the dollar in its name!) is
idempotent:

reduce reduce cnj ?⊢ ∀ s : SPEC• (s$)$ = s$

The following theorem shows that the reduction operator does indeed pick a canonical repre-
sentative from each ≡-equivalence class:

equiv cnj ?⊢ ∀ s1 , s2 : SPEC• s1 ≡ s2 ⇔ s1
$ = s2

$

Our next theorem says that refinement is independent of choice of representative in each
equivalence class:

refinement reduce cnj ?⊢ ∀ s1 , s2 : SPEC• s1 ⊑ s2 ⇔ s1
$ ⊑ s2

$

Let us define the reduced specifications to be those in the range of the reduction operator:

1We could require all our specifications to be such that the pre-condition contains the domain of the
post-condition. We prefer not to impose this restriction except where necessary. This is technically more
convenient and is also more faithful to actual examples, e.g, in the example, ∆Y [X > 0 ,Y = Y 0/X] that we
have already discussed, the denotation of the post-condition considered in isolation includes the possibility
that X be negative in the before-state.

6

[X, Y]

REDUCED : PSPEC [X , Y]

REDUCED = {s : SPEC• s$}

When restricted to reduced specifications, refinement does indeed become antisymmetric:

refinement antisym cnj ?⊢ ∀ s1 , s2 : REDUCED• s1 ⊑ s2 ∧ s2 ⊑ s1 ⇒ s1 = s2

We now want to show that refinement of reduced specifications is a complete lattice. We
define constants that help us state this and other results. We use upper-case names for the
constituents of specifications and mixed upper-lower case names for specifications.

[X]

TRUE, FALSE : PRE COND [X]

TRUE = X ;

FALSE = ∅

[X, Y]

ABORT : POST COND [X , Y];

CHAOS : PRE COND [X] → POST COND [X , Y];

Abort, Chaos : PRE COND [X] → SPEC [X , Y];

Bottom , Top: SPEC [X , Y]

ABORT = ∅;

∀ prec : PRE COND [X]•

CHAOS prec = prec × Y

∧ Abort prec = (prec, ABORT)

∧ Chaos prec = (prec, CHAOS prec);

Bottom = Chaos ∅;

Top = Abort TRUE

Bottom and top are indeed the bottom and top elements of the pre-order:

bottom top cnj ?⊢ ∀ s : SPEC• Bottom ⊑ s ⊑ Top

Meets (greatest lower bounds) turn out to be straightforward to define and verify:

7

[X, Y]

Meet : PSPEC [X , Y] → SPEC [X , Y]

∀A : P SPEC [X , Y]• Meet A = (
⋂
{s : A• s .1},

⋃
{s : A• s .2})

Now we can state the conjecture that meets are indeed greatest lower bounds.

refinement meet cnj ?⊢

∀ A : PSPEC• ∀t : A• Meet A ⊑ t ;

∀ A : PSPEC ; s : SPEC• (∀t : A• s ⊑ t) ⇒ s ⊑ Meet A

Joins turn out to be trickier. We first define a function that maps a specification, s say to the
post-condition that allows precisely those state transitions that s forbids:

[X, Y]

Forbidden : SPEC [X , Y] → POST COND [X , Y]

∀s : SPEC [X , Y]•

Forbidden s = CHAOS (s .1) \ s .2

A more explicit equation for forbidden sets is useful2:

forbidden def cnj ?⊢

∀ s : SPEC•

Forbidden s = { x : U; y : U | x ∈ s .1 ∧ ¬(x , y) ∈ s .2}

The following conjecture is useful to check the definition of the forbidden function and in
proving later results.

forbidden cnj ?⊢

∀ s1 , s2 : SPEC•

s1 ⊑ s2 ⇔ s1 .1 ⊆ s2 .1 ∧ s2 .2 ∩ (Forbidden s1) = ∅

Now we can define joins. The pre-condition of the join of a set of specifications is just the
union of the individual pre-conditions. The post-condition is obtained from the union of the
post-conditions by removing all transitions that are forbidden by some specification in the set.

[X, Y]

Join : PSPEC [X , Y] → SPEC [X , Y]

∀A : P SPEC [X , Y]•

Join A = (
⋃
{s : A• s .1}, (

⋃
{s : A•(s$).2}) \ (

⋃
{s : A•Forbidden s}))

2For convenience in stating this and other theorems, we use the generic constant U which is defined as part
of the ProofPower Z library as if by the generic definition U[X]=̂X , so that U with the generic parameter
left implicit denotes the universal set of whatever type is required by the context.

8

In elementary working with join it is often more convenient to have more explicit set compre-
hensions:

join def cnj ?⊢

∀ A : PSPEC• Join A =

({s : A; x : U | x ∈ s .1• x},

{s : A; x : U; y : U

| x ∈ s .1 ∧ (x , y) ∈ s .2 ∧ (∀t : A• x ∈ t .1 ⇒ (x , y) ∈ t .2)

• (x , y)})

It is useful to be able to calculate the forbidden set of a join

forbidden join cnj ?⊢

∀ A : PSPEC•

Forbidden(Join A) =
⋃
{s : A• Forbidden s}

Now we can state the theorem that our joins are indeed least upper bounds.

refinement join cnj ?⊢

∀ A : PSPEC• ∀t : A• t ⊑ Join A;

∀ A : PSPEC ; s : SPEC• (∀t : A• t ⊑ s) ⇒ Join A ⊑ s

Given that arbitrary meets and joins exist, we can now define binary meets and joins in terms
of them. At this point, the observant reader who is not familiar with the traditions of our style
of specification will note that the passage from the language of set-theoretic inclusion, union
and intersection, to the language of refinement, meets and joins involves not only squaring off
the corners of the symbols but also looking at them upside down in a mirror. This is perhaps
unfortunate, but it is the tradition and we feel obliged to follow it.

[X, Y]

⊓ , ⊔ : SPEC [X , Y] × SPEC [X , Y] → SPEC [X , Y]

∀s1 , s2 : SPEC [X , Y]•

s1 ⊓ s2 = Meet{s1 , s2}

∧ s1 ⊔ s2 = Join{s1 , s2}

The following formulae for binary meets and joins are often simpler to use (and probably
easier to understand) than the general definitions:

meet2 cnj ?⊢ ∀s1 , s2 : SPEC• s1 ⊓ s2 = (s1 .1 ∩ s2 .1 , s1 .2 ∪ s2 .2)

join2 cnj ?⊢ ∀s1 , s2 : SPEC•

s1 ⊔ s2 =

(s1 .1 ∪ s2 .1 ,

((s1 .1 ∩ s1 .1) ⊳ (s1 .2 ∩ s2 .2))

∪ ((s1 .1 \ s2 .1) ⊳ s1 .2)

∪ ((s2 .1 \ s1 .1) ⊳ s2 .2))

9

4 Relations with Other Approaches

In Hoare & He [1], a theory based on total correctness is developed. This theory is syntactic
and involves various artifices that are on the face of it mainly introduced to obtain various
algebraic laws. A semantics and rather simpler account is given in Woodcock and Davies[3].
Total correctness effectively means restricting attention to specification in our sense in which
the domain of the post-condition contains the pre-condition. This has the advantage that,
if we take the canonical representation, we can discard the pre-condition since it may be
recovered as the domain of the post-condition.

Woodcock and Davies[3] proceed to point out that for total relations, the notion of refinement
reduces to set-theoretic inclusion of relations. In this section we show that this idea generalises
to our partial correctness notion. To do this we first introduce some more notation: X⊥ is to
be the result of augmenting a set X with an additional element ⊥. We represent X⊥ as the
set of all subsets of X with at most one element:

X ⊥ =̂ { A : PX | ∀x , y : A• x = y}

ι and ⊥ are then defined as follows (and act very much as if they were constructors of a generic
free type).

[X]

⊥ : X ⊥ ;

ι : X → X ⊥

⊥ = ∅;

∀x : X • ι x = {x}

The function lift maps a specification in our sense to the relation between augmented inputs
and augmented outputs which agrees with the post-condition where the pre-condition holds
and is chaos outside the pre-condition. This definition agrees with the one given in Woodcock
and Davies[3] on specifications that happen to be total3.

[X, Y]

lift : SPEC [X , Y] → X ⊥ ↔ Y ⊥

∀prec : PRE COND [X]; postc : POST COND [X , Y]•

lift(prec, postc) =

{ xa : X⊥; ya : Y ⊥

| xa = ⊥

∨ (∃x : X • ¬x ∈ prec ∧ xa = ι x)

∨ (∃x : X ; y : Y • x ∈ prec ∧ (x , y) ∈ postc ∧ xa = ι x∧ ya = ι y) }

3In fact, we do not actually need to augment the input set X, an analogue of lift could be defined mapping
specifications to relations between X and Y ⊥ and this would carry refinements to inclusions just like the
formulation here. We have chosen to augment X for uniformity with Woodcock and Davies[3] and because
this formulation seems likely to have nicer compositionality properties.

10

We can now claim the theorem that refinement as we have defined it is equivalent to inclusion
of the lifted relations.

refinement lift cnj ?⊢ ∀s1 , s2 : SPEC• s1 ⊑ s2 ⇔ lift s2 ⊆ lift s1

Together with earlier results this shows that our refinement ordering is isomorphic to a com-
plete sublattice of the lattice of relations on the sets of augmented inputs and outputs. Our
final theorem characterises this sublattice.

ran lift cnj ?⊢

ran lift =

{ r : (⊥) ↔ (⊥)

| ∀x :(⊥); y : (⊥)• (⊥, y) ∈ r ∧ ((x , ⊥) ∈ r ⇒ (x , y) ∈ r)}

References

[1] He Jifeng and C. A. R. Hoare. Unifying theories of programming. Springer-Verlag, 1988.

[2] R.B. Jones. Methods and Tools for the Verification of Critical Properties. In R.Shaw,
editor, 5th Refinement Workshop, Workshops in Computing, pages 88–118. Springer-
Verlag/BCS-FACS, 1992.

[3] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof. Pren-
tice/Hall International, 1996.

[4] LEMMA1/ZED/WRK070. On Correctness of Imperative Programs — Precondition Cal-
culation. R.D. Arthan, Lemma 1 Ltd., rda@lemma-one.com.

11

A WEAKEST PRE-CONDITIONS FOR RELATIONS

In [4], we give an account of pre-condition calculation for a small programming language.
In subsequent work, we plan to explore weakest pre-condition calculation in less familiar
situations. It is therefore helpful to formalise the abstract concept. In this appendix we give
an account of weakest pre-conditions arbitrary relations in Z.

What is done here is motivated by the notion of a traced monoidal category, but no knowledge
of these is required. Readers familiar with the basic ideas of category theory will appreciate
that the class of all relations in Z under relational composition (which we sometimes call
“horizontal composition”) form a category (but not one that we could formalise in Z). This
category becomes a monoidal category under a “vertical” composition operator given by a
relational product and then becomes a traced monoidal category under a trace operator which
we will define by existential quantification. Our aim is to show how the weakest pre-condition
behaves with respect to these operators.

The simplest notion of weakest pre-condition pulls a simple predicate back through a relation.
Thinking of predicates as sets, this notion is defined as follows:

[Y, Z]

WPS : (Y ↔ Z) × PZ → PY

∀S : Y ↔ Z ; C : PZ• WPS (S , C) = {y : Y | S (|{y}|) ⊆ C}

The following theorem shows that our explicit definition for WPS(S,C) does indeed give the
largest set (i.e., weakest predicate), B, such that S (|B |) ⊆ C .

wps correct thm ?⊢

∀S : U ↔ U; C : PU• S (|WPS (S , C)|) ⊆ C ;

∀S : U ↔ U; B : PU; C : U | S (|B |) ⊆ C • B ⊆ WPS (S , C)

(Note: U is defined in the ProofPower-Z library to be the generic object which gives the
universe of all elements of a type. In a declaration, it gives a similar effect to a type variable
in HOL or ML, as a set thought of as a predicate it corresponds to the predicate true, and as
a relation it denotes the total relation or chaos.)

The following theorem shows that the relational semantics can be recovered from the predicate-
transformer semantics given by weakest pre-conditions:

rel image wps thm ?⊢

∀S : U ↔ U; A : PU• S (|A|) =
⋂
{C : U | A ⊆ WPS (S , C)}

Weakest pre-conditions through a given relation R commute with intersections (conjunctions):

wps cap thm ?⊢ ∀R : U ↔ U; B , C : PU•

WPS (R, B ∩ C) = WPS (R, B) ∩ WPS (R, C)

12

Weakest pre-conditions through a given relation R do not commute with unions (disjunctions)
in general, but the following does hold:

wps cup thm ?⊢ ∀R : U ↔ U; B , C : PU•

WPS (R, B) ∪ WPS (R, C) ⊆ WPS (R, B ∪ C)

The weakest pre-condition for a relational composition (“horizontal” composition) is given by
an appropriate form of functional composition.

wps comp thm ?⊢ ∀R : U ↔ U; S : U ↔ U; A : PU•

WPS (R o

9
S , A) = WPS (R, WPS (S , A))

The following theorem may be helpful in understanding some of the results which follow. It
shows that any point not in the domain of the relation S satisfies any weakest pre-condition
through S.

wps compl dom thm ?⊢ ∀S : U ↔ U; C : PU • U \ dom S ⊆ WPS (S , C)

(Here U \ X gives the complement of X).

We now define the “vertical” composition of two arbitrary relations.

[X, Y, V,W]

⊕R : (X ↔ Y) × (V ↔ W) → (X × V ↔ Y × W)

∀R : X ↔ Y ; S : V ↔ W •

R ⊕R S =

{x : X ; y : Y ; v : V ; w : W | (x , y) ∈ R ∧ (v , w) ∈ S • ((x , v), (y , w))}

There does not seem to be a nice, symmetric, general formula for the weakest pre-condition
through a vertical composition. We give an asymmetric formulae, which is based on the
following lemma.

wps prod lemma ?⊢ ∀R:U ↔ U; S : U ↔ U; X : PU; V : PU; C : P(U × U)•

(R ⊕R S)(|X × V |) ⊆ C ⇔ R(|X |) ⊆ {y : U | ∀w :S (|V |)• (y , w) ∈ C}

This gives the following general formula for the weakest pre-condition through a vertical
product:

wps prod thm ?⊢ ∀R:U ↔ U; S : U ↔ U; C : P(U × U)•

WPS (R ⊕R S , C) =
⋃
{V : U • WPS (R, {y : U | ∀w :S (|V |)• (y , w) ∈ C}) × V }

(Note: using rel image wps thm the expression S (|V |) above could be rewritten in terms of
weakest pre-conditions. It is not clear whether this would confer any advantage — it would
certainly make the expression more complicated.)

Interchanging R and S gives the alternative formulation:

13

wps prod thm1 ?⊢ ∀R:U ↔ U; S : U ↔ U; C : P(U × U)•

WPS (R ⊕R S , C) =
⋃
{X : U • X × WPS (S , {w : U | ∀y :R(|X |)• (y , w) ∈ C})}

The special case of a weakest pre-condition through a vertical composite, where the post-
condition is given as the product of two sets is much simpler:

wps simple prod thm ?⊢ ∀R : U ↔ U; S : U ↔ U; B : PU; C : PU •

WPS (R ⊕R S , B × C) =

(WPS (R, B) × WPS (S , C)) ∪ ((U × U) \ (dom R × dom S))

Now we define the existential trace operator. It can be thought of as finding a fixed point.

[X, Y, V]

Trc∃ : (X × V ↔ Y × V) → (X ↔ Y)

∀R : (X × V ↔ Y × V)•

Trc∃ R = {x : X ; y : Y | ∃v : V • ((x , v), (y , v)) ∈ R}

The following theorem gives a formula for the weakest pre-condition through an existential
trace:

wps trc exists thm ?⊢ ∀R : U × U ↔ U × U; C : PU •

WPS (Trc∃ R, C) = {x : U | ∀v :U• (x , v) ∈ WPS (R ∩ (U ⊕R (id)), C × U)}

As noted in [4], a more general notion of weakest pre-condition calculation, which has useful
compositionality properties, deals with relations. In general, if S and P are binary relations,
we want to specify WP (S, P) so that it is the weakest (i.e., largest) relation R such that
R o

9
S ⊆ P . We use an explicit formula for WP (cf. the clause for atoms in the function prec

calc in [4]).

[X, Y, Z]

WP : (Y ↔ Z) × (X ↔ Z) → (X ↔ Y)

∀S : Y ↔ Z ; P : X ↔ Z• WP(S , P) = {x : X ; y : Y | S (|{y}|) ⊆ P(|{x}|)}

The following theorem shows that our explicit definition for WP (S, P) is indeed the weakests
R such that R o

9
S ⊆ P .

wp correct thm ?⊢

∀S : U ↔ U; P : U ↔ U• WP(S , P) o

9
S ⊆ P ;

∀R : U ↔ U; S : U ↔ U; P : U ↔ U | R o

9
S ⊆ P • R ⊆ WP(S , P)

The relational formulation of weakest pre-condition may be defined in terms of the set formu-
lation:

14

wp wps thm ?⊢ ∀S : U ↔ U; P : U ↔ U•

WP(S , P) = {x : U; y : U | y ∈ WPS (S , P(|{x}|))}

From the above, one can calculate relational weakest pre-conditions for intersections, compo-
sitions etc. using the corresponding theorems for predicate weakest pre-conditions.

In the following theorem, we think of a post-condition P specifying a system which will be
implemented as the relational composition of two subsystems R and S. The theorem then
says that for fixed S, the weakest pre-condition WP (S, P) gives the largest R such that the
overall system will satisfy its specification P . Cf. the definition of sound prec calc in [4].

wp refines thm ?⊢ ∀R : U ↔ U; S : U ↔ U; P : U ↔ U •

R ⊆ WP(S , P) ⇒ (dom R, P) ⊑ (dom R, R o

9
S)

15

B THE Z THEORY refcalc

B.1 Parents

cache ′refinement z library

B.2 Global Variables

PRED[X] P (P X)
PRE COND[X] P (P X)
POST COND[X, Y]

P (X ↔ Y)
SPEC[X, Y] P X ↔ X ↔ Y

(⊑)[X, Y]
P X × (X ↔ Y) ↔ P X × (X ↔ Y)

(≡)[X, Y]
P X × (X ↔ Y) ↔ P X × (X ↔ Y)

($)[X, Y]
P X × (X ↔ Y) ↔ P X × (X ↔ Y)

REDUCED[X, Y]
P X ↔ X ↔ Y

TRUE[X] P X

FALSE[X] P X

Bottom[X, Y] P X × (X ↔ Y)
Top[X, Y] P X × (X ↔ Y)
Abort[X, Y] P X ↔ P X × (X ↔ Y)
Chaos[X, Y] P X ↔ P X × (X ↔ Y)
CHAOS[X, Y] P X ↔ X ↔ Y

ABORT [X, Y] X ↔ Y

Meet[X, Y] (P X ↔ X ↔ Y) ↔ P X × (X ↔ Y)
Forbidden[X, Y]

P X × (X ↔ Y) ↔ X ↔ Y

Join[X, Y] (P X ↔ X ↔ Y) ↔ P X × (X ↔ Y)
(⊓)[X, Y]

(P X × (X ↔ Y)) × (P X × (X ↔ Y)) ↔ P X × (X ↔ Y)
(⊔)[X, Y]

(P X × (X ↔ Y)) × (P X × (X ↔ Y)) ↔ P X × (X ↔ Y)

X ⊥
P (P X)

ι[X] X ↔ P X

⊥[X] P X

lift[X, Y] P X × (X ↔ Y) ↔ P X ↔ P Y

WPS[Y, Z] (Y ↔ Z) × P Z ↔ P Y

(⊕R)[X, Y, V, W]
(X ↔ Y) × (V ↔ W) ↔ X × V ↔ Y × W

Trc∃[X, Y, V]
(X × V ↔ Y × V) ↔ X ↔ Y

WP [X, Y, Z] (Y ↔ Z) × (X ↔ Z) ↔ X ↔ Y

16

B.3 Fixity

fun 7 rightassoc

($)

fun 30 rightassoc

(⊔)

fun 40 rightassoc

(⊓) (⊕R)

gen 7 rightassoc

(⊥)

rel (|=) (⊑)(≡)

B.4 Axioms

⊑ ⊢ [X ,
Y]((⊑)[X , Y] ∈ SPEC [X , Y] ↔ SPEC [X , Y]
∧ (∀ prec1 , prec2 : PRE COND [X];

postc1 , postc2 : POST COND [X , Y]
• ((prec1 , postc1), (prec2 , postc2))

∈ (⊑)[X , Y]
⇔ prec1 ⊆ prec2
∧ prec1 ⊳ postc2 ⊆ postc1))

≡ ⊢ [X ,
Y]((≡)[X , Y] ∈ SPEC [X , Y] ↔ SPEC [X , Y]
∧ (∀ s1 , s2 : SPEC [X , Y]
• (s1 , s2) ∈ (≡)[X , Y]
⇔ s1 ⊑ s2 ∧ s2 ⊑ s1))

$ ⊢ [X ,

Y](($)[X , Y] ∈ SPEC [X , Y] → SPEC [X , Y]
∧ (∀ prec : PRE COND [X]; postc : POST COND [X , Y]

• ($)[X , Y] (prec, postc)
= (prec, prec ⊳ postc)))

REDUCED ⊢ [X ,
Y](REDUCED [X , Y] ∈ P SPEC [X , Y]

∧ REDUCED [X , Y] = {s : SPEC • s $})
TRUE

FALSE ⊢ [X]({TRUE [X], FALSE [X]} ⊆ PRE COND [X]
∧ TRUE [X] = X

∧ FALSE [X] = ∅)
Bottom

Top

Abort

Chaos

17

CHAOS

ABORT ⊢ [X ,
Y]((ABORT [X , Y] ∈ POST COND [X , Y]
∧ CHAOS [X , Y] ∈ PRE COND [X] → POST COND [X , Y]
∧ {Abort [X , Y], Chaos[X , Y]}

⊆ PRE COND [X] → SPEC [X , Y]
∧ {Bottom[X , Y], Top[X , Y]} ⊆ SPEC [X , Y])
∧ ABORT [X , Y] = ∅

∧ (∀ prec : PRE COND [X]
• CHAOS [X , Y] prec = prec × Y

∧ Abort [X , Y] prec = (prec, ABORT [X , Y])
∧ Chaos[X , Y] prec = (prec, CHAOS [X , Y] prec))

∧ Bottom[X , Y] = Chaos[X , Y] ∅
∧ Top[X , Y] = Abort [X , Y] TRUE)

Meet ⊢ [X ,
Y](Meet [X , Y] ∈ P SPEC [X , Y] → SPEC [X , Y]
∧ (∀ A : P SPEC [X , Y]
• Meet [X , Y] A
= (

⋂
{s : A • s.1},

⋃
{s : A • s.2})))

Forbidden ⊢ [X ,
Y](Forbidden[X , Y] ∈ SPEC [X , Y] → POST COND [X , Y]
∧ (∀ s : SPEC [X , Y]
• Forbidden[X , Y] s = CHAOS s.1 \ s.2))

Join ⊢ [X ,
Y](Join[X , Y] ∈ P SPEC [X , Y] → SPEC [X , Y]
∧ (∀ A : P SPEC [X , Y]
• Join[X , Y] A
= (

⋃
{s : A • s.1},⋃

{s : A • (s $).2}
\
⋃

{s : A • Forbidden s})))
⊓

⊔ ⊢ [X ,
Y]({(⊓)[X , Y], (⊔)[X , Y]}

⊆ SPEC [X , Y] × SPEC [X , Y] → SPEC [X , Y]
∧ (∀ s1 , s2 : SPEC [X , Y]
• (⊓)[X , Y] (s1 , s2)

= Meet {s1 , s2}
∧ (⊔)[X , Y] (s1 , s2)
= Join {s1 , s2}))

ι

⊥ ⊢ [X]((⊥[X] ∈ X ⊥

∧ ι[X] ∈ X → X ⊥)
∧ ⊥[X] = ∅

∧ (∀ x : X • ι[X] x = {x}))
lift ⊢ [X ,

Y](lift [X , Y] ∈ SPEC [X , Y] → X ⊥ ↔ Y ⊥

∧ (∀ prec : PRE COND [X]; postc : POST COND [X , Y]
• lift [X , Y] (prec, postc)

= {xa : X ⊥; ya : Y ⊥

| xa = ⊥
∨ (∃ x : X • ¬ x ∈ prec ∧ xa = ι x)

18

∨ (∃ x : X ; y : Y
• x ∈ prec

∧ (x , y) ∈ postc

∧ xa = ι x
∧ ya = ι y)}))

WPS ⊢ [Y ,
Z](WPS [Y , Z] ∈ (Y ↔ Z) × P Z → P Y

∧ (∀ S : Y ↔ Z ; C : P Z

• WPS [Y , Z] (S , C) = {y : Y | S (| {y} |) ⊆ C}))
⊕R ⊢ [X ,

Y ,
V ,
W]((⊕R)[X , Y , V , W]

∈ (X ↔ Y) × (V ↔ W) → X × V ↔ Y × W

∧ (∀ R : X ↔ Y ; S : V ↔ W

• (⊕R)[X , Y , V , W] (R, S)
= {x : X ; y : Y ; v : V ; w : W
| (x , y) ∈ R ∧ (v , w) ∈ S

• ((x , v), (y , w))}))
Trc∃ ⊢ [X ,

Y ,
V](Trc∃[X , Y , V] ∈ (X × V ↔ Y × V) → X ↔ Y

∧ (∀ R : X × V ↔ Y × V

• Trc∃[X , Y , V] R
= {x : X ; y : Y
| ∃ v : V • ((x , v), (y , v)) ∈ R}))

WP ⊢ [X ,
Y ,
Z](WP [X , Y , Z] ∈ (Y ↔ Z) × (X ↔ Z) → X ↔ Y

∧ (∀ S : Y ↔ Z ; P : X ↔ Z

• WP [X , Y , Z] (S , P)
= {x : X ; y : Y
| S (| {y} |) ⊆ P (| {x} |)}))

B.5 Definitions

PRED ⊢ [X](PRED [X] = P X)
PRE COND ⊢ [X](PRE COND [X] = PRED [X])
POST COND ⊢ [X , Y](POST COND [X , Y] = X ↔ Y)
SPEC ⊢ [X , Y](SPEC [X , Y] = PRE COND [X] × POST COND [X , Y])

⊥ ⊢ [X](X ⊥ = {A : P X | ∀ x , y : A • x = y})

B.6 Conjectures

refinement pre order cnj

∀ s1 , s2 , s3 : SPEC
• s1 ⊑ s1 ∧ (s1 ⊑ s2 ∧ s2 ⊑ s3 ⇒ s1 ⊑ s3)

reduce reduce cnj

∀ s : SPEC • (s $) $ = s $

equiv cnj ∀ s1 , s2 : SPEC • s1 ≡ s2 ⇔ s1
$ = s2

$

19

refinement reduce cnj

∀ s1 , s2 : SPEC • s1 ⊑ s2 ⇔ s1
$ ⊑ s2

$

refinement antisym cnj

∀ s1 , s2 : REDUCED

• s1 ⊑ s2 ∧ s2 ⊑ s1 ⇒ s1 = s2
bottom top cnj

∀ s : SPEC • Bottom ⊑ s ∧ s ⊑ Top

refinement meet cnj

(∀ A : P SPEC • ∀ t : A • Meet A ⊑ t)
∧ (∀ A : P SPEC ; s : SPEC
• (∀ t : A • s ⊑ t) ⇒ s ⊑ Meet A)

forbidden def cnj

∀ s : SPEC
• Forbidden s

= {x : U; y : U
| x ∈ s.1 ∧ ¬ (x , y) ∈ s.2}

forbidden cnj

∀ s1 , s2 : SPEC
• s1 ⊑ s2
⇔ s1 .1 ⊆ s2 .1 ∧ s2 .2 ∩ Forbidden s1 = ∅

join def cnj ∀ A : P SPEC

• Join A

= ({s : A; x : U
| x ∈ s.1
• x},

{s : A; x : U; y : U
| x ∈ s.1
∧ (x , y) ∈ s.2
∧ (∀ t : A • x ∈ t .1 ⇒ (x , y) ∈ t .2)

• (x , y)})
forbidden join cnj

∀ A : P SPEC

• Forbidden (Join A) =
⋃

{s : A • Forbidden s}
refinement join cnj

(∀ A : P SPEC • ∀ t : A • t ⊑ Join A)
∧ (∀ A : P SPEC ; s : SPEC
• (∀ t : A • t ⊑ s) ⇒ Join A ⊑ s)

meet2 cnj ∀ s1 , s2 : SPEC
• s1 ⊓ s2 = (s1 .1 ∩ s2 .1 , s1 .2 ∪ s2 .2)

join2 cnj ∀ s1 , s2 : SPEC
• s1 ⊔ s2
= (s1 .1 ∪ s2 .1 ,
(s1 .1 ∩ s1 .1) ⊳ (s1 .2 ∩ s2 .2)

∪ (s1 .1 \ s2 .1) ⊳ s1 .2
∪ (s2 .1 \ s1 .1) ⊳ s2 .2)

refinement lift cnj

∀ s1 , s2 : SPEC • s1 ⊑ s2 ⇔ lift s2 ⊆ lift s1
ran lift cnj ran lift

= {r : (⊥) ↔ (⊥)

| ∀ x : (⊥); y : (⊥)
• (⊥, y) ∈ r ∧ ((x , ⊥) ∈ r ⇒ (x , y) ∈ r)}

20

wps correct thm

(∀ S : (↔); C : P U • S (| WPS (S , C) |) ⊆ C)
∧ (∀ S : (↔); B : P U; C : U
| S (| B |) ⊆ C

• B ⊆ WPS (S , C))
rel image wps thm

∀ S : (↔); A : P U

• S (| A |) =
⋂

{C : U | A ⊆ WPS (S , C)}
wps cap thm ∀ R : (↔); B , C : P U

• WPS (R, B ∩ C) = WPS (R, B) ∩ WPS (R, C)
wps cup thm ∀ R : (↔); B , C : P U

• WPS (R, B) ∪ WPS (R, C) ⊆ WPS (R, B ∪ C)
wps comp thm∀ R : (↔); S : (↔); A : P U

• WPS (R o

9
S , A) = WPS (R, WPS (S , A))

wps compl dom thm

∀ S : (↔); C : P U • U \ dom S ⊆ WPS (S , C)
wps prod lemma

∀ R : (↔);
S : (↔);
X : P U;
V : P U;
C : P (U × U)

• (R ⊕R S) (| X × V |) ⊆ C

⇔ R (| X |) ⊆ {y : U | ∀ w : S (| V |) • (y , w) ∈ C}
wps prod thm ∀ R : (↔); S : (↔); C : P (U × U)

• WPS (R ⊕R S , C)
=

⋃

{V : U
• WPS (R, {y : U | ∀ w : S (| V |) • (y , w) ∈ C})
× V }

wps prod thm1
∀ R : (↔); S : (↔); C : P (U × U)
• WPS (R ⊕R S , C)
=

⋃

{X : U
• X

× WPS

(S ,
{w : U
| ∀ y : R (| X |) • (y , w) ∈ C})}

wps simple prod thm

∀ R : (↔); S : (↔); B : P U; C : P U

• WPS (R ⊕R S , B × C)
= (WPS (R, B) × WPS (S , C))

∪ ((U × U) \ (dom R × dom S))
wps trc exists thm

∀ R : U × U ↔ U × U; C : P U

• WPS (Trc∃ R, C)
= {x : U
| ∀ v : U
• (x , v) ∈ WPS (R ∩ (U ⊕R (id)), C × U)}

21

wp correct thm

(∀ S : (↔); P : (↔) • WP (S , P) o

9
S ⊆ P)

∧ (∀ R : (↔); S : (↔); P : (↔)
| R o

9
S ⊆ P

• R ⊆ WP (S , P))
wp wps thm ∀ S : (↔); P : (↔)

• WP (S , P) = {x : U; y : U | y ∈ WPS (S , P (| {x} |))}
wp refines thm

∀ R : (↔); S : (↔); P : (↔)
• R ⊆ WP (S , P) ⇒ (dom R, P) ⊑ (dom R, R o

9
S)

B.7 Theorems

refcalc u thm

⊢ PRED = U ∧ PRE COND = U ∧ POST COND = U ∧ SPEC = U

refines def ⊢ ∀ s1 , s2 : U
• s1 ⊑ s2 ⇔ s1 .1 ⊆ s2 .1 ∧ s1 .1 ⊳ s2 .2 ⊆ s1 .2

reduce def ⊢ ∀ s : U • s $ = (s.1 , s.1 ⊳ s.2)
equiv def ⊢ ∀ s1 , s2 : SPEC • s1 ≡ s2 ⇔ s1 ⊑ s2 ∧ s2 ⊑ s1
true def ⊢ TRUE = U ∧ FALSE = ∅

abort def ⊢ ABORT = ∅

∧ (∀ prec : PRE COND

• CHAOS prec = prec × U

∧ Abort prec = (prec, ABORT)
∧ Chaos prec = (prec, CHAOS prec))

∧ Bottom = Chaos ∅

∧ Top = Abort TRUE

forbidden def

⊢ ∀ s : SPEC • Forbidden s = CHAOS s.1 \ s.2
meet def ⊢ ∀ A : P SPEC

• Meet A = (
⋂

{s : A • s.1},
⋃

{s : A • s.2})
join def ⊢ ∀ A : P SPEC

• Join A

= (
⋃

{s : A • s.1},⋃
{s : A • (s $).2}
\
⋃

{s : A • Forbidden s})

reduced def ⊢ REDUCED ∈ P SPEC ∧ REDUCED = {s : SPEC • s $}
join2 def

meet2 def ⊢ ∀ s1 , s2 : SPEC
• s1 ⊓ s2 = Meet {s1 , s2}
∧ s1 ⊔ s2 = Join {s1 , s2}

reduce reduce thm

⊢ ∀ s : SPEC • (s $) $ = s $

equiv thm ⊢ ∀ s1 , s2 : SPEC • s1 ≡ s2 ⇔ s1
$ = s2

$

refinement pre order thm

⊢ ∀ s1 , s2 , s3 : SPEC
• s1 ⊑ s1 ∧ (s1 ⊑ s2 ∧ s2 ⊑ s3 ⇒ s1 ⊑ s3)

refinement reduce thm

⊢ ∀ s1 , s2 : SPEC • s1 ⊑ s2 ⇔ s1
$ ⊑ s2

$

refinement antisym thm

22

⊢ ∀ s1 , s2 : REDUCED

• s1 ⊑ s2 ∧ s2 ⊑ s1 ⇒ s1 = s2
bottom top thm

⊢ ∀ s : SPEC • Bottom ⊑ s ∧ s ⊑ Top

refinement meet thm

⊢ (∀ A : P SPEC • ∀ t : A • Meet A ⊑ t)
∧ (∀ A : P SPEC ; s : SPEC
• (∀ t : A • s ⊑ t) ⇒ s ⊑ Meet A)

forbidden def1
⊢ ∀ s : SPEC

• Forbidden s

= {x : U; y : U
| x ∈ s.1 ∧ ¬ (x , y) ∈ s.2}

forbidden thm

⊢ ∀ s1 , s2 : SPEC
• s1 ⊑ s2
⇔ s1 .1 ⊆ s2 .1 ∧ s2 .2 ∩ Forbidden s1 = ∅

join def thm ⊢ ∀ A : P SPEC

• Join A

= ({s : A; x : U
| x ∈ s.1
• x},

{s : A; x : U; y : U
| x ∈ s.1
∧ (x , y) ∈ s.2
∧ (∀ t : A • x ∈ t .1 ⇒ (x , y) ∈ t .2)

• (x , y)})
forbidden join thm

⊢ ∀ A : P SPEC

• Forbidden (Join A) =
⋃

{s : A • Forbidden s}
refinement join thm

⊢ (∀ A : P SPEC • ∀ t : A • t ⊑ Join A)
∧ (∀ A : P SPEC ; s : SPEC
• (∀ t : A • t ⊑ s) ⇒ Join A ⊑ s)

meet2 thm ⊢ ∀ s1 , s2 : SPEC
• s1 ⊓ s2 = (s1 .1 ∩ s2 .1 , s1 .2 ∪ s2 .2)

join2 thm ⊢ ∀ s1 , s2 : SPEC
• s1 ⊔ s2
= (s1 .1 ∪ s2 .1 ,
(s1 .1 ∩ s1 .1) ⊳ (s1 .2 ∩ s2 .2)

∪ (s1 .1 \ s2 .1) ⊳ s1 .2
∪ (s2 .1 \ s1 .1) ⊳ s2 .2)

ι clauses ⊢ (∀ x : U • ¬ ι x = ⊥ ∧ ¬ ⊥ = ι x)
∧ (∀ x , y : U • ι x = ι y ⇔ x = y)

ι ∈ clauses ⊢ (∀ x : U • ι x ∈ (⊥)) ∧ ⊥ ∈ (⊥)
augmented cases thm

⊢ ∀ t : X ⊥ • t = ⊥ ∨ (∃ x : X • t = ι x)
augmented u cases thm

⊢ ∀ t : (⊥) • t = ⊥ ∨ (∃ x : U • t = ι x)
lift u def thm

⊢ ∀ s : SPEC

23

• lift s

= {xa : (⊥); ya : (⊥)
| xa = ⊥
∨ (∃ x : U • ¬ x ∈ s.1 ∧ xa = ι x)
∨ (∃ x : U; y : U
• x ∈ s.1
∧ (x , y) ∈ s.2
∧ xa = ι x
∧ ya = ι y)}

refinement lift thm

⊢ ∀ s1 , s2 : SPEC • s1 ⊑ s2 ⇔ lift s2 ⊆ lift s1
ran lift thm ⊢ ran lift

= {r : (⊥) ↔ (⊥)

| ∀ x : (⊥); y : (⊥)
• (⊥, y) ∈ r ∧ ((x , ⊥) ∈ r ⇒ (x , y) ∈ r)}

z image singleton thm

⊢ ∀ R : U; x : U • R (| {x} |) = {z : U | (x , z) ∈ R}
wps rw thm ⊢ ∀ S : U; C : U

• WPS (S , C)
= {y : U
| ∀ z : U • (y , z) ∈ S ⇒ z ∈ C}

wps correct thm

⊢ (∀ S : (↔); C : P U • S (| WPS (S , C) |) ⊆ C)
∧ (∀ S : (↔); B : P U; C : U
| S (| B |) ⊆ C

• B ⊆ WPS (S , C))
rel image wps thm

⊢ ∀ S : (↔); A : P U

• S (| A |) =
⋂

{C : U | A ⊆ WPS (S , C)}
wps cap thm ⊢ ∀ R : (↔); B , C : P U

• WPS (R, B ∩ C) = WPS (R, B) ∩ WPS (R, C)
wps cup thm ⊢ ∀ R : (↔); B , C : P U

• WPS (R, B) ∪ WPS (R, C) ⊆ WPS (R, B ∪ C)
wps comp thm⊢ ∀ R : (↔); S : (↔); A : P U

• WPS (R o

9
S , A) = WPS (R, WPS (S , A))

wps empty thm

⊢ ∀ C : U • WPS ({}, C) = U

wps compl dom thm

⊢ ∀ S : (↔); C : P U • U \ dom S ⊆ WPS (S , C)
rel prod rw thm

⊢ ∀ R : U; S : U; x1 : U; y1 : U; v1 : U; w1 : U
• (∃ x : U; y : U; v : U; w : U

| (x , y) ∈ R ∧ (v , w) ∈ S

• (x = x1 ∧ v = v1) ∧ y = y1 ∧ w = w1)
⇔ (x1 , y1) ∈ R ∧ (v1 , w1) ∈ S

dom rel prod thm

⊢ ∀ R : U; S : U • dom (R ⊕R S) = dom R × dom S

rel prod × thm

⊢ ∀ R : (↔); X : P U; V : P U

• (R ⊕R S) (| X × V |) = R (| X |) × S (| V |)
wps prod lemma

24

⊢ ∀ R : (↔);
S : (↔);
X : P U;
V : P U;
C : P (U × U)

• (R ⊕R S) (| X × V |) ⊆ C

⇔ R (| X |) ⊆ {y : U | ∀ w : S (| V |) • (y , w) ∈ C}
wps

⋃
× thm ⊢ ∀ R : (↔); S : (↔); C : P U

• WPS (R ⊕R S , C)
=

⋃

{X : P U; V : P U

| (R ⊕R S) (| X × V |) ⊆ C

• X × V }
wps prod thm ⊢ ∀ R : (↔); S : (↔); C : P (U × U)

• WPS (R ⊕R S , C)
=

⋃

{V : U
• WPS

(R,
{y : U
| ∀ w : S (| V |) • (y , w) ∈ C})

× V }
wps sym thm ⊢ ∀ R : (↔); S : (↔); C : P U

• WPS (R ⊕R S , C) = WPS (S ⊕R R, C ∼) ∼

⋃
rel inv thm

⊢ ∀ v : U •
⋃

v ∼ =
⋃

{a : v • a ∼}
× rel inv thm

⊢ ∀ a : U; b : U • (a × b) ∼ = b × a

wps prod thm1
⊢ ∀ R : (↔); S : (↔); C : P (U × U)

• WPS (R ⊕R S , C)
=

⋃

{X : U
• X

× WPS

(S ,
{w : U
| ∀ y : R (| X |) • (y , w) ∈ C})}

wps simple prod thm

⊢ ∀ R : (↔); S : (↔); B : P U; C : P U

• WPS (R ⊕R S , B × C)
= (WPS (R, B) × WPS (S , C))

∪ ((U × U) \ (dom R × dom S))
wps trc exists thm

⊢ ∀ R : U × U ↔ U × U; C : P U

• WPS (Trc∃ R, C)
= {x : U
| ∀ v : U
• (x , v) ∈ WPS (R ∩ (U ⊕R (id)), C × U)}

wp rw thm ⊢ ∀ S : U; P : U
• WP (S , P)

25

= {x : U; y : U
| ∀ z : U • (y , z) ∈ S ⇒ (x , z) ∈ P}

wp correct thm

⊢ (∀ S : (↔); P : (↔) • WP (S , P) o

9
S ⊆ P)

∧ (∀ R : (↔); S : (↔); P : (↔)
| R o

9
S ⊆ P

• R ⊆ WP (S , P))
wp wps thm ⊢ ∀ S : (↔); P : (↔)

• WP (S , P)
= {x : U; y : U
| y ∈ WPS (S , P (| {x} |))}

wp refines thm

⊢ ∀ R : (↔); S : (↔); P : (↔)
• R ⊆ WP (S , P) ⇒ (dom R, P) ⊑ (dom R, R o

9
S)

26

C INDEX

ABORT . 7
Abort . 7
Bottom . 7
CHAOS . 7
Chaos . 7
FALSE . 7
Forbidden . 8
Join . 8
lift . 10
Meet . 8
POST COND . 4
PRED . 4
PRE COND . 4
REDUCED . 7
SPEC . 4
Top . 7
Trc∃ . 14
TRUE . 7
WPS . 12
WP . 14
X ⊥ . 10
⊥ . 10
ι . 10

≡ . 6
⊕ R . 13
⊑ . 5
$. 6
⊓ . 9
⊔ . 9

27

