
On Correctness of Imperative Programs
—

Precondition Calculation
(DRAFT)

R.D. Arthan

10 December 2006

1 Introduction

This note is the second in a planned series concerned with specification via pre- and post-
conditions in a partial correctness setting. It applies the general notion of specification and
refinement given in the first note in the series [1] to give a notion of correctness for a simple
imperative programming language, where programs and program fragments may be equipped
with Floyd-Hoare style specification annotations.

In the sequel, we present a simple formal model in ProofPower-Z of a refinement notation
comprising a miniature, but complete, imperative programming language annotated with for-
mal specifications; the semantics of that programming language and the notion of correctness
relative to the specification annotations is defined. A semantic model of a verification con-
dition generator (or pre-condition calculator) is given which can be proved to be sound with
respect both to the programming language semantics and to the intensional semantics of the
specification annotations.

The Z specification uses infix notation for the following relation and function symbols (in
addition to those defined in the first note):

relation |= , ⊥

function 60 rightassoc B∗ , −B∗

The specification contains a number of conjectures. All of these have been proved with Proof-
Power and the resulting theory listing is included as an appendix to this document. An index
to the Z specification is given at the end of the document.

Please note this is work-in-progress and the current version of this note lacks any serious
attempt to cite the literature or compare the results with other work. Cousot’s article on
program verification in the Handbook of Theoretical Computer Science gives an appropriate
survey but tends to veer towards the theoretical. In particular, completeness results are not
particularly relevant in practical applications — they just give you warm feelings that if you

1

give sufficiently strong specifications, you will get weakest, rather than just sufficient pre-
conditions. The relational semantics given here goes back at least as far as early work of
Hoare.

2 States and State Transformers

The internal structure of states is not relevant to our purposes. For a conventional imperative
programming language, the states will be assignments of values to program variables. We just
introduce a given set to represent the states:

[STATE]

The commands in our programming language will denote state transformers. A state trans-
former is just a relation on states:

STATE TRANSFORMER =̂ STATE ↔ STATE

We think of a state transformer t as responding to a state, the before-state, s in its domain
by non-deterministically selecting some response or after-state, which is a state s′ such that
(s, s′) ∈ t.

3 Predicates and Specifications

We instantiate the notions of predicates, pre- post-conditions and specifications from the first
document in the series:

P PRED =̂ PRED [STATE]

P PRE COND =̂ PRE COND [STATE]

P POST COND =̂ POST COND [STATE , STATE]

P SPEC =̂ SPEC [STATE , STATE]

4 Programs

Our notion of program has five syntactic categories:

Atom Some set of primitive operations on the state.
Seq Sequential composition
If If-then-else
While While-loop
Spec Programs with specification annotations

2

The following free type gives the abstract syntax of programs, in which we mingle semantic
and syntactic concepts to simplify later work. We also use a tree structure rather than a linear
list for sequential composition, since that is semantically harmless, and, again, helps to keep
things simple later on.

PROG ::=

Atom (STATE TRANSFORMER)

| Seq (PROG × PROG)

| If (P PRED × PROG × PROG)

| While (P PRED × PROG)

| Spec (P SPEC × PROG)

In a typical imperative language, the atoms might be the denotations of assignment state-
ments and procedure calls. In the Compliance Notation, the denotation of a procedure call is
effectively represented by an instance of the formal specification appearing in the procedure
header.

The following function gives the semantics of this notion of a program. The semantic value
of a program is a state transformer. In the semantics, the specification annotations are just
ignored — it is the actual code that determines the semantics, not our aspirations for it.

semantics : PROG → STATE TRANSFORMER

∀t : STATE TRANSFORMER; p1 , p2 : PROG ; c : P PRED ; s : P SPEC•
semantics (Atom t) = t

∧ semantics (Seq(p1 , p2)) = semantics p1
o
9 semantics p2

∧ semantics (If (c, p1 , p2)) = (c C semantics p1) ∪ (c −C semantics p2)

∧ semantics (While(c, p1)) = (c C semantics p1)∗ −B c

∧ semantics (Spec(s , p1)) = semantics p1

It is in the above that the convenience of dealing with partial correctness begins to become
apparent. The semantic equation for a while-loop says that the body of the loop is to be
executed repeatedly in states satisfying the predicate c until a state which does not satisfy c
is reached. If this fails to terminate the result is just the empty relation: we are under no
obligation to assign any more complex notion of meaning to the non-terminating execution.

The partial semantics also embraces in an abstract way the possibility of the program failing
gracefully. Throughout the sequel, when we talk about non-termination, we include the
possibility that via some exception-raising mechanism that is outside the scope of the present
model, execution of a command may result in some kind of abnormal termination which is
handled properly in the physical environment in which the program is executed.

As a simple check on our definitions and to give a first exercise in reasoning by induction over
the syntax of programs, let us state as a conjecture the claim that the function on programs
which simply strips out all the specifications is semantics-preserving:

3

strip specs cnj ?`
∀ strip specs : PROG → PROG

| ∀t : STATE TRANSFORMER; p1 , p2 : PROG ; c : P PRED ; s : SPEC•
strip specs (Atom t) = (Atom t)

∧ strip specs (Seq(p1 , p2)) = Seq(strip specs p1 , strip specs p2)

∧ strip specs (If (c, p1 , p2)) = If (c, strip specs p1 , strip specs p2)

∧ strip specs (While(c, p1)) = While(c, strip specs p1)

∧ strip specs (Spec(s , p1)) = strip specs p1

• ∀p : PROG• semantics(strip specs p) = semantics p

5 Program Correctness

For a program to be correct every part of it that has a specification must certainly satisfy that
specification, which in our setting means that the semantic value of the program must be a
refinement of the given specification annotation. We write p |= s to mean that program p
satisfies specification s.

|= : PROG ↔ SPEC

∀ prog : PROG ; prec : P PRE COND ; postc : P POST COND •
prog |= (prec, postc) ⇔ (prec, postc) v (prec, semantics prog)

However, a good intuitive notion of correctness also requires the pre-condition of each speci-
fication in the program to be satisfied whenever the relevant part of the program is executed.
For example, every part of a program that has a specification might satisfy its specification,
but, the program might still include a reachable specification with an empty post-condition:
clearly, this part of the program is “correct, but for the wrong reasons”.

For the want of a better name, if p is a program and c is a set of states, we will say that p is
upright on c iff. no pre-condition in p will be violated when p is executed in a starting state
in c. We write p ⊥ c when this holds.

⊥ : PROG ↔ PRED

∀t : STATE TRANSFORMER; postc : P POST COND ; p1 , p2 : PROG ;

c1 , c2 , prec : P PRE COND•
((Atom t) ⊥ c1)

∧ ((Seq(p1 , p2) ⊥ c1) ⇔ p1 ⊥ c1 ∧ p2 ⊥ semantics p1 (|c1 |))
∧ ((If (c2 , p1 , p2) ⊥ c1) ⇔ p1 ⊥ c1 ∩ c2 ∧ p2 ⊥ c1 \ c2)

∧ ((While(c2 , p1) ⊥ c1) ⇔ p1 ⊥ c1 ∩ c2 ∧ p1 ⊥ semantics p1 (|c1 ∩ c2 |) ∩ c2)

∧ ((Spec((prec, postc), p1) ⊥ c1) ⇔ c1 ⊆ prec ∧ p1 ⊥ c1)

Uprightness enjoys the following two useful properties:

4

upright mono cnj ?`
∀ prog : PROG ; c1 , c2 : P PRED•

prog ⊥ c1 ∧ c2 ⊆ c1 ⇒ prog ⊥ c2

upright cup cnj ?`
∀ prog : PROG ; c1 , c2 : P PRED•

prog ⊥ c1 ∧ prog ⊥ c2 ⇒ prog ⊥ c1 ∪ c2

6 Pre-condition Calculation

The simplest view of a pre-condition calculator would be a predicate transformer: a function
that takes a program and a post-condition given as a predicate on the final state as its
argument and returns a predicate that, we hope, gives a pre-condition which will guarantee
achievement of the post-condition.

When one looks into the details of defining a useful pre-condition calculator one finds that it
is really has to be a post-condition transformer: in order to give an algorithm that works by
recursion over the structure of a program, one must work with post-conditions, i.e., relations on
states, rather than just states. The domain of all these relations corresponds to an appropriate
initial or intermediate program state throughout the calculation. The calculation essentially
works backwards through the program reversing the effects of program execution.

PREC CALC =̂ PROG × P POST COND → P POST COND

In the simple view as a predicate transformer, a pre-condition calculator would be sound if
the pre-condition it returns for any program and post-condition is such that execution of
the program subject to the pre-condition refines the specification statement formed from the
returned pre-condition and the given post-condition. In the post-condition transformer view
that we are taking, our soundness criterion is formalised in the following definition which will
ensure that pre-condition calculation interacts nicely with sequential composition.

sound prec calc : PPREC CALC

∀pc : PREC CALC•
pc ∈ sound prec calc

⇔ (∀prog : PROG ; postc, postc ′ : P POST COND

| postc = pc(prog , postc ′)

• (dom postc, postc ′) v (dom postc, postc o
9 semantics prog))

When one has completed the pre-condition calculation both the domain and the range of the
resulting relation now correspond to the initial program state as well, and one may extract
the desired post-condition by intersecting with the identity relation. Using this idea, we can
formulate, the (not very deep) conjecture that if the program has a specification at the top
level and if the calculated pre-condition contains the pre-condition of the specification, then
the program satisfies the specification:

5

prec calc sat cnj ?`
∀ pc : PREC CALC ; c prec, s prec: P PRE COND ;

s postc : P POST COND ; p : PROG

| pc ∈ sound prec calc

∧ c prec = dom (pc(Spec((s prec, s postc), p), s postc) ∩ (id STATE))

∧ s prec ⊆ c prec

• p |= (s prec, s postc)

We can easily exhibit a sound but not at all useful, pre-condition calculator, which simply
offers the empty set as a pre-condition which will achieve any desired post-condition:

trivial prec calc sound cnj ?`
∀ pc : PREC CALC

| ∀prog : PROG ; postc : P POST COND• pc (prog , postc) = ∅
• pc ∈ sound prec calc

We will now give a model of a more useful pre-condition calculator. There are some prelimi-
naries to take care of: the treatment of if-then-else is made more readable using the following
two variants on the theme of range restriction and range anti-restriction:

[X,Y]

B∗ : (X ↔ Y) × PY → (X ↔ Y);

−B∗ : (X ↔ Y) × PY → (X ↔ Y)

∀ R : X ↔ Y ; T : P Y •
R B∗ T = R ∼ (| Y \ T |) −C R

∧ R −B∗ T = R ∼ (| T |) −C R

The useful pre-condition calculator will use a heuristic to propose a specification for the body
of a while-loop. The soundness of the pre-condition calculator is independent of the heuristic
— it has to be, because as the following loose specification shows, one possibility is that the
specification is just lifted from the program without further analysis.

guess spec : PROG → P SPEC

∀s : P SPEC ; p : PROG • guess spec(Spec(s , p)) = s

With the preliminaries in place, we can now define the useful pre-condition calculator, which
we think of as pulling a post-condition backwards through a program transforming it as we
go. In the definition, the various syntactic categories are dealt with as follows:

• A post-condition is pulled back through an atomic statement, by calculating the set of
pairs (s, s′) such that the response of the atom on s′ is a response permitted by the
post-condition on s.

6

• A post-condition is pulled back through the sequential composition of p1 and p2 in the
obvious way: pull it back through p2 and then pull the result back through p1.

• A post-condition is pulled back through an if-then-else statement by pulling it back
through the then- and else-parts of the statement. The overall result is then the union
of these intermediate results after discarding all transitions which do not unambiguously
belong to the if-part or the else-part.

• A post-condition is pulled back through a while loop by applying the heuristic to guess
a specification for the body of the loop. The overall result is formed as a union of two
parts.

The first part of the union corresponds to states where the body of the loop is never
execute and is just the appropriate restriction of the original post-condition.

The second part corresponds to states where the body of the loop is executed at least
once and is given as a set comprehension below. The set comprehension is empty unless
three conditions are satisfied: (i) the condition of the while-loop must denote a set
of states that are included in the guessed pre-condition; (ii) the pre-condition of the
body must denote a set of states that satisfy the pre-condition resulting from pulling
the guessed post-condition back through the body; and (iii) for each state satisfying
the guessed pre-condition, the set of all states allowed by the guessed post-condition in
response to this state which do not satisfy the loop condition must be contained in every
possible response of the original post-condition.

• A post-condition is pulled back through a specification statement in much the same
way as it is pulled back through an atomic statement treating the post-condition of the
specification statement in the same way as the state transformer of the atom. The result
is then filtered to remove all state transitions which do not unambiguously satisfy both
the pre-condition of the specification statement and the pre-condition calculated from
the body of the specification statement.

7

prec calc : PREC CALC

∀t : STATE TRANSFORMER; postc, postc1 : P POST COND ;

p1 , p2 : PROG ; c : P PRED ;

prec1 : P PRE COND ; body prec : P PRED ; body postc : P POST COND•

prec calc (Atom t , postc) = {s , s ′ : STATE | t(|{s ′}|) ⊆ postc(|{s}|)}

∧ prec calc (Seq(p1 , p2), postc) = prec calc(p1 , prec calc(p2 , postc))

∧ prec calc (If (c, p1 , p2), postc) =

(prec calc(p1 , postc) B∗ c) ∪ (prec calc(p2 , postc) −B∗ c)

∧ ((body prec, body postc) = guess spec p1

⇒ prec calc (While(c, p1), postc) =

postc −B c ∪
{ ss ′ : dom postc × c

| c ⊆ body prec

∧ body prec ⊆ dom (prec calc(p1 , body postc) ∩ (id STATE))

∧ dom postc × (body postc(|body prec|) \ c) ⊆ postc })

∧ prec calc (Spec((prec1 , postc1), p1), postc) =

{ s : STATE ; s ′ : STATE | postc1 (|{s ′}|) ⊆ postc(|{s}|) } B
(prec1 ∩ dom(prec calc(p1 , postc1) ∩ (id STATE)))

Before stating some conjectures about the properties of the useful pre-condition calculator,
some remarks about the definition and how it is actually realised in a practical system are in
order.

A practical implementation can represent the post-condition being transformed as (the con-
ceptual conjunction of) a finite set of syntactic predicates Pi(~x0, ~x), where ~x represents some
list of program variables and ~x0 represents a list of program variables decorated to distinguish
them as initial variables (i.e., they refer to the before-state of the code being analysed). The
pre-condition calculator will operate by syntactic transformations on these predicates which
hold the initial variables fixed but may make substitutions to ~x. At the beginning of the
calculation, ~x refers to the final state of the program, and as the calculation works backwards
through the code, the execution state referred to by ~x moves backwards in step.

The most primitive state-changing operation will be the atomic statements that represent
program language assignments. Given an assignment, v := e, the requirements of the above
formal definition are precisely met by substituting e for v in the Pi(~x0, ~x). Here we are tacitly
assuming that program variables and expressions have some well-defined representation as
logical variables and expressions in the logical system in use.

Procedure calls are the other common form of atomic statements and as already discussed
these can be treated much as specification statements (with empty bodies).

8

If the programming language has them, then other forms of atomic statements can be dealt
with in an ad hoc way as their semantics dictates. For example, many programming lan-
guages have a null statement form, which corresponds to the identity operation on the set of
predicates. An atomic statement that aborted execution could be dealt with by delivering an
empty set of predicates, or equivalently, the single predicate true, (see example pre-condition
calculations at the end of this section).

Sequential composition can be handled exactly as in the formal definition: the set of predicates
calculated for the second statement is just passed in as the target post-condition for the first
statement.

If-then-else statements cause sets of predicates to be combined. Each Pi(~x0, ~x) resulting from
analysing the then-part of the conditional with condition c would contribute c ⇒ Pi(~x0, ~x)
to the result. Similarly, each Pj(~x0, ~x) resulting from the analysis of the else-part would
contribute ¬c⇒ Pj(~x0, ~x).

While-loops are handled by logical transformations that mimic the various parts of the set
comprehension in the formal definition above. There are various possible approaches, some of
which necessitate a more complex representation of the post-condition involving quantifiers,
rather than a flat conjunction of quantifier-free formulae. The Compliance Notation avoids this
complexity by generating what are called side conditions, universally closed conjectures that
have to be proved to justify the correctness of the main calculation. From a user’s perspective
the end result of the whole process is just a set of verification conditions (VCs) that have to be
proved and these side conditions just get added to the final set of VCs. For example, in a loop
with condition c, if the post-condition postc in the formal definition above is represented by
the set of syntactic predicates Aj, a side condition of the form Pi(~x0, ~x)∧ c⇒ Aj is generated
for each Pi(~x0, ~x) in the representation of body postc. This corresponds to the requirements
of the last conjunct in the set comprehension above.

Like while-loops, specification statements require a more complex representation using quan-
tifiers if full generality is to be achieved. Again, the Compliance Notation adopts the simpler
approach of generating side conditions, if necessary. For example, side conditions of the form
Pi(~x0, ~x) ∧ c⇒ Aj will be generated for each Pi(~x0, ~x) in the representation of what is called
postc1 above and for each Aj in the representation of postc. This corresponds to the predicate
of the set comprehension above.

We now return to the formal work. We conjecture that the useful pre-condition calculator is
sound:

prec calc sound cnj ?` prec calc ∈ sound prec calc

The following conjecture gives a useful property of our useful pre-condition calculator, which
turns out to be a simple consequence of its soundness.

prec calc dom cnj ?`
∀ prog : PROG ; postc : P POST COND

• dom (prec calc(prog , postc) ∩ (id STATE)) ∩ dom (semantics prog)

⊆ dom postc

We also conjecture that a program is upright in every state in the pre-condition produced
by the above pre-condition calculator, i.e., no execution of the program can cause the pre-
condition of any specification in the program to be violated in those states. Taken together

9

with the soundness conjecture, this shows that a VC generator based on the pre-condition
calculator does indeed guarantee program correctness as discussed in section 5 above.

prec calc upright cnj ?`
∀ prog : PROG ; postc, postc ′ : P POST COND

| postc = prec calc(prog , postc ′)

• prog ⊥ ran postc

Finally, we give some evidence that the useful pre-condition calculator really is useful by
exhibiting some simple programs for which it returns something more interesting than an
empty relation. The first block of examples covers various forms of atom.

prec calc atom egs cnj ?`
∀ null , chaos , stop : PROG ; postc : P POST COND

| null = Atom (id STATE)

∧ chaos = Atom (STATE × STATE)

∧ stop = Atom ∅
• prec calc(null , postc) = postc

∧ prec calc(chaos , postc) = {s , s ′: STATE | postc(|{s}|) = STATE}
∧ prec calc(stop, postc) = STATE × STATE

The second block gives at least one example of each of the compound syntactic categories.

prec calc compound egs cnj ?`
∀ null , chaos , stop, p, spec null : PROG ; postc : P POST COND ; c : P PRED

| null = Atom (id STATE)

∧ chaos = Atom (STATE × STATE)

∧ stop = Atom ∅
∧ spec null = Spec((STATE , id STATE), null)

• prec calc(If (c, null , stop), postc) = postc B∗ c ∪ (STATE × STATE) −B∗ c

∧ prec calc(Seq(p, null), postc) = prec calc(p, postc)

∧ prec calc(Seq(null , p), postc) = prec calc(p, postc)

∧ prec calc(While(STATE , spec null), postc) = dom postc × STATE

∧ prec calc (spec null , postc) = postc

There is some value in the above conjectures: it was only when I tried to prove them that I
realised that I had mistakenly written:

{s ′} C t ⊆ {s} C postc

instead of

t(|{s ′}|) ⊆ postc(|{s}|)

in the equation for the semantic category Atom. The pre-condition calculator is sound and
guarantees uprightness with this mistake, but very far from useful (since the mistaken predi-
cate will require s′ = s is {s ′} C t is not empty).

10

References

[1] LEMMA1/ZED/WRK069. On Refinement Calculus and Partial Correctness. R.D.
Arthan, Lemma 1 Ltd., rda@lemma-one.com.

11

A THE Z THEORY preccalc

A.1 Parents

refcalc

A.2 Global Variables

STATE P STATE
STATE TRANSFORMER

P (STATE ↔ STATE)
P PRED P (P STATE)
P PRE COND P (P STATE)
P POST COND P (STATE ↔ STATE)
P SPEC P STATE ↔ STATE ↔ STATE
PROG P PROG
Atom (STATE ↔ STATE) ↔ PROG
Seq PROG × PROG ↔ PROG
If P STATE × PROG × PROG ↔ PROG
While P STATE × PROG ↔ PROG
Spec (P STATE × (STATE ↔ STATE)) × PROG ↔ PROG
semantics PROG ↔ STATE ↔ STATE
(|=)

PROG ↔ P STATE × (STATE ↔ STATE)
(⊥) PROG ↔ P STATE
PREC CALC P (PROG × (STATE ↔ STATE) ↔ STATE ↔ STATE)
sound prec calc

P (PROG × (STATE ↔ STATE) ↔ STATE ↔ STATE)
(−B∗)[X, Y]

(X ↔ Y) × P Y ↔ X ↔ Y
(B∗)[X, Y]

(X ↔ Y) × P Y ↔ X ↔ Y
guess spec PROG ↔ P STATE × (STATE ↔ STATE)
prec calc PROG × (STATE ↔ STATE) ↔ STATE ↔ STATE

A.3 Fixity

fun 60 rightassoc
(−B∗) (B∗)

rel (⊥)

12

A.4 Axioms

Atom
Seq
If
While
Spec ` (Atom ∈ STATE TRANSFORMER � PROG

∧ Seq ∈ PROG × PROG � PROG
∧ If ∈ P PRED × PROG × PROG � PROG
∧ While ∈ P PRED × PROG � PROG
∧ Spec ∈ P SPEC × PROG � PROG)
∧ disjoint 〈ran Atom,

ran Seq ,
ran If ,
ran While,
ran Spec〉

∧ (∀ W : P PROG
| Atom (| STATE TRANSFORMER |)

∪ (Seq (| W × W |)
∪ (If (| P PRED × W × W |)
∪ (While (| P PRED × W |)
∪ Spec (| P SPEC × W |))))

⊆ W
• PROG ⊆ W)

semantics ` semantics ∈ PROG → STATE TRANSFORMER
∧ (∀ t : STATE TRANSFORMER;

p1 , p2 : PROG ;
c : P PRED ;
s : P SPEC
• semantics (Atom t) = t
∧ semantics (Seq (p1 , p2))

= semantics p1
o
9 semantics p2

∧ semantics (If (c, p1 , p2))
= c C semantics p1 ∪ c −C semantics p2

∧ semantics (While (c, p1))
= (c C semantics p1) ∗ −B c
∧ semantics (Spec (s, p1)) = semantics p1)

|= ` (|=) ∈ PROG ↔ SPEC
∧ (∀ prog : PROG ;

prec : P PRE COND ;
postc : P POST COND
• prog |= (prec, postc)
⇔ (prec, postc) v (prec, semantics prog))

⊥ ` (⊥) ∈ PROG ↔ PRED
∧ (∀ t : STATE TRANSFORMER;

postc : P POST COND ;
p1 , p2 : PROG ;
c1 , c2 , prec : P PRE COND
• Atom t ⊥ c1

∧ (Seq (p1 , p2) ⊥ c1

⇔ p1 ⊥ c1 ∧ p2 ⊥ semantics p1 (| c1 |))
∧ (If (c2 , p1 , p2) ⊥ c1

13

⇔ p1 ⊥ c1 ∩ c2 ∧ p2 ⊥ c1 \ c2)
∧ (While (c2 , p1) ⊥ c1

⇔ p1 ⊥ c1 ∩ c2

∧ p1 ⊥ semantics p1 (| c1 ∩ c2 |) ∩ c2)
∧ (Spec ((prec, postc), p1) ⊥ c1

⇔ c1 ⊆ prec ∧ p1 ⊥ c1))
sound prec calc

` sound prec calc ∈ P PREC CALC
∧ (∀ pc : PREC CALC
• pc ∈ sound prec calc
⇔ (∀ prog : PROG ; postc, postc ′ : P POST COND
| postc = pc (prog , postc ′)
• (dom postc, postc ′)
v (dom postc, postc o

9 semantics prog)))
−B∗
B∗ ` [X ,

Y](((B∗)[X , Y] ∈ (X ↔ Y) × P Y → X ↔ Y
∧ (−B∗)[X , Y] ∈ (X ↔ Y) × P Y → X ↔ Y)
∧ (∀ R : X ↔ Y ; T : P Y
• (B∗)[X , Y] (R, T) = (R ∼) (| Y \ T |) −C R
∧ (−B∗)[X , Y] (R, T) = (R ∼) (| T |) −C R))

guess spec ` guess spec ∈ PROG → P SPEC
∧ (∀ s : P SPEC ; p : PROG
• guess spec (Spec (s, p)) = s)

prec calc ` prec calc ∈ PREC CALC
∧ (∀ t : STATE TRANSFORMER;

postc, postc1 : P POST COND ;
p1 , p2 : PROG ;
c : P PRED ;
prec1 : P PRE COND ;
body prec : P PRED ;
body postc : P POST COND
• prec calc (Atom t , postc)

= {s, s ′ : STATE
| t (| {s ′} |) ⊆ postc (| {s} |)}

∧ prec calc (Seq (p1 , p2), postc)
= prec calc (p1 , prec calc (p2 , postc))
∧ prec calc (If (c, p1 , p2), postc)

= prec calc (p1 , postc) B∗ c
∪ prec calc (p2 , postc) −B∗ c

∧ ((body prec, body postc) = guess spec p1

⇒ prec calc (While (c, p1), postc)
= postc −B c
∪ {ss ′ : dom postc × c
| c ⊆ body prec
∧ body prec
⊆ dom

(prec calc (p1 , body postc)
∩ id STATE)

∧ dom postc
× body postc (| body prec |) \ c

14

⊆ postc})
∧ prec calc

(Spec ((prec1 , postc1), p1), postc)
= {s : STATE ; s ′ : STATE
| postc1 (| {s ′} |) ⊆ postc (| {s} |)}
B (prec1

∩ dom
(prec calc (p1 , postc1)
∩ id STATE)))

A.5 Definitions

STATE ` STATE = U
STATE TRANSFORMER

` STATE TRANSFORMER = STATE ↔ STATE
P PRED ` P PRED = PRED [STATE]
P PRE COND ` P PRE COND = PRE COND [STATE]
P POST COND ` P POST COND = POST COND [STATE , STATE]
P SPEC ` P SPEC = SPEC [STATE , STATE]
PROG ` PROG = U
PREC CALC ` PREC CALC = PROG × P POST COND → P POST COND

A.6 Conjectures

strip specs cnj
∀ strip specs : PROG → PROG
| ∀ t : STATE TRANSFORMER;

p1 , p2 : PROG ;
c : P PRED ;
s : SPEC
• strip specs (Atom t) = Atom t
∧ strip specs (Seq (p1 , p2))

= Seq (strip specs p1 , strip specs p2)
∧ strip specs (If (c, p1 , p2))

= If (c, strip specs p1 , strip specs p2)
∧ strip specs (While (c, p1))

= While (c, strip specs p1)
∧ strip specs (Spec (s, p1)) = strip specs p1

• ∀ p : PROG
• semantics (strip specs p) = semantics p

upright mono cnj
∀ prog : PROG ; c1 , c2 : P PRED
• prog ⊥ c1 ∧ c2 ⊆ c1 ⇒ prog ⊥ c2

upright cup cnj
∀ prog : PROG ; c1 , c2 : P PRED
• prog ⊥ c1 ∧ prog ⊥ c2 ⇒ prog ⊥ c1 ∪ c2

prec calc sat cnj
∀ pc : PREC CALC ;

c prec, s prec : P PRE COND ;
s postc : P POST COND ;

15

p : PROG
| pc ∈ sound prec calc
∧ c prec

= dom
(pc (Spec ((s prec, s postc), p), s postc)
∩ id STATE)

∧ s prec ⊆ c prec
• p |= (s prec, s postc)

trivial prec calc sound cnj
∀ pc : PREC CALC
| ∀ prog : PROG ; postc : P POST COND
• pc (prog , postc) = ∅
• pc ∈ sound prec calc

prec calc sound cnj
prec calc ∈ sound prec calc

prec calc dom cnj
∀ prog : PROG ; postc : P POST COND
• dom (prec calc (prog , postc) ∩ id STATE)

∩ dom (semantics prog)
⊆ dom postc

prec calc upright cnj
∀ prog : PROG ; postc, postc ′ : P POST COND
| postc = prec calc (prog , postc ′)
• prog ⊥ ran postc

prec calc atom egs cnj
∀ null , chaos, stop : PROG ; postc : P POST COND
| null = Atom (id STATE)
∧ chaos = Atom (STATE × STATE)
∧ stop = Atom ∅
• prec calc (null , postc) = postc
∧ prec calc (chaos, postc)

= {s, s ′ : STATE
| postc (| {s} |) = STATE}

∧ prec calc (stop, postc) = STATE × STATE
prec calc compound egs cnj

∀ null , chaos, stop, p, spec null : PROG ;
postc : P POST COND ;
c : P PRED
| null = Atom (id STATE)
∧ chaos = Atom (STATE × STATE)
∧ stop = Atom ∅
∧ spec null = Spec ((STATE , id STATE), null)
• prec calc (If (c, null , stop), postc)

= postc B∗ c ∪ (STATE × STATE) −B∗ c
∧ prec calc (Seq (p, null), postc)

= prec calc (p, postc)
∧ prec calc (Seq (null , p), postc)

= prec calc (p, postc)
∧ prec calc (While (STATE , spec null), postc)

= dom postc × STATE
∧ prec calc (spec null , postc) = postc

16

A.7 Theorems

refinement u thm
` STATE TRANSFORMER = U
∧ STATE = U
∧ P PRED = U
∧ P PRE COND = U
∧ P POST COND = U
∧ PROG = U
∧ P SPEC = U
∧ (↔) = U

strong rres thm
` ∀ R : U; T : U
• R B∗ T

= {x : U; y : U
| (x , y) ∈ R ∧ (∀ z : U | (x , z) ∈ R • z ∈ T)}

strong rantires thm
` ∀ R : U; T : U
• R −B∗ T

= {x : U; y : U
| (x , y) ∈ R ∧ (∀ z : U | (x , z) ∈ R • z 6∈ T)}

sound prec calc thm
` sound prec calc

= {pc : PREC CALC
| ∀ prog : U; postc, postc ′ : U
| postc = pc (prog , postc ′)
• (dom postc, postc ′)
v (dom postc, postc o

9 semantics prog)}
semantics def

` semantics ∈ (→)
∧ (∀ t : U; p1 , p2 : U; c : U; s : U
• semantics (Atom t) = t
∧ semantics (Seq (p1 , p2))

= semantics p1
o
9 semantics p2

∧ semantics (If (c, p1 , p2))
= c C semantics p1 ∪ c −C semantics p2

∧ semantics (While (c, p1))
= (c C semantics p1) ∗ −B c
∧ semantics (Spec (s, p1)) = semantics p1)

sat def ` ∀ prog : U; prec : U; postc : U
• prog |= (prec, postc)
⇔ (prec, postc) v (prec, semantics prog)

upright def ` ∀ t : U; postc : U; p1 , p2 : U; c1 , c2 , prec : U
• Atom t ⊥ c1

∧ (Seq (p1 , p2) ⊥ c1

⇔ p1 ⊥ c1 ∧ p2 ⊥ semantics p1 (| c1 |))
∧ (If (c2 , p1 , p2) ⊥ c1

⇔ p1 ⊥ c1 ∩ c2 ∧ p2 ⊥ c1 \ c2)
∧ (While (c2 , p1) ⊥ c1

⇔ p1 ⊥ c1 ∩ c2

∧ p1 ⊥ semantics p1 (| c1 ∩ c2 |) ∩ c2)
∧ (Spec ((prec, postc), p1) ⊥ c1

17

⇔ c1 ⊆ prec ∧ p1 ⊥ c1)
prec calc def

` prec calc ∈ PREC CALC
∧ (∀ t : U;

postc, postc1 : U;
p1 , p2 : U;
c : U;
prec1 : U;
body prec : U;
body postc : U
• prec calc (Atom t , postc)

= {s, s ′ : U
| t (| {s ′} |) ⊆ postc (| {s} |)}

∧ prec calc (Seq (p1 , p2), postc)
= prec calc (p1 , prec calc (p2 , postc))
∧ prec calc (If (c, p1 , p2), postc)

= prec calc (p1 , postc) B∗ c
∪ prec calc (p2 , postc) −B∗ c

∧ ((body prec, body postc) = guess spec p1

⇒ prec calc (While (c, p1), postc)
= postc −B c
∪ {ss ′ : dom postc × c
| c ⊆ body prec
∧ body prec
⊆ dom

(prec calc (p1 , body postc)
∩ (id))

∧ dom postc
× body postc (| body prec |) \ c
⊆ postc})

∧ prec calc
(Spec ((prec1 , postc1), p1), postc)

= {s : U; s ′ : U
| postc1 (| {s ′} |) ⊆ postc (| {s} |)}
B (prec1

∩ dom
(prec calc (p1 , postc1)
∩ (id))))

prog induction thm
` p∀ p
• (∀ t• p pZAtom tq)

∧ (∀ p1 p2• p p1 ∧ p p2 ⇒ p pZSeq (p1 , p2)q)
∧ (∀ c p1 p2• p p1 ∧ p p2 ⇒ p pZIf (c, p1 , p2)q)
∧ (∀ c p1• p p1 ⇒ p pZWhile (c, p1)q)
∧ (∀ prec postc p1
• p p1 ⇒ p pZSpec ((prec, postc), p1)q)
⇒ (∀ prg• p prg)q

strip specs thm
` ∀ strip specs : PROG → PROG
| ∀ t : STATE TRANSFORMER;

p1 , p2 : PROG ;

18

c : P PRED ;
s : SPEC
• strip specs (Atom t) = Atom t
∧ strip specs (Seq (p1 , p2))

= Seq (strip specs p1 , strip specs p2)
∧ strip specs (If (c, p1 , p2))

= If (c, strip specs p1 , strip specs p2)
∧ strip specs (While (c, p1))

= While (c, strip specs p1)
∧ strip specs (Spec (s, p1)) = strip specs p1

• ∀ p : PROG
• semantics (strip specs p) = semantics p

chaos thm ` ∀ postc : POST COND ; s : SPEC • (∅, postc) v s
upright mono thm

` ∀ prog : PROG ; c1 , c2 : P PRED
• prog ⊥ c1 ∧ c2 ⊆ c1 ⇒ prog ⊥ c2

upright cup thm
` ∀ prog : PROG ; c1 , c2 : P PRED
• prog ⊥ c1 ∧ prog ⊥ c2 ⇒ prog ⊥ c1 ∪ c2

prec calc sat thm
` ∀ pc : PREC CALC ;

c prec, s prec : P PRE COND ;
s postc : P POST COND ;
p : PROG
| pc ∈ sound prec calc
∧ c prec

= dom
(pc (Spec ((s prec, s postc), p), s postc)
∩ id STATE)

∧ s prec ⊆ c prec
• p |= (s prec, s postc)

while lemma ` ∀ R : U; c : U; x , y : U
| (x , y) ∈ (c C R) ∗ −B c
• y 6∈ c
∧ (y = x
∨ x ∈ c ∧ (∃ z : U • z ∈ c ∧ (z , y) ∈ R))

trivial sound prec calc thm
` ∀ pc : PREC CALC
| ∀ prog : PROG ; postc : P POST COND
• pc (prog , postc) = ∅
• pc ∈ sound prec calc

prec calc sound thm
` prec calc ∈ sound prec calc

prec calc dom thm
` ∀ prog : PROG ; postc : P POST COND
• dom (prec calc (prog , postc) ∩ id STATE)

∩ dom (semantics prog)
⊆ dom postc

prec calc upright thm
` ∀ prog : PROG ; postc, postc ′ : P POST COND
| postc = prec calc (prog , postc ′)

19

• prog ⊥ ran postc
prec calc atom egs thm

` ∀ null , chaos, stop : PROG ; postc : P POST COND
| null = Atom (id STATE)
∧ chaos = Atom (STATE × STATE)
∧ stop = Atom ∅
• prec calc (null , postc) = postc
∧ prec calc (chaos, postc)

= {s, s ′ : STATE
| postc (| {s} |) = STATE}

∧ prec calc (stop, postc) = STATE × STATE
prec calc compound egs thm

` ∀ null , chaos, stop, p, spec null : PROG ;
postc : P POST COND ;
c : P PRED
| null = Atom (id STATE)
∧ chaos = Atom (STATE × STATE)
∧ stop = Atom ∅
∧ spec null = Spec ((STATE , id STATE), null)
• prec calc (If (c, null , stop), postc)

= postc B∗ c ∪ (STATE × STATE) −B∗ c
∧ prec calc (Seq (p, null), postc)

= prec calc (p, postc)
∧ prec calc (Seq (null , p), postc)

= prec calc (p, postc)
∧ prec calc (While (STATE , spec null), postc)

= dom postc × STATE
∧ prec calc (spec null , postc) = postc

20

B INDEX

Atom . 3
guess spec . 6
If . 3
⊥ . 4
|= . 4

−B∗ . 6
P POST COND . 2
P PRED . 2
P PRE COND . 2
P SPEC . 2
PREC CALC . 5
prec calc . 8
PROG . 3
B∗ . 6
semantics . 3
Seq . 3
sound prec calc . 5
Spec . 3
STATE . 2
STATE TRANSFORMER 2
While . 3

21

