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1 Introduction

This note is the third in a series concerned with specification via pre- and post-conditions. It
sets up a generic framework for systems formed by wiring together primitive building blocks.
Such systems will be modelled as relations using existentially quantified equations for the fixed
points that correspond to feedback loops in the wiring diagram. The approach is based on
the notion of traced monoidal categories, e.g., see [1]. The category-phobic reader should not
despair as the discussion here is self-contained, and the relatively simple ideas that fall under
this fancy name do provide a very nice general algebraic way of thinking about diagrammatic
models.

2 TRACED MONOIDAL CATEGORIES

In this section we formalise the notion of a traced monoidal category. The reader can think of
this as just providing a convenient syntax for expressing diagrams of components connected
by “wires” of some sort, together with a set of algebraic relations expressing some evident
identities that ought to hold in such diagrams.

As an example, consider what one might call the Kirchhoff category which models a class of
electrical circuits. Some building blocks for these circuits are shown in figure 1 on page 2.
Here one should think of the nodes labelled X; as inputs and of those labelled Y} as outputs.
The values of these labels range over some set of names. Circuits are constructed by wiring
together inputs and outputs (and deleting the labels on the resulting internal nodes). The
resistor building block is labelled with a non-negative real number R giving its resistance in
ohms.

The laws of Kirchhoff and Ohm imply relationships that must hold between the voltages, V.,
Vy,, and currents, Ix,, Iy,, that obtain at the labelled nodes in a physical realisation of a
circuit. Taking the sense of current flow so that the nodes labelled X; act as positive current
sources, the four building blocks of figure 1 impose the following constraints:
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Figure 1: Kirchhoff Category: Some Building Blocks
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I}/z = IX3,1‘ IYl — ]Xl

On solving these equations for the circuits in figure 2 on page 2, one finds that the three
circuits are equivalent. The idea of a traced monoidal category will formalise the process of
building up the overall input-output relationship of a circuit from its constituent parts. The
algebraic laws satisfied by a traced monoidal category capture equivalences like that of the
first two circuits in figure 2 which are essentially independent of the semantics of the basic
building blocks. The laws also provide a way of structuring proofs that do depend on the
semantics (like the other equivalence in figure 2).

The operators that we are using to build diagrams are shown in figure 3 on page 4. The notion
of traced monoidal category that we are now going to define may be viewed as an algevraic
theory of these operators. The formalisation of this notion deals with the operators in turn.

The first stage in the formalisation deals with horizontal composition. Horizontal composition
is a partial operation: in the Kirchoff category, two circuits f and g can only be composed
horizontally if f has the same number of outputs as ¢ has of inputs. The composition is
associative in the sense that fs(gsh) = (fgg9)sh whenever these composites are defined. In the
Kirchoff category, a vertical stack of an appropriate number of resistors with R = 0 provides
a unit for the composition. All this means that horizontal composition is the composition
operator of a category whose morphisms or arrows are the diagrams and whose objects are
the vectors of inputs or outputs of a circuit.

Formally, we specify a category in Z to be a member of the generic schema C'AT defined
below. The generic parameters O and A give the sets of objects and arrows of the category
respectively. In the Kirchhoff category, the domain and codomain operators correspond to the
operations of reading off the vector of inputs or outputs of a circuit and the identity operator
corresponds to the operation of constructing a vertical stacks of resistors with R = 0.



40 Q

s00 Y
X, 300

Figure 2: Kirchoff Category: Some Equivalent Circuits

‘ function 40 leftassoc _ 3. -

__CATIO, A]
S - AX A+ A
dom, cod, : A — O ;
ide : O — A

dom (- g. -) ={f,9:A| cod. f = dom. g} ;

Vf, g, h: Al cod, f=dom.g A cod. g = dom. h e
(fcg)seh=1[s (95 h);

Vi, g: Al cod, f = dom. g e
dom (f gc g) = dom. f A code (f sc g) = cod. g ;

VX:0e
dom. (id, X) = cod, (id. X) = X ;
Vf:Ae

id.(dom, f) sc f = f g id.(cod. ) = f

We now look at vertical composition: in the Kirchhoff category, vertical composition is as-
sociative, has a unit given by an empty diagram, preserves identities and commutes with
horizontal composition in the senses illustrated in figure 4 on page 5. In categorical termi-
nology, the vertical composition is an associative bifunctor from the category to itself with a
unit, and a category possessing this additional structure is called a monoidal category.

Formally, we specify a monoidal category by the following generic schema MON_CAT. In
which &, and @, give the vertical composition operations for objects and arrows respectively
and [4 gives the unit. (One could do without &, here, but it helps to make the definition
succinct). In informal narrative, we will often omit the subscripts from @, and @,.
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Figure 3: Building Diagrams
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Figure 4: Monoidal Categories: Bifunctoriality

‘ function 40 leftassoc - &, _, - Bq-

hMON_C’AT[O,A]
CAT|O, 4] ;

_®, - : 0 x 0 — 0
_®, - AXx A— A
Iy : A

Vf, g, h: Ae (f ©a g) ©a h = [ @a (9 Ba ) ;
Vf:Ae (f @4 s) = (e @a ) = [ ;
VX,Y:0eX ®,Y =dom. (id,. X ®, id. Y);
VX, YV:0e0id, X &,id, Y =1id. (X &, V) ;
Vi g pg:Al

cod. f = dom. g N\ cod. p = dom, q

(f 8¢ 9) @a (P 3 @) = (f Dap) e (9 ©a q)

In the Kirchoff category, we included a cross-over for two wires as a basic building block. Since
any permutation of a vector of elements can be written as a product of permutations that
exchange adjacent elements, this can be used to implement any permutation of the inputs.
Any such permutation is an isomorphism in the category, i.e., an arrow with an inverse with
respect to horizontal composition. In particular, if X and Y are objects in the category
(vectors of voltage-current pairs), one has an isomorphism or symmetry between the vertical
compositions X & Y and Y & X. Subject to a condition which ensures that symmetries
compose just like transpositions of elements in a vector, this means that our category is what
is called a symmetric monoidal category.

Formally, a symmetric monoidal category is to be a member of the following generic schema.
Here, for objects X and X, the arrow Sym(X,Y) is the isomorphism between X @& Y and
Y © X.



_ SYM_MON_CAT|O, 4]
MON_CAT|O, A];
Sym : O x O — A

VX, Y:0edom(Sym(X, V) =X &, Y A cod.(Sym(X, YV)) =Y &, X;
VX, Y:0eSym(X,Y)s Sym(Y, X) =id. (X ©, Y);
VX, Y Z:0e

Sym(X @, Y, Z) =

(ide X @y Sym(Y, Z)) 3. (Sym(X, Z) @, id. Y)

Finally, we deal with the feeback or trace operator.

We now give the definition of a traced monoidal category in stages. A traced monoidal category
will be a symmetric monoidal category equipped with a trace operator which comprises a
partial function from arrows to arrows parameterised by three objects:

_TRA MON_CAT_SIGI|O, A
SYM_MON_CAT[O, A] ;
Tre: O x Ox O — A+ A

Our first requirement on the trace operator says that Tre(X, Y, Z) maps an arrow from X @ Z
to Y @ Z to an arrow from X to Y. Typically one thinks of the trace operator as taking a
fixed point with respect to to the part of an arrow from X @& Z to Y & Z that lies over Z.

_TRA_MON_CAT_DOMIO, Al
TRA_MON_CAT_SIG[O, A]

VX,Y, Z:0e

dom (Tre(X, Y, Z))={f: Al dom.f=X ®, Z Ncod. f =Y @, Z};
VX,Y, Z:0;f:A]

dom. f =X @, Z Ncod., f =Y D, Z e

dom. (Tre(X, Y, Z) f) = X ANcod, (Tre(X, Y, Z) f) =Y

The following are the naturality properties required of Tre(X,Y, 7). Hasegawa calls these
three properties left tightening, right tightening and sliding. The properties are illustrated in
figure 5 on page 7.
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Figure 5: Traced Monoidal Categories: Naturality
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Figure 6: Traced Monoidal Categories: Vanishing

_TRA_MON_CAT_NAT|0, 4]
TRA_MON_CAT_SIG[O, A]

VW, X, Y, Z:0;f, h:A|
dom, f=W &, Z Ncod, f =Y &, Z ;
dom. h =X Ncod, h = W e
TTC(X7 Y, Z) ((h B, id, Z) gcf):
hg Tre(W,Y,Z)f;
VW, X, Y, Z:0;f h:A|
dom. f =X &, Z Ncod. f =W &, Z;
dom. h = W A cod. h =Y o (x Y not X! %)
Tre(X, Y, Z) (f g (h @4 id. Z)) =
Tre(X, W, Z) f s. h; (x in that order! x)
VW, X, Y, Z:0;f, h:A|
dom, f =X &, W ANcod. f =Y &, Z;
dom, h =7Z N cod. h = W e
Tre(X, Y, Z) ((ide X @4 h) 5 f)
Tre(X, Y, W) (f g (ide Y @4 h))

The following property is called vanishing by Hasegawa. It captures the idea that taking a
fixed point with respect to an identity arrow does nothing and that fixed points over a vertical
product W & Z can be taken by taking fixed points over Z then W in turn. This property
is illustrated in figure 6 on page 7.



Figure 7: Traced Monoidal Categories: Superposing

_TRA_MON_CAT_V ANIO, Al
TRA_MON_CAT_SIG[O, A]

VX, Y:0;f: A
dom, f =X ANcod. f =Y e
Tre(X, Y, dom. Ig) (f ®a Ia) = [ ;
VX,Y, W, Z:0;f:A]
dom. f =X &, W &, Z Ncod, f =Y ©&, W @, Z e
Tre(X, Y, W, Z) f=
Tre(X, Y, W) (Tre(X &, W, Y &, W, Z) f)

The following property says that traces commute with the operation of vertical composition
with an identity arrow. This is called superposing by Hasegawa. This property is illustrated
in figure 7 on page 8.
hTRA_MON_CAT_SUP[O, A|
TRA_MON_CAT_SIG[O, A]

VW, X, Y, Z:0;f:A]
dom. f =X @, Z Ncod., f =Y D, Z e
Tre(W @y X, W @, Y, Z) (ide W ®, f) =
ide W @, Tre(X, Y, Z) f

The final property says that the trace of the symmetry on X @ X is the identity arrow on X.

This is called yanking by Hasegawa. This property is illustrated in figure 8 on page 9.

~_TRA_MON_CAT_.Y AN|O, 4]
TRA_MON_CAT_SIG[O, A]

VX:0e
Tre (X, X, X) (Sym (X, X)) =id. X

Finally, we put all these pieces together to complete the definition of a traced monoidal
category:
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Figure 8: Traced Monoidal Categories: Yanking

_TRA_MON_CATIO, A]
TRA_-MON_CAT_SIG[O, A]

TRA_MON_CAT_DOM[O, A] ;
TRA_MON_CAT_NATI[O, A ;
TRA_MON_CAT_VAN][O, A] ;
TRA_MON_CAT_SUP|O, A] ;
TRA_MON_CAT_YAN[O, A

3 A CATEGORY OF RELATIONS

We will now formalise a generic category of relations in Z. The Kirchhoff category discussed
informally in the previous section may be formalised as an instance of this category. As we go
we state theorems which build up to the assertion that the generic category is in fact a traced
monoidal category.

If V is any set, V" gives the set of all m-tuples with values ranging over V.

‘ function 50 _ ~ _

=14
-7 _:PU x N — P(seq U)

VV :PU; mNe V~>m = {s:seq V| #s=m}

For each set V, there is a category, which we shall call RelCat[V], whose objects are the
natural numbers and whose morphisms (a.k.a. arrows) from m to n are the relations between
V™ and V" composed via ordinary relational composition'. An arrow in the category is given
as labelled triple whose components give the domain (d), codomain (c¢), and the relation (r).

‘Rel[V]ﬁLJ{m,n:NO{R:VAmH Vone (d = m, c=n,r=R)}}

The composition of arrows that makes Rel[V] into a category is the “horizontal” composition
defined below.

'We take the objects to be the natural numbers, m, rather than the sets V™ for technical convenience to
avoid having the category collapse when V = {}.




=[V]

HCompose : Rel[V] x Rel[V] + Rel|V]

dom HCompose = {R, S : Rel[V] | R.c = S.d} ;
VR, S : Rel[V] | Rc = S.d o

HCompose(R, S) = (d = R.d, ¢ = S.c, 7= Ror g S.r)

The following function gives the identity arrows in the category.

=[V]
HId: N — Rel[V]

Vm:NeHldm=(d=m,c=m,r =iV "m))

We can now define RelCat[V] and state the theorem that it is indeed a category.

RelCat [V] =
(- 8. - = HCompose| V],
dom. = (AR:Rel[V]e R.d),
cod, = (AR:Rel[V]e R.c),
id, = HId[V])

rel_cat_thm 7= [V](RelCat|V] € CAT|N, Rel[V]])

The category becomes a monoidal category under a product given by addition on objects and
by the following “vertical composition” on morphisms.

=14
VCompose : Rel[V] x Rel[V] — Rel[V]

VR, S : Rel[V] e
VCompose(R, S) = (d = R.d + S.d, c = R.c + S.c,
r={a, b,c,d:seq V| (a,c)€ Rr A (b d)e Sre(a™ b, c™ d)})

Adding in the necessary structure we get the monoidal category RelMonCat[V].
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RelMonCat [V] =
(- 3. - = HCompose| V],
dom. = (AR:Rel[V]e R.d),
cod, = (AR:Rel[V]e R.c),
id, = HId[V),
- @y - = (Am, n:Ne m + n),
- @, - = VCompose| V],
le = HIA[V](0))

~

I

rel_mon_cat_thm 7+ [V](RelMonCat[V] € MON_CAT|N, Rel[V]])

To use the relation category, we will generally need to know something about the value do-
main, V. However, one can describe some generic constructions that just impose equational
constraints. The most important is the following operator that makes the monoidal category
into a symmetric monoidal category:

=4
Transpose : N x N — Rel[V]

Vm, n : Ne
Transpose(m, n) = (d = m + n, ¢ = n + m,

r={a:Vm;b: Vne(a b b a)})

We continue to add in the new structure and prove that it gives a symmetric monoidal category.

‘ RelSymMonCat [V] =

(- 8. - = HCompose| V],
dom. = (AR:Rel[V]e R.d),
cod, = (AR:Rel[V]e R.c),

id, = HId[V),

- @, - = (Am, n:Ne m + n),
- @y - = VCompose| V],

le = HIA[V](0),

Sym = Transpose| V)

~

I

rel_sym_mon_cat_thm 7+ [V](RelSymMonCat[V] € SYM _MON _CATI|N, Rel[V]])

Finally, we get a traced monoidal category by defining the following operator that corresponds
to adding k feedback loops into a diagram.
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=[V]
Trace : (N x N x N) — Rel[V] + Rel|V]

Vm, n, k : Ne
dom (Trace(m, n, k)) = {R : Rell[V] | Rd =m + k AN Rc=n+ k} ;
Vm, n, k:N; R: Rel[V]| Rd=m +kANRc=mn-+Fke
Trace (m, n, k) R = (d = m, ¢ = n,
r={a Vm;b: Von|3c:Vke (a ™ ¢, b ¢) € Rr})

This enables us to complete the specification of our relational traced monoidal category
RelTraMonCat[V]:

RelTraMonCat [V] =
(- gc - = HCompose| V],
dom. = (AR:Rel[V]e R.d),
cod, = (AR:Rel[V]e R.c),

id, = HIA[V],
- ®, - = (Am, n:Ne m + n),
- @B, - = VCompose|[ V],

Io = HIA[V](0),
Sym = Transpose[V],
Trc = Trace|V])

’ rel_tra_mon_cat_thm 7+ [V](RelTraMonCat[V] € TRA-MON_CAT|N, Rel[V]])

Finally, just for completeness let us instantiate the definition to give the Kirchhoff category
(whose objects are voltage-current) pairs):

—VI

|V, I:R
|

‘ Kirchhof fCategory = RelTraMonCat [VI]
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