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1 INTRODUCTION

In [2], Harrison advocates an approach to Euclidean geometry in HOL using a type constructor to
model the individual Euclidean spaces RY, for finite N. In this document, we set up the framework
for an alternative approach where one works in a fixed type that contains all of the R" for all n € N.
In fact we do more than that: we construct a system which can be viewed as the natural and in some
sense final algebraic structure in the chain that begins N, Z, @, R, C, . ... This structure is known as
the geometric algebra. To quote Macdonald [4]:

Geometric algebra is nothing less than a new approach to geometry. Geometric objects
(points, lines, planes, [...]) are represented by members of an algebra, a geometric
algebra, rather than by equations. Geometric operations (rotate, translate, intersect,
[...]) on the objects are represented by algebraic operations in the algebra, rather than
by matrix operations. Geometric algebra is coordinate-free: coordinates are needed only
when specific objects or operations are under consideration.

Let me now give a potted account of geometric algebra. The finite-dimensional geometric algebra
GA(n) is paremeterised by the natural numbers n. GA(n) is an associative algebra over the real
numbers with a two-sided unit 1. It is commutative iff. n < 1. Not all elements of GA(n) have

multiplicative inverses, but many do and if x does have an inverse, it is written as x 1.

Real multiples A1 of the unit element in GA(n) are called scalars and are ordered by taking A1 < ul
iff. A < p. Under this ordering, the subalgebra of scalars is isomorphic as an ordered field with the
real numbers.

GA(n) is generated as an algebra by an n-dimensional subspace called R™ whose members are called
vectors. If x € R, then x? is a scalar. It is easy to see that every non-zero vector has an inverse.

The inner product of vectors x and y is defined by x.y = %(xy + yx) and is a scalar. The inner
product is a bilinear form, i.e., it satisfies the conditions (Ax).(uy) = (An)(x.y), (x+y).z = x.z2+y.z,
x.(y +2z) = x.y +x.z. Vectors x and y are said to be orthogonal iff. x.y = 0. x and y are orthogonal
iff. they anti-commute, i.e., iff. xy = —yx.

The outer product of vectors x and y is defined by x Ay = %(Xy —yx), so that xy = x.y + x Ay,
which is a scalar iff. it is 0. Vectors x and y are said to be collinear iff. x Ay = 0. Thus, when x
and y are orthogonal, xy = x Ay, while when they are collinear, xy = x.y.

In traditional vector algebra, the inner and outer products are taken as separate fundamental no-
tions, but in the geometric algebra, the multiplication combines them into a united whole. But the
multiplication does much more than this. As one example, we may think of a vector x as defining
a notion of direction and magnitude in the line comprising all points Ax for A € R. Now, if x and
y are orthogonal vectors, one can think of the product xy as defining a notion of orientation and
area in the plane spanned by x and y. More general products x1Xs...xy of k pairwise orthogonal
vectors are called k-blades and can be thought of as providing an oriented notion of volume in the
k-dimensional space spanned by the x;.

For another example on the power of the geometric algebra, let O(n) denote the set of all orthogonal
mappings from the subspace R" to itself (where, by definition, an orthogonal mapping is one which
preserves all inner products). In linear algebra, O(n) is shown, with some considerable coordinate-rich
work, to be given by a certain group of n x n matrices.

Now geometrically, it is not hard to see that O(n) is generated by reflections in hyperplanes, and
then in the geometric algebra it is very easy to see that, for each non-zero vector y, the mapping
X — —yxy ! maps R” to itself via reflection in the hyperplane perpendicular to y. Thus the



geometric algebra instantly gives us a notation for orthogonal mappings without a coordinate or a
matrix in sight. In fact, GA(n) has a multiplicative subgroup, Pin(n), which is the universal covering
group of the topological group O(n). (As a topological space, Pin(n) has two connected components.
The component of Pin(n) containing 1 is the spinor group Spin(n) beloved of physicists.)

The above discussion deals with the case of a positive definite orthogonal space R™. There is also
much interest in semidefinite orthogonal spaces in which x.x can be negative and earlier drafts of
this document did indeed follow the construction of [1]. However, for simplicity, it now deals with
the positive definite case only!.

Simple explicit constructions of the geometric algebras have been given by Macdonald [3], and by
the author [1]. As noted in [1] the union of all of the GA(n) can be constructed in one step giving
what I will now refer to as the geometric algebra, GA = GA(o0).

SML

‘force_delete-theory"geomalg" handle Fail - => ();

‘ open_theory" numbers";

‘ new_theory" geomalg";

‘set-merge-pcs[" basic_holl", "'sets_alg", ""R"];

2 THE GEOMETRIC ALGEBRA

2.1 Preliminaries

It is very convenient to have available the symmetric difference operator for sets. We follow Z in
writing the symmetric difference of a and b as a © b. This operator is provided in ProofPower as
pf version 2.7.7 so some ML trickery is used here to suppress the following definitions when they are
not needed.

SML

‘declare_inﬁz(250, "S");

HOL Constant

$o :'a SET — 'a SET — "a SET

\
|
‘Vaboa@b:(a\b)u(b\a)

The development of the theory begins with various simple facts about symmetric differences. Sym-

metric difference makes the lattice of sets into a commutative group. The script includes a conversion
© _nf_conv which gives a normal form for this group.

S_group_thm &_lemmas ©_finite_size_thm
©_comm_thm O_finite_thm O_infinite_thm
©_assoc_thm size_&_lemma

n fact, GA(co, 00) is isomorphic to a subalgebra of GA(co) and we propose to work in such a subalgebra to deal
with the semidefinite case. A suitable subalgebra is the one generated by the elements fo = eo, f(—1) = e123, /1 =
eq, f(—2) = eser, f2 = es,.... If one makes the fi,i € Z, take the réle of the e; that generate GA(co, co) in [1], then it is
routine to check that the generators obey the laws of GA(oo, 00).



The following is based on the function o of [1] for use in specifying the multiplication in GA.

HOL Constant

Signg : N SET — N SET — R

VIdJe Signg I J =
~NR 1)~ #{(i,5) |ielINjeTJ N <i}

After a lemma, we have sign_g_thm which is lemma 1 of [1]. The proof given is a little bit more
long-winded and general than the simplified version recorded in [1]. As a utility we also have the
theorem that says the values taken on by o are £1 and the calculations that give the values of e?
and e;e;.

R_N_exp_mod_2_thm sign_g_cases_thm stgn_singletons_thm
sign_g_thm sign_singleton_thm

2.2 The Type Definition

GA in HOL will be a subtype of the type of all real-valued functions on sets of natural numbers
(specifically, it will comprise the functions whose support is a finite set of finite sets). The following
type abbreviation captures this.

SML

‘declare_type_abbrev("_GA", ], "N SET — R™);

HOL Constant

_IsGARep : _.GA — BOOL

|
‘ Vue _IsGARep u < Supp u € Finite N Supp v C Finite
We can now introduce the new type:

SML

val ga_def = new_type_defn(["GA", "ga_def"], "GA", ],
tac_proof (([], "Jue _IsGARep u7),
3_tac” (ATeNR 0)7
THEN rewrite_tac|get_spec” _IsGARep~, get_spec™ Supp™,
pc_rulel "sets_ext" prove_rule]| {z|F} = {}7,

empty_finite_thm)));



2.3 Specifying the Operations on the Type

We now introduce the operations on the type GA. First of all, we define the fixity of the infix
operators.

SML

app declare_infix[(300, "+¢g"), (310, "xg"), (310, "xs")];

Now we define the operations. The following is adapted from definition 2 of [1]. The function Mon g
maps a finite set of natural numbers I to the monomial basis element e of [1]. The definition has
four conjuncts: the first conjunct says that GA is an associative real algebra with a two-sided unit
(cf. the check-list in [3]); the second conjunct gives the rule for multiplying monomials; the third
conjunct says that the monomials Mong I as I ranges over finite sets of natural numbers generate
GA as a linear space, or, more precisely, it says that if V is a linear subspace of GA that contains
each of these monomials, then V = GA; the final conjunct says that the monomials Mong I as |
ranges over finite sets of natural numbers are linearly independent, or more precisely, it says that for
each J, there is a linear subspace of GA that contains Mong [ for all I # J, but does not contain
Mong J.

HOL Constant
$+¢ : GA - GA — GA; ~¢g: GA — GA4; O¢ : GA4;
$xs : R — GA — GA;
$xqg : GA — GA — GA; 1g : GA; Mong : N SET — GA

(VYu v w a be

u+gv=04+g u

A (u +¢v) +¢gw=u+gv+gw
A u+g O0g=uANu-+g~gu=7_0¢g
A NR 7 g u=u A axg (bx*xs u) = (axb)x*g u
A a*s (u+gv)=ax%su—+ga*xgv
A (a+b)*s u=ax*gu-+gbxsu
A (u *g v) *¢ w = u xg (v *g w)
A uxg (V4+g w) =ux*xg v +g u*xg w
A (v +¢ w) *g u =0 %G U +g W *G U
A (a xg u) *xg v = a *g u *Gg v
A u xg (a %5 V) = a *g U *g v
A lgxgu=uANux*xg Ilg=uAN 1g= Mong {})
A (VI Je I € Finite N\ J € Finite
= Mong I xg Mong J = Signg I J xg Mong(I © J))
A (VVe (VIe I € Finite = Mong I € V)
A (Va ue u € V=uaxsuecl)
A NVuveue VAveV=u+guvel)
= (Vue u € V))
A (VJe J € Finite
= dVe (VIe - =J A1 € Finite = Mong I € V)
A (Va ue u € V=uaxsuecl)
A NVuveue VAveV=u+govel)
A —-Mong J € V)



We now define various derived operations. The first two are binary subtraction and exponentiation
with a natural number exponent:

SML

‘ declare_infix (305, "—a");

HOL Constant

$—c: GA - GA — GA

|
|
‘Vuvou—gv:u—&-cwgv

SML

‘declare-inﬁx(??O, e

HOL Constant

$¢: GA - N — GA

|
‘ (VUOUAGoZZGv)

‘/\ (Vu me u "¢ (m+1) = u *xg u "¢ m)

The function E ¢ that maps an natural number ¢ to the element e; of [1].

HOL Constant

The following function gives the embedding of the naturals in GA. (Since it is so widely used, we
will usually use the alias I" for this function, see below).

HOL Constant

Ng 0 =06 NV me Ng (m+1) =Ng m +¢ 1g

We now define aliases for the embedding of the naturals and for the ring operations on GA etc.,
(but not for the scalar multiplication since that does not work well with the current treatment of
overloading in ProofPower-HOL).

SML

declare_alias("I'", "Ng™);
declare_alias("+", "$+¢7);
declare_alias("x", r$>1<G );
declare_alias("~", "~g7);
declare_alias("—", "$—¢7);
declare_alias("™", "$"¢7);

Many of the theorems in the following block mimic ones provided in the developmet of the real
numbers, up to the point where the non-commutativity of multiplication in GA begins to make a
significant difference.



ga_ops_def ga_scale_scale_assoc_thm ga_minus_eq_thm

ga_plus_assoc_thm ga_scale_plus_distrib_thm ga_0_times_thm
ga_plus_comm_thm ga_plus_scale_distrib_thm ga_0_scale_thm
ga_plus_zero_thm ga_times_assoc_thm ga_scale_0_thm
ga_plus_order_thm ga_times_plus_distrib_thm ga_minus_1_scale_thm
ga_plus_0_thm ga_plus_times_distrib_thm ga_N_exp_clauses
ga_0_1_thm ga_scale_times_assoc_thm ga_minus_scale_thm
ga_plus_minus_thm ga_one_times_thm ga_scale_minus_thm
ga_eq_thm ga_times_one_thm ga_one_mon_thm
I'_plus_homomorphism_thm ga_mon_times_mon_thm ga_mon_span_thm
ga_one_scale_thm ga_minus_clauses ga_mon_indep_thm

2.4 Some Linear Space Notions

(Note: we use the term linear space for the usual notion of a vector space to avoid confusion with
the privileged role of the 1-vectors in GA).

We define the notion of a linear subspace of GA:

HOL Constant

Subspaceg : GA SET SET

VVe V € Subspaceg <

Og eV
A Vo ueueV=axgueclV)
A NVuveue VAveV=ut+uvel)

The linear space spanned by a subset of GA is defined as follows:

HOL Constant

Spang : GA SET — GA SET

VXe Spang X =V | V € Subspaceg N X C V}

A set X is linearly independent iff. the spans of its proper subsets are proper subsets of its span.

HOL Constant

Indepg : GA SET SET

VXe X € Indepg < VYeY C X A Spang Y = Spang X = Y =X

finite_friend_thm ga_vec_indep_thm ga_span_mon_thm
ga_mon_not_0_thm ga_span_subspace_thm ga_span_mono_thm
ga_mon_1_thm ga_C_span_thm ga_indep_thm
ga_mon_subgroup_thm ga_span_C_thm ga_mon_indep_thml
ga_vec_generators_thm ga_trivial _subspaces_thm

ga_vec_relations_thm ga_mon_span_bc_thm



2.5 Some Simple Geometric Notions

In this section we define some simple geometric notions. We restrict some of these to vectors, the
set of vectors being the span of the e;.

HOL Constant

$Vectorg : GA SET

\
|
‘ Vectorg = Spang {e | Imee = E¢ m}

Vectors u and v are orthogonal, written u L v, if they anticommute:

SML

‘declare-z’nﬁz(?OO, "y

HOL Constant

$1L : GA —- GA — BOOL

Yu ve u L v & u € Vectorg AN v € Vectorg N u *x v =~ v % u

With these definitions in hand, it is purely a matter of algebra to prove the theorem of Pythagoras,
which in the geometric algebra becomes a theorem about the squares of the sides, not the squares
on the sides:

pythagoras_thm =V u v: GAe u L v = (u —v) "2 =u"2+ v~ 2
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3 OPERATIONS ON THE REPRESENTATION TYPE

The proof of the consistency of the specification of the operations of GA in section 2.3 is made
tolerable by introducing constants for the representatives of the operations on the representation
type. This appendix gives the definitons of these operations.

We adopt the convention of using an initial ‘_’ to distinguish operations on the representation type
from corresponding operations on the new type.
SML

‘ declare_infix (300, "_+g");

HOL Constant

$+c¢:-GA - _GA — _GA

Vowev _+gw=AKev K+ wkK

HOL Constant

_~VG _GA —- _GA

Vve ~gv=AKe ~(v K)

SML

‘ declare_infix (310, " _xg");

HOL Constant

$x¢g: _GA — _GA — _GA

Vv we
v _xqg w = AKe
Y{I,J)| I € SuppvANJeESuppwNAK=161J}
(NI, J)e Signg I J xv I x*xwJ)

SML

‘ declare_infix (310, "_xg");

HOL Constant

$x¢: R > _GA — _GA

Vecvec _xgv=AKecx*xuv K

HOL Constant

0g : _GA

_0g = AKe NR 0

HOL Constant

1g : _GA

lg = x{{}}

10



A THEOREMS IN THE THEORY geomalg

6-group-thm VY abc
ceao{}=a
ANlea=ua
ANaocb=bca
Nascbec=(aob)oc
S_comm_thm Y abeadSb=5b0OSa
6.assoc.thm +FYVYabce(aob)Sc=a60b6c
O_lemmas FYab
cso{}=an{}a=arNaca={}NaSa={}
B_finite_thm F VY a be a € Finite N b € Finite = a © b € Finite
size_.O_lemma -V f a b
o f{}=0
ANKVab
e a € Finite \ b € Finite
=f(aUb)+f(anb)=fa+fh)
A a € Finite
A b € Finite
=faeob)+2«xf(anbd)=fa+fb
BS_finite_size_thm
FVYabd
e a € Finite N b € Finite
= a © b € Finite
AN#(aob)+2«x# (anNbd) =H#a+#Db
B_infinite_thm
FVY abe —ac Finite Nb € Finite = - a © b € Finite
R_N_exp_mod_2_thm
FVme~1."m=~1."(m Mod 2)
sign_g_thm FYIJK
o [ € Finite N J € Finite N K € Finite
= Signg I J x Signg (I © J) K
= Signg I (J © K) * Signg J K
sign_g_cases_thm
FVYI Je Signg I J=1.V Signg I J=n~1.
sign_singleton_thm
FV ie Signg {i} {i} = 1.
sign_singletons_thm
FVYij
e =7
= Signg {i} {j} = (if i < j then 1. else ~ 1.)
app_if_thm FVYpfgzx
o (if p then f else g) © = (if p then f x else g x)
+a-consistent
~ag_consistent
0g-consistent
*g_consistent
*g_consistent
1lg_consistent
Mong_consistent
F Consistent

11



A (+¢', ~¢', 06, x5, &', 1&', Mong')
e Vuvwahb
e+ uv=+5 vu
A+e" (+¢ uv) w=+¢ u(+¢" v w)
+¢'ul0g =u
+¢' u (NG/ u) = 0q'
x¢' 1. u = u
xs' a (xg' b u) = x5 (a*b)u
xs' a (+¢" u v)
= +¢' (x¢' a u) (xs' a v)
A *g' (a + b) u
+¢' (xs" a u) (xs" b u)
A x¢" (x¢" uwv) w=xg" u (x¢' v w)
Axg" u (+¢" v w)
+¢" (x¢" uv) (x¢' u w)
A xg (+¢' v w) u
=+4¢' (x¢" v u) (x¢' w u)
A xg' (xs" a u) v =xg" a (x¢’ u v)
A x¢" u (xg" a v) = x5’ a (x¢’ u v)
AN*xg' 16" uv=u
A\
A\

> > > > >

xoulg =u
1¢" = Mong' {})
AT T
o [ € Finite N J € Finite
= xg' (Mong' I) (Mong' J)
= x5’ (Signg I J) (Mong' (I © J)))
NNV
o (V Ie [ € Finite = Mong' I € V)
ANNVauveueV=xs'auel)
ANVuveueVAveV =+ uvelV)
= (Vue u € V))
AT
o J € Finite
=3V
o (VI
e =~ [ =J NI € Finite
= Mong' I € V)
ANNVauveuecV=sxs'"auel)
ANV uw
ceuc VAveV=+4guvelV)
A = Mong' J € V)))
ga_ops_def FVuvwabd
eu+v=0v+u
(u+v)+w=u+v+w
u—+ 0g =u
u+~u=_0¢g
1. x5 u = u
a*s bxgu=(axb)*gu
a*s (u+ v)=ax*g u+ axg v
(a +b)xsu=axgu+bx*gu
(u*v)*xw=uxvx*w

>>>>> > > >

12



ANux(v+w)=u*xv+ux*xuw
ANv+w) *su=v*u+ws*u
A(a *g u) *x v =ax%g u*uv
ANU* a*xg UV =ax%g U*xv
ANlg*xu=u
ANuxlg=u
A 1g = Mong {})
ANNVITJ
o [ € Finite N J € Finite
= Mong I * Mong J
= Signg I J xg Mong (I © J))
NNV V
o (V [e I € Finite = Mong I € V)
ANNMaueuecV=axsuecl)
ANNVuveue VAveV=>ut+vel)
= (VY ue u e V))
ANV J
o J € Finite
=3V
o (VIe—~I=JAI € Finite = Mong I € V)
ANNVaueueV=axgueclV)
ANNVuveue VAveV=u+vel)
A = Mong J € V))
ga_plus_assoc_thm
FYuvwe(u+v)+w=u+uv+w
ga_plus_assoc_thml
FYuvweu+v+w=(u+v)+w
ga_plus_comm_thm
FYuveu—+v=uv+u
ga_plus_zero_thm
FYueu-+ 0O =u
ga_plus_order_thm
FYzuyz
ey +r=2+y
ANz4+y)+z=z+y+2z
ANy+x+z=x+y—+=z
ga_plus_0_thm
FVYzezrz + T 0=acANT0+2x=cz
ga_0_1_thm FOg=T0N1g=11
ga_plus_minus_thm
FVYger +~ax=1T0A~x+zxz=120
ga_eq_-thm FYrzyor =y ax+~y=110
I'_plus_homomorphism_thm
FVYmnel'(m+mn)=Im+1Tn
ga_one_scale_thm
FYue 1.%xgu=u
ga_scale_scale_assoc_thm
FYabueasxgbxgu= (axb)xgu
ga_scale_plus_distrib_thm
FVYauveasxs (u+v)=axsu-+axgwv
ga_plus_scale_distrib_thm

13



FYabue (a+b)*su=axsu-+bxgu
ga_times_assoc_thm
FYuovwe (usxuv)xw=uxuvxw
ga_times_plus_distrib_thm
FYuvweusx((v+w) =uxv+usxuw
ga_plus_times_distrib_thm
FVYowue (v+w)«xu=v*xu+ws*xu
ga_scale_times_assoc_thm
FVYauove (ax*xsu)*xv=asx*xgus*uv
ga_times_scale_assoc_thm
FYuaveus*xasxgv=asx*gus*?v
ga_one_times_thm
FYuel 1 xu=u
ga_times_one_thm
FVYueuxI' 1 =u
ga_one_mon_thm
FI 1= Mong {}
ga_minus_clauses
FYaxuy
o~ (~vz)=u=x
Nt +~z=120
AN~z +x=10
AN~(z+y) =~z +~y
AN~ (I0)=1T10
ga_minus_eq_thm
FYzye~ax =~y =y
ga_0_times_thm
FYuoeI' 0 xu=120
ga_0_scale_thm
FYue 0.%xgu=120
ga_scale_0_thm
FVYaoaxg I' 0 =10
ga_minus_1_scale_thm
FYue~1.%gu=n~u
ga_N_exp_clauses
FYuoeu"0=T1ANu"1=uAu""2=ux*xu
ga_minus_scale_thm
FYue~u=n~1.%g5u
ga_scale_minus_thm
FYue ~1.%gu=n~u
ga_mon_span_thm
FYV
o (V [e I € Finite = Mong I € V)
ANNVaueueV=axguecl)
ANANVuveue VAveV=ut+vel)
= VueuelV)
ga_mon_indep_thm
FVJ
o J € Finite
=3V
o (VIe—~I=JAI € Finite = Mong I € V)

14



ANNVMaueuecV=axguecl)
ANNVuveue VAveV=ut+vel)
A = Mong J € V)
ga_mon_times_mon_thm
FVvIJ
e [ € Finite N J € Finile
= Mong I * Mong J
= Signg I J xg Mong (I © J)
finite_friend_thm
FV be b € Finite = (3 ae a € Finite AN - a = b)
ga_mon_not_0_thm
FV Iel € Finite = - Mong I =1 0
ga_mon_1_thmt Mong {} =T 1
ga_mon_subgroup_thm
FV X
o (Vie Egic X)
ANNVueueX=n~1 xgueclX)
ANANVuveueXANveX=uxvelX)
= (V Ie I € Finite = Mong I € X)
ga_vec_generators_thm
FVY A
o (Vie Egic A
NNV uaeue A= axgucA)
ANNVuveuec ANveA=u+ved
ANNVuveuec ANveE A= uxve A
= (Vue u € A)
ga_vec_relations_thm
Vg
e Faoix Fgi1=11
/\(ﬁ?;:jéEgi*Egj:N(Egj*EGi))
ga_vec_indep_thm
FVgj
o1V
e Vie—i=j=EgieclV)
ANNVauoeueV=axguel)
ANANVuveue VAveV=ut+velV)
AN-EgjeV
ga_span_subspace_thm
FV Xe Spang X € Subspaceg
ga_C_span_thm
FV Xe X C Spang X
ga_span_C_thm
FY Ve V € Subspaceg N X C V = Spang X C V
ga_trivial_subspaces_thm
F Universe € Subspaceg N {I" 0} € Subspaceg
ga_mon_span_bc_thm
FVYVu
o (V Ie I € Finite = Mong I € V)
ANANVNaueueV=axguecl)
ANNVuveue VAveV=ut+vel)
=ucV

15



ga_span_mon_thm

F Spang {u|3 Ie I € Finite N u = Mong 1} = Universe
ga_span_mono_thm

FVX Ye X CVY = Spang X C Spang Y
ga_indep_-thm FV X

e X € Indepg & (Vzex € X = -z € Spang (X \ {z}))

ga_mon_indep_thml

F{u|3 Ie I € Finite N u = Mong I} € Indepg
pythagoras_thm

FYuveu lv=(u—v)"2=u"2+0v"2
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