
HOL Formalised:

Semantics

R.D. Arthan
Lemma 1 Ltd.

rda@lemma-one.com

25th October 1993
Revised 8 March 2014

Abstract

This is part of a suite of documents giving a formal specification of the HOL logic. It gives
the semantics of the HOL language by defining the notion of a model of an HOL theory.

The semantics is given by first formalising the notion of what we call a ”universe”, i.e., a
model of set theory within HOL. Such a universe is a type provided with a binary relation which
obeys the axioms expected of the set-theoretic membership operation. Polymorphism is used
to present the notion of a model conservatively, rather than axiomatically. The definition of a
model of an HOL theory within some universe is then given in the usual denotational style. The
document concludes with a brief and informal discussion of the consistency and independence of
the postulates for set theory as defined here.

An index to the formal material is provided at the end of the document.

Copyright c© : Lemma 1 Ltd 2014
Reference: DS/FMU/IED/SPC002; issue Revision : 2 .17

1 DOCUMENT CONTROL

1.1 Contents list

1 DOCUMENT CONTROL 1
1.1 Contents list . 1
1.2 Document cross references . 1

2 GENERAL 3
2.1 Scope . 3
2.2 Introduction . 3
2.3 Initialisation . 3

3 MODELS FOR SET THEORY IN HOL 4
3.1 Postulates for Elementary Set Theory . 4

3.1.1 Extensionality . 4
3.1.2 Separation . 4
3.1.3 Power Sets . 4
3.1.4 Union Sets . 5
3.1.5 Unordered Pairs . 5

3.2 Set Theories . 5
3.3 Operations on Set Theories . 6

3.3.1 Primitive Operations . 6
3.3.2 Derived Operations . 7

4 SEMANTICS FOR HOL 11
4.1 Semantics of Types . 11

4.1.1 Type Constant Assignment . 11
4.1.2 Type Variable Assignments . 12
4.1.3 Polymorphic Values . 12
4.1.4 Semantics of Types . 12

4.2 Semantics of Terms . 13
4.2.1 Constant Assignments . 13
4.2.2 Interpretations . 13
4.2.3 Variable Assignments . 14
4.2.4 Instantiation of Polymorphic Values . 14
4.2.5 Semantics of Terms . 14

4.3 Models of Theories . 15
4.3.1 Satisfaction . 15
4.3.2 Models . 16
4.3.3 Validity . 16

A CONSISTENCY AND INDEPENDENCE 17
A.1 Consistency . 17
A.2 Independence . 17

B INDEX OF DEFINED TERMS 19

1.2 Document cross references

[1] William S. Hatcher. The Logical Foundations of Mathematics. Pergamon, 1982.

1

[2] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs. North Holland, 1980.

[3] J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic. Cambridge University
Press, 1986.

[4] DS/FMU/IED/SPC001. HOL Formalised: Language and Overview. R.D. Arthan, Lemma 1
Ltd., http://www.lemma-one.com.

[5] DS/FMU/IED/SPC003. HOL Formalised: Deductive System. R.D. Arthan, Lemma 1 Ltd.,
http://www.lemma-one.com.

[6] The HOL System: Description. SRI International, 4 December 1989.

2

2 GENERAL

2.1 Scope

This document specifies the semantics of the HOL language. It is part of a suite of documents
constituting a formal specification of the HOL logic, an overview of which may be found in [4].

2.2 Introduction

A set-theoretic semantics devised by A. Pitts for HOL is given in [6]. The treatment given is not
fully formal; however, it is “possible in principle to give a completely formal version within ZFC set
theory”. We wish to formalise the semantics in HOL.

A number of approaches have been considered to specifying the semantics of HOL within HOL itself.
At one extreme, analogues of the axioms of ZFC can be introduced to give a theory in which we could
hope to construct a model of HOL and use it to prove the consistency of all HOL theories which do
not use axiomatic extensions. At the other extreme we might try a category-theoretic approach (see
[3] or [1]), say by using definitional extensions to define the notion of an interpretation of a typed
λ-calculus in a cartesian closed category and to specify how this notion applies to HOL. The main
decisions to be made are:

• How general a class of structures do we wish to consider as models for HOL?

• Should we use axiomatic extensions?

Our present approach tries to be no more general than it needs to be. Since we have no immediate
interest in completeness results or comparisons with other type theories, extra generality would
probably only be an obstacle to assessing the correctness of our treatment and might well make it
more difficult to prove the soundness of the inference rules. Thus we have opted for a set-theoretic
treatment.

We do not wish to use axiomatic extensions. To avoid them we formulate the semantics as a spec-
ification of what a model should be, rather than as construction of a particular model. This makes
little difference to the utility of the semantics since all it amounts to is that we make explicit our
assumption of the existence of an appropriate universe of sets in which terms take their values.

2.3 Initialisation

SML

open theory"spc001";

new theory"spc002";

3

3 MODELS FOR SET THEORY IN HOL

3.1 Postulates for Elementary Set Theory

We wish to define a notion of a model for set theory within HOL. We will formulate this as a property
of a membership relation, mem :′ U→′U→bool . The type ′U over which mem is defined corresponds
to the universe in the treatment in [6].

In the following sections we define predicates which assist in defining our postulates for a set theory.

3.1.1 Extensionality

The predicate for extensionality is straightforward:
HOL Constant

extensional : (′U → ′U → BOOL) → BOOL

∀mem•extensional mem ⇔
∀x y :′U •x = y ⇔ ∀a:′U •mem a x ⇔ mem a y

Note that we use the ordinary metalanguage equality as the equality relation in ′U . Since the
extensionality property implies that equality for sets is an equivalence relation, this imposes no loss
of generality (since we could always work with the equivalence classes).

3.1.2 Separation

For us the postulate of separation will assert the existence of a subset operator assigning to each set
x and each property P the subset of x in which P holds. Note that, since P is not constrained to
be a property which can be expressed in first-order set theory, this postulate is, in general, stronger
than that usual in first-order treatments of set theory.
HOL Constant

is separation : (′U → ′U → BOOL) → (′U → (′U → BOOL) → ′U) → BOOL

∀mem sub•is separation mem sub ⇔
∀x P•∀a•mem a (sub x P) ⇔ mem a x ∧ P a

Note that our universe is necessarily non-empty (since metalanguage types are non-empty), so ex-
tensionality and the existence of a subset operator with the above property will imply the existence
of a unique set with no elements (namely sub x (λa.F) where x is any term of type ′U).

3.1.3 Power Sets

This postulate will assert the existence of an operator assigning to each set the set of all its subsets.
HOL Constant

is power : (′U → ′U → BOOL) → (′U → ′U) → BOOL

∀mem power•is power mem power ⇔
∀x•∀a•mem a (power x) ⇔ ∀b•mem b a ⇒ mem b x

4

If x is an element of ′U let us write extent mem x for the metalanguage predicate λa•mem a x
and assume mem satisfies the postulates of separation and power sets, then, viewing metalanguage
predicates as sets, extent mem (power x) will be in 1-1 correspondence with λP•P ⊆ extent mem x .
This will mean later that our semantics uses only the so-called standard models, in which both object
language and metalanguage agree about the cardinality of object language function spaces.

3.1.4 Union Sets

This postulate asserts the existence of an operator assigning to each set the union of all its elements.
HOL Constant

is union : (′U → ′U → BOOL) → (′U → ′U) → BOOL

∀mem union•is union mem union ⇔
∀x•∀a•mem a (union x) ⇔ ∃b•mem a b ∧ mem b x

3.1.5 Unordered Pairs

This postulate asserts the existence of an operator assigning to any two sets a set whose elements
are precisely those sets.
HOL Constant

is pair : (′U → ′U → BOOL) → (′U → ′U → ′U) → BOOL

∀mem pair•is pair mem pair ⇔
∀x y•∀a•mem a (pair x y) ⇔ a = x ∨ a = y

3.2 Set Theories

We will say that a relation, mem, is a set theory if it admits a subset operator, a power set operator
etc. satisfying the properties defined in the previous section.
HOL Constant

is set theory : (′U → ′U → BOOL) → BOOL

∀mem•is set theory mem ⇔
extensional mem

∧ (∃sub•is separation mem sub)

∧ (∃power•is power mem power)

∧ (∃union•is union mem union)

∧ (∃pair•is pair mem pair)

This notion of a set theory is quite a weak one. An example could be constructed without using
axiomatic extensions by using a countably infinite type to model the set of hereditarily finite sets in
a classical set theory (see appendix A below).

I would conjecture that one would only need to assert axiomatically the existence of a set theory (in
the above sense) together with an axiom of infinity to give an extension of the HOL system strong
enough to prove the consistency of the theory INIT and its definitional extensions.

5

3.3 Operations on Set Theories

It is pleasant in the sequel to use notations similar to the usual set-theoretic ones, at the very least
by making membership an infix operator. Towards this end, we define polymorphic constants which
will act as membership relation and subset, power set, union and pair operators in any type which
permits a set theory. The names of these constants are given a subscript to distinguish them from
constants used in the metalanguage.

3.3.1 Primitive Operations

First we fix a choice of membership relation, then we define the other operators with respect to that
choice.

SML

declare infix (1000 , "∈s");

HOL Constant

$∈s:′U → ′U → BOOL

(∃mem:′U → ′U → BOOL•is set theory mem) ⇒
is set theory ($∈s :′U → ′U → BOOL)

HOL Constant

Subs : ′U → (′U → BOOL) → ′U

(∃mem:′U → ′U → BOOL•is set theory mem) ⇒
is separation ($∈s) (Subs :

′U → (′U → BOOL) → ′U)

HOL Constant

Ps : ′U → ′U

(∃mem:′U → ′U → BOOL•is set theory mem) ⇒
is power ($∈s) (Ps :

′U → ′U)

HOL Constant⋃
s : ′U → ′U

(∃mem:′U → ′U → BOOL•is set theory mem) ⇒
is union ($∈s) (

⋃
s :
′U → ′U)

We will use the symbol ⊕s for the infix operator which makes an unordered pair out of its operands:

SML

declare infix (1000 , "⊕s");

6

HOL Constant

$⊕s : ′U → ′U → ′U

(∃mem:′U → ′U → BOOL•is set theory mem) ⇒
is pair ($∈s) ($⊕s :

′U → ′U → ′U)

3.3.2 Derived Operations

As already mentioned, since the type ′U cannot be empty we may construct an empty set using the
subset operator. This set will be denoted ∅s :

HOL Constant

∅s : ′U

∅s = Subs (εx•T) (λa•F)

Units x will denote the singleton set {x}:
HOL Constant

Units : ′U → ′U

∀x :′U • Units x = x ⊕s x

1 s denotes the set {∅s}:
HOL Constant

1s : ′U

1 s = Units ∅s

2 s denotes the set {∅s , 1 s}:
HOL Constant

2s : ′U

2 s = ∅s ⊕s 1 s

x 7→s y will denote the ordered pair with first component x and second component y , that is to say
{{x}, {x , y}}:
SML

declare infix (1000 , " 7→s");

HOL Constant

$7→s : ′U → ′U → ′U

∀x y :′U • x 7→s y = Units x ⊕s (x ⊕s y)

7

∪s will be the infix binary union operator:

SML

declare infix (1000 , "∪s");

HOL Constant

$∪s : ′U → ′U → ′U

∀x y :′U • x ∪s y =
⋃

s(x ⊕s y)

×s will be the infix binary product operator. Since {{x}, {x , y}} ⊆ P(P(x ∪ y)), this may be defined
using the subset operator as follows.

SML

declare infix (1000 , "×s");

HOL Constant

$×s : ′U → ′U → ′U

∀x y :′U • x ×s y = Subs (Ps(Ps(x ∪s y))) (λa•∃b c•b ∈s x ∧ c ∈s y ∧ a = b 7→s c)

For the infix relation-space operator we use the name ↔s):

SML

declare infix (1000 , "↔s");

HOL Constant

$↔s : ′U → ′U → ′U

∀x y :′U • x ↔s y = Ps (x ×s y)

→s will be the infix total function-space operator:

SML

declare infix (1000 , "→s");

HOL Constant

$→s : ′U → ′U → ′U

∀x y :′U • x →s y = Subs (x ↔s y) (λf •∀a•(a ∈s x) ⇒ ∃1 b•(a 7→s b) ∈s f)

The infix operator @s is used to denote application of a function to an argument. (Note that x here
may not be a function and, even if it is, y may not be in its domain. These properties will have to
be proved as necessary.)

SML

declare infix (1000 , "@s");

8

HOL Constant

$@s : ′U → ′U → ′U

∀x y :′U • x @s y = εa• (y 7→s a) ∈s x

The following function is used to define the semantics of the boolean type constructor. Bool s is a
function taking the empty list to 2 s and any other list to the empty set.

HOL Constant

Bools : ′U LIST → ′U

(Bool s [] = 2 s)

∧ (∀x t• Bool s (Cons x t) = ∅s)

The following function is used to define the semantics of the function space type constructor. Funs

is a function which takes a two element list, [dom, rng], of non-empty elements of ′U to the set of
functions from Dom to rng and which takes any other list to the empty set.

HOL Constant

Funs : ′U LIST → ′U

∀args•Funs args =

let dom = Hd args

in let rng = Hd (Tl args)

in if args = [dom; rng] ∧ ¬dom = ∅s ∧ ¬rng = ∅s

then dom →s rng

else ∅s

The following function is used to define the semantics of λ-abstraction. Note that there is no
guarantee that the result is a total function and this will have to be proved where necessary.

HOL Constant

Abss : (′U → ′U) → ′U → ′U → ′U

∀f dom rng•Abss f dom rng = Subs (dom ×s rng) (λx•∃a•x = a 7→s f a)

The following function will represent the polymorphic equality of HOL:

HOL Constant

EqRels : ′U → ′U

∀x :′U •EqRel s x = Subs (x ×s x ×s 2 s)

(λa•∃b c•a = (b 7→s c 7→s if b = c then 1 s else ∅s))

The following set will represent the graph of the implication function:

9

HOL Constant

ImpRels : ′U

ImpRel s =

Units(1 s 7→s 1 s 7→s 1 s)

∪s Units(1 s 7→s ∅s 7→s ∅s)

∪s Units(∅s 7→s 1 s 7→s 1 s)

∪s Units(∅s 7→s ∅s 7→s 1 s)

10

4 SEMANTICS FOR HOL

In this section we give the semantics of HOL with respect to some universe ′U by specifying the
notion of a model of a theory. The main work in doing this is defining the value of a term with
respect to a function assigning values to the variables and constants in it (and similarly for types).

Because of our use of HOL rather than set theory as a metalanguage, the approach and hence the
terminology used here is rather different from that used in the HOL manual, [6]. An approximate
translation is given in the following table:

This Document HOL Manual

(Well-formed) type constant assignment (Standard) model of a type structure

Type variable assignment Element of Un

Polymorphic value Function from Un to U
(Well-formed) constant assignment Second component of a (standard) model of a

signature

(Well-formed) interpretation (Standard) model of a signature

Variable assignment Element of Un

4.1 Semantics of Types

4.1.1 Type Constant Assignment

The value we assign to a type constant is in effect a function from n-tuples of non-empty elements
of the universe ′U to non-empty elements of ′U , where n is the arity of the type constant. Since we
do not have dependent types we represent such a thing as a function of type (′U list→∗U) which
sends a list of length other than n to the empty set. We make the following type abbreviation1 to
facilitate this:

SML

declare type abbrev("TY CON ASSIGNMENT", ["′U "], p:STRING → (′U LIST → ′U)q);

We say that a type constant assignment is well-formed with respect to a type environment if the
arities of the values assigned to the type constant names agree with those in the type environment
and if the boolean and function space types are assigned appropriately.

HOL Constant

is wf ty con assignment: TY ENV → ′U TY CON ASSIGNMENT → BOOL

∀tyenv tyconass• is wf ty con assignment tyenv tyconass ⇔
(∀tycon args•

(¬tyconass tycon args = ∅s)

⇔ (tycon 7→ Length args ∈ tyenv ∧ ∀a•a ∈ Elems args ⇒ ¬a = ∅s))

∧ tyconass "bool" = Bool s

∧ tyconass "→" = Funs

1ProofPower-HOL does not provide special syntax for type abbreviations. To introduce a type abbreviation one
uses the ML function declare type abbrev with parameters indicating the name, formal parameters and definition of
the type abbreviation.

11

4.1.2 Type Variable Assignments

A type variable assignment is just a total function from type variables to the universe, ′U . We make
the following type abbreviation for this notion.

SML

declare type abbrev("TY VAR ASSIGNMENT", ["′U "], p:STRING → ′U q);

A type variable assignment will be well-formed if all the values in its range are non-empty

HOL Constant

is wf ty var assignment : ′U TY VAR ASSIGNMENT → BOOL

∀tyvarass•is wf ty var assignment tyvarass ⇔ ∀tyv•¬tyvarass tyv = ∅s

4.1.3 Polymorphic Values

Types and terms have polymorphic values. We represent these as functions from type variable
assignments to ′U . This corresponds to the use of certain dependent products in the treatment in
[6].

SML

declare type abbrev("POLY VALUE", ["′U "], p:′U TY VAR ASSIGNMENT → ′U q);

A set X of type variables supports a polymorphic value v if v is independent of the values assigned
to type variables not in X .

SML

declare infix (1000 , "supports");

HOL Constant

$supports: STRING SET → ′U POLY VALUE → BOOL

∀X v• X supports v ⇔ (∀a1 a2• (∀x• x ∈ X ⇒ a1 x = a2 x) ⇒ v a1 = v a2)

4.1.4 Semantics of Types

The value of a type with respect to a type constant assignment is a function mapping type variable
assignments onto polymorphic values:

HOL Constant

type value : ′U TY CON ASSIGNMENT → TYPE → ′U POLY VALUE

∀tyconass s tyl•
type value tyconass (mk var type s) = (λtyvarass•tyvarass s)

∧ type value tyconass (mk type(s, tyl)) =

(λtyvarass•tyconass s (Map(λty•type value tyconass ty tyvarass) tyl))

12

4.2 Semantics of Terms

4.2.1 Constant Assignments

A constant assignment is a function assigning to each constant name a polymorphic value.

SML

declare type abbrev("CON ASSIGNMENT", ["′U "], p:(STRING → ′U POLY VALUE)q);

We call a constant assignment well-formed with respect to a constant environment if it sends impli-
cation and equality to appropriate polymorphic values and if the set of type variables in the type
associated with each constant in the environment supports the polymorphic value associated with
the constant.

HOL Constant

is wf con assignment: CON ENV → ′U CON ASSIGNMENT → BOOL

∀conenv conass• is wf con assignment conenv conass ⇔
(∀tyvarass•

conass "=" tyvarass = EqRel s (tyvarass "∗")

∧ conass "⇒" tyvarass = ImpRel s)

∧ (∀con ty• con 7→ ty ∈ conenv ⇒ type ty vars ty supports (conass con))

Here we rely on the fact that in the theory MIN equality is defined to have type ∗→ ∗→bool .

4.2.2 Interpretations

An interpretation is a pair consisting of a type constant assignment and a constant assignment:

SML

declare type abbrev("INTERPRETATION ", ["′U "],

p:′U TY CON ASSIGNMENT × ′U CON ASSIGNMENTq);

An interpretation is considered to be well-formed with respect to a theory if the type constant
assignment is well-formed with respect to the type environment of the theory and if the constant
assignment is well-formed and respects the type constant assignment in an appropriate sense:

HOL Constant

is wf interpretation : THEORY → ′U INTERPRETATION → BOOL

∀thy tyconass conass•
is wf interpretation thy (tyconass, conass)

⇔ (is wf ty con assignment (types thy) tyconass

∧ is wf con assignment (constants thy) conass

∧ ∀s ty• s 7→ ty ∈ constants thy ⇒
∀tyvarass•is wf ty var assignment tyvarass ⇒

conass s tyvarass ∈s type value tyconass ty tyvarass)

(Here constants thy s ty is the assertion that a constant named s with type ty has been defined in
the theory thy .)

13

4.2.3 Variable Assignments

A variable assignment is a function sending name-type pairs to polymorphic values.

SML

declare type abbrev("VAR ASSIGNMENT", ["′U "],

p:(STRING × TYPE) → ′U POLY VALUEq);

A variable assignment is considered to be well-formed with respect to a type constant assignment if
the following condition holds:

HOL Constant

is wf var assignment : ′U TY CON ASSIGNMENT →
′U VAR ASSIGNMENT → BOOL

∀tyconass varass•
is wf var assignment tyconass varass

⇔ ∀s ty tyvarass•is wf ty var assignment tyvarass ⇒
varass (s, ty) tyvarass ∈s type value tyconass ty tyvarass

4.2.4 Instantiation of Polymorphic Values

Given a theory, the name of a constant and the type of an instance of a constant, the declared type
may be matched with the instance type and the result used to instantiate the polymorphic value
assigned to the constant appropriately. The function instance that does this is only used in contexts
where the constant has an assigned value and the instance type is an instance of the declared type.

HOL Constant

instance : THEORY → ′U INTERPRETATION →
STRING × TYPE →′U POLY VALUE

∀thy tyconass conass s instty f declty•
is wf con assignment (constants thy) conass ⇒
s 7→ declty ∈ constants thy ∧ inst type f declty = instty ⇒

instance thy (tyconass, conass) (s, instty)

= (λtyvarass• conass s (λtyvar• type value tyconass (f tyvar) tyvarass))

I am indebted to Ramana Kumar for pointing out that instantiation of polymorphic values was not
addressed in earlier versions of this document.

4.2.5 Semantics of Terms

The value of a term with respect to a type assignment and a constant assignment is a function
mapping variable assignments to polymorphic values. If the term is a variable then its value is given
by the variable assignment. If the term is a constant then the value is given by instantiating the
value give by the constant assignment according as determined by its declared type and the type of
this instance. If it is a combination, f a, then the application operator @s is used to apply the value
of f to that of a. If the term is an abstraction, λv•b, then we form a metalanguage λ-abstraction

14

which sends an element, x , of the universe to the value taken by b when v takes the polymorphic
value which is identically x . We then use Abss to construct a set in ′U from this metalanguage
λ-abstraction.

HOL Constant

term value : THEORY → ′U INTERPRETATION →
TERM → ′U VAR ASSIGNMENT → ′U POLY VALUE

∀thy tyconass conass tm varass sty f a v b•
(term value thy (tyconass, conass) (mk var sty) varass

= (λtyvarass•varass sty tyvarass))

∧ (term value thy (tyconass, conass)(mk const sty) varass

= instance thy (tyconass, conass) sty)

∧ (has mk comb(f , a)tm ⇒
term value thy (tyconass, conass) tm varass

= let vf = term value thy (tyconass, conass) f

in let va = term value thy (tyconass, conass) a

in (λtyvarass•vf varass tyvarass @s va varass tyvarass))

∧ (has mk abs(v , b)tm ∧ mk var sty = v ⇒
term value thy (tyconass, conass) tm varass

= λtyvarass•
let dom = type value tyconass (type of term v) tyvarass

in let rng = type value tyconass (type of term b) tyvarass

in let fnc = (λx :′U •
term value thy

(tyconass, conass) b

(λsty ′•if sty ′ = sty then λtyvarass ′•x else varass sty ′)

tyvarass)

in Abss fnc dom rng)

4.3 Models of Theories

4.3.1 Satisfaction

Using term value and interpreting boolean terms which evaluate to λx•1 s as true, we can define the
notion of a sequence being satisfied by an interpretation. We define this notion as an infix relation
between interpretations and sequents.

SML

declare infix (1000 , "satisfies");

15

HOL Constant

$satisfies : THEORY × ′U INTERPRETATION → SEQ → BOOL

∀thy int seq• (thy , int) satisfies seq ⇔
∀varass tyvarass•
let val of = λtm•term value thy int tm varass tyvarass

and (tyconass,) = int

in is wf ty var assignment tyvarass

∧ is wf var assignment tyconass varass

∧ (∀asm•asm ∈ hyp seq ⇒ val of asm = 1 s)

⇒ val of (concl seq) = 1 s

4.3.2 Models

A model for a theory is an interpretation which is well-formed with respect to the theory and which
satisfies all of its axioms:

HOL Constant

is model : THEORY → ′U INTERPRETATION SET

∀thy int•
int ∈ is model thy ⇔
(is wf interpretation thy int ∧
∀seq•seq ∈ axioms thy ⇒ (thy , int) satisfies seq)

4.3.3 Validity

A sequent is valid with respect to a theory if it is satisfied by any model of that theory. Because of
the restriction that any type variable in the defining property of a constant must also appear in the
type of the constant, we have to give valid an additional apparently unused parameter. (The reasons
for this are further discussed in the description of new specification in [5].)

HOL Constant

valid : ′U → THEORY → SEQ SET

∀v thy seq•
seq ∈ valid v thy ⇔
∀int :′U INTERPRETATION •int ∈ is model thy ⇒ (thy , int) satisfies seq

16

A CONSISTENCY AND INDEPENDENCE

In this appendix we briefly discuss the consistency and mutual independence of the postulates for a
set theory given in section 3.2 above. We make use of informal set-theoretic notions.

My original arguments for the independence of union and pairing were incorrect. I am much indebted
to Prof. Robert M. Solovay for pointing this out and supplying the arguments given below.

A.1 Consistency

Since we have not included an axiom of infinity, a model for the postulates may be constructed using
a model of the hereditarily finite sets2 in classical set theory.

It is easy to see that the hereditarily finite sets would supply a model for our postulates if we
could represent them as an HOL type and define the membership relation for them in terms of that
representation. This is straightforward: e.g. take the type, N, of natural numbers under the relation,
mem, informally described by:

Informal Discussion

mem i j ⇔ the i−th coefficient in the binary expansion of j is 1

Thus our definition of set theory is consistent in the sense that some instance of the predicate
is set theory is satisfiable.

Note that if one wishes to introduce an axiom of infinity and attempt to construct a model for HOL
on that basis, then one can presumably construct a model just using the separation and power set
axioms. This should follow from the fact that the cumulative hierarchy in ZF is constructed using
only the power set and union operators, since a model for HOL only requires sets formed before stage
ω + ω and the axiom of infinity gets one beyond stage ω immediately.

A.2 Independence

The 5 postulates section 3.2 are independent. For example, we can construct a model that satisfies
all the postulates except extensionality, so that extensionality is not a logical consequence of the
other postulates. The following paragraphs sketch such a construction for each postulate in turn:

Extensionality To see that extensionality is independent of the other postulates, we adjoin a new
empty individual, X say, to a model of all the postulates. Of course, this actually introduces an
infinite family of sets constructed using X and the various set forming operations. The resulting
system of sets satisfies all of the postulates except extensionality.

Separation The identity relation on a one-element set supplies a model of all of the postulates
apart from separation.

Power Sets The hereditarily countable sets supply a model of all of the postulates apart from the
existence of power sets (see [2] for more information).

2A set, A, is hereditarily finite if its transitive closure is finite. Here the transitive closure tr cl A, of A is defined
by tr cl A = A∪ (

⋃
A)∪ (

⋃
(
⋃
A))∪ (

⋃
(
⋃

(
⋃
A)))∪ Less formally, a set is hereditarily finite if it is finite, all its

elements are finite, all their elements are finite and so on.

17

Union Sets In ZFC, if κ = |X | is the cardinal of a set X , we write, as usual, 2 κ for the cardinal
of the powerset of X . Define βx for x ∈ ω ∪ {ω}, by

β0 = |ω|
βn+1 = 2 βn ,n ∈ ω
βω = supn∈ω|βn |

One may verify that the set M of all sets which are hereditarily of cardinality less than βω satisfies all
the postulates except the existence of unions. If one takes U = {βn |n ∈ ω}, then certainly U ∈ M ,
but |

⋃
U | = βω 6∈ M , so M is not closed under unions.

Pairs To see the independence of the pairing postulate, consider a model of the system of axioms
derived from ZFC by replacing the axiom of foundation by an axiom asserting the existence of two
sets A and B satisfying {a} = a and {b} = b and such that any descending chain with respect to
the membership relation stabilises at either a or b. I.e., if x1 , x2 , . . . is such that xi+1 ∈ xi for all i ,
then there is a j such that either ∀i > j • xi = a or ∀i > j • xi = b

Now define take M to comprise all sets X such that at least one of a and b does not belong to the
transitive closure of X . One may check that M satisfies all the postulates except pairing. However,
both a and b are in M , but the pair {a, b} is not, so M is not closed under formation of pairs.

18

B INDEX OF DEFINED TERMS

1 s . 7
2 s . 7
@s . 9
Abss . 9
Bool s . 9
EqRel s . 9
extensional . 4
Funs . 9
ImpRel s . 10
instance . 14
is model . 16
is pair . 5
is power . 4
is separation . 4
is set theory . 5
is union . 5
is wf con assignment 13
is wf interpretation . 13
is wf ty con assignment 11
is wf var assignment 14
satisfies . 16
spc002 . 3
Subs . 6
supports . 12
term value . 15
type value . 12
Units . 7
valid . 16⋃

s . 6
∪s . 8
∅s . 7
Ps . 6
∈s . 6
↔s . 8
7→s . 7
⊕s . 7
→s . 8
×s . 8

19

