
HOL Formalised:

Proof Development System

R.D. Arthan
Lemma 1 Ltd.

rda@lemma-one.com

25 October 1993
Revised 17 October 2002

Abstract

This is part of a suite of documents giving a formal specification of the HOL logic. An abstract
model of a proof development system for HOL is defined and its critical properties are stated.
Thus this document defines formal criteria for assessing a theorem-proving tool which purports to
implement the HOL logic. These criteria cover both the inference and the definitional mechanisms
provided by such a tool.

An index to the formal material is provided at the end of the document.

Copyright c© : Lemma 1 Ltd 2006
Reference: DS/FMU/IED/SPC004; issue 1.16

1 DOCUMENT CONTROL

1.1 Contents list

1 DOCUMENT CONTROL 1
1.1 Contents list . 1
1.2 Document cross references . 1

2 GENERAL 2
2.1 Scope . 2
2.2 Introduction . 2

3 PREAMBLE 2

4 THE RULES OF INFERENCE REVISITED 2

5 THEORY HIERARCHIES AND THE HOL SYSTEM 5
5.1 Theory Hierarchies . 6
5.2 Proof Development Systems . 7

5.2.1 Property (a) . 7
5.3 Property (b) . 8
5.4 Property (c) . 9

6 INDEX OF DEFINED TERMS 10

1.2 Document cross references

[1] DS/FMU/IED/SPC001. HOL Formalised: Language and Overview. R.D. Arthan, Lemma 1
Ltd., http://www.lemma-one.com.

[2] DS/FMU/IED/SPC002. HOL Formalised: Semantics. R.D. Arthan, Lemma 1 Ltd.,
http://www.lemma-one.com.

[3] DS/FMU/IED/SPC003. HOL Formalised: Deductive System. R.D. Arthan, Lemma 1 Ltd.,
http://www.lemma-one.com.

1

2 GENERAL

2.1 Scope

This document specifies some high level aspects of a proof development system for HOL. It is part
of a suite of documents specifying HOL an overview of which may be found in [1].

2.2 Introduction

In [3] the rules of inference and definitional mechanisms which make up the HOL deductive system
are defined. In this document we turn to specifying some high level aspects of the HOL proof
development system. Many of the types and functions used to specify the logic may already be
viewed as specifying corresponding parts of the implementation. We now wish to specify a generic
type giving an abstract model of a HOL proof development system and to characterise the critical
properties of such a system.

The designer of a proof development system is interested in ensuring that the theorems which the
users compute are indeed derivable from the axioms of the theory involved. The LCF approach to
this problem is to use a programming language supporting the abstract data type concept. Theorems
are represented as elements of an abstract data type whose constructor functions consist precisely of
the rules of inference (suitably parameterised so that they are partial functions rather than arbitrary
relations).

In this way, the type system of the programming language helps to ensure that only valid theorems
may be derived. In section 4 we define the action of the rules of inference on our type of theorems.
These definitions can be viewed as a high level specification of the constructor functions of the
abstract data type. Such functions are used to extend the set of theorems stored within a theory.

Finally, section 5 discusses an abstraction of the database side of the proof development system. The
concept of a named hierarchy of theories is introduced and an abstraction of the state of an HOL
proof development system is presented. Given this, we can define the generic type of an HOL system
and so define general predicates on such systems expressing their critical properties. In producing a
very high assurance implementation of HOL, this would give the starting point for some meaningful
proof work: one might attempt to prove that these properties held for a high level design for a system
defined in terms of the theorem proving mechanisms of section 4 and the (conservative) definitional
mechanisms of [3]).

3 PREAMBLE

We introduce the new theory. Its parents are the theories spc002 and spc003 defined in [2] and [3].
SML

open theory"spc002";

new theory"spc004";

new parent"spc003";

4 THE RULES OF INFERENCE REVISITED

In [1] the inference rules are defined as relations between sequents. We now wish to define inference
rules as relations between theorems, since this gives a better model of what is done in a proof

2

development system. Thus, recalling that a theorem is represented by a pair (S ,T) where T is
a theory and S is a sequent, we must specify how the inference rules interact with the theory
components. Essentially, we say that if, by rule X rule, we may infer the sequent S from S1 ,S2 , . . .,
then, by X, we may infer (S ,T) from (S1 ,T1), (S2 ,T2), . . . provided the theory T is an extension
of each Ti .

Proof theoretically this is no different from a rule which insists that Ti = T for all i . The more
general formulation is meant to accord a little better with the thinking of the user of the proof
development system and may allow more freedom in an implementation. An implementation need
not exploit the full generality. For example, in the Cambridge HOL system all proofs are conducted in
the context of a particular theory called the current theory. Thus the abstract data type representing
theorems does not need a theory component and the current theory is, effectively, an implicit and
unused parameter to the constructor functions of the abstract data type. The ProofPower system
follows a different approach to storage of theories and does tag theorems with the theory to which
they belong.

The definitions of the inference rules for theorems are derived directly and tediously from the cor-
responding rules for sequences. In each case, we simply change the sequent arguments to theorem
arguments, and check that the corresponding rule for sequents holds for the sequent components of
the theorems and that the theory component of the theorem inferred extends that of all the other
theorem arguments.

HOL Constant

SUBST : ((STRING × TYPE) → THM) →
TERM → THM → THM → BOOL

∀ eqs tm old thm new thm •
SUBST eqs tm old thm new thm =

let old seq = thm seq old thm in let old thy = thm thy old thm

in let new seq = thm seq new thm in let new thy = thm thy new thm

in

SUBST rule (thm seq o eqs) tm old seq new seq ∧
new thy extends old thy ∧
Ran(Graph(thm thy o eqs)) ⊆ {thy | new thy extends thy}

HOL Constant

ABS : (STRING × TYPE) → THM → THM → BOOL

∀ vty old thm new thm •
ABS vty old thm new thm =

let old seq = thm seq old thm in let old thy = thm thy old thm

in let new seq = thm seq new thm in let new thy = thm thy new thm

in

ABS rule vty old seq new seq ∧
new thy extends old thy

3

HOL Constant

INST TYPE : (STRING → TYPE) → THM → THM → BOOL

∀ tysubs old thm new thm •
INST TYPE tysubs old thm new thm =

let old seq = thm seq old thm in let old thy = thm thy old thm

in let new seq = thm seq new thm in let new thy = thm thy new thm

in

INST TYPE rule tysubs old seq new seq ∧
new thy extends old thy

HOL Constant

DISCH : TERM → THM → THM → BOOL

∀ tm old thm new thm •
DISCH tm old thm new thm =

let old seq = thm seq old thm in let old thy = thm thy old thm

in let new seq = thm seq new thm in let new thy = thm thy new thm

in

DISCH rule tm old seq new seq ∧
new thy extends old thy

HOL Constant

MP : THM → THM → THM → BOOL

∀ imp thm ant thm new thm •
MP imp thm ant thm new thm =

let imp seq = thm seq imp thm in let imp thy = thm thy imp thm

in let ant seq = thm seq ant thm in let ant thy = thm thy ant thm

in let new seq = thm seq new thm in let new thy = thm thy new thm

in

MP rule imp seq ant seq new seq ∧
new thy extends imp thy ∧
new thy extends ant thy

The axiom schemata for theorems are even more straightforward to define, since they hold in every
normal theory.
HOL Constant

ASSUME : TERM → THM → BOOL

∀ tm thm • ASSUME tm thm = ASSUME axiom tm (thm seq thm)

HOL Constant

REFL : TERM → THM → BOOL

∀ tm thm • REFL tm thm = ((thm seq thm) = REFL axiom tm)

4

HOL Constant

BETA CONV : TERM → THM → BOOL

∀ tm thm • BETA CONV tm thm = BETA CONV axiom tm (thm seq thm)

5 THEORY HIERARCHIES AND THE HOL SYSTEM

HOL systems operate not with the totality of the type THEORY, but with subsets of it. The subsets
are structured as hierarchies in which each theory has a name and a parenthood relation is given
on the names. Moreover the representation of a theory provides for the storage of theorems which
have been proved. Another important aspect is that the systems distinguish between definitional
extensions1 and axiomatic ones. We will view a theory hierarchy as a function from names to triples
comprising a theory, a set of sequents giving the definitional axioms and a set of sequents giving
the theorems which have been saved. We forget the parenthood relation since we can recover its
ancestral from the extension relation on theories, and for our purposes the ancestral is all that is
needed.

Our abstraction for an HOL system is a (total) function2 , which we think of as the state transition
function for an automaton whose state can be interpreted as a theory hierarchy. We formulate three
important properties of such functions:

(a) a semantic property of the theorems in the system — do the
transitions preserve truth? I.e. given an input state in the
interpretation of which every theorem is true in every model
of the corresponding theory, does the result state have the
same property?

(b) a syntactic property of the theorems in the system — do the
transitions preserve derivability? I.e. given an input state in
the interpretation of which every theorem is derivable from
the axioms of the corresponding theory, does the output state
have the same property?

(c) a syntactic property of the theories in the system — are the
definitional axioms in each theory in the interpretation of
the output state of a transition the result of a definitional
extension of some theory in the interpretation of the input
state?

Neither (a) nor (b) prohibits arbitrary axiomatic extensions, this is the purpose of (c). However (c)
see says nothing about how the system treats the theorems in a theory hierarchy.

The reason for stating the three properties separately is to give a little latitude in the choice of
a critical property to verify for an implementation. E.g. it would be appropriate to verify (a)
and (c) for a system which was asserted to permit only the definitional extension mechanisms but
which contained built-in inference rules for which it was felt that a semantic proof of correctness was
significantly easier than a syntactic one.

(It is possible to give semantic analogues of (c), but I am not sure how useful they are.)

1 Recall that in the terminology introduced in [3] “definitional” extensions embrace the introduction of new types
isomorphic to subsets of old and loose specification of new constants as well as simple definition by means of an equation.

2 Arguably, a partial function or some similar, more realistic abstraction should be used.

5

5.1 Theory Hierarchies

In our abstraction of a proof development system a theory hierarchy is represented by the following
type (we assume that the finite function in an implementation is interpreted as a total function by
mapping unused names to some well-known theory (e.g. MIN or INIT):

SML

declare type abbrev("THEORY HIERARCHY REP", [],

p:STRING → (THEORY × (SEQ SET) × (SEQ SET))q);

The second components of the triples in the above definition give the definitional axioms, the third
components give the theorems which have been saved in a theory.

The theory hierarchies in a proof development system will be required to satisfy the following condi-
tion, which says that for each theory the corresponding definitional axioms are among its axioms and
the corresponding stored theorems are well-formed with respect to its type and constant environment.

HOL Constant

wf hierarchy : THEORY HIERARCHY REP SET

∀hier•
hier ∈ wf hierarchy ⇔

∀thyn• Fst(Snd(hier thyn)) ⊆ axioms (Fst(hier thyn))

∧ Snd(Snd(hier thyn)) ⊆ sequents (Fst(hier thyn))

The critical part of a proof development system states will thus be interpreted as having the following
type:

SML

type spec {rep fun="rep theory hierarchy", def tm = p
THEORY HIERARCHY ' mk theory hierarchy Of wf hierarchy

q};

which we access with the following functions:

HOL Constant

th theory : THEORY HIERARCHY → STRING → THEORY

∀ hier thyn•
th theory hier thyn = Fst((rep theory hierarchy hier) thyn)

HOL Constant

th theories : THEORY HIERARCHY → (THEORY SET)

∀ hier thy•
thy ∈ th theories hier ⇔ ∃thyn•th theory hier thyn = thy

6

HOL Constant

th definitions : THEORY HIERARCHY → STRING → (SEQ SET)

∀ hier thyn seq •
seq ∈ th definitions hier thyn

⇔ seq ∈ Fst(Snd((rep theory hierarchy hier) thyn))

HOL Constant

th theorems : THEORY HIERARCHY → STRING → (SEQ SET)

∀ hier thyn seq •
seq ∈ th theorems hier thyn

⇔ seq ∈ Snd(Snd((rep theory hierarchy hier) thyn))

5.2 Proof Development Systems

A HOL system may be interpreted as an instance of the following polymorphic type, in which the first
component stands for the transition function for an automaton and the second for an interpretation
of the states of the automaton as theory hierarchies.

SML

declare type abbrev("HOL SYSTEM ", ["′INPUT", "′OUTPUT", "′STATE"],

p: ((′INPUT × ′STATE) → (′STATE × ′OUTPUT))

× (′STATE → THEORY HIERARCHY)q);

The above definition does not capture any conditions on the “theorems” stored in the theories in
the system other than their well-formedness as sequents. We can now consider the properties of
such systems which we might wish to verify to give some confidence that the “theorems” really are
theorems of the logic.

5.2.1 Property (a)

This is the condition based on the semantics. To describe it, let us say that a hierarchy is valid with
respect to a type, ′U , if all of its “theorems” are satisfied in any model of the theory with universe
′U . We could then assert that we are interested in systems which preserve validity of hierarchies.
Thus valid hierarchies for the type ′U are given by:

HOL Constant

valid hierarchy : ′U → THEORY HIERARCHY SET

∀ (v :′U) hier•
hier ∈ valid hierarchy v ⇔
∀thyn• th theorems hier thyn ⊆ valid v (th theory hier thyn)

(Note that the apparently unused first parameter of valid hierarchy ensures that ′U appears in
the type of valid hierarchy , as required to satisfy the restrictions on type variables imposed by
new specification.)

7

The validity preserving HOL systems for the type ′U are given by:

HOL Constant

validity preserving : ′U → (′INPUT , ′OUTPUT , ′STATE)HOL SYSTEM SET

∀ (v :′U) tr f int•
(tr f , int) ∈ validity preserving v ⇔
∀input st•
int st ∈ valid hierarchy v ⇒ int(Fst(tr f (input , st))) ∈ valid hierarchy v

Thus the proposition for a given system sys would be the conjecture:

?` ∀(v :′U)•validity preserving v sys

I.e. property (a) is:

λsys:(′INPUT , ′OUTPUT , ′STATE)HOL SYSTEM •∀(v :′U)•validity preserving v sys

Note that it is inadequate just to prove an instance of the above conjecture. E.g. since there are no
models of any theory with universe a one-point type, the instance:

?` ∀(v :one)•validity preserving v sys

is trivially true for any v . However, using a model of a (provably) consistent theory such as MIN , it
is possibly to construct systems which are not validity preserving.

(This is an example of the need for the restrictions imposed on type variables in the definition of
new definition and new specification in [2]. The conjecture

?` xx = λsys:(′INPUT , ′OUTPUT , ′STATE)HOL SYSTEM •∀(v :′U)•
validity preserving v sys

is equal to λsys•T at some instances of ′U but not at others, and so cannot be the defining theorem
of a new constant xx).

5.3 Property (b)

This is the condition based on derivability. We say that a hierarchy is derivable if every theorem
saved in it is derivable from the axioms of the corresponding theory. (One may think of the hierarchy
as being derived from one with no saved theorems by a sequence of proof steps.)

HOL Constant

derivable hierarchy : THEORY HIERARCHY SET

∀ hier•
hier ∈ derivable hierarchy ⇔
∀thyn seq• seq ∈ th theorems hier thyn

⇒ derivable from seq (axioms(th theory hier thyn))

Property (b) is then the condition on systems that they preserve derivability of hierarchies:

8

HOL Constant

derivability preserving : (′INPUT , ′OUTPUT , ′STATE)HOL SYSTEM SET

∀ tr f int•
(tr f , int) ∈ derivability preserving ⇔
∀input st•
int st ∈ derivable hierarchy ⇒ int(Fst(tr f (input , st))) ∈ derivable hierarchy

5.4 Property (c)

We will say that a HOL system is standard if it only extends the definitional axioms in a theory
hierarchy by means of the definitional extension mechanisms. Note that this does not prohibit
axiomatic extensions, it just ensures that the definitions components in the theory hierarchy give a
proper record of which extensions are definitional and which are axiomatic. We state this property
as follows:

HOL Constant

standard : (′INPUT , ′OUTPUT , ′STATE)HOL SYSTEM SET

∀ tr f int•
(tr f , int) ∈ standard ⇔
∀input st new thyn•∃old thyn thy tms•
let old thy = th theory (int st) old thyn

in let old defs = th definitions (int st) old thyn

in let new thy = th theory(int(Fst(tr f (input , st))))new thyn

in let new defs = th definitions(int(Fst(tr f (input , st))))new thyn

in

old thy ∈ definitional extension thy

∧ new axioms tms thy new thy

∧ new defs = old defs ∪ (axioms thy \ axioms old thy)

That is to say, the intermediate theory, thy , is a definitional extension of old thy , new thy is obtained
from thy by adding axioms, and new defs consists of old defs together with the definitional axioms
introduced by the extension of old thy to thy .

9

6 INDEX OF DEFINED TERMS

ABS . 3
ASSUME . 4
BETA CONV . 5
derivability preserving . 9
derivable hierarchy . 8
DISCH . 4
HOL SYSTEM . 7
INST TYPE . 4
mk theory hierarchy . 6
MP . 4
REFL . 4
spc004 . 2
standard . 9
SUBST . 3
THEORY HIERARCHY REP 6
THEORY HIERARCHY 6
th definitions . 7
th theorems . 7
th theories . 6
th theory . 6
validity preserving . 8
valid hierarchy . 7
wf hierarchy . 6

10

