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2 GENERAL

2.1 Scope

This document reports on a brief investigation into embedding the possible worlds semantics
for modal logic in HOL.

The purpose of the investigation was to demonstrate some of the new capabilities of the ICL
HOL proof tool and to show by means of examples how a semantic embedding of this sort is
used to provide proof support for formalisms other than HOL.

The treatment of the possible worlds semantics we give is by no means new. It is essentially
just a translation into HOL of the sort of set-theoretic treatment which may be found in any
text-book on modal logic, for example, [1].

2.2 Introduction

2.2.1 Modal Logics

Modal propositional calculus is the ordinary propositional calculus augmented by an additional
connective, 2. If A is a proposition then 2A, the necessitation of A, was originally intended
to connote the idea that A was, in some sense, a necessary rather than a contingent fact.
The semantics for this calculus, due to Kripke, explicates this notion of necessity in terms of
systems, called frames in the literature. A frame comprises a set of possible worlds supplied
with a relation of accessibility between worlds. A proposition is viewed as necessary in a world
if its truth in each world, x, implies its truth in every world accessible from x.

It turns out that by placing various constraints on the accessibility relation, we arrive at se-
mantics which interpret the necessitation operator in interesting and useful ways, for example:

• transitive accessibility relations for which all ascending chains are finite correspond to
a view of 2 which is closely related to the provability predicate for Peano arithmetic.
This leads to a useful conceptual framework for understanding provability, consistency
and self-reference in the theory of arithmetic (see [1]).

• Various forms of linear accessibility relation correspond to a view of 2 as a temporal
operator, with 2A meaning that A will always hold if it holds now (see, e.g., [4]).

• Taking the worlds as the states of a computer and taking “x is accessible from y” to
mean “x results when we execute program p in state y”, we get a modal logic which is
closely connected with weakest-precondition semantics for programming languages (see
[4]).
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• Taking the worlds as the possible states of knowledge (or belief) of some individual and
taking the accessibility relation to represent ways in which these states grow through
the acquisition of new knowledge (or belief), we get various forms of epistemic modal
logic (or doxastic modal logic), in which 2A means that A is known (or believed). Such
logics, usually extended to cover relationships between the knowledge (or belief) of
several individuals, have many applications in artificial intelligence and in the study of
communication protocols in distributed computer systems (see [3, 5]).

In the sequel we are going to formalise the possible worlds semantics in HOL and prove the
semantic justification of two rules of inference for modal logic.

We will also prove some theorems, due to Kripke, about some axioms used in various modal
calculi. To state the axioms we introduce the possibility operator, ♦. ♦A is defined as
¬(2(¬A)). In each case, the theorem we prove says that an axiom is valid provided the
accessibility relation possesses a certain property. The axioms and properties are shown in
the following table:

Axiom 1 2A⇒ A Reflexive
Axiom 2 2A⇒ 2(2A) Transitive
Axiom 3 A⇒ 2(3A) Symmetric
Axiom 4 3A⇒ 2(3A) Euclidean

(The notion of a euclidean relation is defined in section 3 below.)

Note that the appropriateness of the above axioms depends on the application. For example,
they are all arguably appropriate for the epistemic reading, for which, say, 2 is the so-called
principle of “positive introspection”: ‘if A is known, then it is known that A is known’.
However, axiom 1 is inappropriate for the doxastic reading: we cannot assert that a proposition
is true just because it is believed.

2.2.2 The HOL Proof Tool

HOL (Higher Order Logic) is a polymorphic version of Church’s type theory due to M.J.C.
Gordon [2]). A system produced by Cambridge University supporting machine-checked rea-
soning in HOL has been available in the public domain for several years [6]. The Cambridge
HOL system has been widely used for a range of verification tasks in academia and has been
successfully exploited by a number of industrial users including the Formal Methods Unit at
ICL.

ICL are currently engaged in a research programme into formal proof technology which in-
cludes a re-engineering of the HOL proof tool to meet more fully the requirements of industrial
use and to give a basis for exploiting more recent research on the HOL technology. The ICL
HOL proof tool has been specifically designed with a view to its use to provide support for
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specification and proof in formalisms other than the HOL logic itself. After a significant proto-
typing exercise early in the project, a first version of this system is currently being integrated
and tested.

As the HOL logic is well-established and uncontroversial mathematically, and as the HOL
proof tool is constructed so as to maximise assurance in the correctness of the theorems it
proves with respect to that logic, use of HOL to support other formalisms means that the
soundness of such support tools does not have to be established on an ad hoc basis.

Space does not permit us to give a full exposition of the operation of the HOL proof tool here.
However, we hope that some aspects of this will be clear from the examples we give. It may
be worth mentioning some basic concepts:

The system is implemented in the interactive functional programming language Standard
ML (or, strictly speaking, an extension of Standard ML giving a special syntax for entering
HOL terms and types and supporting the use of an extended character set for mathematical
notations). ML, often referred to as the metalanguage, also acts as the command language
through which the user interacts with the system.

The types and terms of the HOL language are implemented as abstract data types, TY PE
and TERM . The constructors of the data type of terms guarantee that all values of type
TERM obey the typing rules of the HOL language. Proof is conducted, at the most primitive
level, by computing theorems, i.e. values of an abstract data type, THM . The constructors
of this abstract data type implement the primitive inference rules of the logic. Thus, the only
way to compute a theorem is via a sequence of primitive inferences, and so any value of type
THM is indeed a theorem of the HOL logic. On top of this logical kernel are implemented a
wide range of proof procedures which assist the user in performing proofs. The great merit
of this approach to implementing a proof tool is that the logical kernel guarantees that the
soundness of the system cannot be compromised by infelicities in the coding of these derived
proof procedures.

2.2.3 Notation

The present document is a literate script containing a mixture of narrative text and input for
the ICL HOL system. The appendix contains a listing of the HOL theory set up by the script
and section 9 contains an index of the objects defined in the script. Defining occurrences of
names are shown in bold.

The inputs for HOL consists of a sequence of commands in an extension of the interactive
programming language Standard ML.

HOL terms and types appear enclosed by the symbols ‘p’ and ‘q’ (with a ‘:’ after the ‘p’ for
a type), the text between the symbols being parsed as HOL and resulting in an ML value of
type TERM or TY PE. For example, consider the following fragment of ML:
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SML

val t = p∀m n•m + n − n = mq;

This causes the HOL term ∀m n •m + n − n = m to be parsed and the resulting value
of type TERM to be bound to the ML variable t.

HOL constants are introduced using constant definition boxes which have the form:

HOL Constant

c : ty

P

The intention of this is to introduce a new constant, c, of type ty, satisfying the property
P . In the present document P will always be a (possibly universally quantified) equation or
bi-implication defining a value or a function.

The definitions introduced by these boxes are conservative. The HOL system maintains a
distinction between conservative extensions and the introduction of arbitrary axioms.

2.2.4 HOL Preamble

The following HOL commands create a new HOL theory in which we will save our definitions
and theorems, and prepare the specification proof facilities for the task in hand.

SML

open theory"hol";

new theory"wrk022";

set pc "hol";

3 AUXILIARY DEFINITIONS

We need definitions of the concepts of reflexive, transitive, symmetric and euclidean rela-
tions in HOL.

As we have already mentioned, HOL is a polymorphic variant of simple type theory. In such
a system properties of values of type τ are represented as propositional functions, that is
to say they are objects of type τ → BOOL, where BOOL is the two-point type of truth
values. A binary relation on a type τ is a two-argument propositional function, i.e., it has
type τ → τ → BOOL.
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Polymorphism allows us to use variables which range over types, such type variables are
distinguished syntactically by having names beginning with the character ′. The propositional
functions Reflexive, Transitive, etc. which we will shortly define are polymorphic constants,
they may be applied to any value whose type has the form τ → τ → BOOL.

The definitions of the four properties of relations we need follow:

HOL Constant

Reflexive: (′a → ′a → BOOL) → BOOL

∀rel• Reflexive rel ⇔ ∀x• rel x x

HOL Constant

Transitive: (′a → ′a → BOOL) → BOOL

∀rel• Transitive rel ⇔ ∀x y z• rel x y ∧ rel y z ⇒ rel x z

HOL Constant

Symmetric: (′a → ′a → BOOL) → BOOL

∀rel• Symmetric rel ⇔ ∀x y• rel x y ⇒ rel y x

HOL Constant

Euclidean: (′a → ′a → BOOL) → BOOL

∀rel• Euclidean rel ⇔ ∀x y z• rel x y ∧ rel x z ⇒ rel y z

4 POSSIBLE WORLD SEMANTICS IN HOL

4.1 Frames

In a set-theoretic treatment a frame consists of a non-empty setW , of possible worlds, equipped
with a binary relation, R, the accessibility relation. We will use a type variable ′W to represent
the set of possible worlds, so that our general treatment can be instantiated to a particular
type of possible worlds. We can thus capture the notion of a frame using the following type
abbreviation:
SML

declare type abbrev ("FRAME", ["′W "], p:′W → ′W → BOOLq);
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The above declaration introduces a new type abbreviation FRAME with a single formal pa-
rameter ′W ; The effect of the declaration is that, for example, the type expression p:(N)FRAMEq
will represent the type p : N → N → BOOL q of binary relations on the type N of natural

numbers. Thus a value of type p:(N)FRAMEq can be viewed as a frame in which the possible
worlds are numbers.

We will use the variable R for accessibility relations, and x, y and z for worlds.

4.2 Valuations

A valuation will be a function assigning a truth-value to every possible world. In a syn-
tactic treatment we would work with an evaluator assigning valuations in this sense to the
propositional variables. In our approach we can use HOL variables of the appropriate type to
represent the semantics directly. We use the following type abbreviation for valuations:

SML

declare type abbrev ("V ALUATION", ["′W "], p:′W →BOOLq);

Thus, for example, a value of type p:(N)V ALUATION q is a propositional function on the
natural numbers.

We will use the variables A, B and C for valuations.

4.3 Propositional Connectives

It is straightforward to give the semantics of the ordinary propositional connectives in their
modal guise. In each case the modal version of a connective combines the valuations which
are its operands to give a valuation which asserts that for every world the corresponding
propositional connective holds between the values taken by the operands in that world. The
definitions of these connectives are therefore independent of any accessibility relation.

We will take implication and negation as our primitive connectives and define others in terms
of them:

HOL Constant

⇒ modal: (′W )VALUATION → (′W )VALUATION → (′W )VALUATION

∀A B x• ⇒ modal A B x ⇔ A x ⇒ B x
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HOL Constant

¬ modal: (′W )VALUATION → (′W )VALUATION

∀A x• ¬ modal A x ⇔ ¬A x

In making the above definitions, we had to distinguish the names for the modal connectives
from those already reserved for the propositional connectives in HOL. The alias mechanism
supported by ICL HOL allows us to use the usual names instead as syntactic abbreviations.
The following declarations achieve this:

SML

declare alias

("⇒", p⇒ modal : (′W )VALUATION → (′W )VALUATION → (′W )VALUATION q);
declare alias

("¬", p¬ modal : (′W )VALUATION → (′W )VALUATION q);

To see how this works, we can now use a more natural syntax for the definition of modal
disjunction and conjunction:

HOL Constant

∨ modal: (′W )VALUATION → (′W )VALUATION → (′W )VALUATION

∀A B• ∨ modal A B = (¬A ⇒ B)

HOL Constant

∧ modal: (′W )VALUATION → (′W )VALUATION → (′W )VALUATION

∀A B• ∧ modal A B = ¬(A ⇒ ¬B)

Note here that ¬ and ⇒ refer to the modal connectives. The HOL ¬ and ⇒ may still be
used — the ICL HOL system identifies the appropriate internal representation on the basis of
the types of the operands.

As with the other connectives we make alias declarations for the modal disjunction and con-
junction:

SML

declare alias("∨", p∨ modal : (′W )VALUATION → (′W )VALUATION → (′W )VALUATION q);
declare alias("∧", p∧ modal : (′W )VALUATION → (′W )VALUATION → (′W )VALUATION q);
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4.4 Necessitation

The necessitation operator, 2, is defined with respect to a given frame R; The necessitation
of a valuation, A, is the valuation which is true at a world x if and only if A is true at every
world accessible from x. The HOL definition of this is as follows

HOL Constant

2: (′W )FRAME → (′W )VALUATION → (′W )VALUATION

∀R A x• 2R A x ⇔ ∀y• R x y ⇒ A y

4.5 Possibility

The possibility operator, 3, is defined in terms of necessitation and negation as follows:

HOL Constant

3: (′W )FRAME → (′W )VALUATION → (′W )VALUATION

∀R A• 3R A = ¬(2R(¬A))

4.6 Validity

A valuation is valid if it is true in every world. Thus:

HOL Constant

V alid: (′W )VALUATION → BOOL

∀A• Valid A ⇔ ∀x• A x

4.7 A Rewrite System

In the sequel, we will use the above definitions to prove some theorems about the semantics.
The proofs will have a common pattern, in which the first step is to expand out the above
definitions to reduce the goal to be proved to a proposition in the predicate calculus. The
following ML command gives us an ML value containing the list of defining theorems which
we use to do this.
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SML

val modal rewrites = map snd (get defns"−");

This pattern of proof is common in most applications of HOL: at the beginning of building
a theory, one often has to reduce problems to first principles. Usually, once one has estab-
lished a basic repertoire of theorems characterising the problem domain, subsequent proofs
are performed at a higher-level using the characterising theorems.

5 INFERENCE RULES

Using the definitions of the previous section we can now prove some results about the modal
operators. In this section we prove two theorems which are the semantic justifications for the
two inference rules usually associated with modal logics.

5.1 Modus Ponens

The rule of modus ponens for modal logic is given by the following HOL theorem. As an infer-
ence rule, modus ponens says that from (the theoremhood of) A ⇒ B and (the theoremhood
of) A we may infer (the theoremhood of) B. The semantic justification of this is the theorem
we shall now prove which asserts that if A ⇒ B and A are valid, then so is B.

In the following statement of this theorem note that the conjunction and the second implication
are the HOL logical connectives. The first implication is the modal one.
SML

push goal([], p∀A B• Valid (A ⇒ B) ∧ Valid A ⇒ Valid Bq);

The above command initiates a session with the ICL HOL subgoal package, the standard
means of finding proofs by a goal oriented search. Goals are reduced to subgoals by applying
tactics. A discussion of how proofs are conducted is outside the scope of this document. The
proofs given here follow a common pattern. First we rewrite with the definitions to reduce the
goal to a predicate calculus proposition. We then break this down using the standard tactic
for simplifying such propositions, strip tac. This simplification gives us a simpler goal and
some assumptions with which to prove it. In most of the present proofs, one or more of the
assumptions turns out to be a universally quantified formula, which we use to prove the goal
by specialisation and rewriting.
SML

a(rewrite tac modal rewrites);

a(REPEAT strip tac);

a(POP ASM T (ante tac o ∀ elimpxq) THEN asm rewrite tac[]);
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This completes the proof of our goal. We save the theorem in the HOL theory as follows:

SML

val modal mp thm = save thm("modal mp thm", pop thm());

5.2 Necessitation

The rule of necessitation says that from A we may infer 2A. Again this rule holds for any
accessibility relation.

SML

push goal([], p∀R A• Valid A ⇒ Valid (2R A)q);

SML

a(rewrite tac modal rewrites);

a(REPEAT strip tac THEN asm rewrite tac[]);

SML

val necessitation thm = save thm("necessitation thm", pop thm());

6 THE DISTRIBUTION AXIOM SCHEMATA

The distribution axiom schemata contains all sentences of the form 2(A ⇒ B) ⇒ (2A ⇒
2B). The semantic justification for this is proved as follows:

SML

push goal([], p∀R A B• Valid (2R(A ⇒ B)) ⇒ Valid (2R A ⇒ 2R B)q);

SML

a(rewrite tac modal rewrites);

a(REPEAT strip tac);

a(DROP NTH ASM T 3 (ante tac o list ∀ elim[pxq, pyq]));
a(DROP NTH ASM T 2 (ante tac o ∀ elim pyq) THEN asm rewrite tac[]);

a(REPEAT strip tac);

SML

val distribution thm = save thm("distribution thm", pop thm());

The reader may be reassured to know that the above is the longest subgoal package proof in
the document.
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7 FOUR AXIOMS

In this section we prove the promised four theorems about the interplay between certain modal
axioms and properties of the accessibility relation.

7.1 Axiom 1

This axiom holds for reflexive accessibility relations:

SML

push goal([], p∀R• Reflexive R ⇒ ∀A• Valid(2R A ⇒ A)q);

SML

a(rewrite tac modal rewrites);

a(REPEAT strip tac);

a(POP ASM T (ante tac o ∀ elimpxq) THEN asm rewrite tac[]);

SML

val axiom1 thm = save thm("axiom1 thm", pop thm());

7.2 Axiom 2

This axiom holds for transitive accessibility relations:

SML

push goal([], p∀R• Transitive R ⇒ ∀A• Valid(2R A ⇒ 2R (2R A))q);

SML

a(rewrite tac modal rewrites);

a(REPEAT strip tac);

a(DROP NTH ASM T 4 (ante tac o list ∀ elim[pxq, pyq, py ′q]) THEN asm rewrite tac[]);

SML

val axiom2 thm = save thm("axiom2 thm", pop thm());
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7.3 Axiom 3

This axiom holds for symmetric accessibility relations:
SML

push goal([], p∀R• Symmetric R ⇒ ∀A• Valid(A ⇒ 2R (3R A))q);
SML

a(rewrite tac modal rewrites);

a(REPEAT strip tac);

a(DROP NTH ASM T 3 (ante tac o list ∀ elim[pxq, pyq]) THEN asm rewrite tac[]);

a(REPEAT strip tac THEN simple ∃ tacpxq THEN asm rewrite tac[]);

SML

val axiom3 thm = save thm("axiom3 thm", pop thm());

7.4 Axiom 4

This axiom holds for euclidean accessibility relations:
SML

push goal([], p∀R• Euclidean R ⇒ ∀A• Valid(3R A ⇒ 2R (3R A))q);
SML

a(rewrite tac modal rewrites);

a(REPEAT strip tac);

a(DROP NTH ASM T 4 (ante tac o list ∀ elim[pxq, py ′q, pyq]) THEN asm rewrite tac[]);

a(REPEAT strip tac THEN ∃ tacpyq THEN asm rewrite tac[]);

SML

val axiom4 thm = save thm("axiom4 thm", pop thm());

8 PROOF SUPPORT FOR A MODAL LOGIC

In this section we implement inference rules for modal logic, and also implement the axiom
schemata for the modal logic traditionally called T . T has as its axioms all distribution axioms,
all instances of ordinary propositional tautologies and all sentences of the form 2A⇒ A.

Note that we use the term “axioms” here for what are actually theorems derived from our
definitions of the semantics. The axiom schemata are implemented as proof procedures, i.e.,
ML functions which prove rather than merely postulate the “axioms” in question.

Examples of the use of the rules and axiom schemata are given in section 8.3 below.
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8.1 Implementing the Inference Rules

In this section we implement derived rules in HOL corresponding to the theorems proved in
section 5 above.

The first rule is modus ponens. Given as its arguments theorems of the form Γ ` V alid(A⇒
B)1and ∆ ` V alidA it will prove the theorem Γ∪∆ ` V alidB. This is done with HOL rules
to instantiate our theorem on modus ponens and to use the theorem arguments to discharge
the antecedents of the resulting implication.

SML

fun modal mp rule (thm1 : THM ) (thm2 : THM ) : THM = (

simple ⇒ match mp rule modal mp thm (∧ intro thm1 thm2 )

);

The second rule is necessitation. Given as arguments a term, pR q , and a theorem of the
form Γ ` V alidA, it will prove Γ ` V alid(2RA). This is done by instantiating our theorem
on necessitation.
SML

fun nec rule (R : TERM ) (thm : THM ) : THM = (

inst term rule [(R, pR:(′a)FRAMEq)]
(simple ⇒ match mp rule necessitation thm thm)

);

8.2 Implementing the Axiom Schemata

It is usual in modal calculi to take all ordinary propositional tautologies as axioms. The
following ML code implements this rule by proving all such axioms. This proof procedure
works by rewriting with the definitions of validity and all the modal connectives except 2,
and then using strip tac to prove the resulting proposition.

SML

fun modal taut rule (tm : TERM ) : THM = (

tac proof ( ([], tm),

rewrite tac

(map(get defn"−")

["3", "∧ modal", "∨ modal", "¬ modal", "⇒ modal", "Valid"])

THEN REPEAT strip tac)

);

1The HOL logic is formulated as a sequent calculus: the assertions one proves comprise a list of assumptions
and a conclusion. We write Γ ` t for a theorem with assumptions Γ and conclusion t.
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It is also usual to take all instances of the distribution axiom as axioms. This is implemented
by the following proof procedure which takes the accessibility relation, pR q , and terms pA q
and pB q as arguments and proves ` 2R(A⇒ B)⇒ (2RA⇒ 2RB). The proof is done by
instantiating our theorem on the distribution axiom appropriately.

SML

fun dist rule (R : TERM ) (A : TERM ) (B : TERM ) : THM = (

inst term rule

(combine [R, A, B ] (fst(strip ∀(concl distribution thm))))

(all simple ∀ elim distribution thm)

);

With reference to our theorem about axiom 1, to complete our rules and axioms for the system
T we need assume that some unspecified accessibility relation R is symmetric. The following
proof procedure proves instances of axiom 1 on the assumption of a symmetric accessibility
relation, R.

SML

fun axiom1 rule (tm : TERM ) : THM = (

⇔ t elim(rewrite conv [undisch rule(all simple ∀ elim axiom1 thm)] tm)

);

8.3 Example Proofs

As examples, we will prove the (semantic justifications of) the following two theorems of the
system T . The two results are given as theorem 6 in chapter 1 of [1] and the proofs we give
follow the ones give there.

Informal Example

` A ⇒ 3A

` 2A ⇒ 3A

For expository purposes, we have written the proof out step by step. In actual use, the main
purpose of the sort of rules we have implemented is to enable the construction of higher-level
and more powerful facilities for finding proofs. Proofs at the level of detail seen here would
not be seen by the user.

The following sequence of computations, then, is the HOL proof of the two results. After
each step we show the output produced by the HOL system after executing that step. Note
that, essentially, we are now working purely in modal logic: we no longer see any HOL logical
operators, just terms of the form pV alidA q where A involves only modal connectives; all
proof steps are done using the modal inference rules and axiom schemata we have coded above.
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SML

val lemma1 = axiom1 rule pValid(2R (¬A) ⇒ ¬A)q;

HOL Output

val lemma1 = Reflexive R ` Valid (2 R (¬ A) ⇒ ¬ A) : THM

SML

val lemma2 = modal taut rulepValid((2R(¬A) ⇒ ¬A) ⇒ (A ⇒ 3R A))q;

HOL Output

val lemma2 = ` Valid ((2 R (¬ A) ⇒ ¬ A) ⇒ A ⇒ 3 R A) : THM

SML

val result1 = save thm("result1", modal mp rule lemma2 lemma1 );

HOL Output

val result1 = Reflexive R ` Valid (A ⇒ 3 R A) : THM

SML

val lemma3 = modal taut rulepValid((2R A ⇒ A) ⇒ (A ⇒ 3R A) ⇒ (2R A ⇒ 3R A))q;

HOL Output

val lemma3 = ` Valid ((2 R A ⇒ A) ⇒ (A ⇒ 3 R A) ⇒ 2 R A ⇒ 3 R A) : THM

SML

val lemma4 = axiom1 rule pValid(2R A ⇒ A)q;

HOL Output

val lemma4 = Reflexive R ` Valid (2 R A ⇒ A) : THM

SML

val lemma5 = modal mp rule lemma3 lemma4 ;

HOL Output

val lemma5 = Reflexive R ` Valid ((A ⇒ 3 R A) ⇒ 2 R A ⇒ 3 R A) : THM

SML

val result2 = save thm("result2", modal mp rule lemma5 result1 );

HOL Output

val result2 = Reflexive R ` Valid (2 R A ⇒ 3 R A) : THM
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9 PRACTICAL SYSTEMS

While based on a semantics similar to the semantics discussed here, systems of modal logic
intended for practical applications, e.g. for program verification or protocol verification, will
involve application-specific syntactic features. It is important for the ease of use of proof tools
that the user should interact with the tool using the natural formalism for the task at hand.
As we have seen, this can come with very little extra work in the case of a sufficiently simple
logical language.

Proof support offering this feature for more complex languages may be supplied by combining
a semantic approach like the one given here with use of the facilities offered by the HOL proof
tool for manipulating syntax. This technique is usually referred to as semantic embedding
(as opposed to a syntactic treatment, in which one would use HOL to reason about syntactic
notions, e.g. inference rules, rather than semantic ones, e.g. the accessibility relation in the
present treatment of modal propositional logic).

In the semantic embedding technique, sentences of the language to be supported are rep-
resented by semantically equivalent HOL terms. A parser maps sentences in the desired
concrete syntax to their HOL representation and a pretty-printer automatically inverts this
mapping when terms are displayed. In the simple example we have given here the parser and
pretty-printer could be very easily constructed modifications of the HOL parser and pretty-
printer which would suppress the appearance of the validity operator. Tools assisting in the
production of parsers and pretty-printers are supplied as part of the ICL HOL system.

On the basis of theorems proved about the semantic objects, proof procedures, analogous to
the rules we have implemented in the present document, may be produced which preserve the
required syntax as far as the user is concerned. Such procedures may often be produced quite
readily by customising or specialising existing proof procedures for HOL. As in our example,
if valid inference rules for the language are already known, then they can be used as the basis
for the design of such proof procedures.

An important advantage of the semantic embedding techniques is that, compared with other
approaches, such as coding a complete system for manipulating syntax from scratch, it drasti-
cally reduces the amount of code in which errors can make the system inconsistent (i.e. allow
the user to prove an invalid result).

A system of this sort offering proof support for Z is currently being prototyped in ICL and
good results are emerging. Z is in many respects much harder to accommodate than most of
the formalisms based on modal logics which have been proposed for computer science appli-
cations, and so such formalisms promise to be good applications for this semantic embedding
techniques.
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A THE THEORY wrk022

A.1 Parents

hol

A.2 Constants

Reflexive (′a → ′a → BOOL) → BOOL
Transitive (′a → ′a → BOOL) → BOOL
Symmetric (′a → ′a → BOOL) → BOOL
Euclidean (′a → ′a → BOOL) → BOOL
⇒ modal (′W → BOOL) → (′W → BOOL) → ′W → BOOL
¬ modal (′W → BOOL) → ′W → BOOL
∨ modal (′W → BOOL) → (′W → BOOL) → ′W → BOOL
∧ modal (′W → BOOL) → (′W → BOOL) → ′W → BOOL
2 (′W → ′W → BOOL) → (′W → BOOL) → ′W → BOOL
3 (′W → ′W → BOOL) → (′W → BOOL) → ′W → BOOL
V alid (′W → BOOL) → BOOL

A.3 Aliases

⇒ ⇒ modal : (′W → BOOL) → (′W → BOOL) → ′W → BOOL
¬ ¬ modal : (′W → BOOL) → ′W → BOOL
∨ ∨ modal : (′W → BOOL) → (′W → BOOL) → ′W → BOOL
∧ ∧ modal : (′W → BOOL) → (′W → BOOL) → ′W → BOOL

A.4 Type Abbreviations

′W FRAME ′W → ′W → BOOL
′W V ALUATION ′W → BOOL
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A.5 Definitions

Reflexive ` ∀ rel• Reflexive rel ⇔ (∀ x• rel x x )
Transitive ` ∀ rel

• Transitive rel
⇔ (∀ x y z• rel x y ∧ rel y z ⇒ rel x z )

Symmetric ` ∀ rel• Symmetric rel ⇔ (∀ x y• rel x y ⇒ rel y x )
Euclidean ` ∀ rel

• Euclidean rel
⇔ (∀ x y z• rel x y ∧ rel x z ⇒ rel y z )

⇒ modal ` ∀ A B x• (A ⇒ B) x ⇔ A x ⇒ B x
¬ modal ` ∀ A x• (¬ A) x ⇔ ¬ A x
∨ modal ` ∀ A B• (A ∨ B) = (¬ A ⇒ B)
∧ modal ` ∀ A B• (A ∧ B) = (¬ (A ⇒ ¬ B))
2 ` ∀ R A x• 2 R A x ⇔ (∀ y• R x y ⇒ A y)
3 ` ∀ R A• 3 R A = (¬ 2 R (¬ A))
V alid ` ∀ A• Valid A ⇔ (∀ x• A x )

A.6 Theorems

modal mp thm ` ∀ A B• Valid (A ⇒ B) ∧ Valid A ⇒ Valid B
necessitation thm

` ∀ R A• Valid A ⇒ Valid (2 R A)
distribution thm

` ∀ R A B
• Valid (2 R (A ⇒ B))
⇒ Valid (2 R A ⇒ 2 R B)

axiom1 thm ` ∀ R• Reflexive R ⇒ (∀ A• Valid (2 R A ⇒ A))
axiom2 thm ` ∀ R

• Transitive R
⇒ (∀ A• Valid (2 R A ⇒ 2 R (2 R A)))

axiom3 thm ` ∀ R
• Symmetric R
⇒ (∀ A• Valid (A ⇒ 2 R (3 R A)))

axiom4 thm ` ∀ R
• Euclidean R
⇒ (∀ A
• Valid

(3 R A ⇒ 2 R (3 R A)))
result1 Reflexive R ` Valid (A ⇒ 3 R A)
result2 Reflexive R ` Valid (2 R A ⇒ 3 R A)


