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Abstract. This paper considers the treatment of undefined terms in the
Z specification language. We argue, on pragmatic grounds, that specifica-
tion and proof are activities which place conflicting requirements on the
handling of undefinedness. We believe that the conflict can be reconciled
by encouraging specifications that are independent of the treatment of
undefined terms and by gaining a better understanding of the metatheory
of undefinedness.

1 Introduction

Mathematical specification languages such as the Z notation [11] are becoming
more widely used in the development of critical systems. A particular advantage
of Z is (or should be) its familiar mathematical foundations. From the point of
view of mathematical logic, the language as defined in [10, 11] or in the evolving
7Z standard can fairly readily be explicated as classical set theory subjected to a
simple type discipline.

Providing effective tools for carrying out proofs in Z is an issue of some
practical significance. For over six years, our group in ICL has been concerned
with developing and using a suite of tools, known as ProofPower that, inter alia,
provide a theorem-prover for Z. ProofPower supports Z via a so-called semantic
embedding into (a re-engineered version of) the HOL theorem-prover.

An area which has long been a source of contention in the Z community
has been the treatment of undefined terms. Given the possibility of undefined
terms, one must ask how undefinedness propagates through the various language
constructs. These issues must be settled one way or another if formal proofs in
Z are to be carried out.

We will argue that, at least in an ideal world, the subtleties of different
treatments of undefinedness should not be a central concern for people writing
specifications. In our experience, most real-life specifications that do make essen-
tial use of undefined terms are just wrong — they do not say what their author
intended. Even when the specification is free of such errors, there are grounds for
concern about the methodological significance of proofs which depend essentially
on undefined terms. We consider measures that might be taken to allay these
concerns.



2 The Classical Approach to Undefinedness

Traditional — rigorous, but informal — pure mathematics generally takes an
unsystematic, but effective, approach to the treatment of undefined terms. The
mathematical literature contains many definitions whose sense is dependent on
implicit or explicit side conditions. Different authors have different approaches
to the fine detail of their subject matter; common sense and “mathematical
maturity” are frequently required to determine the scope of applicability of a
given formula.

It is not the purpose of this paper to survey possible approaches to formalising
the various conventions used in the mathematical literature for working with
partial functions. A brief survey may be found in [2]. What we do wish to do here
is to point out the usual way of handling the issue of undefined terms in formal
treatments of first order set theory. Set theory provides an adequate formal
foundation for the overwhelming majority of mathematics and its metatheory
has been the subject of intensive study over the last 100 years or so; we should
be able to rely on the classical foundation systems not to give us too many
unpleasant surprises.

Without going into too many of the details, let us assume that we start to
develop set theory taking membership and equality as primitive predicates. The
usual notation for sets (pairing, product, comprehension etc.) can be introduced
by conservative extension (see, for example, [7], [8] or the chapters on set theory
in [1]); let us assume that that has been done, so that we can write expressions
such as (z,y), ¢ Xy, {z : y | #(z)} and so on. Let us assume that functions
are represented in the usual way as sets of pairs and that function application is
denoted by a 2-place function symbol, App. App(f,z) is intended to denote the
result of applying f to x; at least when f is a function and z is in its domain,
App(f, ) must denote the unique y such that (z,y) € f. App(f, z) is commonly
written as f'z in the literature, and we shall do so in the rest of this section.

Let us consider four textbook developments of the best known axiomatisa-
tions of set theory: Takeuti & Zaring [12] for ZF, Mendelson [8] for NBG, Kelley
[6] for MKM, and Rosser [9] for ML. Standardising the notation!, these works
define application as shown in the following table:

Takeuti &

Zoi fle={z:Uranf| GyezeyA(z,y) € /)AGiye(z,y) € f)}
aring

yifVze(z,2) e foz2z=y
0 otherwise

Kelley |f'z={y| (z,y) € f}

Rosser fle =y | (z,y) € f}

Mendelson| f'z = {

! Throughout this paper, I will follow the Z convention of taking the quantifiers to
have low precedence: for example, 31z ® ¢ A 7 is a unique existential quantification
not a conjunction.



Here 1 is Rosser’s definite description operator (which I have slightly recast?).
Rosser gives axioms for ¢ which, in the present context, amount to the sin-
gle axiom: Vz e {z} = x. We have mentioned definite description here, as
that is what Rosser uses. Since definite description and function application
are interdefinable®, we will concentrate on function application in the sequel.

Thus: Takeuti & Zaring and Mendelson agree in defining the empty set as
the value of an “undefined” application; Kelley’s “undefined” applications are
defined to take whatever value the intersection happens to have?*; and Rosser’s
position is that “undefined” applications just take some unknown value (Rosser
also suggests that a reader who is unhappy with this can simply add an axiom
to fix that value, e.g., by taking it always to be 7).

To sum up, the semantics of classical first order logic require function symbols
such as App to be total on the universe of discourse. Naive set theory provides
functions represented as sets; this introduces the possibility of undefinedness
by application of a relation outside its domain or to an element of its domain
for which it fails to be single-valued. Nonetheless, for mathematical purposes
it is entirely adequate when giving a formal treatment of set theory to adopt
one of several ad hoc conventions for assigning a more-or-less definite value to
intuitively undefined terms. In the sequel, we will use the term “classical” to
describe Rosser’s approach, in which the value of an intuitively undefined term
is left indefinite. This amounts to taking the defining axiom for application to
be:

VieVze(GFiye(z,y) € f) = (Ve fla=y& (z,y) €f)

3 Approaches to Undefinedness for Z

For our purposes, the Z language [11] can just be thought of as a gloss for
the language of classical set theory on which is imposed a type discipline. The
primitive predicates of the language are equality and membership, and there are
expression® forms for the basic idioms of set theory: formation of tuples, finite
sets, set comprehensions etc.

Types are constructed from ground types called “given sets” using a fixed
repertoire of type constructors. The type constructors for the language represent

2 Rosser introduces ¢ as a variable-binding operator. This requires him to introduce
additional axioms to determine the behaviour of the new operator; these extra axioms
are not required if we introduce ¢ as an ordinary function symbol.

Rosser’s formula shows how to define application in terms of description. For the
converse, one can use ¢(z) = ({0} x z)(0).

For example, if w is the set of finite ordinals defined in the usual way, and if L C wxw
is the restriction of the relation < to w, then, for Kelley, L'i denotes the intersection
of all finite ordinals not less than ¢, which is 4, if 7 is a finite ordinal.

We follow the Z usage for the word “expression” but not for the word “predicate”:
in this paper, 1 = 2V false is a proposition, = is a predicate, and 1+ z, 1 and (z,y)
are all examples of expressions. We use the word “term” to cover both propositions
and expressions in situations where the distinction is unimportant.
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formation of power sets, n-fold cartesian products, and n-fold labelled product
types referred to as “schema types”. Since schema types have no bearing on the
matter at hand, we will not further consider them.

The type discipline imposed renders illegal certain expressions and formulae
which would be permitted in untyped set theory. This discipline enables mecha-
nised tools to detect a wide range of common errors in the intended applications
of Z for computer system specification. Defined notions such as the natural num-
bers, which could not be introduced via the standard set-theoretic construction
under the type discipline, are introduced axiomatically using various well-defined
mechanisms for introducing new constants.

The type discipline comprises rules for each form of expression and formula
enabling one to decide its legality on the basis of the types of its constituents.
These rules also allow one to infer the type of a legal expression. An example
rule for an expression form might be that, if a, b and ¢ are expressions with types
a, B and ~ respectively, then the triple (a, b, ¢) is legal and has type a x 8 X 7.
The rules for the primitive atomic formulae are that a = b is legal iff. @ and b
have the same type and that a € b is legal iff. a has type a and b has type Pa
for some type a.

Four possibilities for the treatment of undefined expressions in Z are discussed
by Spivey in his original presentation of a semantics for Z [10]. A fifth option
also presents itself in the notation Spivey uses to describe the semantics. The
impact of the different options on a logic for Z was considered in some detail
in unpublished work of Jones [5]. Let us briefly review the five approaches and
assign mnemonics to them for later reference.

UPU This approach uses a three-valued logic, i.e., Undefined Propositions are
Undefined: they take the value *, say, which is neither true nor false.

UPF This approach takes as false the value taken by a primitive predicate when
either of its operands is undefined, i.e., Undefined (primitive) Propositions
are False.

UED This is the classical approach of the previous section, i.e., Undefined Ex-
pressions Denote an unspecified value.

UPD This is the approach officially adopted in [11]: a predicate with an unde-
fined operand takes one of the values true or false but one cannot determine
which, i.e, Undefined Propositions Denote an unspecified value.

UEE This approach is suggested by the so-called “strong equality®” used in
the semantic definitions in [10]. The strong equality a = b holds iff. a and
b are both defined and equal or both undefined, i.e. Undefined Expressions
are Equal.

6

Within most of these approaches, there are still some detailed questions to
be answered. In particular, one must consider how undefinedness propagates
through the various expression forms. In the case of UPU, one must decide what
formulation of three-valued logic to use.

6 Unfortunately, this term is used with a variety of different meanings in the literature.



4 Issues for Specification

The merits and demerits of the various approaches to undefinedness in Z have
been much debated since Spivey’s original discussion of the question. Many of
the proposed treatments focus on the conciseness of expression which UPF and
UEE can offer. For example, UEE has the advantage that it can save one having
to specify the domain of a partial function. To define a function f by asserting
Vz : Xef(x) = £ ensures that f has the same domain as the domain of definition
of the expression £ with little further ado.

Now, I would argue on pragmatic grounds that the labour saved by devices
exploiting the details of UPF or UEE is not worth the cost. The primary purpose
of the Z notation is to serve as an agreed means of communication between
parties involved in the development of computer systems. Many readers may
only have a passing acquaintance with the notation; all but the most expert
readers will be ill-served by formal expositions which make use of devious tricks.
There may be cases where a special treatment of undefined terms significantly
reduces the complexity of a description, although that seems to me unlikely. In
such cases, the richness of the rest of the Z notation ought to provide alternative
idioms which give conciseness while maintaining clarity.

The other three approaches, UPU, UPD, and UED, give less cause for con-
cern than UPF and UEE on methodological grounds. UPU has the pragmatic
disadvantage that three-valued logic is much less familiar than classical logic and
its rejection in [10, 11] is very understandable, given the goals of the Z notation.
UED has the advantage of conformity with classical logic: every term denotes
and laws such as the reflexivity of equality hold in full generality. UPD on the
other hand has a greater intuitive appeal than UED for many people.

In practice, most specifications which do depend on the values of undefined
terms are just wrong; like programs that can give rise to run-time errors, such
specifications just do not say what the author intended. The following example
shows an attempt at a Z schema to model a database look-up operation:

—LookUp
table: KEY+DATA
k?: KEY
dl: DATA
d! = table(k?)

Here the state component table, has been declared to be a partial function.
The meaning of the schema clearly depends on the interpretation of table(k?)
when the input k? takes a value outside the domain of table. In practice, this
example would simply be incorrect in the majority of situations. The error can
readily be remedied, either, explicitly, by adding an appropriate pre-condition,
or, implicitly, by replacing d! = table(k?) by (k?,d!) € table.



5 Issues for Proof

ICL have developed support for mechanised reasoning in Z within the ProofPower
suite of tools. ProofPower is founded on a completely re-engineered implementa-
tion of the HOL theorem-proving system [3]. ProofPower uses exactly the same
logic as HOL, namely M.J.C. Gordon’s formulation of simple type theory with
Milner-style polymorphism. The HOL logic can be viewed as a polymorphic,
typed set-theory following very classical lines.

In this section I am going to describe briefly some of the issues which arise
in trying to mechanise the various approaches to undefinedness for Z. Obvi-
ously, this description is influenced by our approach using a mapping into HOL.
However, many of the issues would still arise in other approaches. For example,
effective mechanised proof in Z undoubtedly requires algorithms to automate
proofs in various problem domains. Since most research on automated reason-
ing has been for more-or-less classical logics, to exploit that research one must
address many of the issues we discuss here.

Z is supported in ProofPower using a technique known as semantic embed-
ding. M.J.C. Gordon [4] gives a good account of this type of technique in the
context of logics for programming languages. In a semantic embedding, frag-
ments of Z syntax are represented as semantically equivalent fragments of HOL
syntax. Customisations to the parser and pretty-printer ensure that Z can gen-
erally be entered and displayed using Z syntax, so that the embedding is largely
invisible to the user. The semantics for Z implemented by the resulting system is
determined by the definitions of HOL constants which support each Z construct.
For example, in ProofPower, the semantics of function application for Z is carried
by an HOL constant Z'App; a Z application f x is translated into the HOL term
Z'App f x. The definition in HOL of Z'App then determines the meaning of this
term.

The HOL logic takes the classical approach to undefinedness. The way HOL
is axiomatised means that any well-typed term denotes some unspecified member
of its type. A more discriminating treatment of undefined terms can be modelled
within a semantic embedding by including error-values in the HOL types which
represent Z types. To show how this works, I must explain that the HOL type
system can be extended by the user, or by the programmer on the user’s behalf.
An HOL type is either a type variable, or is formed by applying a type construc-
tor to zero or more argument types. The primitive type constructors include a
nullary (i.e., constant) type constructor, BOOL, to represent the truth-values,
and a two-place type constructor — for forming the set of all functions between
two types. By means of a conservative extension principle, new type construc-
tors can be defined to represent sets, products, lists and so on. The following
equations define a natural representation of a Z type, o, say, as an HOL type @

G
Pr (TP
T X...XTp = (T,,ﬁ)ﬂk



Here, G denotes a Z given set, which we take to be represented by a nullary
HOL type constructor of the same name. [P on the right-hand side of the second
equation denotes the type constructor used for sets in HOL, and II; denotes
a k-fold cartesian product. Note that HOL type constructors are written after
their arguments.

A type constructor such as P is introduced by a mechanism allowing a new
type to be defined to be in 1-1 correspondence with a subset of an existing type
(e — BOOL in the case of (a)P). The HOL logic does not support parameterised
families of types such as the IT}, directly. However, one can write a program which
will introduce the definition of each particular II; as and when it is needed.

If we need to allow for an error-value L in each type, then our representation
in HOL becomes a little more complicated, and is best defined using the above
representation 7 as an auxiliary, say:

7 = TUUNDEF

where UNDEF is an HOL type with exactly one element, L, say, and where
Ll is a type constructor which forms disjoint unions.

The representation of a Z type T as T does not seem much more complicated
than its representation as 7. However, when we consider the corresponding repre-
sentations of propositions and expressions, the complexity builds up very rapidly.
For example, let us contrast the representation of a simple membership assertion
under UED (the classical treatment, for which the simple representation of types
will do) and under UPF (for which we have to distinguish between undefined
and defined values so that “undefined” propositions can be made false):

reA =
reA =

€ B B (UED)
;é 1,2(_]_) ANA 75 LQ(J_) A (51% € 512 (UPF)

T
T

Here, ¢; : a; = a3 Uay (i = 1,2) is the injection of the i-th summand into
the disjoint union and §; : @ Ll as — @ is its left inverse.

Since the representation x € A doubles the number of occurrences of T and
A as compared with = € A, the increase in complexity could be considerable.
Various devices could be introduced to ameliorate the problem, but there will
always be a price to pay with the non-classical treatments; it is bound to be
more complex if one must keep track of undefined terms.

In the light of the above sketch of how one might go about modelling the
non-classical treatments of undefinedness classically, let us consider each of the
five approaches to undefinedness in turn:

UPU To model three-valued logic requires us to use error-values for proposi-
tions as well as expressions. Reasoning has to be carried out at a metalevel.
That is to say, we have to represent the judgments of the three-valued logic
as members of some three-element type in HOL rather than as HOL propo-
sitions. This approach is technically feasible, but prevents our making direct
use of the existing facilities for logical reasoning in HOL.



UPF Making primitive predicates with undefined operands take the value false
requires error-values for expressions, but at least lets us conduct logical rea-
soning directly. A disadvantage is that the native HOL equality is not ap-
propriate to represent the resulting Z equality. A new battery of facilities
would have to be implemented to replace the tools the HOL system provides
for equational reasoning.

UED The classical approach gives the best fit, requiring no error-values and
allowing existing tools for logic and equational working to be used as they
stand.

UPD The approach in which predicates with undefined operands take some
indefinite truth-value gives rise to essentially the same problems as UPF,
because one must still keep track of undefined expressions to implement a Z
equality relation which admits the possibility that f(z) # f(z) when f(z) is
not defined. This approach has the particular disadvantage that one has no
direct general means of saying that an expression is well-defined, whereas,
in UPF, for example, to assert x = x is to assert that z is defined.

UEE The approach using the strong equality would require us to use error-
values for expressions but would let us use existing facilities for equational
reasoning, since the strong equality coincides with ordinary equality in the
type augmented with an error-value.

The classical treatment, UED, was the approach of choice for our purposes.
In fact, the definition of Z'App in ProofPower is (coincidentally) very like the
formulation using a definite description operator that we have already discussed
in connection with Rosser’s exposition of ML. Given that there were many other
much more pressing difficulties to overcome, we do not regret our decision to use
the classical treatment of undefinedness in ProofPower. Most other attempts to
define or implement a logic for Z of which I am aware have arrived at the same
choice.

The above remarks have focussed on implementation issues. Nonetheless,
they are reflected in issues for the user of the theorem-prover. Further problems
arise both for implementors and users when one considers equational reasoning,.
The classical approach has the advantage that a valid equation £ = &;, can be
used without further ado as a rewrite rule: if we can instantiate the free variables
of & = & to give say & = &5, then it is classically a valid inference step to
replace & by &} in any formula containing &{. So classically, we can use a law
such as  + 0 = z, to simplify a formula such as Vi,j: Zej #0= (i/7+0)/j =
i/4j? without having to consider the context in which i/j + 0 appears. In other
approaches, we must do extra work to carry out the desired replacement. Care
in the treatment of quantification may help in this regard, but the classical
approach obviates the problem altogether.

6 The Way Forward

Methodologically, Spivey [11] seems to be right in trying to render specifications
independent of the values of undefined terms. However, it would be useful for



writers of Z to be able to check whether their specifications are actually affected
by undefinedness. If we are to do formal proof, practical considerations make us
veer towards a classical treatment of the issue. However, if we already had to
hand a powerful theorem-prover supporting another treatment, we might prefer
to use that instead.

It does not appear to be difficult to define proof obligations whose truth would
ensure that a specification makes no essential use of undefined terms. Verification
of such proof obligations would occupy the same methodological role as verifying
consistency of the specification: it is an additional check that we have indeed said
what we meant to say. Such an approach is analogous to the useful separation of
concerns one can make in program verification by considering partial correctness
and termination of the program independently. It remains to be seen whether
the proof obligations can conveniently be formulated and proved using a logic
which makes specific assumptions about undefined terms, but the problem does
not seem to be theoretically intractable.

For proof, to allay the concerns of those who find the classical approach
(or any of the others) repugnant, it would be highly desirable to have a better
metatheoretic understanding of the problem. Since many variants on the classi-
cal approach have been intensively studied by mathematical logicians over the
years, it would be rather surprising if there were any important facts which de-
pended essentially on the detailed treatment of undefinedness. So we conclude
this paper with a conjecture. This conjecture is somewhat informally stated, but
can be made rigorous in first order set theory by introducing a predicate denot-
ing definedness and considering possible equality and membership relationships
which agree on defined terms. Let us call a formula ¢ impartial if ¢ makes no
essential appeals to the values of undefined terms. We then conjecture that an
impartial formula ¢ is provable (using any of the treatments of undefinedness
we have discussed for two-valued logic) if and only if ¢ has a proof in which
no essential appeals to undefinedness are made. If this conjecture is true, then
it is largely irrelevant which particular logical treatment of undefinedness one
chooses; if it is false, then the disproof should reveal something about the actual
methodological significance of ones treatment of undefined terms.
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