
Recursive Data Types in Typed Set Theory

R.D. Arthan
Lemma 1 Ltd.

rda@lemma-one.com

Abstract

Appeals to the axiom of replacement in classical set theory cannot automatically be
carried over into simple type theory or other typed languages such as the Z specification
language [6]. If, like Z, a typed language provides a mechanism for defining sets by
recursion equations, then many of the basic results in the literature for the untyped case
do not carry over directly. This paper considers the consistency of such definitions in a
class of typed systems broad enough to include Z. In an earlier paper, commonly used
criteria for consistency in the untyped case were shown to be sufficient for consistency
relative to the Zermelo axioms with AC; here we improve upon the earlier work by
eliminating the appeals to AC.

1 INTRODUCTION

Logical languages intended for use in computer systems specification commonly provide mech-
anisms for defining classes of recursive data structures. For example, in the Z specification
language, we can give the following definition of a class of (balanced) trees.

BALTREE ::= Leaf � N �| Node � {b1, b2 : BALTREE|b1 = b2} � (1)

This introduces a new recursively defined set, BALTREE, together with its constructor func-
tions Leaf : N � BALTREE and Node : {b1, b2 : BALTREE|b1 = b2} � BALTREE. The
constructor functions are intended to display the set BALTREE as the least fixed point of the
following recursion equation in the language of first-order set theory:

X = ω t {(b1, b2) ∈ X ×X|b1 = b2} (2)

The generality required in this type of definition means that there is no simple syntactic
criterion for the consistency of the definition. Indeed, if the (closed) formula P is undecidable,
then we will be unable to prove or disprove the consistency of a definition such as:

UNDEC ::= UnDec � {A : PUNDEC|P} � (3)

In the light of such examples, the best one can hope for is for convenient sufficent conditions
for consistency that work for the cases that tend to occur in practice. The main purpose
of this paper is to justify the most commonly-used sufficient conditions for the existence of
solutions of recursion equations such as (2). The standard mathematical justifications require

1



the axiom of replacement and so are at odds with the type system of languages such as Z. In
an earlier paper, the use of replacement was eliminated by recourse to the axiom of choice [1].
In the present paper, we carry out the necessary constructions without using choice — and
so restore some of the structural insights offered by the standard proofs in the untyped case
using replacement.

Most operators that arise in practice are finitary, and our results are as just advertised for the
finitary case. However, much of the theory and some of the early literature for Z works with
operators satisfying the weaker condition of continuity. For a general continuous operator, we
find that we still need to appeal to the axiom of dependent choices (DC) or something like
it. However, we identify a useful class of operators (the monotonic operators having finite
content) lying somewhere between the continuous operators and the finitary operators for
which no use of choice or dependent choices is needed. In any case, we know of no common
use in systems specification practice of Z free type definitions that are not finitary.

The structure of the paper is as follows:

• Section 2 gives a very brief summary of the standard theory in ZF of inductive defini-
tions and introduces terminology for later use, in particular the notions of finitary and
continuous operators.

• Section 3 defines our notion of a typable operator.

• Section 4 defines, for each type, a maximal typable operator of that type. The notion of
an operator having finite content is introduced and it is shown that monotonic operators
with finite content are also subsumed by the maximal typable operators as also are
finitary typable operators. The same holds for continuous operators provided we admit
the axiom of dependent choices. This reduces the general consistency problem to a single
specific problem in each type.

• Section 5 proves that the maximal typable operators possess fixed points from which we
conclude that a class of operators including the finitary operators and many non-finitary
but continuous operators have fixed points.

• Section 6 gives some concluding remarks.

While this paper is intended to be self-contained, we refer the reader to [1] for a more leisurely
exposition of the theoretical framework and its import for Z.

2 Preliminaries

Pausing only to note that we will conform to the standard use of the term “finitary” rather
than that used in [5] and that we now eschew the pun whereby continuous operators were
called “cts” in [1], let us fix some terminology for the rest of the paper:

• an operator is a term, φ, or, for emphasis, φ(X), in the language of first order set theory
in which X may appear free1;

1For convenience, we will assume that the first-order language includes all the usual operators of set theory:
∪, P etc. We will use the Z-like notation seqA to denote the set of finite sequences on a set A, represented
concretely as finite functions from an interval 1 .. n to A (with n ranging over natural numbers). If s is such a
sequence, and i ∈ dom(s), we will write si for the i-th element of s. The idiom ran(s) gives the set of members
of the sequence s.

2



• an operator φ is monotonic if it satisfies the condition2:

∀X • ∀Y • Y ⊆ X =⇒ φ(Y ) ⊆ φ(X); (4)

• if φ is an operator, a set X is φ-closed if φ(A) ⊆ X for every A ⊆ X.

• an operator φ is continuous if it commutes with countable unions of chains, i.e. for any
chain X1 ⊆ X2 ⊆ . . ., we have:

φ(
⋃
i

Xi) =
⋃
i

φ(Xi); (5)

• finally, an operator φ is finitary, if it satisfies the condition:

∀X • φ(X) =
⋃
{φ(Y )|Y ⊆ X ∧ Y is finite}. (6)

Finitary operators are easily seen to be continuous. Continuous operators may be shown
to be monotonic (remembering that A ⊆ B iff. B = A ∪ B and considering the chain
A ⊆ B ⊆ B ⊆ B . . .).

The central problem of this paper is the following: given an operator φ, under what circum-
stances is there a set A which acts as a least fixed point of the recursion equation X ' φ(X).
I.e. A must enjoy the following properties:

• there is a bijection f mapping φ(A) to A.

• for no proper subset B of A does the restriction of f to φ(B) map φ(B) into B.

If these conditions hold, we say A is a least fixed point for φ up to a bijection and write
A 'LFP φ(A).

Now in the usual theory of monotonic operators in ZF one is concerned with fixed points “on
the nose” rather than up to a bijection (i.e., f above must be the identity function). However,
this is no great restriction, since there are standard constructions for delivering a fixed point
for a monotonic operator that has one and these constructions deliver fixed points on the nose.
The construction we will focus on in this paper is the construction “from below” and goes as
follows in ZF.

Lemma 1 (ZF) Given a monotonic operator, φ, define a sequence of sets, Tα by transfinite
induction as follows:

T0 = ∅ (7)

Tα+1 = φ(Tα) (8)

Tλ =
⋃
α<λ

Tα (9)

where α (resp. λ) ranges over ordinals (resp. limit ordinals). If for some γ, we have Tα = Tγ

for all α ≥ γ, then Tγ is a least fixed point (on the nose) for φ.

2Here and throughout, we adopt the convention that quantifiers have low precedence: ∀X •A =⇒ B is a
universal quantification not an implication.

3



Proof: We have φ(Tγ) = Tγ+1 = Tγ, so Tγ is a fixed point. By transfinite induction on α it
is not hard to see that the Tα form a (transfinite) chain, i.e., Tα ⊆ Tβ whenever α ≤ β. By
another induction, we can show that Tγ ⊆ X whenever φ(X) = X, so Tγ is a least fixed point.
�

For example, if φ is continuous, it is not hard to see that the chain must stabilise at or before
the first infinite ordinal, ω, so the countable union T0 ∪ T1 ∪ . . . will provide a fixed point.

Now, we are concerned here with languages, like Z, which impose a type discipline (with
say, cartesian product and power set as the type constructors). The natural models for these
languages lie within the set Vω+ω that provides a natural model for Zermelo set theory (i.e., ZF
without replacement). Unfortunately, the above construction makes essential use of the axiom
of replacement to form the unions needed to define the sets Tλ. Moreover, the construction
can easily take us outside Vω+ω even when the operator φ does have a fixed point up to a
bijection (see [1] for an example). Thus we can’t hope for an adequate supply of fixed points
on the nose. From now on we will only be concerned with fixed points up to a bijection, and
so in the sequel, when we say “fixed point” that is what we shall mean.

It turns out that as soon as we have found some set X for which φ(X) is equinumerous with
a subset of X, then we can find a least fixed point within X. We record this in the following
lemma.

Lemma 2 Let φ be a monotonic operator and X a set such that there is an injection f :
φ(X) � X, then for some Y ⊆ X, φ(Y ) 'LFP Y .

Proof: The proof is a fairly straightforward exercise in using the definitions, see [1] for details.
�

As a corollary of the lemma, we observe that, if φ and ψ are monotonic operators for which
ψ(X) ⊆ φ(X) for all X and φ has a fixed point, then so does ψ. Indeed, if T is a fixed point
for φ, then as φ(T ) ⊆ ψ(T ), T will serve for X in the lemma.

3 Typable Operators

We are interested in the operators that can arise in languages obeying a type discipline. The
type-forming operators we allow are cartesian product, disjoint union and power set. More
precisely, we work with the following system of types:

1. The symbols X and ω are types

2. If τ1 and τ2 are types then so are (τ1 × τ2), (τ1 t τ2), and (Pτ1).

3. Nothing is a type except by virtue of rule 1 or rule 2.

Given a set Y and a type τ , we define the semantic value of the type τ at Y , which we write
as τ(Y ), using the following rules:

X(Y ) = Y (10)

ω(Y ) = ω (11)

(τ1 × τ2)(Y ) = τ1(Y )× τ2(Y ) (12)

(τ1 t τ2)(Y ) = τ1(Y ) t τ2(Y ) (13)

(Pτ)(Y ) = P(τ(Y )) (14)

4



where ω is the set of natural numbers, P is the usual power set operator, × is binary cartesian
product, and t is binary disjoint union. We assume here that some fixed functorial construc-
tions for products and disjoint unions have been chosen — the usual ones will do nicely (with
AtB a subset of (A∪B)×{0, 1}). The product and disjoint unions must also be constructible
in Zermelo set theory (i.e. without the axiom of replacement) — again the usual constructions
are adequate.

For any type τ , Y 7→ τ(Y ) is3 the objects part of a functor from Set to Set. The morphisms
part of the functor is given by (f : X → Y ) 7→ (τ̂(f) : τ(X) → τ(Y )) where τ̂(f) is defined
by the following rules:

X̂(f) = f (15)

ω̂(f) = n 7→ n (16)

ˆ(τ1 × τ2)(f) = (x1, x2) 7→ ((τ̂1(f))(x1), (τ̂2(f))(x2)) (17)

ˆ(τ1 t τ2)(f) = ιj(x) 7→ (τ̂j(f))(x) (18)

ˆ(Pτ)(f) = s 7→ {y : τ(Y )|∃x ∈ s • (τ̂(f))(x) = y} (19)

where the ιj (j = 1, 2) are the injections of the summands into the disjoint union. Intuitively,
given a set A and t ∈ τ(A), the syntactic structure of τ allows us to think of t as a possibly
infinite tree with leaves labelled with elements of A. Since we will need another notion of tree
in the sequel, we will use the term τ -tree for this view of an element of τ(A). If f is a function
from A to some set B, then τ̂(f) is the function which sends t ∈ τ(A) to the element of τ(B)
obtained by changing each leaf label, x in the τ -tree t to f(x).

By an easy induction over the structure of τ , for any τ , X 7→ τ(X) is monotonic and (f :
X → Y ) 7→ (τ̂(f) : τ(X) → τ(Y ) preserves injections, surjections and bijections.

We now define an operator, φ(X), to be typable with type τ iff. we can prove ∀X • φ(X) ⊆
τ(X). Here are two examples of typable operators, both with type (ω t (X ×X)).

φ1(X) = ω t {(b1, b2) ∈ X ×X|b1 = b2} (20)

φ2(X) = ω t {(b1, b2) ∈ X ×X|b1 6= b2} (21)

Here φ1 corresponds to the example in section 1. Note that φ1 is a subfunctor of τ , i.e., for
any f : X → Y , the restriction, φ̂1 say, of τ̂ to φ1(X) maps φ1(X) to φ1(Y ), thus φ1 and φ̂1

give the objects and morphisms parts of a functor from Set to Set. This is not the case with
φ2; for example, if f is the only possible function from the two point set 2 to the one point set
1, and x is the element ι2(0, 1) of φ(2), then τ (̂f)(x) = ι2(0, 0) which is not in φ2(1) (indeed,
the right-hand summand in φ2(1) is empty).

4 Maximal Typable Operators

We now consider typable continuous operators. We will show that for each type, τ , there
is a continuous, indeed finitary, operator, φτ , of type τ , such that for any finitary operator,
φ, of type τ , and any set X, φ(X) ⊆ φτ (X). If we admit the axiom of dependent choices
then the same will be true under the weaker assumption that φ is continuous. We will also

3Readers familiar with the Z notation should be warned that the symbol 7→ is used in this paper with its
usual mathematical value: x 7→ y means λ x • y, not (x, y).

5



introduce the notion of an operator having finite content. This notion is intermediate between
finitariness and continuity and our main results hold for monotonic typable operators having
finite content without using dependent choices.

It will be convenient to have a function that determines, for an element t of τ(X), the raw
material in X out of which t is constructed. For each type τ and each set Y , the following
equations define by induction over the structure of τ a function contentYτ to do just that.

contentYX = x 7→ {x} (22)

contentYω = n 7→ ∅ (23)

contentY(τ1tτ2) = ιj(x) 7→ contentYτj
(x) (24)

contentY(τ1×τ2) = (x1, x2) 7→ contentYτ1(x1) ∪ contentYτ2(x2) (25)

contentY(Pτ) = s 7→
⋃
{contentYτ (x)|x ∈ s} (26)

where as usual the ιj (j = 1, 2) are the injections of the summands into the disjoint union.

We now note that the value of contentYτ (t) is independent of the Y we choose (provided we
choose it so that t ∈ τ(Y )), i.e. contentYτ (x) is monotonic in Y .

Lemma 3 If A ∈ τ(X) and C = contentXτ (A), then A ∈ τ(C).

Proof: The proof is straightforward by induction over the structure of τ . See [1] for more
detail. �

The following lemma provides an alternative characterisation of contentYτ :

Lemma 4 The following equation holds for any set Y , type τ and element t of τ(Y ):

contentYτ (t) =
⋂
{A|A ⊆ Y ∧ t ∈ τ(A)} (27)

Proof: Again this follows from a routine induction over the structure of τ . Use lemma 3 in
the inductive steps for cartesian product and power set. �

For any type, τ , the operator φτ sends a set X to the set of all elements of τ(X) that only
involve a finite part of X. I.e., we define:

φτ (X) = {A ∈ τ(X)|contentXτ (A) is finite} (28)

So, for example:

φω(X) = ω (29)

φX(X) = X (30)

φ(PX)(X) = F(X) (31)

φ(P(X×ω))(X) = {R : P(X × ω))|dom(R) is finite} (32)

The following alternative characterisation of φτ follows immediately from lemma 4:

Lemma 5 The following equation holds for any type τ :

φτ (X) =
⋃
{τ(A)|A ⊆ X ∧ A is finite} (33)

�

Given lemma 3, we can conveniently drop the superscript from contentYτ (x) in cases where
an appropriate value of Y can be inferred from the context. Using this convention, we way

6



that a typable operator φ of type τ has finite content iff. for all sets A, contentτ (t) is finite
for every t ∈ φ(A). Monotonic operators having finite content are necessarily continuous, but
in the absence of something like the axiom of dependent choices, the converse does not seem
to hold (cf. the proof of theorem 3 below). A finitary operator necessarily has finite content,
but the converse certainly need not hold. For example, the equation:

φ(X) = {x : X|X is uncountable} (34)

defines an operator which has finite content but is not finitary.

We now record the main results of this section:

Theorem 1 φτ is a finitary (and hence continuous) operator and is a subfunctor of τ in the
sense of section 3.

Proof: Straightforward from the definitions using lemma 5. �

Theorem 2 If the operator φ is typable with type τ and has finite content, then for any X,
φ(X) ⊆ φτ (X). In particular, this holds for any finitary operator φ.

Proof: Straightforward from the definitions using lemma 5. �

Our final result in this section requires the axiom of dependent choices, or at least, by a slight
generalisation of the proof below, the following, apparently weaker, statement: if X is an
infinite set then X has a countable infinite family Xi of (pairwise distinct) finite subsets.

Theorem 3 (DC) If the continuous operator φ is typable with type τ , then for any X,
φ(X) ⊆ φτ (X).

Proof: We have to show that every A ∈ φ(X) has contentXτ (A) finite. Assume for a con-
tradiction that some A ∈ φ(X) has contentXτ (A) infinite. Appealing to DC, let {x0, x1, . . .},
where the xi are pairwise distinct, be a countably infinite subset of A and define a chain,
X0 ⊆ X1 ⊆ . . ., of subsets of X as follows:

X0 = X \ {x0, x1, . . .} (35)

Xi+1 = X ∪ {xi} (36)

Then X =
⋃

iXi, and so, as φ is continuous, φ(X) =
⋃

i φ(Xi), whence A ∈ φ(Xk) ⊆ τ(Xk)
for some k. But this implies that contentXτ (A) = contentXk

τ (A) ∈ P(Xk) which is impossible
since xk ∈ contentXτ (A) and xk 6∈ Xk. �

5 Fixed Points of the Maximal Typable Operators

In this section, we construct fixed points for the maximal typable operators φτ defined in the
previous section using only the Zermelo axioms without choice (or even dependent choices).
In fact, the construction will work for an monotonic operator of type τ , having finite content
that is a subfunctor of τ — thus the arguments of section 4 are only required to handle
operators that are not functorial. The construction amounts to an encoding of the standard
construction of a fixed point for a continuous operator from below as given in lemma 1.

For completeness, we devote a subsection to the construction of certain sets of finite trees that
are required for the encoding. The construction of these trees is quite standard and readers
who wish to skip the details are invited just to skim the terminology set up in theorems 4
and 5 in subsection 5.1 below and then move on to the main construction in subsection 5.2.

7



5.1 Trees

Theorem 4 There is a typable operator T (X) such that for any set A, T (A), which we call
the set of finite trees with labels in A, can be equipped with functions:

Node : A× seq T (A) → T (A) (37)

Label : T (A) → A (38)

Children : T (A) → seq T (A) (39)

enjoying the following properties:

1. (Monotonicity) For B ⊆ A, T (B) ⊆ T (A).

2. (Induction Principle) T (A) is the smallest set closed under formation of new trees from
old using Node, i.e., if B ⊆ A is such that Node(b,<t1, . . . , tk>) ∈ B whenever b ∈ B
and bi ∈ T (B) (1 ≤ i ≤ k), then B = A.

3. (Constructor/Destructor Principle) For any a ∈ A, t ∈ T (A), ti ∈ T (A), we have:

Label(Node(a,<t1, . . . , tk>)) = a (40)

Children(Node(a,<t1, . . . , tk>)) = <t1, . . . , tk> (41)

Node(Label(t),Children(t)) = t (42)

4. (Recursion Principle) For any set C, and function d : A × seqC × T (A) → C, there
exists a unique function f : T (A) → C satisfying the following equation:

f(Node(a,<t1, . . . , tk>)) = d(a,<f(t1), . . . , f(tk)>,Node(a,<t1, . . . , tk>)) (43)

Proof: For brevity, we simply describe the construction and sketch what has to be proved.

The first two properties listed above only involve the function Node. If we can find an operator,
T (X), and a bijection, Node, enjoying monotonicity and the induction principle, then we can
use the equations in the constructor/destructor principle to define functions Label and Children
as required and we can deduce the recursion principle by adapting a well-known argument
for justifying definition by recursion over the natural numbers (e.g., see [3]). So it suffices to
define T (X) and Node and show monotonicity and the induction principle.

We describe the construction of T (A), for a concrete set A, leaving it to the reader to check
that the construction can be captured in a typable operator T (X).

To define T (A), we first construct the set, T , of unlabelled finite trees. This is done by a
standard construction, e.g., see [2]. The idea is that we represent a finite tree as a set of
addresses for the nodes in the tree. The addresses are sequences of positive natural numbers.
The root has the empty sequence, <>, for its address; a non-empty sequence, <n1, . . . , nk>,
represents the node you arrive at by a k-stage journey starting from the root and following
the ni-th branch at stage i. Clearly some finite sets of sequences will not represent the set
of node addresses of any tree. To filter out the non-trees, we define T in stages4, T0, T1, . . .,

4An alternative approach, followed in [2], is to define a partial ordering on sequences of positive natural
numbers, corresponding to the order in which nodes are encountered in an appropriate traversal of a tree, and
then to define a tree to be any set of sequences that is downwards closed with respect to that partial ordering.

8



with Ti comprising all trees of depth at most i. Each set Ti is a subset of P(seq(N1)), where
N1 denotes the set of positive natural numbers. Formally, for i ∈ N, we define:

T0 = {} (44)

Ti+1 = Ti ∪ {S|∃s : seq(Ti) • S = {<>} ∪ {<i> _ u|i ∈ dom s ∧ u ∈ si}} (45)

T =
⋃
i

Ti (46)

We have defined our unlabelled trees to be sets of node addresses. A labelled tree can then
comprise a function from the set of node addresses representing an unlabelled tree to the set
of labels. More formally, the set T (A) is defined to be the set of all functions t : S → A where
S ∈ T . The function Node is defined by the equations:

Node(a,<t1, . . . , tk>)(<>) = a (47)

Node(a,<t1, . . . , tk>)(<i> _ s) = ti(s) (48)

where a ∈ A, 1 ≤ i ≤ k, ti ∈ T (A) and s ∈ dom ti. The domain of Node is the tree comprising
<> and all sequences <i> _ s for which the right-hand side of the second equation above
is defined. It can now be verified that Node is monotonic, bijective and enjoys the principle
of induction. By the observations at the beginning of the proof, this is sufficient to prove the
theorem.

�

In the main construction in section 5.2, we will need the operator Hered defined in the following
theorem. Given a subset, V , of the set T (A) of trees with labels in A, Hered(V ) comprises
those trees which are hereditarily members of V .

Theorem 5 There is an operator, Hered, with the following property: if A is any set, and V
is any subset of the set T (A) then Hered(V ) is the (unique) subset of T (A) such that:

Hered(V ) = {t : T (A)|t ∈ V ∧ ∀c : ran(Children(t)) • c ∈ Hered(V )} (49)

Proof: The proof is an exercise in using the recursion principle of theorem 4. Let us define
a function d : A× seq N× T (A) → N as follows:

d(a,<n1, . . . , nk>, t) =

{
0 if t ∈ V and n1 = . . . = nk = 0
1 otherwise

(50)

Given this choice of d, the recursion principle provides us with a function f : T (A) → N such
that f(t) = 0 iff. t ∈ V and c ∈ V for each child, c, of t. Taking Hered(V ) = f−1{0} completes
the proof.

�

5.2 The Main Construction

Throughout this section, φ will denote a typable operator, of some type, τ . φ will be assumed
to be monotonic, to have finite content, and to be a subfunctor of τ . We will show that any
such φ possesses a fixed point on the basis of the axioms of Zermelo set theory without using
any form of the axiom of choice. Since the maximal typable operators subsume any monotonic

9



operator of finite content by theorem 2 and satisfy our hypotheses on φ by theorem 3, this
shows that any such operator possesses a fixed point. If we admit the axiom of dependent
choices, theorem 3 gives us fixed points for all typable continuous operators.

Our construction is motivated by the construction in ZF of a fixed point from below for φ as
discussed in section 2. Since our φ is monotonic and has finite content, and so is continuous, we
only need to continue the construction up to the first infinite ordinal, i.e, we form a countable
chain of sets as follows:

T0 = ∅ (51)

Ti+1 = φ(Ti) (52)

Note here that the monotonicity of φ and an easy induction show that Ti ⊆ φ(Ti) for every
i. As we remarked in section 2, the union of the sets Ti will provide a fixed point for φ, but
cannot be formed without an appeal to the axiom of replacement. We will circumvent this
problem by encoding members of

⋃
i Ti as members of a set that we can construct without

replacement. In outline, the encoding works as follows: suppose an element t of
⋃

i Ti is in
Tn+1, say, but not in Tn; assume that we have already encoded all members of Ti for i ≤ n;
by our assumptions on φ, t, which is a member of Tn+1 = φ(Tn), must be a member of φ(A)
for some finite subset A of Tn. To encode t, we think of it as a τ -tree with labels in A, as
discussed in section 3. Choosing some enumeration, A = {a1, . . . , ak}, of A, we encode t as
a tree in the sense of section 5.1. This tree has for its root label the object obtained from
t by replacing each leaf ai in the τ -tree t with the number i. Its children are the encodings
of a1, . . . , ak. Thus the set of encodings of members of

⋃
i Ti will be of a subset of the set

T (φ(N1)) of trees labelled by elements of φ(N1).

To carry out the encoding as just described would require the axiom of choice to pick an
enumeration of the set A. Moreover, it would be difficult to describe the image of the encoding
in T (φ(N1)). To avoid these problems we give a uniform construction, normalising the space
of encodings so that no arbitrary choices are required. We describe the construction by a
process of successive approximation, the third and final approximation providing the exact
answer.

Our first approximation, S1, identifies those elements of T (φ(N1)) that can sensibly be decoded
to give members of

⋃
i Ti. Of course, the ZF axioms would be required to describe the decoding

process, but in Zermelo we can at least say what it means to be decodable:

S1 = Hered{t : T (φ(N1))|contentτ (Label(t)) = dom(Children(t))} (53)

Recalling the definition of the operator Hered from theorem 5, it should be clear how, in
ZF, we could decode a member, t, of S1 as a member of

⋃
i Ti, by replacing elements of

contentτ (Label(t)) by the corresponding decoded member of Children(t). However, this de-
coding would be many-to-one, because S1 contains many redundant encodings of any given
member of

⋃
i Ti, and that will not do. Our next approximation will begin to eliminate this

redundancy. To define it, we need a notion of isomorphism for members of S1: let us say that
members t and u of S1 are isomorphic and let us write t ∼ u iff. there is a bijection f between
contentτ (Label(t)) and contentτ (Label(u)) such that τ̂(f)(Label(t)) = τ̂(Label(u)) and for each
i in contentτ (Label(t)), Children(t)i ∼ Children(u)f(i). That is to say, thinking of φ(N1) as a
set of τ -trees with numerical labels at the leaves, t ∼ u means that Label(t) and Label(u) are
structurally identical modulo a permutation of their leaf labels that relates each child of t to
an isomorphic child of u. We now define S2 as follows:

S2 = Hered{t : S1|∀i, j : dom(Children(t)) • i 6= j =⇒ Children(t)i 6∼ Children(t)j} (54)

10



However, this definition of S2 still fails to make the decoding process one-to-one because a
member t of S2 could contain two distinct but isomorphic subtrees that are not fellow siblings.
Even if such situations were eliminated, reordering the children of t and relabelling its root
label will give diverse encodings for the tree that t encodes. To solve both these problems, we
take equivalence classes modulo ∼:

S3 = S2/∼ (55)

= {A ⊆ S2|∃t : S2 • ∀u : S2 • u ∈ A ⇐⇒ u ∼ t} (56)

We now claim that S3 furnishes the fixed point that we need. By lemma 2, it suffices to
exhibit an injection, κ say, from φ(S3) into S3. To define κ, let x be an element of φ(S3). By
our assumptions on φ, contentτ (x) is a finite subset, A, of S3. I.e., for some n, there exists a
bijection f between A and 1 ..n. Now, thinking of x as a τ -tree with labels drawn from A,
κ(x) will be the set of all trees whose root label can be got by using such a bijection f to
relabel the leaves of x and whose children can be got by choosing representatives in S2 for the
elements f−1(1), . . . , f−1(n) of S3. The following lemma puts this construction more formally:

Lemma 6 The equation:

κ(x) = {t : S2 | ∃n : ω • ∃f : contentτ (x) �→ 1 ..n • ∃s : seqS2 •
dom s = 1 ..n ∧
(∀i : 1 ..n • si ∈ f−1(i)) ∧
t = Node(φ̂(f)(x), s)} (57)

defines an injective function κ from φ(S3) to S3.

Proof: The proof is routine, and we just give a sketch. First we must show that (57) does
indeed define a function from φ(S3) to S3. This can be verified from the definitions, using the
fact that φ is a subfunctor of τ to show that the variable t does indeed range over elements
of S2. The definition of ∼ allows us to conclude that the right-hand side of the equation
is actually an equivalence class of ∼ and so a member of S3. Now we must show that κ is
injective. This follows from the injectivity of Node and the fact that φ̂ sends injections to
injections.

�

Theorem 6 If the operator φ is typable with type τ and has finite content, then for some
subset Y of P(T (τ(ω))), Y 'LFP φ(Y ). In particular, this holds for any finitary operator φ.

Proof: By theorem 1 and lemma 6, the maximal operator φτ has a fixed point. By theorem 2,
φ(X) ⊆ φτ (X) for every X, so that the fixed point for φτ yields a least fixed point for φ by
lemma 2. �

Theorem 7 (DC) If the continuous operator φ is typable with type τ , then for some subset
Y of P(T (τ(ω))), Y 'LFP φ(Y ).

Proof: The proof is just like that of theorem 6 using theorem 3 insteand of theorem 2. �

6 Conclusions

We have strengthened the results of [1] to show, without recourse to the axioms of choice
and replacement, that finitary typable operators theory have least fixed points. In fact, this

11



holds of a somewhat wider class of operators: the monotonic typable operators having finite
content. As usual, avoiding the axiom of choice gives a more constructive proof.

Using the axiom of dependent choices — generally considered to be a much more palatable
axiom than the full axiom of choice — continuous typable operators have also been dealt
with. The use of axiom of dependent choices or some similar principle seems to be essential,
although we have been unable to give examples to demonstrate this.

There is much interest in mechanizing proof for languages such as Z. At the very least, the
results in this paper provide a basis for consistency proof obligations in a tool supporting
specification and proof in Z. For those who wish to follow a very rigorous line, the main
constructions of this paper should be implementable within a proof tool such as HOL, Isabelle,
or ProofPower. This would allow the defining properties of a recursive type definition to be
derived rather than introduced as axioms. In a sense, this would provide a half-way house
between the approach of Melham [4], whose work in HOL covers a limited class of operators
within a typed set theory, and that of Paulson, whose work in Isabelle-ZF implements the
standard ZF constructions in untyped set theory.

Acknowledgments

I am indebted to Randy Dougherty of Ohio State University for providing the key idea behind
the construction in section 5.2.

References

[1] R.D. Arthan. On Free Type Definitions in Z. In J.E. Nicholls, editor, Z User Workshop,
York 1991. Springer-Verlag, 1992.

[2] H.P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic and the Founda-
tions of Mathematics. North Holland, 1984.

[3] Paul R. Halmos. Naive Set Theory. Springer-Verlag, 1974.

[4] Thomas F. Melham. Automating Recursive Type Definitions in Higher Order Logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Verification
and Automated Theorem Proving. Springer-Verlag, 1989.

[5] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

[6] J.M. Spivey. The Z Notation: A Reference Manual, Second Edition. Prentice-Hall, 1992.

12


