Recursive Definitions in Z

R.D. Arthan

Lemma 1 Ltd.
2nd Floor,
31A Chain St.,
Reading,
Berkshire,
UK. RG10 9NX

rda@lemma-one.com

Abstract. This paper considers some issues in the theory and practice
of defining functions over recursive data types in Z. Principles justifying
such definitions are formulated. Z free types are contrasted with the free
algebras of universal algebra: the notions turn out to be related but not
isomorphic.

1 Introduction

The consistency of a Z specification is a matter of some practical importance.
Effort expended in reasoning about an inconsistent specification is wasted and
implementation of an inconsistent specification is either impossible or trivial
depending on one’s point of view. The most widely used definitions of Z, [8,9]
do consider the consistency of some Z paragraph forms, most notably the free
type paragraph. This topic is further explored in [1,7,11].

In this paper, we consider approaches to proving the consistency of a partic-
ular class of axiomatic description, namely, axiomatic descriptions that define
functions on a (typically recursive) free type. We consider principles allowing us
to verify the consistency of such definitions. These principles are not themselves
proposed for inclusion in the language definition, since, as we shall see, they
are logical consequences of the usual axioms for a free type. Instead we present
them to serve as rules of thumb for authors and readers of specifications and as
guidelines for implementors of tools.

Z is founded on set theory. It is instructive to compare the Z approach to
recursive definitions with what one might find in notations with different foun-
dations. In this paper, we compare the Z approach with an approach based on
universal algebra. It turns out that there is a broad overlap, but that there
also non-trivial differences mainly arising from the extra expressiveness that set
theory affords.

We make free use of the Z toolkit. Techniques for informal reasoning about
the toolkit are discussed in several books, e.g., [13]; progress on one approach to
automated proof for the Z toolkit is reported in [2].

The rest of this paper is structured as follows: Sect. 2 discusses the practical
issues; Sect. 3 considers general principles for definition by recursion; Sect. 4
contrasts the theory for Z with concepts from universal algebra; finally, Sect. 5
gives some concluding remarks.

2 Recursive Definitions in Practice

The following free type definition will provide a running example throughout
this section. BINTREE comprises binary trees with integer labels at each node
and leaf. The definition may readily be seen to be consistent using the methods
of [1,9]. Some example members of BINTREE are shown in Fig. 1.

BINTREE ::= Leaf((Z)) | Node((Z x BINTREE x BINTREE))

(A) Leaf 5

(B) Node(2, Leaf 3, Leaf 4)

(C) Node(1, Node(2, Leaf 3, Leaf 4), Leaf 5)

Fig. 1. Some Members of BINTREE

2.1 Definition by Cases

We will be concerned with the consistency of functions defined using axiomatic
descriptions. The functions will have for their domain our sample free type

BINTREE. Our notion of consistency is straightforward: an axiomatic description
defining a function f is consistent if we can prove, without using the axiomatic
description, that there exists a function g satisfying the same constraints that
the axiomatic description places on f. We will sometimes call such a g a witness
to the consistency of f. Approaches to verifying the consistency of Z specifica-
tions are discussed in more detail in earlier work of the present author [1] and
in a forthcoming paper by Sam Valentine [12]

As a first example of a function defined on the set BINTREE, consider the
following axiomatic description of a function intended to return the label at the
root, of a tree.

‘ labelOf : BINTREE — Z

Vi : Z e labelOf(Leaf i) = ¢
Vi :Z; t1,t: : BINTREE e labelOf(Node(i, t1, t2)) = ¢

We may ask whether this axiomatic description is consistent, i.e., whether a
function enjoying the properties we require of labelOf actually exists. Well, by
the usual axioms that characterise a free type!, any tree ¢t in BINTREE is either
Leaf i for some 4 or Node(i, t1, t2) for some 4, t; and ;. Moreover, Leaf and Node
are injections and their ranges are disjoint, so that there is exactly one i for
which ¢ has one or other of these forms. Taking labelOf ¢ to be this i gives the
desired function. More formally, with each of the constructor functions, we may
associate a corresponding destructor function defined by:

destLeaf == Leaf™!
destNode == Node™!
We may then verify that these destructor functions are indeed functions

and behave exactly as if they had been specified by the following axiomatic
description:

destLeaf : ran Leaf - Z

destNode : ran Node — (Z x BINTREE x BINTREE)

Vi : Z e destLeaf(Leaf i) =4

Vi :Z; t1,t : BINTREE e destNode(Node(i, 1, t2)) = (i, t1, t2)

A witness to the existence of our function labelOf can then be defined explic-
itly by the formula:

destlLeaf U (destNode 3 (A4 : Z; t;, 12 : BINTREE e 7))

The use of destructor functions will enable us to justify most definitions of
functions that pick apart the top level structure of an element of a free type. This
pattern of definition may be called definition by cases; the principle of definition
by cases, PDC, is a special case of the principle of definition by induction that
we will now investigate.

! For a brief example and discussion of these axioms, see the proof of theorem 1 below.
More leisurely expositions may be found in [1,9].

2.2 Definition by Induction

The method of definition by cases is useful, but only gives us access to the top-
level structure of an element of a free type. But we may need to dig deeper, e.g.,
to define a function to count the non-leaf nodes in a tree. Intuitively, the count
is 0 for a leaf, and, for a non-leaf node, the count is 1 more than the sum of the
counts for the children. This suggests the following axiomatic description of our
function nodeCount:

nodeCount : BINTREE — N
Vi : Z e nodeCount(Leafi) =0
Vi:Z; t,t; : BINTREEe
nodeCount(Node(é, t1, %)) = 1 4+ nodeCount #; + nodeCount t;

This definition is inductive, that is to say, the right-hand sides of the equa-
tions for nodeCount themselves involve uses of nodeCount. If we are given a
concrete member of the free type, e.g., the tree C depicted in Fig. 1, then we can
use the two equations in the axiomatic description as rewrite rules to evaluate
nodeCount C:

nodeCount C = nodeCount(Node(1, Node(2, Leaf 3, Leaf 4), Leaf5))
= 1 + nodeCount(Node(2, Leaf 3, Leaf 4) + nodeCount(Leaf 5)
=1+ (1 + nodeCount(Leaf3) + nodeCount(Leaf4)) + 0
=1+(1+0+0)+0
=2

However, any attempt to use the second equation as a rewrite rule will fail, in
general, to eliminate nodeCount from an expression of the form nodeCount u if
u involves variables: e.g., without knowing the value of z, we cannot simplify
nodeCount z.

How are we to know that our axiomatic description of nodeCount is con-
sistent? Appealing to a general theorem we shall discuss later, we can use the
following principle of definition by induction (PDI) for the free type BINTREE:

[YIFVea:Zo>Y;ea:(ZxYxY)>Ye
3, h:BINTREE — Y o
(Vi:Z e h(Leaf i) = e i)
N (Vi:Z; t1,t : BINTREE e h(Node (7, t1,) = ex(i, ht1, h t2)

The notation here means that the theorem PDI is generic in Y, i.e., we
may instantiate Y to any set of any type. The theorem is concerned with the
problem of defining a function h : BINTREE — Y satisfying the given equations.
The functions e; and ey are the data of the problem: e; specifies how h is to

behave on leaves; ey, specifies how the results of applying h to the children of a
node are to be combined to give the value of h at that node. The theorem asserts
that every such problem has a unique solution.

For our node-counting function, we use ¥ = N and take the data e; and e;
to be:

e1=(ANi:Ze0)
ey = (/\iZZ; tl,t22N01+t1+t2)
Applying PDI, we can conclude that there exists a function h : BINTREE — N
such that, for all integers, #, and trees, #; and ¢, the following equations hold:
h(Leafi) =e;1=0
h(Node(i, tl, tg)) = ez(i, h tl, h t2) =1+ h tl + h ffz
These are precisely our requirements for nodeCount so this h supplies a wit-

ness to the consistency of our definition of nodeCount. As an exercise, the reader
may wish to find the data functions e; and e that give the height of a tree:

height : BINTREE —» N
Vi : Z o height(Leaf i) = 0
Vi:Z; t,ts : BINTREEe
height(Node(i, t1, t2)) = 1 + maz(height t;, height)

2.3 Definition by Recursion

The principle of definition by induction, PDI is quite powerful, but has a limi-
tation: in the function ez, we can refer to the values of h on the children of a
node, but we can’t refer to the children themselves. As an example, assume we
want a function which computes the sum over all non-leaf nodes in a tree of the
node-heights weighted by the node-labels:

heightSum : BINTREE — Z
Vi : Z heightSum(Leaf ¢) =0
Vi:Z; t,t> : BINTREEe
heightSum(Node(i, t1, 1)) =
i * height(Node(i, t1, t2)) + heightSum #; + heightSum &,

Here, since the function e; in PDI has no access to the values of the subtrees
t; and ¢z, PDI cannot be applied directly. Instead, we may appeal to the following
principle of definition by recursion, PDR, which generalises PDI by making these
subtrees available to the relevant data function in addition to the values of the
recursive calls:

[Y]FV d:Z— Y; dy :BINTREE= (Zx Y x Y) > Ve

3, h:BINTREE = Y e
(Vi:Ze h(Leaf i) = dy i)
A (Yi:Z; ti,t : BINTREE o
h(Node (%, t1,t2)) = do(Node(4, t1,12))(4, h t1, b t2))

Note that PDI is, essentially, the special case of PDR in which the function
d> makes no use of its first argument; thus PDR implies PDI. As we shall see in
the proof of theorem 1 one can also derive PDR from PDI, so the two principles
are equivalent.

In order to justify our definition of heightSum, let us use PDR, with ¥ =7,
and with d; and dy given by:

di=(\i:Ze0)
dy = (\b:BINTREEe\i:Z; t;,t : Neixheighth+ t + &)

With this data, PDR delivers us a function A that is just what we need to
justify the consistency of our axiomatic description of heightSum.

3 Theoretical Issues

3.1 PDR: The General Case

In Sect. 2, we have made several appeals to a general principle of definition
by recursion (PDR). We now describe this principle in the general case. As the
reader will see, the general principle is rather lengthy to describe.

So, let us consider a general free type definition. The free type definition
has m nullary constructors, a1, . ..a,, and n non-nullary constructors 31, ... 08y
For simplicity, we assume that the nullary constructors are given first. Since
the order of the branches in a free type is immaterial, this gives no real loss of
generality. Our general free type definition thus has the form:

Te=an || am | BB || BulEn)

The type rules for Z require that each expression F; be a set of elements of
some type 7; say. Here the type 7; is some expression built up from ground types
(and T) using cartesian product, power sets and schema type constructions.
Since the elements of each set E; have type 7;, the soundness of the Z type
system ensures that F; € P ;.

For example, consider the following type of trees, with leaves either empty or
labelled with a sequence of binary trees (these trees being represented using the
free type BINTREE discussed in Sect. 2), and with branches constructed using a
schema type:

EG ::= Empty | TreeList{{seq BINTREE)) | EGNode(([a, b : EG])

T |[EG
m |1
n (2

a1 |Empty

[B1 |TreelList

Ei [seq BINTREE

B2 |EGNode

Es|[a,b : EG]

71 |P(Z x BINTREE)
72 |[a, b : EG]

Table 1. Metanotation for the Example

Remembering that sequences are partial functions on the integers and that
functions are just sets of pairs, we see that in this example our metavariables,
T, m, n, etc., take the values shown in table 1.

Returning to the general case, PDR will be a theorem asserting the existence
of solutions to problems of a certain kind. The theorem will have a generic
parameter Y and will be constructed from the following components:

Data: the data comprise m elements of Y and n two-argument functions.
The second argument of each function h; ranges over the set, 7;[Y /7] obtained
by substituting Y for each occurrence of T in the type 7;:

Cly.oesCmp * Y
di :T—)Tl[Y/ﬂ—) Y

dy: T = 1[V/T] > ¥

Solution: the solution is a function h:

h:T—=>Y

Condition: the condition comprises m + n equations. The first m of these
correspond to the data elements ¢y, ... c, and are easy to state:

ha1 =

hoy, = ¢m

To state the remaining n equations, we need to represent the notion of a
“recursive call” of the function h. To do this we need to use the structure of the

types 71, - - . T,. We think of an element of the type 7 as an expression tree formed
using tuples, bindings and set constructions. Some leaves of this expression tree
correspond to recursive appearances of 7 in 7 and are labelled with elements of
T. Other leaves of the expression tree corresponding to ground types, G, say are
labelled with elements of G. We need to describe the function from 7 to 7[Y /T]
that works by replacing each leaf label ¢ € T by h t and leaving other leaf labels
as they are. The following function h, defined by induction over the structure
of 7 does the job:

—

hrx=hz
hcy=y
Prx.y (@) = (hra,...)
Mo, Jla==2,....) ={a==hrz,...,)
her A=h(A)

NS

AN AN AN SN N
= W
— — N N

5

Here the five clauses correspond to: (1) 7 itself, (2) some other ground type
G, (3) a cartesian product, (4) a schema type, and (5) a set type. The argument
of h, in each clause represents a general element of 7, so the domain of h, is
7 and, as ran h C Y, the range of h; is contained in 7[Y /T]. The notation
{ a==1z,b==y,...) denotes a binding with a component ¢ with value z, a
component b of value y and so on.

To sum up, the above construction provides functions h; for each Z type 7;
h; acts on an element, ¢, of 7 by mapping h over the recursive appearances of
members of T inside ¢. If a branch of the free type is not recursive (so that T
does not appear in 7), the corresponding h, will be id7. For example, for the
types 71 and 7 that arise in the definition of EG, the functions h, and h,, are
as follows?:

h,, = (\A: P(Z x BINTREE) o (Ay : Z x BINTREE &)(4)))
— id P(Z x BINTREE)
hry =(At:[a,b:EGle{ a==h(t.a),ta ==h(t.D)))

Armed with h;, we can now give the remaining n equations to complete the
condition of the PDR problem:

h(ﬂl 61) =d (,31 61) (hn 61)

h’(IBn en) =d, (Bl en) (h‘rn en)

? We have been slightly lax in giving equations to define the functions A, without
making their domains explicit; a tool that automated the theory could either use A-
expressions for the functions, as we have done in this example, or introduce axiomatic
descriptions for the functions that map h to h, and use those to abbreviate the
predicates.

To give the formal statement of PDR for the general case, we combine the
above pieces in the form V data @ 3, solution e conditions:

[YIFV e,.cihem: Y5
dx ZT—)Tl[Y/ﬂ—) Y;

dn 2T > 1|Y/T]—> Ye
Jh:T=>Yeha =l

hay, = cp/N\

(V er:Epe h(/Bl @1) =d (/61 61) (hn 61))/\

(V en-: E,e h(ﬂn en) = dn (/Bl en) (h‘rn en))

PDI is the special case of the above assertion PDR in which the functions
d; make no use of their first argument, in which case, we can reformulate the
assertion to remove the first argument. Similarly, PDC is essentially the special
case of PDR in which the d; make no use of their second argument.

For example, using the relevant values for h, computed above, PDR for the
free type EG is the following assertion:

[YIFVY ¢:7;
dy : EG — P(Z x BINTREE) — Y;
d:EG—=[a,b: Y] > Y
3, h:EG—> Ve
hEmpty = ¢; A\
(Ve : seq BINTREE e h(TreeList e;) = dy (TreeList e;) e1) A
(Vey:[a,b:EG] e h(EGNode ey) =
d> (EGNode €2) | @ == h(ez.a),b == h (e2.b))

At the price of complicating the description, our formulation of PDR is
clearly amenable to some improvement. For example, the data functions for
non-recursive branches (such as d; in the above example) have two arguments
which contain the same information in the statement of the theorem; the ex-
tra argument can be removed. If the i-th branch of the free type is recursive,
then the first argument of the function d; is always f e;, and arguably it would
be better to use e; instead. However, the latter proposal will usually make the
declaration of d; longer.

A further improvement that might be sugggested would be to use E;[Y/T]
rather than ;[Y /T] for the second domain of the data functions d;. Typically,
E;[Y/T] will be a simpler expression than 7;[Y /T], as happens for d; in our ex-
ample: the declaration would be shorter and clearer if we could use seq BINTREE

in place of P(Z x BINTREE). However, as we shall see in section 4, this suggestion
does not work in general.

3.2 Proof of PDR and PDI

In this section, we present the main theoretical result of this document which
states that the principle of definition by recursion (PDR) is a consequence of the
usual axioms that characterise a free type as described in [1,9]. Thus one can
safely make free use of PDR once a free type definition is known to be consistent.

Theorem 1. PDR and PDI are consequences of the usual axioms that charac-
terise a free type.

Proof: while no really creative work is required, the details of the proof are not
entirely trivial. To state and prove the general result, it would probably be best
to use the framework used in [1] to simplify the syntactic complications. For
present purposes, we will proceed by example and just demonstrate the result
for a particular free type. It is convenient to consider a free type with just one
constructor, and so we will use the following free type FT representing trees with
arbitrary finite unordered branching. Some elements of FT are shown in figure 2.

FT := k(FFT)

B k{} [

() k{E}

oo

G) k{E, F} = k{F, E}

Fig. 2. Some Members of FT

The “usual axioms” for this free type amount to the following assertions:
(1) the constructor function k is injective and surjective; and (i) the following
principle of proof by induction (PPI) holds:

VW :PFTek(FW) C W= W =FT

That is to say the only subset W of FT that is closed under formation of
new trees from old is FT itself. This principle allows us to reason by structural
induction over trees: to show that a property P(z) holds for every z € FT, it
suffices to show that if A € FFT is such that P(y) holds for every y € A, then
also P(k(A)) holds.

To prove the theorem, it is slightly easier and somewhat more informative to
prove PDI first and then derive PDR from that. To demonstrate PDI for the free
type FT, we must prove the following assertion (with generic parameter Y):

[Y]FVe:PY - Ye3 h:FT = YeVz:FFTeh(k(z)) =e(h(z]) (6)

The proof of (6) is similar to the proof of definition by induction for the
natural numbers that one can find in elementary texts on set theory (e.g., [5]).
Given Y and e as in the statement of the theorem, we consider partial approx-
imations to the desired total function h, That is to say we consider functions
g : FT — Y which satisfy g(k(z)) = e(g9(z |)) whenever both sides of that
equation are defined. We show that any two such approximations g; and g are
compatible, i.e., their union is again a function. We then find that the union of
all such approximations g turns out to be the desired total function h.

More formally, let us define a family J of subsets of FT as follows:

J={A:PFT|3g:A—> YeVz :FFTe
k(z) e A=z C AN g(k(z)) =e(g(z))}

We now make two claims about J:

Claim (A):Let A1, As € J,and let g; : A; — Y be the functions whose existence
is asserted by the definition of J (i = 1,2), then (A1 NA2) <1 g1 = (A1NA3) < go.
That is to say, the functions g1 and g2 are compatible: their union g; U go is also
a function (from A; U Ay to Y).

Claim (B): Let A € J, and z € F A, then (AU {k(z)}) € J. More precisely, if
the set A is not closed under the constructor k, so that, for some finite subset z
of A, k(z) ¢ A, then we can extend a partial approximation g : A — Y to give
a partial approximation ¢’ : (AU {k(z)}) = Y.

We will only sketch the proofs of these claims: ad (A), one defines a set W
by W={y:FT|ye€ AdiNAy= g1(y) = g2(y)}, i.e., W is the set of points at
which ¢g; and g¢» agree, when they are both defined, and one then shows using
PPl that W = FT; ad (B), one defines the extension g’ of g to agree with g
on A and to take the value e(g(z |)) on k(z), and one then checks (using the
injectivity of k) that this does indeed define a function on A U {k(z)} with the
necessary properties.

Taking A; = A, in claim (A4), we see that any two approximations ¢; and g»
with common domain A = A; = A, are identical. In particular, if A = FT, the
uniqueness part of (6) follows and it is only the existence of the function h that
we have left to prove.

Let us now define @ C FT, and a function ¢: @ — Y, by:

e=U7

g=J{g:FT»Y|TA:Jege A> Y A
Ve :FFTek(z) e A=z €FAAAK(z) =e(h(z))}

That ¢ is indeed a function follows from claim (A4), which says that the
functions whose union is formed in the definition of ¢ are compatible. Note also
that by the definitions of J, @, and ¢, @ is indeed the domain of the function gq.

We now make two further claims:

Claim(C) Q € J.
Claim(D) Q = FT

Again we will only sketch the proofs: ad (C), one checks that ¢ will serve as
a partial approximation to h on and so concludes that @ belongs to J; ad
(D), one uses claims (B) and (C) to show that @ is closed under the constructor
k and concludes from PPl that ¢ = FT.

To complete the proof of (6), we deduce from claims (C) and (D) that FT € J;
then the definition of J furnishes us with a function g : FT — Y satisfying;:

Ve :FFTek(z) e FT =z € FFT A g(k(z)) =e(g9(z) (7

(In fact, g = ¢, but we no longer need the details of our explicit construction
of g.) Ask € FFT — FT, k(z) € FT for any z € FFT; so, taking h = g, (7)
simplifies to:

Vz:FFTeh(k(z)) =e(h(z))

Thus this choice of h has the properties we need to complete the proof of (6).
To derive PDR from PDI, what we have to do is prove the following, using (6)
as an assumption:

[Y]FVd:FT5PY » Ye3 h:FT - Ve .
Vz :FFTeh(kz) = d(kz)(h(z)) (®)

So let us assume that (6) holds (as indeed it does, since we have just proved
it). Assume that Y and d as above are given. We have to use (6) to construct a
function h satisfying the above equation.

In the general case, one must account for the possibility that the free type
defines an empty set (in which case both PDI and PDR may be seen to hold
vacuously); for FT, we know that the free type is non-empty, and using (6) one
can deduce that Y is also non-empty (otherwise the function d could not exist).

Given that FT and Y are not empty, let us choose elements ry € FT and
yo € Y. Using these elements we define a function e € P(FT x ¥) - FT x Y to
which we can apply (6) as follows:

| k(first(] s))), d(k(first(s |))(second(s |)) if first(s)) is finite
e(s) = { (10, %) otherwise

(Here the value of e is only relevant on sets s for which first(s |) is finite;
however, to apply (6) in the form in which we have stated it, we need e to be

total on P(FT x Y'), and so we have used rp and yo to extend the relevant parts
of e to give a total function delivering an arbitrary fixed result on the irrelevant
values of s.)

By (6), we know that there is a unique function g € FT — FT x Y such that:

Ve :FFTeg(k(z)) = e(9(z)
We then define the desired function h by:
h =secondog

One may now check using the various definitions that h satisfies the following
equation, which completes the proof of the existence part of (8).

Vz:FFT e hk(z)) = d(kz)(h(z))

The uniqueness part of (8) follows (with a little extra work) from the unique-
ness of g. This completes the proof of our theorem in the special case of the free
type FT. The proof in the general case is very similar in structure: using the
terminology of [1], a monotonic operator ¢ would appear where the proof for FT
has the finite set operator, F; the type 7 of this operator would appear in place of
P where appropriate; and the use of relational image to map the function being
defined over subtrees would be replaced by use of the operator 7 (cf. h, in the
notation of section 3.1 above). The derivation of PDR from PDI in the general
case involves some reasoning about the functorial properties of 7; to bypass this,
it is not difficult to generalise the argument given above for PDI to deliver PDR
directly. O

4 Comparison with Universal Algebra

Many people may have wondered why free types are called “free types”. In
this section, we shall explore the analogy that gives rise to the name, and find,
perhaps surprisingly, that it is not as close as one might hope.

We will need some elementary ideas from universal algebra [4]. Universal
algebra studies the features of algebraic systems such as rings, groups, fields,
etc., that are independent of the fine details of the theory of rings, groups, fields,
etc. Two basic concepts in universal algebra are signatures and structures:

A signature is a syntactic construct defining some typed operators, for ex-
ample, the signature corresponding to the theory of groups might have a nullary
operator, e : G, a unary operator _~! : G = G and a binary operator _e _:
G x G — @ giving the identity element, inverse operation and multiplication
operation respectively.

A structure for a signature is a set provided with operations that implement
the operators of the signature. The group of integers, for example, provides
a structure for the signature described above taking e = 0, 27! = —z and
rey=2+y.

We think of a signature as defining the set of all its structures. As an example,
the following signature defines the set of all sets, X, equipped with a zero-element,
Z and a function S from X to itself:

Z: X
S: X=X

In describing structures for a given signature, we will use subscripts to distin-
guish different structures. Following this convention, an example of a structure
for this signature might be to take X3 = N, Z; = 0 and S; = succ. Another
might be to take Xo =7, Zo =1 and S2 = (Ai : Z e2x4). A function between
two structures for the same signature is said to be a morphism if it commutes
with the operations. For example, a function f : X; — X will be a morphism iff.
f0=1and f(S17) = Sa(f ¢) for all 7 in X;. One such morphism is the function
that maps i € N to 2¢ € Z, as one may readily check.

An isomorphism is a morphism that is also a bijection, and for many purposes
isomorphic structures may be considered to be identical. Our example morphism
from (X3, Z1,51) to (Xs, Z2,5,) is not a morphism, since it is not a surjection.
However, if we take X3 to be the set of non-negative powers of 2, take Z3 =1
and take S3 = (A7 : X3 @2 % i), then mapping i to 2¢ provides an isomorphism
between (X1, Z1,51) and (X3, Z3,S3) (which provides a discrete analogue of the
principle that underlies slide-rules and log tables).

Subject to some restrictions on the types used in a signature, it turns out
that any signature defines a non-empty set of structures and that the set of
structures contains a distinguished class of structures called the free algebras
for the signature. The characteristic property of a free algebra, A, is that for
any other structure for the same signature, B, there exists a unique morphism
from A to B. Any two free algebras for the same signature are isomorphic, and
so we generally talk about “the” free algebra for a signature. For example the
structure (X1, Z1,S1) described above is the free algebra for its signature: this
fact is essentially equivalent to a principle of definition by induction over the
natural numbers (cf. the example morphisms given above).

We are concerned with the principles for definition by induction and recursion
for a Z free type. The defining equations in these principles as exemplified in
section 2 above are reminiscent of the equations that define a morphism in
universal algebra. For example, PDI for the set of finite tree we used to illustrate
the proof of theorem 1 contains the following equation:

hk(z)) = e(h(=))

If k and e here were operators for two different structures for a suitable sig-
nature, the above equation would say that the function h is a morphism between
the two structures. In this light, we might hope that PDI would correspond to
the defining property of a free algebra.

So, given a Z free type definition, we can construct a corresponding signature
whose operators are the constructors of the free type. Each non-nullary oper-
ator is assigned the type of a function from the domain of the corresponding

constructor to the unknown X. For example, the following free type definition
corresponds to the signature with operators Z and S mentioned above:

Nat ::= Z | S{Nat))

In the sequel, given a Z free type definition such as the above, we can conve-
niently borrow the terminology of universal algebra and say that a structure for
the free type is a tuple (R, Zo,So), where R is a set, Zg € R and So € R — R.

For simple examples like the above, the analogy works quite well. However,
the fact that one can write an arbitrary set-valued expression in a branch of a Z
free type means that one can impose structural constraints®. that are not com-
patible with the usual methods of universal algebra. In the rest of this section,
we will explore the somewhat unfortunate consequences of this aspect of free
type definitions.

As a first observation on the technical problems that arise, we observe that
the version of PDI or PDR that the theory of universal algebra delivers does not
work so well for the signatures that can arise from Z free types. This relates
to the question raised in the previous section of whether to use 7;[Y /7] or
E;[Y/T] in the statement of PDR or PDI. Consider for example the following
type of unbalanced trees:

UBT ::= Leaf((Z)) | Node{({i : Z; ti, % : UBT | t1 # t2}))

For example, the trees depicted in Fig. 1 may all be viewed as members of
UBT. The definition of UBT is consistent and the version of PDI that universal
algebra gives us would be the following theorem:

[YIFVY di:Z—>Y;
dg:{'i:Z; t1,t2: Y|t1#t2}—) Ye
3, h:UBT —» Y e (Ve : Zeo h(leafer) = dy e)
AN (Vex:{i:Z;ti,ta:UBT [t1 # ta2} @
h(Node e3) = do (e2.1, h(e2.2), h(e2.3)))

In the notation of the previous section the above theorem uses E»[Y /UBT]
rather than 7[Y /UBT] in the declaration of dy; however, this is not strong
enough to justify definitions that we might very well wish to make. For example,
consider a function to count the non-leaf nodes in an unbalanced tree. This
function, nodeCount say, ought to be defined just like the function of the same

name in Sect. 2.2 using UBT instead of BINTREE. If we apply it to the tree B
in Fig. 1, we will compute:

nodeCount B = 1 + nodeCount(Leaf 3) + nodeCount(Leaf 4)
=1+(1+1)
=3
3 We do not have complete freedom however; in particular, the type and scope rules of

Z prevent us from referring to the constructors of the free type inside the set-valued
expressions that appear on the right-hand side of the definition.

However, the data function dy required to carry out this computation is not
a member of the set {i:Z; t1,t: Z ‘ t1 # t2} = Z, because 1 = 1.

We can draw two conclusions from the above example. Firstly, the form of
PDR using 7;[Y /7] as given in Sect. 3.1 is probably the one to use; secondly,
we should be chary about drawing too much from the analogy of set-theoretic
inductive definitions (i.e., Z free types) with universal algebra: the subjects are
related but they are not isomorphic.

A deeper point at which the analogy breaks down highlights a potential mis-
conception about the strength of PDR (or rather its equivalent PDI). In universal
algebra terms, PDI should amount to the assertion that the type 7 in the state-
ment of the theorem is the free algebra for its signature. Now, it is a fact of
universal algebra that free algebras are unique up to isomorphism. The proof is
elementary: if A and B are free algebras for the same signature, then there are
unique morphisms @ : A — B and 8 : B — A; now the composite a § 5 is a
morphism from A to itself, but so is id 4; so by the freeness of A4, a8 = id 4, and
similarly 8 §a = id B; thus a and 8 are (mutually inverse) bijections and A and
B are indeed isomorphic. It follows that PDI (or PDR) actually characterises the
free algebra completely, and so, for example, other principles like the principle
of proof by induction PPI* can be derived from it. Sadly, this reasoning does not
transfer to Z free types, if we use our preferred formulation as in Sect. 3.1:

Theorem 2. If we formulate PDR as in Sect. 8.1 (using 7;[Y /T]| rather than
E;[Y/T]), then PDR does not imply PPI.

Proof: what we have to do is exhibit a set equipped with constructor functions
for which PDR holds but PPI fails. To do this, let us consider the following free
type definition:

Du=Z|S{({m:D|3a,b:Dea#b})

Here, the set expression {m : X | Ja,b : X e a # b}, is the empty set
when X has less than 2 elements, and is equal to X otherwise. The free type
definition D is therefore just like that for Nat in definition (9) above except
that the “generative power” of the second branch is cut down to nothing when
the free type is “small”. PPI for a structure (R, Zg,So) for D is the following
assertion:

VA:PRe(Zoc ANVz:{m:A|Ja,b: Aea#b}eSy(z)e A)=A=R

The only possible structure for D with PPl must have the carrier set R equal
to the singleton set {Zy}, because {m : A |3 a,b: Aea # b} is empty if Ais a
singleton set.

Now, Nat has more than 1 element, so {m : Nat | 3a, b : Nate a # b} = Nat.
It follows that Nat, Z and S give a structure for D, and, moreover, PDR holds for

4 See examples in the proof of theorems 1 and 2.

this structure, since the formal statement of PDR for this structure is equivalent
to that for Nat. That is to say, the proposition:

Ve :Y; do:{m:Nat|Ja,b:Natea#b} xY — Ve
3, h:{m:Nat|Ja,b:Natea#b} - Ye
h(Z):Cl/\
(Vz:{m:Nat|3a,b:Natea #b}eh(S(z)) = dy(z, h(z)))

is equivalent to:

Ver:Y; dp:Natx Y — Ye
J,h:Nat = Ve
R(Z) = ¢1 A (Vz : Nat @ A(S(z)) = do(z, h(z)))

which is the formal statement of PDR for Nat. Thus, we have a structure for D
which satisfies PDR but not PPI, since, as we have already remarked, a structure
satisfying PPI has to have the carrier set equal to a singleton set. O

In the proof of Theorem 2, the example involves a free type definition for
which one of the branches is empty. It might be thought that this makes the
example rather a special case which could be eliminated by an appropriate con-
dition. However, there are more complex examples with PDR and not PPl which
have no empty branches. Using an informal notation®, one such is given by:

U == u{{{r: N+ U |ranris finite A (U is countable = r € seqlf)}))

Here the least fixed point is the same as the countable set which is the least
fixed point for the free type definition:

W = w{(seq W)

However, a fixed point for &/ with PDR but not PPI is given by the uncount-
able set which is the least fixed point for the following free type definition (cf.
Example 6 in Sect. 2 of [1]):

Q == q{{r : N+ Q | ranris finite}))

In the terminology of [1], the idea behind these examples is as follows. We
start with some monotonic operator, ¢ say with a least fixed point satisfying
PDR. We want to use ¢ to construct an example with PDR but not PPI, and to
give some room for manoeuvre, we arrange for the carrier set R to be a “large”
set in some sense to be defined. We then construct another monotonic operator
¥, such that ¢(X) C (¢(X)), for all X. We do this in such a way that if X is
a “small” subset of R, then ¢(X) is a lot smaller than ¢(X), whereas if X is a
“large” subset of R, 1(X) = ¢(X). It then turns out that a least fixed point for ¢

% Formally, “X is finite” may be expressed in Z as “X € FX”, and “X is countable”
as ‘N—» X # o”.

with carrier set R say, may still have PDR with respect to 1, since 9(R) = ¢(R),
but R can contain “small” subsets which manage to be fixed points for 1 even
though they are not fixed points for ¢. In the case of 7 and U above “small” is
interpreted as “no more than one element” and “countable” respectively.

Ultimately, the problem with formulating PDR as suggested by universal al-
gebra, using E;[Y /T], rather than 7;[Y /7] is that the resulting axiom involves
application of the data functions d; outside their domain of definition for bad
cases like those we have just been looking at. Many of the free type definitions
that arise in practice do not impose the structural constraints on the generative
strengths of the constructors that give rise to this problem. In categorical lan-
guage, these are the ones for which the operation mapping Y to E;[Y /7] gives
the objects part of a functor whose morphisms part is the operation h, discussed
in Sect. 3.1 (see [3] for a more explicit account).

It may well be of benefit in developing conceptual and mechanized tools for
working with Z free types to pay special attention to the functorial case® so
as to exploit the additional properties it enjoys. This would let us use many of
the practical techniques developed for other logical systems, e.g., see [6] for a
treatment of recursive definitions in HOL. In particular, for functorial free type
definitions, PDR actually entails all the other axioms and so may be used as a
starting point for many lines of reasoning. It is perhaps unfortunate that this
economy of axiomatisation is not available in the general case with which Z must
deal.

5 Conclusions

The principles for defining functions over free types that we have articulated
justify a useful class of definitions. The principles are intended to serve as rules
of thumb for the ordinary Z practitioner and to guide those constructing tools
supporting mechanized reasoning in Z.

The foundation of Z in set theory means that the theory of recursion for Z
is perhaps less widely known in the formal methods world than might be the
case for a notation founded in domain theory or universal algebra. While there
is a broad overlap, the approaches are not isomorphic. For many purposes, the
set-theoretic approach is, I would claim, both simpler and more powerful.

6 A possible line in this direction would be to adopt the approach of [10] which reports
on an enrichment of the Z type system, extending the basic types of Z to allow finer
distinctions to be made by a Z support tool, e.g., to distinguish sequences from other
less structured functions. If one required the richer types to be functorial, then the
methods of [10] might enable a tool to recognise and exploit the functorial case in
a systematic way. An alternative approach would be to use some heuristic method
to derive from each expression E; a more convenient expression to use in place of
7:[Y /T]. Care would be needed in designing such a mechanism to ensure that the
resulting definitional principle is sufficient for all purposes.

6

Acknowledgments

Much of the work reported in this paper was undertaken while the author was
working for International Computers Ltd. under contract to the UK Govern-
ment’s Communications and Electronics Security Group. I am indebted to Colin
Champion of CESG for permission to publish the results and to the ZUM’98
referees for their sympathetic and helpful comments.

References

10.

11.

12.

13.

. R.D. Arthan. On Free Type Definitions in Z. In J.E. Nicholls, editor, Z User

Workshop, York 1991. Springer-Verlag, 1992.

. R.D. Arthan. Mechanizing the Z Toolkit. In Mike Mislova, editor, Proceedings of

the Ozford Workshop on Automated Formal Methods. Elsevier Electronics Notes
in Computer Science, 1997.

R.D. Arthan. Recursive Data Types in Typed Set Theory. Unpublished pre-print,
1997.

P.M. Cohn. Universal Algebra. D Reidel Publishing Company, 1981.

Paul R. Halmos. Naive Set Theory. Springer-Verlag, 1974.

Thomas F. Melham. Automating Recursive Type Definitions in Higher Order
Logic. In G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in
Hardware Verification and Automated Theorem Proving. Springer-Verlag, 1989.
A. Smith. On Recursive Free Types in Z. RSRE Memorandum 91028. MOD PE,
RSRE, 1991.

J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

J.M. Spivey. The Z Notation: A Reference Manual, Second Edition. Prentice-Hall,
1992.

J.M. Spivey. Richer Types for Z. Formal Aspects of Computing, 8(5):565-584,
1996.

Michael Spivey. The Consistency Theorem for Free Type Definitions in Z (Short
Communication). Formal Aspects of Computing, 8(3):369-376, 1996.

Sam Valentine. Inconsistency and Undefinedness in Z — A Practical Guide. These
proceedings, 1998.

Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice/Hall International, 1996.

